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Abstract

Increasing greenhouse gas emissions and negative environmental consequences 
have raised worldwide attention to ecological issues. The development of carbon 
regulations (CRs) beside carbon capture and storage (CCS) systems is part of carbon 
mitigation policies (CMPs), which are following in recent years to control and man-
age carbon liberation. Along with environemtal policies, the utilization of renewable 
energy resources have been promoted significantly. However, the economic oppor-
tunities for renewable energy development considering CMPs have not addressed 
extensively. In this study, a stochastic mathematical programming model has been 
presented to minimize cost and downside risk (DSR) of the bioelectricity generation 
supply chain considering the pre- and postdisaster conditions. The role of several 
CMPs on the economic behavior of the system has been analyzed by investigating 
the potential uncertainties on material availability, material quality, and consumer 
demand. To consider disruption effects, the postdisaster stage has been classified into 
several substages including damage, recovery, and back to the sustainability stages. 
Mississippi State after the Katrina Hurricane is addressed as a case study to examine 
the performance of the proposed model. The results demonstrated that the occur-
rence of disruptive uncertainties creates 8,978,502 $, 8,864,335 $ and 8,884,055 $ 
as the DSR, under carbon tax policy (CTP), carbon offset policy (COP), and CCS, 
respectively. The effect of disruptive scenario 1 with a 15% reduction of resource has 
led to the greatest postdisaster supply chain costs in comparison with other scenarios. 
Although the financial analysis showed CTP has the greatest DSR after the occur-
rence of disaster, this policy has the most investment attractions, as well as COP, 
with the internal rate of return (IRR) of 9%. While implementing the CCS policy 
with the IRR of 2% creates 7% missed opportunity costs compared with other CMPs.
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1 |  INTRODUCTION

Increasing global carbon emissions and the negative en-
vironmental consequences have led to greater adoption 
and commitment to environmental policies to reduce CO2 
emissions. At the same time, the use of renewable energy 
resources and cleaner fuels is being pursued with greater 
speed and enthusiasm.1–3 Among different types of re-
newable resources, forest biomass has characteristics that 
make it one of the viable options for biofuel or bioenergy 
production.4,5 Variations in type, availability through-
out the year, ability to store and improve its quality with 
changes in chemical or physical properties are the most im-
portant indicators of forest biomass to use for bioenergy 
production.6–10

However, there are several problems with using forest bio-
mass in energy applications. In particular, the rate of carbon 
emission during woody biomass combustion is significantly 
higher than the rate of carbon absorption over its growth 
cycle. This phenomenon, on a large scale, can affect the bal-
ance between the amounts of released and absorbed carbon 
in the atmosphere. Hence, this challenge causes a barrier for 
utilizing the forest biomass for energy production.11,12

Due to environmental concerns, the carbon mitigation 
policies (CMPs) are seriously implemented for controlling 
and reducing CO2 emission over the recent years.13–16 CMP 
adoption gains rapid attention due to their direct effects on 
the economic, social, and environmental feasibility of future 
renewable energy resources.17,18 In this regard, several car-
bon regulations (CRs) have been developed with prevention 
and control (PC) mechanisms to include limitations, financial 
penalties or subsidies on the volumes of liberated or captured 
CO2. Despite their benefits, there are various issues for im-
plementing CMPs. Variability in energy intensity and utiliza-
tion by consumers, incompatibility with elasticity in energy 
demand over time, and lack of financial attractiveness for 
private investors make shortages in CR implementation.19,20

To deal with these problems, alternative CMP strategies 
such as carbon capture and storage (CCS) have been in-
troduced as a more sustainable option for many industrial 
communities.21,22 Contrary to CRs, which impose specific 
monitoring and limitations on industrial activities, CCS fo-
cuses on capturing the exhaust gas of production units and 
transferring to the storage site.23,24 In other words, CRs are 
based on a PC approach, while CCS is an option to treat and 
improve (TI) postrelease carbon liberation. Although there 
are various CCS technologies such as precombustion, post-
combustion, and oxyfuel can be selected regarding social, 
economic, and environmental targets,25,26 the configuration 
of the CCS system is a challenge, particularly by considering 
the existence of uncertain factors.

Generally, the bioenergy supply chain is subject to rou-
tine and disruptive uncertainties. Routine uncertainties 

are diverse but predictable, such as normal fluctuation in 
material availability, consumer demand, and weather con-
ditions.27,28 While predicting and controlling routine un-
certainties are more manageable, disruptive events could 
have detrimental effects on systems performance through 
damaging impacts on various elements of bioenergy supply 
chains. These damages can cause financial loss and invest-
ment risk besides stakeholder's reluctance to invest in bio-
energy projects.

Given the effects of uncertainties on the economic effi-
ciency of the bioenergy supply chain, this research aims to 
measure bioenergy supply chain cost under disruptive sce-
narios, considering the acceptable level of downside risk 
(DSR) for investors. Along with uncertainty and risk effects, 
the impacts of implementing different CMPs such as carbon 
offset policy (COP) and carbon tax policy (CTP) as PC-based 
approaches, and CCS approach as a TI-based concept are em-
ployed to measure the economic feasibility of a bioelectricity 
generation supply chain.

To incorporate uncertain factors into the model (eg vari-
ability in the availability and quality of materials, and di-
versification of consumer demand), a two-stage stochastic 
programming model is provided. In this model, the strategic 
decisions are made in the first-stage and tactical decisions 
such as resource allocation, carbon capturing, energy gener-
ation, material storing, and electrical distribution are struc-
tured in the second stage.

For the effective presentation of uncertainty impacts, 
the postdisaster decision-making space is classified into 
the damage, recovery, and back to suitability substages, so 
that the uncertain parametric behavior of the system during 
these substages is different. The validity of the proposed 
model is then tested based on data and parameters obtained 
for the state of Mississippi in the face of Hurricane Katrina. 
Accordingly, the financial analysis is performed to determine 
the investment payback period and system profitability under 
each CMPs.

The remainder of this paper is organized as follows. 
Section 2 provides a brief review of the related work on mod-
eling uncertainty in bioenergy supply chains and CMP ap-
plications. The model is formulated in Sections 3 and 4. The 
case study, computational results, and economic analysis are 
presented in Sections 5 and 6. Finally, conclusions and direc-
tions for future research are provided in Section 7.

2 |  LITERATURE REVIEW

In this section, a brief review of measuring and modeling 
uncertainty in bioenergy supply chains with a focus on non-
deterministic mathematical programming models has been 
discussed. Then, relevant studies of implementing CMPs 
on the supply chain structures are reviewed. Accordingly, 
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the research gap and contributions of this research are high-
lighted at the end of this chapter.

Generally, the bioenergy supply chain is contained a wide 
range of activities from material cultivation and harvesting, 
material processing, storage, transportation, and conversion 
to transform biomass to bioenergy.29–31 While the existing lit-
erature covers economic, environmental, and social aspects 
of biomass utilization for energy generation,32,33 the major-
ity of literature focuses on the optimization of economic ob-
jectives using mathematical programming.34 In this context, 
optimization models for supplier selection,35 network con-
figuration,36–38 logistical decisions, conversion technology 
selection,39 vehicle routing,40 and supply chain uncertainty 
coverage29,41,42 are the most popular issues, which are dis-
cussed by vast of researchers recently.

Stochastic, fuzzy, and robust optimization models are the 
most nondeterministic modeling approaches that have been 
employed widely in recent researches. In this regard, the 
concepts of the energy life cycle and carbon emission were 
assessed in a study by Ref. [43. In this research, a biobjec-
tive mixed integer programming (MIP) model was developed 
to cover uncertainties of feedstock availability, transpor-
tation capacity, yield, and downside demand. Fattahi and 
Govadian44 addressed a multistage stochastic programming 
model to mitigate greenhouse gas emissions and optimize the 
social impacts of a biomass-based supply chain under mate-
rial supply uncertainty.

By presenting a robust optimization model, Babazadeh45 
optimized the total economic performance of the supply chain 
considering cost minimization and growth of carbon trade 
under uncertainties. A robust multiobjective model addressed 
by Ref. [46] to highlight the effects of uncertain factors on 
the sustainability and risk attitudes of decision-makers in a 
biofuel supply chain. Saghaei et al. formulated a two-stage 
stochastic programming model combined with chance con-
straint and storage limitations to consider the uncertainty of 
material availability, material quality, and consumer demand 
in a bioelectricity supply chain. The authors presented the 
model in both small and large scales and provided basic and 
improved cross-entropy algorithms to solve them.

