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Chapter 1

Introduction

Can a combinatorial optimization problem be approximated better if it is de-
termined by a system of geometric objects? Many combinatorial optimization
problems are NP-hard to solve and frequently even hard to approximate. On
systems of geometric objects however, these same problems can usually be
solved efficiently or approximated well.

The computational complexity of such geometric optimization problems
highly depends on the underlying system of objects. We consider objects that
arise naturally in diverse applications. For instance, the broadcasting range of
a wireless device can be seen as a disk, an atom is just a sphere, and a label on a
map is a rectangle. In this thesis, we consider hard combinatorial optimization
problems on systems of geometric objects, motivated by applications in for
example wireless networks, computational biology, and map labeling.

1.1 Optimization Problems and Systems of Geometric

Objects

Given a combinatorial optimization problem and its objective function, one
preferably is able to compute the optimum objective value and a correspond-
ing solution in an efficient way. Unfortunately, depending on one’s notion of
efficient, this is not always possible. The measure we use to decide whether
an algorithm is efficient is polynomial running time. That is, whether the
algorithm returns the optimum objective value (and possibly a corresponding
solution) using a number of ‘basic steps’ that is polynomial in the size of the
problem instance. An optimization problem having such an algorithm is called
polynomial-time solvable.

Many optimization problems are solvable in polynomial time. However,
there are also many optimization problems that are not known to be solvable
in polynomial time. In fact, there is very strong belief that these problems
cannot be solved in polynomial time. To support this idea, a class of hard
optimization problems has been identified, namely the class of NP-hard opti-
mization problems.

The most sensible way to work around NP-hardness while still restrict-
ing to polynomial-time algorithms is to try and find approximate solutions to
such optimization problems. An approximation algorithm returns an objec-
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2 Chapter 1. Introduction

tive value (and possibly a corresponding solution) within a certain (additive
or multiplicative) factor of the optimum objective value. Approximation algo-
rithms have been developed for many different optimization problems and are
widely used in practice. We should note however that sometimes one can even
show that approximating a problem within a certain factor is NP-hard.

In this field of hard optimization problems, we try to ascertain the influ-
ence on the computational complexity of these problems when using a system
of geometric objects as the underlying combinatorial structure. Since many
optimization problems use graphs as their underlying structure, it might be
no surprise that one of the central notions of this thesis is a graph induced by
a system of geometric objects: a geometric intersection graph.

Given a system of geometric objects, the vertices of the induced graph
correspond to the given objects and there is an edge between two vertices if the
corresponding objects intersect. There are many famous examples of geometric
intersection graphs, for instance the classic interval graph is an intersection
graph of intervals on the real line. For this thesis however, we are concerned
with intersection graphs of objects in two- and higher-dimensional space, such
as (unit) disk graphs, which are intersection graphs of (equally-sized) disks.

Most classical optimization problems are still NP-hard on (intersection
graphs of) systems of two-dimensional geometric objects [17, 67, 110, 157, 267].
However, there is considerable evidence (e.g. [4, 68, 74, 103, 150, 154, 201, 279])
to support the claim that approximating these problems is easier, meaning that
better approximation algorithms exist, on systems of geometric objects than
in general. The goal of this thesis is to further investigate this claim.

In this thesis we study the approximability of hard com-
binatorial optimization problems on (intersection graphs
of) systems of geometric objects.

As part of this study, we give both approximation algorithms and inapprox-
imability results. In the process, we show that the approximability highly
depends on the shape and size of the geometric objects under consideration.

1.2 Application Areas

It turns out that optimization problems on systems of geometric objects, and
particularly on geometric intersection graphs, occur in many application areas.
We consider some of the foremost application areas and associated problems
and systems of objects below.

1.2.1 Wireless Networks

It is very common for wireless networks to be modeled as geometric intersection
graphs. In 1961 already, Gilbert [122] used the following idea to model wireless
networks. Each wireless device is assumed to be a point in the plane and an
edge is drawn if the distance between two points is at most some constant δ.
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In other words, the network is modeled by the intersection graph of a set of
disks of radius δ/2. This graph would later be called a unit disk graph [136].