In addition to the external uncertainties, the adoption of 
CMPs imposes new constraints or environmental costs to the 
system that complicates the decision-making. To indicate the 
effects of CMPs, Ortiz-Gutiérrez et al.47 proposed a mixed 
integer linear programming (MILP) model to develop a 
bioethanol supply chain under demand uncertainty and GHG 
savings. They showed that the increment of CO2 allowance 
price leads to a reduction in the economic profitability of 
the system.48,49 provided a mathematical model to analyze 
the impacts of several CRs, including carbon cap, carbon 
tax, carbon cap and trade, and carbon offset schemes on the 
performance of a biofuel supply chain. In another paper,50 
introduced a MILP model considering carbon tax and carbon 

trading (cap-and-trade) regulations in a bioenergy supply 
chain. Their results demonstrated that change of the carbon 
price has led to fluctuated emission rend that had not steady 
behavior.

Along with CR effects, the impacts of CCS technologies 
on the mitigation of carbon and performance of the supply 
chain have been attention recently. In this regard, the roles of 
CCS implementation on the emission level, electricity, price 
and system's financial behavior have been highlighted by re-
cent researches.51–53

According to reviewed literature, uncertainty plays a key 
role in the performance of the bioelectricity supply chains. On 
another side, environmental considerations such as the CMPs 
increase the complexity of decision-making and reduce the 
economic profitability of bioenergy production. Therefore, 
studying the effects of uncertainty and environmental consid-
erations on the attraction of investment for stakeholders in the 
bioenergy projects is necessary.

In this regard, this study presents a two-stage stochastic 
programming model to minimize the costs of a bioenergy 
generation supply chain under uncertainty and several CMPs. 
In our presented model, investment and technical cost ele-
ments are formulates in the postdisaster conditions, so that 
the facility establishment decisions are made as to the first 
(strategic) stage, and decisions related to the material flow, 
material storage, and level of generated electricity are formed 
in the second (tactical) stages under disruption scenarios.

To better incorporate uncertainty effects, the second deci-
sion-making stage has classified into three substages after the 
disaster, to show the effects of damage, recovery, and back to 
sustainability phases on the tactical decisions.

Our presented model not only focuses on the minimization 
of supply chain cost but also it is following the reduction of 
DSR as a variable dependent on the gap of optimal decision 
costs between pre- and postdisaster conditions. In this way, 
to consider risk concepts, we have defined DSR constraints 
in our model.

All formulations are performed in a case study in the 
southeast area of the Mississippi State to analyze the effects 
of Katrina hurricane disruptions on the construction of a bio-
electricity production project. Finally, due to the net present 
value (NPV) concepts, a financial analysis is provided to 
evaluate economic feasibility and missed opportunity of the 
project regarding several CMPs.

3 |  MODEL FORMULATION

In this study, a bioenergy supply chain is configured consid-
ering supply areas, material storage locations, power plant lo-
cations, and electrical consumer sectors. Firstly, a two-stage 
stochastic programming model is formulated to minimize the 
postdisaster supply chain costs (PoSCC) with attention to the 
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uncertainty of material availability, material quality, and con-
sumer demand under DSR considerations.

DSR variable is calculated simultaneously with PoSCC, 
regarding defined upper and lower bounds of risk, where the 
upper bound is the maximum acceptable level of DSR, and 
lower bound is the gap between PoSCC and an Ideal target for 
investors. One of the innovations of this study is suggesting 
the calculating of predisaster supply chain cost (PrSCC) as 
the ideal target for investors under routine uncertainties.

In this regard, Figure 1 demonstrates the schematic view 
of the bioenergy generation network. According to this fig-
ure, flows of the harvested materials move from supply areas 
to the storage locations as the green or salvaged woods.

In the storage, air-drying operations use to reduce about 
50% of moisture content (MC) of woody materials. In each 
period, some amounts of dried materials are maintained in 
the storage as the safety stock to coping with the material 
shortage in the future. In the next step, the dried feedstocks 
are sent from storage to the power plant to convert to the elec-
tricity and then distributing in the power network.

Affecting by routine uncertainties such as fluctuations 
of weather conditions, forest resource availability usually 
is changing. On the other side, the quality of green woods 
is determined regarding the rate of MC and higher heating 
value (HHV) that are constantly changeable proportional 
to the weather indicators such as humidity and tempera-
ture. Although supply chain parametric behavior is predict-
able under routine uncertain conditions, the occurrence of a 

sudden event such as natural disasters can significantly influ-
ence its performance. In this regard, Figure 2 demonstrates 
the three separate substages after the disaster.

After the occurrence of catastrophe, time interval a
1
 is 

known as the damage substage, when the large part of the 
green materials is destroyed in the following the disaster. 
Therefore, salvaged materials with lower quality will replace 
in the supply areas. During the recovery stage (a

2
), natural or 

artificial recovery processes will start. In this stage, due to a 
reduction of the salvaged wood, the stored or new harvested 
green materials will resupply. Gradually with the regrowing 
of green materials, the balance between supply and demand 
will form and system behavior returns to the sustainable level 
before the disaster (a3).

Changes in the parametric behavior of the system after the 
disaster can affect the supply chain decision-making process. 
In another word, the costs of the optimal decisions over the 
postdisaster phase are different in comparison with the rou-
tine conditions.

In general, supply chain decisions are made in three stra-
tegic (long-term), tactical (midterm), and operational (short-
term) levels. Strategic decisions are those types of decisions 
that will be considered prior to observe uncertainty in the 
system. For example, in the bioelectricity production sup-
ply chain, the location and size of power plants and storages 
are decisions that prospective investors make them, here and 
now, without considering occurrence the probable uncer-
tainty in the future.

F I G U R E  1  The schematic configuration of bioenergy generation supply chain
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On the other hand, tactical decisions such as the 
amount of material harvested and transported, the amount 
of stored material and produced electricity are time-de-
pendent decisions that can be affected by disruption 
scenarios in the future. For instance, uncertainty can in-
fluence the level of available biomass resources and the 
quality of them.

Therefore, in this study, we have employed a two-stage 
stochastic programming model to optimize the PoSCC. In 
this way, strategic decisions (size and location of facili-
ties) will be made in the first stage, and tactical decisions 
(material flows, the level of stored material, and the level 
of electricity generation and distribution) will be offered 
proportional to the uncertain scenarios in the second stage.

In this regard, a model is developed to minimize PoSCC, 
where SC is the cost of first stage (strategic decisions), pr

s 
is the probability of occurrence of disruptive scenario s, and 
TC

s is the second-stage decisions (technical decisions) costs 
(Equation 1).

According to Equation 1, SC are the first-stage decision 
costs including investment and fixed operation and mainte-
nance (O&M) costs to construct a power plant and 
∑

s

(prs
∗TCs) is the second-stage decisions (weighted tactical 

decisions) costs including harvesting, holding, and transpor-
tation costs of materials as well as the variable O&M cost of 
the power plant to generate electricity.

Subject to

According to Equations 4 to 6, the constraints of the prob-
lem are classified into the first stage, second stage, and DSR 
constraint groups. In continue, the constraints of each class 
are presented.

First-stage strategic constraints are including.

Equations 7 and 8 create limitations on the opening or es-
tablish material storages and power plants, with attention to 
the permitted locations and sizes.

Second-stage dtactical constraints are including.
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Equation 9 describes, all harvested volumes of materials, 
in each type and form, should be less or equal to the max-
imum available resource in that scenario, land, stage, and 
month.

Equations  10 and 11 explain the capacity limita-
tions of storage and power plant under establishment 
considerations.

Equation 12, 13, and 14 are balance constraints to show 
equality between input and output in the storage and power 
plant.

Equation 15 demonstrates the storage should maintain the 
safety stock in each period to deal with the uncertainty of 
available material in the future.

Equation  16 explains that total distributed electricity 
should satisfy the demand of consumers.

Equations 17 and 18 describe the upper and lower bound 
of DSR. The parameter R is the maximum acceptable level of 
DSR that is the highest risk level for investors. � is an ideal 
target that investors are willing to the realization of it, after 
the disaster.

As before discussed, we have assumed � is the optimal 
PrSCC under routine uncertainties. It is known as the ideal 
value for stakeholders that it justifies the investment. In an-
other word, investors will be satisfied if the costs of the supply 
chain after the occurrence of disaster has the minimum gap 
with the costs over the predisaster stage (under routine uncer-
tainties). Accordingly, to calculate �, we should optimize the 
PrSCC. In this regard, a nondeterministic mathematical model 
is developed under routine uncertainties to calculate decision 
costs without considering scenario and substage sets.