By now, unit disk graphs have easily become the prevalent model for wire-
less networks (although more advanced models exist, see Section 3.2.1). The
model implicitly assumes that all devices in the network have the same broad-
casting range. This is a perfect fit to an increasingly popular network type,
called a (mobile) ad hoc network [82, 166, 225, 232, 252]. A mobile ad hoc
network is an autonomous collection of mobile devices that communicate over
wireless channels. The network is self-organizing and self-reliant. In contrast
to classic wireless networks, no fixed infrastructure in the form of base stations
is present and messages are routed from source to destination through multi-
ple hops. Mobile ad hoc networks already exist since the late 1970s [1]. With
the ongoing miniaturization of chips and wireless transceivers, these networks
attained renewed interest in the last few years. This led for instance to the
advent of wireless sensor networks [5, 121, 133, 274].

Several well-known optimization problems are relevant to (ad hoc) wire-
less networks, and have consequently been studied on unit disk graphs and
its generalizations. A maximum independent set in the graph corresponds to
a largest set of devices that can transmit simultaneously without causing in-
terference. The minimum dominating set problem has been studied to find a
collection of emergency transmitters, capable of reaching every device in the
network. Alternatively, it can be used to construct a routing backbone. This
is also where a minimum connected dominating set comes in.

One of the first studies into unit disk graphs was on its chromatic num-
ber [136]. The minimum number of colors needed is equal to the minimum
number of channels needed in the network to communicate without causing
interference. Hence solving the coloring problem actually solves the frequency
assignment problem.

1.2.2 Wireless Network Planning

Classical wireless networks consist of a number of powerful base stations that
provide wireless service to smaller devices. Well-known examples are cellular
networks (i.e. GSM networks) and wi-fi networks (i.e. 802.11 networks).

Because these networks rely on base stations, it is imperative to position
them carefully. The common model (see e.g. [124]) is to view base stations as
disks, where the radius of each disk corresponds to the range of the wireless
signal broadcast by the base station, and the smaller wireless devices as points.
The question then is how to place as few disks (base stations) as possible, but
still cover all points, i.e. provide wireless service to all devices. This is the
geometric version of the well-known minimum set cover problem. Several
variations of this geometric set cover problem exist, depending for instance on
whether we are free to choose the location of the disk or should choose from
a given set of potential locations, or on how strict one is in insisting that all
points are covered. See Part III of this thesis for more variants.
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1.2.3 Computational Biology

Optimization problems on systems of geometric objects occur in several biolog-
ical applications. Armitage [15] described in 1949 the need to find the number
and the size of clumps of particles in order to properly count the total num-
ber of particles under a microscope. This clearly corresponds to problems on
cliques in geometric intersection graphs. Armitage considered several models
for the particles, including (unit) disks and rectangles of bounded aspect-ratio.

Kaufmann et al. [160] consider the alignment of DNA-sequences, which can
be described by a maximum clique problem on max-tolerance graphs, a gener-
alization of interval graphs. Interestingly, max-tolerance graphs are equivalent
to intersection graphs of isosceles right triangles. Xu and Berger [272] use a
geometric model to study the problem of attaching or assigning side-chains of
a protein to an existing backbone while maximizing system energy.

1.2.4 Map Labeling

In general, map labeling is the problem of placing labels on a map, such that
the labeling satisfies certain properties. For example, a label should be close
to its corresponding item on the map and the texts of different labels should
not overlap. Commonly, the labels are seen as rectangles, the items as points,
and the boundary of the rectangle of a certain label should overlap the point
modeling the corresponding item. Then one aims to maximize the number of
labels that can be placed, without any overlaps among the rectangles. If the
positions in which the rectangle may be placed are discretized, this is just the
maximum independent set problem on an intersection graph of rectangles [4].
The continuous case is more complex [102].