Equation  (19) describes PrSCC objective function as 
bellow:

where SC follows Equation 5 and TC is
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Subject to:

The configuration of the PrSCC model under routine 
conditions is completely similar to the PoSCC model with 
this difference that disruption scenarios, separated main, and 
substages do not exist in the structure of formulas. In another 
word, the space of decision-making is integrated and it is not 
decomposed.

It means the behaviors of uncertain parameters (mate-
rial availability, material quality, and electrical demand) 
are proportional to defined statistical distribution func-

tions and disruption scenarios do not affect their probabil-
ity function's characteristics. Therefore, we can consider 
Equations  7 to 18 as the constraints of the PrSCC model 
with ignoring indexes s and a and considering an integrated 
time set, t={1… .T} . After calculating the optimal costs of 
the PrSCC model, it will be replaced as the ω in Equation 
17 of the PoSCC model. The presented two-stage model in 
this chapter is the main configuration of a cost minimiza-
tion model for constructing a bioenergy supply chain under 
disruptive uncertainties and DSR considerations. In the fol-
lowing, the effect of CMPs on the model structures has been 
discussed.

4 |  CMP FORMULATIONS

In this part, different CMPs approaches according to the 
CTP, COP, and CCS add to the body of the PoSCC model. 
Due to introduced parameters, first, the CR models are for-
mulated (PoSCC-CTP, PoSCC-COP), and then, the CCS-
based model is presented (PoSCC-CCS).

4.1 | PoSCC-CTP model

Carbon tax as an environmental policy imposes the financial 
penalty for the released CO2 to different layers of the sup-
ply chain. The penalty costs add to the objective function as 
new cost elements. This policy does not allocate any capac-
ity limitation on carbon emission. The formulated objective 
function of this policy is as below:

where SC and TC
s follow the Equations 5 and 6 and

Subject to:

Equations 7 to 18
The objective function under CTP considerations 

(Equation 22) has additional components compared with 
PoSCC model (Equation  4), which it refers to the pen-
alty costs of CO2 emission over supply chain operations 
(Equation 23).

4.2 | PoSCC-COP model

Carbon offset as an environmental regulation allocates a 
limited capacity to CO2 emission through supply chain op-
erations. However, purchasing the additional carbon capacity 
from the market is permitted. In another word, the required 
surplus capacity can be supplied; nevertheless, unused car-
bon capacity cannot be sold.

If spcs

ta
 would be a variable to show the amounts of sur-

pluses purchased carbon capacity and Capta
 would be the per-

mitted emission capacity in the stage a and time t
a
, the 

objective function and related constraint to this policy are 
presented as below:

where SC and TC
s follow the Equations 5 and 6 and

(21)Equations 7 to 18 (without indexes s and a).
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Subject to:

Equations 7-18
And

According to Equation 24, the costs of purchasing new 
carbon capacity add to the objective function while the total 
carbon emission over supply chain operations should not ex-
cess permitted capacity (Equation 26).

4.3 | PCC-CCS model

CSS technology is one of the options to implement the TI 
approach for dealing with carbon emission. To impose CCS 
regulation on the model, the main structure othe supply chain 
should be connected to the set of facilities and operations 
which are involved in capturing, transportation, and store the 
carbon underground. The related mathematical elements to 
connect CCS structure to the main model are described in 
continue.

The presented objective function under CCS regulation is 
a combination of two supply chain elements related to the 
bioenergy generation and CCS network structures. Therefore, 
the investment and operational costs of both are considered 
in the model. All the strategic and tactical decisions of struc-
turing a CCS network are considered and added to the model. 
Decisions for selecting the best locations and sizes to estab-
lish capture unit, geological storage, and pipeline facility be-
tween capture unit and storage are considered as the strategic 
decisions and tactical decisions considering flows of trans-
formed and stored CO2 through the CCS network. In this re-
gard, the PoSCC-CCS model is formulated as below:

where SC. and TC
s follow the Equations 5 and 6 and

And

According to Equations 27-29, the objective function of 
the PoSCC-CCS model has several new components depend-
ing on the investment and fixed O&M costs to establish a cap-
ture unit, pipeline, and geological storage. The added tactical 
costs are including carbon capturing, transferring, and storage 
costs through the CCS operations. The PoSCC-CCS model 
not only includes the previous constraints (Equations 7-18) 
but also contains new limitations as below:

Equation 30 shows the amount of captured CO2 is de-
pendent on the generated electricity, emission rate, and effi-
ciency of the capture unit.
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(27)Min PoSCC - CCS=SC+Total CCS establishment costs

+ [
∑

s

prs ∗ (TCs+Total CCS tactical costss) ]

(28)

Total CCS establishment costs

=

∑

y

∑
[

iscyq+ fscyq

]

q

∗ xyq

+

∑

j

∑

q

∑

h

[

ipjjqh+ fpjjqh

]

∗ xjqh

+

∑

u

∑

h

[

igsuh+ fgsuh

]

∗xuh

(29)

Total CCS tactical costss

=

∑

y

∑

q

∑

ta

∑

a

∑

b

∑

k

Cscs
yqbkta

∗ ccyq

+

∑

j

∑

ta

∑

a

∑

q

∑

h

∑

u

∑

h

Ctps
jtayquh

∗

(

ftpjqh+ (vtpjqh ∗dqh)
)

+

∑

ta

∑

a

∑

u

∑

h

Csgs
tauh

∗hgtauh

(30)

∑

k

∑

b

Cscs
yqbkt a

=

∑

k

∑

b

(ettabk ∗ ecnvkb)∗ effyq

∀S∈ s,T a ∈ t a,A∈a,Y ∈ y,Q∈q

∑

k

∑

b

Cscs
yqbkta

≤ capcap
yq

∗ xyq

(31)∀S∈ s,Ta ∈ ta,A∈a,Y ∈ y,Q∈q



2984 |   SAGHAEI ET AL.

Equation 31 describes that the amounts of captured CO2 
should be less or equal to the capacity of the capture unit.

Equations 32 and 33 describe that the amounts of trans-
ported and stored carbon by pipeline and geological storage 
are equal to the input carbon and efficiency of facilities.

Equations 34 and 35 address the capacity limitations of 
received carbon by the pipeline and storage.

Equations 36 emphasizes that the amounts of stored car-
bon in geological storage should be equaled to the defined 
target value to mitigate and store carbon underground.

Equations 37 and 38 describe that the established captur-
ing units and geological storages should be less or equal to the 
permitted numbers (B

1
 and B2). Equation 39 emphasizes that 

between every two points of the capture unit and geological 
storage just one size of the pipeline facility could be selected.

All provided CPM-based models are trying to describe 
the changes in the basic PoSCC model under environmental 
considerations. With ignore of scenario set s, and substage set 

a, as well as integrating the time horizon of the problem in 
the form of t={1… .T}, the PrSCC-CTP, PrSCC-COP, and 
PrSCC-CCS models can be formulated similarly.

To analyze the performance of the formulated models 
and CMP scenarios, in the next chapter, the Mississippi case 
study is presented and discussed.

5 |  NUMERICAL RESULTS

5.1 | Case study

Mississippi, as one of the southern states of the United States, 
due to 305,010,178 hectares of forests, is known as a high 
potential area for forest wood extraction and utilization in 
bioenergy and biofuel generation. Opportunities for biofuel 
and bioelectricity generation in this state have been subjects 
of several studies in recent years.54

The majority of forestlands in this state are covered with 
pine and hardwood, which often found in two shapes of pulp-
wood and saw timber.54 Although this state has great access 
to forest resources, natural disasters have always been serious 
threats to forest conservation, availability of wood resources, 
the stability of the timber market, and the quality of wood 
materials. For instance, the Katrina hurricane in August 2005 
led to intensive damages to the forests in the forms of lean 
or blowdown.55,56 Although this destructive cyclone affected 
a large part of the Mississippi State, the 15 counties in the 
southeast area suffered the most. Figure  3 shows the level 
of damage in the 6 most destructed southeast counties of 
Mississippi after the Katrina hurricane.

Details of pine pulpwood, pine saw timber, hardwood 
pulpwood, and hardwood saw timber types for all 15 coun-
ties in the southeast of Mississippi are in Appendix A. These 
volumes are the monthly average materials that are available 
in the routine condition.