1.2.5 Further Applications

One of the most commonly cited algorithmic results for optimization prob-
lems on systems of geometric objects applies to (among others) a problem in
VLSI [150]. In the geometric packing problem, one wants to pack the largest
number of objects of a certain prescribed shape into a larger object. This
corresponds to maximizing yield when cutting chips from a large chip wafer.

A slightly morbid application is bombing. Garwood [117] described in 1947
the problem of minimizing the number of bombs needed to destroy points of
interest in a certain area. Assuming that the bombs have a circular area of
destruction upon impact, one wants to minimize the number of disks needed
to cover certain other geometric objects, e.g. rectangles or points, representing
buildings or matériel.

1.3 Thesis Overview

The thesis is comprised of three parts and eleven chapters. Below is an
overview of their contents.
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Part I: Foundations

We introduce and expand on the basic notions needed to understand the other
parts of the thesis.

The topic of this thesis is made from two main ingredients. The first is ap-
proximation algorithms for optimization problems. Chapter 2 formally defines
the type of optimization problems we consider here and what an approximation
algorithm is. We define several classes of optimization problems, each admit-
ting a particular type of approximation algorithm. The algorithms given in
this thesis gave rise to new classes of optimization problems. We consider the
relation of these classes to classic problem classes. The results of this chapter
were obtained in joint work with J. van Leeuwen [263].

The second ingredient of this thesis is systems of geometric objects and ge-
ometric intersection graphs. We survey the main results on structural aspects
of geometric intersection graphs in Chapter 3. We also present a new way
to look at a fundamental question surrounding geometric intersection graphs:
do geometric intersection graphs have a representation of polynomial size? In
Chapter 4, we prove that this is equivalent to the question whether or not
geometric intersection graphs have a representation that is polynomially sepa-
rated. Chapter 4 is an extended version of joint work with J. van Leeuwen [262].

Part II: Approximating Optimization Problems on Geometric Inter-
section Graphs

We describe exact algorithms and approximation schemes for optimization
problems on geometric intersection graphs. In particular, we consider Max-
imum Independent Set, Minimum Vertex Cover, and Minimum (Connected)
Dominating Set. As most of these problems are motivated by wireless net-
works, the majority of the graphs studied in this part are disk graphs.

We start by considering unit disk graphs in Chapter 5. If a unit disk
graph has a special property called bounded thickness, then many optimiza-
tion problems (such as Maximum Independent Set and Minimum Connected
Dominating Set) can be solved exactly in polynomial time. To this end, we
define a new graph decomposition, called a relaxed tree decomposition, which
might be interesting on its own. We provide exact algorithms on such decom-
positions that are applicable to general graphs. If the graph is a unit disk
graph, the running time of these algorithms can be expressed in terms of the
thickness. Moreover, the bound on the worst-case running time of the algo-
rithm for Minimum Connected Dominating Set is significantly lower on unit
disk graphs of bounded thickness than might be expected from the bound in
the general case.

In Chapter 6, we use the algorithms of Chapter 5 to give new, better approx-
imation schemes for these optimization problems on general unit disk graphs
by using the so-called shifting technique. The schemes are a ptas on general
unit disk graphs and an eptas if the density of the set of disks is bounded.
They improve on (the running time of) previous approximation schemes. For
Minimum Vertex Cover, we give an improved eptas on arbitrary unit disk
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graphs. We generalize to intersection graphs of unit fat objects in constant di-
mension and the weighted case. Furthermore, we prove that the algorithms are
optimal (up to constants), unless the exponential time hypothesis fails. The
ideas we give for the minimum connected dominating set problem are used to
give the first eptas for this problem on apex-minor-free graphs. Chapter 5 and
Chapter 6 are based on a revised and extended version of [259].