To perform the effects of routine uncertainty, for instance, 
seasonal changes and climatic variations, ±10% fluctuations 
are considered in the average available forest biomass in 
each county. It is assumed that the monthly average volumes 
for each county in the routine condition are distributed by 
Uniform distribution function in an interval with minimum 
and maximum boundaries as below.

where
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Forest availability = Uniform (Minimum value, Maximum value)

(41)

Minimum value = average value - average value * (0.10)

(42)

Maximum value = average value + average value * (0.10)
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After the natural disaster, the Katrina hurricane, the 
fluctuations in the forest availability are changed signifi-
cantly. According to the reports,57 the consequences of 
the Katrina hurricane caused 15-30% fluctuations in the 
blowdown factor, as the most prevalent factor, in several 
counties.

Hence, to consider the impact of disruption in the avail-
ability of the forest, four scenarios with −15, −20, −25, and 
−30% reductions of greenwood resources are applied to the 
model. The loss of material is assumed to be zero, hence 
during the damage substage, the amount of salvaged re-
sources after the disaster are equal to initial resources minus 
reduced green material under each scenario.

Obviously, the quality of green and salvaged woods is 
wieldy depend on the weather conditions and levels of the 
damage. Shabani58 presented an equation to measure the en-
ergy value (EV) of green materials regarding the MC and 
HHV values (Equation 43). We have generalized this formula 
to each time, type, and form of green resources.

According to the Haliwood and Horrobin's theory, the MC 
of woody material can be calculated depending on several 
indicators such as air temperature, humidity, and molecular 
weight of polymer unit that forms a hydrate in each time 
period.59 In another study, the humidity factor is addressed 
as a parameter-dependent to the dew point and normal tem-
peratures. The temperature is not a fixed parameter and it is 
usually fluctuating over time.60 Therefore, the mentioned ef-
fective indicators obtain various values in each month.

In this way, Saghaei et al61 have provided the effects of 
weather factors on the EV of forest biomass in a case study in 
the Mississippi State. According to this study, for better esti-
mation, the upper and lower values of monthly dew point and 
normal temperatures have been pasted on the Haliwood and 
Horrobin's equations to calculate the forest biomass's MC. 
The minimum and maximum monthly dew point and normal 
temperatures are extracted from the online websites for each 
county. Consequently, the upper and lower boundaries of MC 
in each month are achieved (Appendix C).

Proportional HHV values are measured according to a 
general classification presented in Table  1 and employing 
the linear interpolation technique. Appendix C addresses the 
lower and upper boundaries of the MC, HHV, and EV in each 
month. The final EV value is chosen using a random selec-
tion in the uniform distributed intervals, with attention to the 
lower and upper bounds of EV.

In another side measuring the quality of the salvaged 
woods is a challenge, since it depends on different features 
such as the severity of the damage, timber decay, and environ-
mental condition after a disaster.62 To simplify it, Equation 
44 is proposed to convert the quantities of green resources 
to salvaged type by multiplying to the specific parameter.63

where the Qs
G
 and Qs

Sl
 are quantities of green and salvaged woods 

respectively, and K is a translate factor to convert the salvaged 
wood value to green type. In another word, the translate factor 
K explains the equivalent green quantitates of salvaged wood. 
Using this factor, we convert the salvaged resources to green 
type and then use the measured green EV values for them.

(43)
EV

mnt
a
=HHV

mnt
a
∗
(

1−MC
mnt

a

)

∀M∈m,N ∈n

(44)Qs
G
=Qs

Sl
∗K−1

F I G U R E  3  General view of frost damage by Hurricane 
Katrina57

T A B L E  1  HHV level of woody biomass based on MC 
percentage71

Moisture content (Wet basis %)

HHV 

(MWh)

0 5.65

20 4.52

50 2.82

80 1.13

HHV, higher heating value; MC, moisture content.
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The average values for K after Hugo hurricane are re-
ported as K =4.5 and K =6.6 for saw timber and pulpwood 
forms of pine, respectively.64 Due to the lake of knowledge 
about relevant hardwood translate factors in these two forms 
(pulpwood and saw timber); in this study, reported values are 
generalized to hardwood forms too.

To consider postdisaster substages in our study, the first 
year after the disaster is introduced as damage stage when sal-
vaged woods are available to supply instead of greenwoods. 
The second year addresses the recovery stage, when the green 
woods are recovered but it does not completely. In this regard, 
a random value between 10 and 15 percent is considered as 
the rate of greenwood unavailability over the recovery stage, 
in comparison with the predisaster phase. Finally, the last 
stage, as the back to sustainability, is performed with 0 to 
10% material fluctuation.

The distribution of electrical demand for the southeast 
area of Mississippi after the Katrina hurricane is not exactly 
available. Generally, when the actual data are not available, 
the normal distribution function can be used to cover many 
information deficiencies of the system.65 In this study, we 
have employed simulated data of monthly electricity con-
sumption in the southeast area of Mississippi that is provided 
by61 (Table 2).

Investment and fixed annual costs to establish facilities 
such as power plant and capture units are relevant to the size 
of these facilities. On the other side, the variable cost of the 
system is directly dependent on the electrical demand and 
stored materials. In this regard, the provided data by61 are 
employed to consider efficiency, investment, fixed, and vari-
able O&M costs and suggested sizes including 116, 119, and 
122 MW to establish a power plant.

The storage capacity should be proportional to the electri-
cal consumer demand (suggested sizes for power plant) and 

the quality of materials. The storage capacity is proportional 
to the volumes of safety stock and required materials during 
routine conditions. It also should be as much as enough, for 
supporting of sudden increment in the material volumes, 
when the green resources are scarce and salvaged types with 
lower quality (higher quantities) should be replaced. In this 
regard, the storage capacity is suggested to be in proportion 
to the volumes of the dry material considering average EV 
of 4.5 (MWh/ Dry ton (Dt)), and average translate factor K 
of 5.5, with attention to all types and forms of materials. The 
storage capacity should be enough to run the power plant's 
operations for 20 days,66 regarding the three mentioned sizes 
(Table 3).

Appendixes B and D address some of the other supply 
chain parameters and distance between locations. Given that, 
the location of the power plant in each county is defined as 
the distance from the forest resources. As we do not know 
the accurate amount of that, a numerical interval is proposed 
to calculate each county's distance from itself as a range be-
tween zero and root square mile of surface (S) in that county 
(0, √S/2).

The CO2 capturing unit size calculates in the proportion 
to the size of the power plant and electricity net generation. 
Appendix B introduces the costs and emission parame-
ters of the CCS system, as the average values of the three 

T A B L E  2  Values of mean and SD for electricity consumption in each month/sector61

Monthly sector-based mean and SD of 

simulated electrical consumption (MWh)

Residential Commercial Industrial

Mean SD Mean SD Mean SD

Jan 31,920 482.8 20,848 389.8 24,210 407.2

Feb 27,376 493.5 19,560 401.9 23,049 358.6

Mar 27,131 512.4 20,162 424.9 24,155 264.1

Apr 23,188 510.4 19,687 333.5 24,059 450.3

May 23,051 323.6 21,117 364.6 25,405 567.4

Jun 28,556 521.6 22,828 510.2 25,906 484.7

Jul 34,836 721.9 24,775 587.2 26,199 418.4

Aug 33,417 518.1 24,723 358.4 24,809 435.9

Sep 29,408 781.1 23,008 401.7 24,863 472

Oct 23,942 425.9 21,735 464.9 24,858 438.7

Nov 23,731 656.3 20,047 325.8 23,870 549

Dec 31,240 531.9 21,067 261.1 23,428 394.6

T A B L E  3  Storage capacity (m3) for each power plant size

Power plant size 

(MW)61

Efficiency factor 

(%)61

Storage 

capacity (Dt)

116 30 347,198

119 35 309,105

122 40 273,867
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implementable technologies for CCS including oxyfuel, 
precombustion, and postcombustion.26 The provided infor-
mation by Appendix B is converted data, proportional to 
the three suggested sizes for the power plant considering the 
scale factor 0.7 and US $ cost per unit.67 The total CCS vari-
able cost includes the CO2 avoiding cost in the capture unit 
plus 10$ for transportation and storage.68 Fixed O&M costs 
for total facilities of the CCS are assumed 3.5% of investment 
costs, similar to the power plant.61

The amount of CO2 released during the CCS operations 
mainly depends on the emission of capturing unit, pipeline 
transferring process, and the associated underground carbon 
storage operations. To reduce carbon dioxide emissions and 
the cost of pipeline construction and decrease the risk of line 
failure, it is assumed that the CCS system is built in the same 

county where the power plant is established. The supply chain 
performance under CCS policy faces challenges such as the 
geographical conditions of the route between carbon storage 
and capture unit, and embedded facilities over carbon trans-
ferring and storage that may change the rate of carbon emis-
sions. Thus, a random value between 5% and 10% is assumed 
for the CO2 emission increment rate through transportation 
and storage operations. The CCS costs and emission are pre-
sented in Appendix B. The numerical results of the proposed 
model for the mentioned case study are widely presented in 
the next section.

6 |  COMPUTATIONAL RESULTS

This section presents the computational results of the pro-
posed models under several CMPs. GAMS software with a 
CPLEX solver has used to optimize mathematical models. 
Table 4 and Table 5 demonstrate the binary decisions and 
supplier counties under routine and disruptive uncertain-
ties. The summation of realized monthly electricity con-
sumption for three residential, commercial, and industrial 
sectors is provided in Figure 4. According to Figure 4, the 
most consumption rate refers to January with 85.9 thousand 
MWh. Among the three suggested sizes to establish power 
plants, 122 MW has been the best size to cover the elec-
tricity demand completely in both routine and disruptive 
conditions.

Over the predisaster stage, county 4 (Wayne) has been se-
lected as the best place to establish the power plant. Regarding 
the transportation cost concept, the same county is proposed 
as the best location to establish the material storage and CCS 
facility.

Over the postdisaster stage, the best location to establish 
facilities is changed to the country 7 (Forrest). Values of har-
vested materials in two forms of salvaged and greenwood are 
equaled for all CMPs. However, according to the dramatic 
decrement in the availability of green woods, the required 
material is supplied from a wider range of counties (Table 5). 

T A B L E  4  Binary decisions (selected locations and sizes) and 
supplier counties in the predisaster stage

Decisions/

CMPs CTP COP CCS

Material storage 
location

4 (Wayne) 4 (Wayne) 4 (Wayne)

Power plant 
location

4 (Wayne) 4 (Wayne) 4 (Wayne)

Capture unit 
location

4 (Wayne) 4 (Wayne) 4 (Wayne)

Geological 
storage 
location

4 (Wayne) 4 (Wayne) 4 (Wayne)

Material storage 
size (Dt)

273,867 273,867 273,867

Power plant size 
(MW)

122 122 122

Supplier 
counties*

4−3 4−3 4−3

CMPs, carbon mitigation policies; CTP, carbon tax policy; COP, carbon offset 
policy; CCS, carbon capture and storage.

*Appendix A. 

T A B L E  5  Binary decisions (selected locations and sizes) and supplier counties in the postdisaster stage

Decisions/ CMPs CTP COP CCS

Material storage location 7 (Forrest) 7 (Forrest) 7 (Forrest)

Power plant location 7 (Forrest) 7 (Forrest) 7 (Forrest)

Capture unit location 7 (Forrest) 7 (Forrest) 7 (Forrest)

Geological storage location 7 (Forrest) 7 (Forrest) 7 (Forrest)

Material storage size (Dt) 273,867 273,867 273,867

Power plant size (MW) 122 122 122

Supplier counties* 1-2-3-4-5-6-7-8-9-11-12 1-2-3-4-5-6-7-8-9-11-12 1-2-3-4-5-6-7-8-9-11-12

CMPs, carbon mitigation policies; CTP, carbon tax policy; COP, carbon offset policy; CCS, carbon capture and storage.

*Appendix A. 
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Figure 5 shows the total supplied materials in two forms of 
green and salvage over both pre- and postdisaster stages. The 
salvaged materials are available exclusively in the postdisas-
ter stage.

The total supplied green material under routine (ru) and 
disruptive uncertainties (DU) is 887,634 and 787,566 Green 
ton (Gt), respectively. At the same time, the volumes of sal-
vaged material under disruption have been 122,371.9 Gt. 
According to Figure 5, there is not any considerable gap in the 
total supplied green materials between RU and DU. However, 
the contribution of material based on their types and forms 
is different. In this way, Figures  6, 7,and demonstrate the 
proportions of pine pulpwood, pine saw timber, hardwood 
pulpwood, and hardwood saw timber for both forms of green 
and salvaged woods. Over the routine conditions (predisaster 
stage), pine pulpwood with the 48% contribution has the most 
share regarding the higher resource availability in compari-
son with others (Figure 6). Due to the significant depletion 
of resources under disruptive conditions, the percentage of 
resource utilization has been adjusted and the participation 

of other types of resources is increased. However, the 24% 
reduction in the volume of pine pulpwood under disruption 
(Figure 7) leads to the 80% contribution of salvaged wood 
(Figure 8).

The difference in the numbers and locations of suppliers 
and the volumes of supplied materials under RU and DU af-
fect the operational and environmental performance of the 
supply chain considering CMPs. Figure 9 shows the costs of 
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implementing a bioelectricity supply chain under CMPs for 
both routine and disruptive conditions.

The presented costs in Figure 9 are the first-year PoSCC 
results including investment costs, fixed and variable O&M 
costs, and operational and environmental costs under CMPs. 
Tables 6-9 present details of them. As before discussed, to 
run the PoSCC model, we need to determine the parameter 
� as the optimal PrSCC. In this regard firstly, we have calcu-
lated the optimal costs of the bioenergy supply chain under 
RU considering CMPs. The detailed cost elements for the 
predisaster model are presented in Table 6.

In continue, the cost elements of the supply chain in the 
postdisaster stage are presented under each CMPs sepa-
rately considering disruption scenarios (Tables 7-9). Finally, 
Figure 10 demonstrates the amounts of DSR for each CMP 
with attention to the provided information.

Tables 7-9 illustrate supply chain cost items under disrup-
tion scenarios including 15, 20, 25, and 30% reduction in pri-
mary resources (chapter 5). According to Table 6, operational 
cost elements for all CMPs have equal values. This is because 
the reported data are the minimum required costs to operate 
the power plants and fulfill consumer demand. The most and 
least objective function values refer to CCS and COP, respec-
tively. As well as, in the COP and CTP scenarios, there are 
environmental costs related to the purchased surplus carbon 
capacity and the tax imposed on the emission.

Similarly, Tables 7-9 show the cost elements of the post-
disaster model under disruptive uncertainty. The same as the 
predisaster model, COP, and CCS have the best and worst 
economic results, respectively. The behavior of each scenario 
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F I G U R E  9  The total costs of bioenergy supply chain affected by 
RU, DU, and several CMPs
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T A B L E  6  Table Numerical results of annually PrSCC under CMPs

Costs($)/CMPs CTP COP CCS

Total Investment cost ($) 441,854,606 441,854,606 687,694,838

Total Fixed O&M cost ($) 16,790,475 16,790,475 25,470,686

Material harvesting cost ($) 8,254,998 8,254,998 8,254,998

Material transportation cost from l to i ($) 5,516,730 5,516,730 5,516,730

Material transportation cost from i to k ($) 2,435,070 2,435,070 2,435,070

Material storage cost ($) 875,971 875,971 875,971

Electricity generation cost ($) 3,797,034 3,797,034 3,797,034

Purchase surplus carbon cost ($) – 115,237 –

CO2 emission cost over harvesting ($) 159,774 – –

CO2 emission cost over transportation from l to i ($) 7,020 – –

CO2 emission cost over transportation from i to k ($) 1,797 – –

CO2 emission cost over material storing ($) 22,775 – –

CO2 emission cost over electricity generation ($) 1,460,741 – –

Total CCS operational cost ($) – – 9,361,593

Total ($) 481,176,991 479,640,121 743,406,920

CMPs, carbon mitigation policies; CTP, carbon tax policy; COP, carbon offset policy; CCS, carbon capture and storage; PrSCC, predisaster supply chain cost.
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refers to the ratios of available salvaged wood compared with 
greenwood.

In scenario 1, the availability of salvaged material is not 
considerable, as results, due to the shortage of salvaged wood 
and the needs of the system to be fed; some cost elements have 
increased to supply green resources from a wider range of coun-
ties. In scenarios 2 and 3 although green wood reduction rate 
is higher than scenario 1; however, rate of replacing salvaged 
wood is more than it; consequently, the system can reduce the 
needs of harvesting material from farther counties. As dis-
cussed, increasing and decreasing costs of the supply chain in 
exchange for parametric volatility have been achieved by efforts 
to minimize costs and maximize DSR reduction. In this regard, 
Figure, 10 shows the amounts of DSR under CMPs separately.

As in Figure 10, the highest DSR belongs to CTP, which 
has the most cost increment over the postdisaster stage. It is 
because of the allocated carbon tax to the whole operations 
of the supply chain. It means the role of disruption on the 

material availability rate has more effect on the rate of emis-
sion that is deserving to penalty costs, in comparison with the 
shortage of carbon capacity (COP) or volumes of transferred 
carbon (CCS).

Another important issue is the green material proportion 
in comparison with the salvaged type in each scenario and 
its effects on the DSR. As it is observable, all three CPMs 
have experienced the highest DSR under scenario 1. This sce-
nario assumes the least amount of destruction in the primary 
sources. However, the reduced availability of green materials, 
along with limit accessory to salvaged resources (compared 
to other scenarios), has made the supply chain obliged to sup-
ply green materials from farther counties. It has led to an in-
crease in the cost of material shipping.

To evaluate the level of problem complexity under routine 
and disruptive conditions, considering CMPs, we have ana-
lyzed the solving time for different sizes of the problem. The 
analyzed sizes and results are presented in Table 10.

T A B L E  7  Numerical results of first-year PoSCC under COP and disruptive scenarios

Costs($)/CMPs S
1

S
2

S
3

S
4

Two-stage model

Investment cost ($) 441,854,606 441,854,606 441,854,606 441,854,606 441,854,606

Fixed O&M cost ($) 16,790,475 16,790,475 16,790,475 16,790,475 16,790,475

Material harvesting cost ($) 11,679,860 11,689,000 11,654,910 11,660,840 11,671,153

Material transportation cost 
from l to i ($)

9,130,891 9,036,998 8,883,622 8,884,112 8,983,906

Material transportation cost 
from i to k ($)

3,507,711 3,502,472 3,501,701 3,504,423 3,504,077

Material storage cost ($) 1,771,496 1,754,998 1,754,892 1,779,034 1,765,105

Electricity generation cost ($) 3,797,034 3,797,034 3,797,034 3,797,034 3,797,034

Purchase surplus carbon cost ($) 138,041 138,103 138,105 138,155 138,101

Total ($) 488,670,114 488,563,686 488,375,345 488,408,679 488,504,457

CMPs, carbon mitigation policies; COP, carbon offset policy; PoSCC, postdisaster supply chain costs.

T A B L E  8  Numerical results of first-year PoSCC under CCS and disruptive scenarios

Costs($)/CMPs S
1

S
2

S
3

S
4

Two-stage 

model

Total Investment cost ($) 687,694,838 687,694,838 687,694,838 687,694,838 687,694,838

Total Fixed O&M cost ($) 25,470,686 25,470,686 25,470,686 25,470,686 25,470,686

Material harvesting cost ($) 11,679,860 11,658,570 11,654,991 11,660,840 11,663,565

Material transportation cost 
from l to i ($)

9,130,891 9,045,902 8,883,622 8,884,112 8,986,131.8

Material transportation cost 
from i to k ($)

3,507,711 3,502,349 3,701,701 3,504,423 3,554,046

Material storage cost ($) 1,771,493 1,746,752 1,754,892 1,779,187 1,763,081

Electricity generation cost ($) 3,797,034 3,797,034 3,797,034 3,797,034 3,797,034

Total CCS operational cost ($) 9,361,593 9,361,593 9,361,593 9,361,593 9,361,593

Total($) 752,414,106 752,277,724 752,319,357 752,152,713 752,290,975

CMPs, carbon mitigation policies; CCS, carbon capture and storage; PoSCC, postdisaster supply chain costs.
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The size 1 refers to the presented case study, which in-
cludes 15 counties and indexes such as potential locations of 
forestlands (l), material storages (i) , power plants (k), capture 
units (q) , geological storages (h). The solving time of the 
predisaster model under CTP, COP, and CCS for size 1 has 
been 71, 54, and 112 seconds. Similarly, for the postdisaster 
model under disruptive scenarios, 90, 61, and 144  seconds 
are recorded, respectively.

By increasing the size of the problem from case 1 to 4, the 
gap of solving time between pre- and postdisaster is evaluated 
considering CMPs. The results show that by increasing the 
size of the problem, the solving time is increased. Noticeably, 
significant growth in solving time is observed in the CCS 
scenario with attention to the existence of more viables and 
parameters.

6.1 | Fancial analysis

Regarding DSR results and a considerable gap between 
CMP's economic performances in the pre- and postdisaster 
stages, financial analysis is employed based on the NPV con-
cept to evaluate economical attractions of CMPs under dis-
ruptive conditions.

Net present value (NPV) in engineering economics is one 
of the standard methods of evaluating economic plans. In this 
way, the cash flow (income and expense) is discounted based 
on the time of occurrence (income or expense). Present net 
value is widely used in economic calculations, engineering 
economics, countries' budgets, microeconomics, macroeco-
nomics, commerce, and industry. In this way, the NPV for-
mulation is presented below:

(45)NPV =
∑

t

R
t
∕ (1+ i)t .

F I G U R E  1 0  The DSR values ($) under disruptive scenarios and 
CMPs considerations

S1 S2 S3 S4
Two stage

model

CTP 9 103 758 8 962 877 9 006 634 8 840 740 8 978 502

COP 9 029 993 8 923 565 8 735 224 8 768 558 8 864 335

CCS 9 007 186 8 870 804 8 912 437 8 745 793 8 884 055

8 500 000

8 600 000

8700 000

8 800 000

8 900 000

9 000 000

9 100 000

9 200 000

( 
$

 )
 

T A B L E  1 0  Gaps in solving time for postdisaster model 
compared with the predisaster model under several problem sizes and 
CMPs

Size of problem (l, i, k, q, 

h)/CMPs CTP COP CCS

1 - (15,15,15,15,15) 27 14 29

2 - (21,22,1918,17) 27 14 30

3 - (25,27,23,22,26) 29 15 33

4 - (30,32,34,29,33) 32 20 37

CMPs, carbon mitigation policies; CTP, carbon tax policy; COP, carbon offset 
policy; CCS, carbon capture and storage.

T A B L E  9  Numerical results of first-year PoSCC under CTP and disruptive scenarios

Costs($)/CMPs S
1

S
2

S
3

S
4

Two-stage 

model

Investment cost ($) 441,854,606 441,854,606 441,854,606 441,854,606 441,854,606

Fixed O&M cost ($) 16,790,475 16,790,475 16,790,475 16,790,475 16,790,475

Material harvesting cost ($) 11,679,860 11,658,570 11,654,991 11,660,840 11,663,565

Material transportation cost from l to i ($) 9,130,891 9,045,902 8,883,622 8,884,112 8,986,132

Material transportation cost from i to k ($) 3,507,711 3,502,349 3,701,701 3,504,423 3,554,046

Material storage cost ($) 1,771,493 1,746,752 1,754,892 1,779,187 1,763,081

Electricity generation cost ($) 3,797,034 3,797,034 3,797,034 3,797,034 3,797,034

CO2 emission cost over harvesting ($) 218,624 218,252 218,195 218,333 218,351

CO2 emission cost over transportation from l to 
i ($)

19,746 16,268 18,237 18,216 18,116.75

CO2 emission cost over transportation from i to 
k ($)

3,510 3,504 3,504 3,506 3,506

CO2 emission cost over material storing ($) 46,058 45,415 45,627 46,258 45,839.5

CO2 emission cost over electricity generation ($) 1,460,741 1,460,741 1,460,741 1,460,741 1,460,741

Total ($) 490,280,749 490,139,868 490,183,625 490,017,731 490,155,493

CMPs, carbon mitigation policies; CTP, carbon tax policy; PoSCC, postdisaster supply chain costs.
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where t is the period index, i is the internal rate of return 
(IRR), and R

t
 is the net cash outflow in the period. Obviously, 

at the beginning of the project, there is no revenue, and in-
vestment and fixed O&M costs are only the financial flow at 
the start point.

Economic comparison of projects is one of the important 
approaches that can affect investment attractiveness. Many 
investors face different conditions and investment options 
that can lead them to profitability or in contrast losing the op-
portunity.herefore, evaluating and comparing the economic 
performance of different projects would have a key role to 
justify stakeholders. There are various methods for economic 
comparinof p. However, IRR method offers a comprehen-
sive approach to determining the interest rate of investment 
over time. The other advantage of using IRR is the opportu-
nity of comparing it with the minimum attractive return rate 
(MARR). This comparison can result in selecting the best 
alternatives for investment. In addition, this method helps 
to find out how much opportunity is lost after investment in 
each project. To perform the IRR. approach, an equal invest-
ment payback period should be considered for all projects. 
Then, by using Equation 46, the IRR. is calculated for each 
plan where P. is the initial investment value, N. is the invest-
ment payback period, and a. is the net profit in each period.

If IRR≥MARR, the plan has economic feasibility. 
Otherwise, it wod not be an attractive option for investment. 

To compare plans, multiple cases are introduc.onsidering 
plans A. and B., three situations will be occurred as below:

1. Pns A. and B. have equal P. In this condition, the plan 
with hher IRR. is the best option for investment.

2. Plans A. and B. have equal IRR.; in this condition, the plan 
with lower P. is the best option for investment.

3. Plans A. and B are feasible; however, P
A
>P

B
 while 

IRR
A
< IRR

B
 in this condition if ΔIRRA−B≥MARR, then 

plan A would be selected as the best option. Otherwise, B 
would be a better economical alternative.

Ading to what was discussed, various CMPs are compared 
in terms oeconomic for determining the IRR of the project for 
each CMPs and its investment attractions. Compared projects 
are considered for after disaster conditions. To calculate NPV, 
t average electricity sale rate is considered 90.9 $ per MWh.69 
The time horizon after the disaster, as is discussed earlier, is 
divided into three stages including the first yr (damage stage), 
second year after the disaster (recovery stage), and the third 
year as the back to sustainability stage. The MARR is consid-
ered equal to the bank discount rate in the Mississippi (1.25% 
per annum).70 In addition, the investment payback period is 
considered 40 years for each CMP. Table 11 shows the cost, 
revenue, and profit values. Items reported in Table 11 include 
investment costs, annual fixed O&M costs, and variable costs 
of each CPM (total costs of harvesting, transportation, stor-
age, electricity generation, and environmental costs), which 
are listed in Tables 7, 8,9 and with details. These tables report 
only the costs associated with the first year. The costs of the 
system in the second and third years are then calculated based 

(46)

NPV =−P+
a

1

(1+ IRR)
1
+

a
2

(1+ IRR)
2
+…+

a
N

(1+ IRR)
N
=0.

T A B L E  1 1  Financial analysis of 
CMPs after disruption

Costs($)/Scenarios CTP COP CCS

Investment cost ($) 441,854,606 441,854,606 687,694,838

Fixed O&M cost ($) 
(Annually)

16,790,475 16,790,475 25,470,686

Total Variable cost($) (First 
year)

31,510,412 29,859,375 39,125,451

Total Variable cost($) 
(Second years)

29,692,261 28,136,489 36,867,912

Total Variable cost($) (Third 
year onwards)

22,511,410 20,995,040 30,241,396

Total Income($) (Annually) 80,893,728 80,893,728 80,893,728

Total profit($) (First year) 32,592,841 34,243,878 16,297,591

Total profit ($) (Second year) 34,410,992 35,966,764 18,555,130

Total profit ($) (Third year 
onwards)

41,591,843 43,108,213 25,181,646

Investment payback period 
(Year)

40 40 40

CMPs, carbon mitigation policies; CTP, carbon tax policy; COP, carbon offset policy; CCS, carbon capture 
and storage.
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on the parametric behavior of the system in the recovery and 
back to sustainability stages described in chapter 4. The sys-
tem revenue is also determined based on the sum of elec-
tricity generated per year (Figure 4) and its supply price.69 
Obviously, first-year costs will be higher than other years due 
to widespread depletion of resources, which will lead to in-
crement of costs and reduced profits from electricity sales.

According to the data of Table 11, the calculated IRR for 
each CMP is presented in Table 12.

Due to Table 12, IRR of the project under CTP and COP 
scenarios are equal (9%) while CCS experiences lower IRR 
(2%). It means, although the project under all CMPs is fea-
sible, the CCS scenario leads to missing 7% annual profit 
rather than CTP and COP. In other words, considering the 
equal investment payback period, the attraction of investment 
on the project under CTP and COP is 7% higher than the CCS 
scenario. Regarding the IRR approach, CTP- and COP-based 
scenarios are equally the same, due to equal investment cost 
and equal IRR after 40 years. However, both CTP and COP 
models create the same long-term attraction of investment for 
stakeholders.

7 |  CONCLUSION

This study is an optimization platform to minimize costs and 
DSR of implementing a bioenergy supply chain considering 
pre- and postdisaster conditions, disruptive scenarios, and 
various CMPs. To consider uncertainty of material avail-
ability, material quality, and consumer demand, a two-stage 
stochastic programming model has been provided in which 
the strategic and tactical decisions are made in the first and 
second stages, respectively.

We have considered the performance of a natural disaster 
(Katrina hurricane), as the start point of disruptions, in a re-
al-world case study in the Mississippi State. Our research has 
categorized the decision-making space after the disaster into 
three substages including damage, recovery, and back to sus-
tainability. To evaluate environmental considerations in the 
design and planning of the bioelectricity supply chain, two 
groups of CMPs including CTP and COP, as the PC-based 

regulations, and CCS, as the TI-based approach, have been 
added to the model. The computational results showed the 
model under disruptive conditions and the CTP scenario ex-
periences the highest DSR value (8,978,502 $).

Additionally, a financial analysis has performed to show 
economic feasibility and missed opportunities of different 
CMPs in the postdisaster condition. The results of the finan-
cial analysis showed that although the impact of uncertainty 
on the system under the influence of the CTP scenario results 
in the highest unexpected cost (DSR) equals to 8,978,502 $; 
however, the COP and CTP are the most cost-effective sce-
narios, respectively. They created the 9% as the IRR in the 
equal comparative terms (payback periods and MARR) while 
applying a CSS policy with 2% IRR created a 7% missed op-
portunity costs in comparison with them.

As future research opportunities in this field, we suggest 
considering a wider range of CMPs and analyzing their im-
pacts on biomass supply chain performance. The ability to 
sell the captured or unused carbon in the market to improve 
the economic attractions of the bioenergy projects can be an-
other interesting topic for investigation. It should be noted 
the future cash flows in this study have been considered as 
static values. As a result, considering the fluctuation of cost 
and profit elements with attention to the changes in electric-
ity price and MARR in the future could be helpful to more 
accurate financial analysis.

NOMENCLATURE

Sets

l  Set of forestlands, l∈{1,2,…L}

i  Set of potential locations to construct storages, 
i∈{1,2,… ,I}

k  Set of potential locations to construct power plants, 
k∈{1,2,… ,K}

b Set of power plant sizes, b∈{1,2,… ,B}

r Set of storage sizes, r∈{1,2,… ,R}

m Set of main material types, m∈{1,2,… ,M}

n Set of main material forms, n∈{1,2,… ,N}

a Set of postdisaster stages, a∈{1,2,… ,A}

s Set of disruptive scenarios s∈{1,2,… ,S}

v  Set of electricity consumption sectors, 
v∈{1,2,… ,V}

q  Set of potential locations to establish carbon cap-
ture unit, q={1,2,… ,Q}

y  Set of sizes to establish carbon capture unit, 
y={1,2,… ,Y}

h  Set of potential locations to establish geological 
storage, h={1,2,… ,H}

u  Set of sizes to establish geological 
storage,u={1,2,… ,U}

j Set of pipeline sizes, j={1,2,… ,J}

T A B L E  1 2  Financial analysis of project under different CMPs

Items/Plans CTP COP CCS

MARR (%) 1.25 1.25 1.25

IRR (%) 9 9 2

Feasibility yes yes yes

Missed opportunity (%) - - 7

CMPs, carbon mitigation policies; CTP, carbon tax policy; COP, carbon offset 
policy; CCS, carbon capture and storage; MARR, minimum attractive return 
rate; IRR, internal rate of return.
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Subsets

t
a
 Set of time periods in post-disaster stage a

For each a, t
a
 ∈ {1, 2… T

a
} , 

∑

a

t
a
 = {1, 2…T}

Parameters

chrv
mnl

  The cost per unit of harvesting material type m in 
form n in the forestland l

cstr
mni

  The cost per unit of holding material type m in 
form n in the storage i

ftlimnli  The fixed cost of transportation material type m in 
form n between forestland l to storage i

vtli
mnli

  The variable cost of transportation one unit of ma-
terial type m in form n per each unit of distance 
between forestland l to storage i

ftikmnik  The fixed cost of transportation material type m in 
form n between storage i and power plant k.

vtik
mnik

  The variable cost of transportation one unit of ma-
terial type m in form n per each unit of distance 
between storage i and power plant k

ic
kb

  The investment cost of construction a power plant 
with size b in location k

fckb  The annually fixed operation and maintenance 
(O&M) cost of a power plant with size b in loca-
tion k

vc
kb

  The variable (O&M) cost of electricity generation 
per unit in the power plant with size b in location k

effkb  The efficiency of power plant with size b in loca-
tion k

�
mn

  The weight loss rate of raw material type m, in 
form n

�
t
a

  The level of safety stock in period t
a
 of stage a

capstr
ir

 The capacity of storage i with size r
cap

p

kb
 The electrical capacity of power plant k with size b

cl
vta

  The electricity consumption level of consumer v in 
period t

a
 of stage a

pr
s The probability of occurrence disruptive scenario s

js
smnlta

  The maximum quantity of available resource type 
m, in form n in the forestland l in period t

a
 of stage 

a under scenario s
ev

mnt
a

  The energy value of material type m in form n, in 
period

t
a
 of stage The higher heating value of material type m, 

aHhv
mnta

  in form n, in period t
a
 and stage a

Mc
mnt

a

  The moisture content of material type m, in form n 
and period t

a
 and stage a

d
li
 The distance between forestland l and storage i

d
ik

 The distance between storage i and power plant k
dqh  The distance between capture unit q and geologi-

cal storage h
fscyq  The annually fixed O&M cost of the capture facil-

ity with size y in the location q
cc

yq
  The carbon capture cost per unit, for a capture fa-

cility with size y in the location q

iscyq  The investment cost to construct carbon capture 
facility with size y in the location q

igsuh  The investment cost to construct a geological stor-
age with size u in the location h

fgsuh  The annually fixed O&M cost of the geological 
storage with size u in the location h

hgtauh  The cost of holding carbon in geological storage 
with size u in location h, at time t

a
 and stage a

tcs
t
a
uh

  The target of capturing carbon in the geological 
storage with size u in location h, at time t

a
 and 

stage a
vtpjqh  The variable cost of transportation one unit of car-

bon by pipeline with size j between capture unit q 
and geological storage h

ipjjqh  The investment cost of construction the pipeline 
with size j between locations q and h

ftpjqh  The fixed cost of carbon transportation by pipeline 
with size j between capture unit q and geological 
storage h

fpjjqh  The annually fixed O&M costs of construct pipe-
line with size j between locations q and h

cap
cap

yq   The capacity of capture unit with size y in location 
q

cap
gs

uh
  The capacity of geological storage with size u in 

location h
cap

pip

j
  The capacity of the pipeline transportation with 

size j
effyq  The efficiency to absorption of CO2 from the ex-

haust gas of power plant by capture unit with size 
y and in location q

effjqh  The efficiency of the pipeline with size j to trans-
fer carbon from capture unit in location q to geo-
logical storage in location h

effuh  The efficiency of the geological storage with size u 
in the location h

Capta
  The permitted emission capacity of carbon at time 

t
a
 and stage a

ehrv
mnl

  The CO2 emission for harvesting one unit of mate-
rial in type m in form n at forestland l

esrt
mni

  The CO2 emission for holding one unit of material 
type m in form n at storage i

felimnli  The fixed CO2 emission for transporting material 
type m in form n, between forestland l and storage  i

veli
mnli

  The variable CO2 emission for transporting one 
unit of material type m in form n per each unit of 
distance, between forestland l and storage i

P
1
  The permitted numbers of locations to open 

storages
P

2
  The permitted numbers of locations to establish 

power plants
x

ir
  Binary variable that is 1 if storage has been opened 

in location i with size r and 0 otherwise
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x
bk

  Binary variable, which is 1 if power plant has 
been established in location k with size b and 0 
otherwise

xjqh   Binary variable, which is 1 if the pipeline trans-
portation facility with size j has been constructed 
between locations q and h and 0 otherwise.

Continues (Non-negative) Variables

Qhrvs
mntal

  Quantity of harvested material type m in form n in 
the forestland l in period t

a
 of stage a under sce-

nario s
Qstrs

mntair
  Quantity of stored material type m in form n in the 

storage i with size r in period t
a
 of stage a under 

scenario s
Qlis

mntalir
  Quantity of transported material type m in form n 

between forestland l and storage i with size r in 
period t

a
 of stage a under scenario s

Qiks
mntairkb

  Quantity of transported material type m in form n 
between storage i with size r and power plant k 
with size b in period t

a
 of stage a under scenario s

et
s

t
a
bk

  Total volume of generated electricity in power 
plant k with size b in period t

a
 of stage a under 

scenario s
ed

s

tabkv
  Volume of distributed electricity from power plant 

k with size b to consumption sector v in period t
a
 of 

stage a under scenario s
feikmnik  The fixed CO2 emission for transporting one unit 

of material type m in form n, between storage i and 
power plant k

veik
mnik

  The variable CO2 emission for transporting one 
unit of material type m in form n, each unit of dis-
tance between storage I and power plant k

ecnv
kb

  The CO2 emission for conversion one unit of ma-
terial at power plant k with size b

etax The CO2 emission tax for a unit liberated carbon
cp The price of purchasing one unit of surplus carbon
�  The ideal target (cost of supply chain) that inves-

tors are willing to the realization of it
R  The maximum acceptable rate of downside risk for 

investors
B

1
  The permitted numbers of locations to establish 

capture unit
B

2
  The permitted numbers of locations to establish 

geological storage
Binary Variables

x
yq

  Binary variable, which is 1 if the capture unit has 
been established in location q with size y and 0 
otherwise

x
uh

  Binary variable, which is 1 if the geological stor-
age has been established in location h with size u 
and 0 otherwise

spcs

ta
 Amounts of surplus purchased CO2 capacity

DSR
s

t
a

 Down side risk of scenario s in period t
a
 of stage a

Ctps
jtayquh

  Volumes of transferred carbon by pipeline with 
size j between capture unit q with size y and geo-
logical storage h with size u at time t

a
 and stage a 

under scenario s
Csgs

tauh
  Volumes of stored carbon in geological storage 

with size u in location h, at time t
a
 and stage a 

under scenario s
Cscs

yqta
  Volumes of transferred CO2 from power plants to 

capture unit with size y in location q, at time t
a
 and 

stage a under scenario s
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APPENDIX A

Volumes of different types of greenwood materials in the southeast area of Mississippi54

County/ Material volumes 

(Green Ton) Pine pulpwood Pine saw timber Hardwood pulpwood

Hardwood saw 

timber

1-Jefferson Davis 249 261 165 689 121 626 78 115

2-Covington 299 153 174 413 61 578 78 114

3-Jones 401 984 320 496 61 286 39 317

4-Wayne 648 329 496 631 177 192 121 723

5-Marion 390 912 286 865 73 368 37 214

6-Lamar 324 016 182 728 20 134 12 436

7-Forrest 361 753 218 279 24 608 15 108

8-Perry 517 760 317 461 35 093 20 646

9-Greene 682 324 482 739 63 546 36 360

10-Pearl River 414 072 306 753 32 565 25 588

11-Stone 283 904 214 243 34 769 26 885

12-George 369 115 271 849 90 452 76 430

13-Hancock 173 613 138 577 21 201 19 635

14-Harrison 227 356 176 869 14 580 9805

15-Jackson 338 150 185 978 88 251 33 692

APPENDIX B

Parameter values, units, and references.

Parameter Value Unit Reference

Fixed transportation cost 5.16 $/GT 72

Variable transportation cost 0.1235 $/GT/Km 72

Fixed transportation emission 0.0764 Kg CO2/GT 49

Variable transportation emission 0.05298 Kg CO2/GT/Km 49

Green wood Harvesting cost 9.3 $/GT 73

Salvaged wood harvesting cost 10.2 $/GT 73,74

Harvesting emission 12 Kg/GT 73

Conversion emission 109 Kg/MWh 75

Capture unit investment cost 1878.5 $/KW 25

Pipeline investment cost 0.49 Million $/Km 68

Geological storage investment cost 14 Million $ 68

CCS capture capacity 627.74 Kg CO2
25

Geological storage capacity 1 Million Ton CO2
68

Total CCS variable cost (including carbon 
capture and transportation costs by pipeline)

57.61 $/Kg CO2
25

Emission tax 0.015 $/Kg CO2
49

Carbon purchase cost 0.012 $/Kg CO2
49

Carbon capacity 1 000 000 Kg CO2
49
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