In Chapter 7 we generalize these ideas to general disk graphs and intersec-
tion graphs of fat objects. The crucial idea is to consider systems of fat objects
that have bounded ply. We subsequently present new, improved approxima-
tion schemes for Minimum Vertex Cover and Maximum Independent Set using
the multi-level shifting technique. The approximation scheme for Minimum
Vertex Cover is the first eptas for this problem on disk graphs. Most of the
results of this chapter were presented in [260].

It seems difficult to generalize the results of Chapter 6 for Minimum (Con-
nected) Dominating Set in the same way. Chapter 8 is devoted to the ap-
proximability of these problems on intersection graphs of systems of geometric
objects of different sizes. The shifting technique yields a constant-factor ap-
proximation algorithm on intersection graphs of any set of fat objects, if the
ply is bounded. The foremost innovation however is a general theorem to ap-
proximate Minimum Dominating Set on intersection graphs. We apply this to
obtain the first constant-factor approximation algorithm for Minimum Domi-
nating Set on intersection graphs of homothetic convex polygons and several
other object types. We prove however that these methods cannot extend to
intersection graphs of fat objects of arbitrary ply, of convex polygons, or of
homothetic polygons by giving a strong approximation hardness result. We
also prove APX-hardness on intersection graphs of arbitrary rectangles. This
chapter contains an extended version of joint work with T. Erlebach [105].

Part III: Approximating Geometric Coverage Problems

We describe algorithms for the geometric version of (variants of) the minimum
set cover problem. That is, the input consists of a set of geometric objects and a
set of points, and we are asked to find a subset of the objects covering all points.
In Chapter 9 we give the first polynomial-time approximation scheme for this
problem on unit squares. We extend this to a ptas for Geometric Budgeted
Maximum Coverage on unit squares. Moreover, we show that Geometric Set
Cover is (very) hard to approximate on systems of fat objects and APX-hard
on several other systems of two-dimensional objects. The chapter is based on
yet unpublished joint work with T. Erlebach.

When we no longer insist that all points are covered, we arrive at several
interesting new problems, which are variants of the unique coverage prob-
lem. In this problem, we are asked to cover a maximum number of points
uniquely. Chapter 10 gives the first constant-factor approximation algorithms
for this problem on unit disks and on unit squares by combining the shifting
technique with complex dynamic programming algorithms. The multi-level
shifting technique then generalizes these results to fat objects of bounded ply.
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We again present hardness results to prove that the restriction to bounded ply
is necessary. We also consider the approximability of the geometric version
of a generalization of Minimum Set Cover, called Minimum Membership Set
Cover. Chapter 10 is based on joint work with T. Erlebach [104].

Finally, Chapter 11 presents the conclusion and an outlook to future work.

1.3.1 Published Papers

This thesis is partially based on the following four (refereed) papers.

[1] van Leeuwen, E.J., “Approximation Algorithms for Unit Disk Graphs” in
Kratsch, D. (ed.) Graph-Theoretic Concepts in Computer Science, 31st
International Workshop, WG 2005, Metz, France, June 23-25, 2005, Re-
vised Selected Papers, Lecture Notes in Computer Science 3787, Springer-
Verlag, Berlin, 2005, pp. 351–361.

[2] van Leeuwen, E.J., “Better Approximation Schemes for Disk Graphs”
in Arge, L., Freivalds, R. (eds.) Algorithm Theory - SWAT 2006, 10th
Scandinavian Workshop on Algorithm Theory, Riga, Latvia, July 6-8,
2006, Proceedings, Lecture Notes in Computer Science 4059, Springer-
Verlag, Berlin, 2006, pp. 316–327.

[3] Erlebach, T., van Leeuwen, E.J., “Approximating Geometric Coverage
Problems” in Teng, S.H. (ed.) Proceedings of the Nineteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, San Fran-
cisco, California, USA, January 20-22, 2008, Association for Computing
Machinery, 2008, pp. 1267–1276.

[4] Erlebach, T., van Leeuwen, E.J., “Domination in Geometric Intersection
Graphs” in Laber, E.S., Bornstein, C.F., Nogueira, L.T., Faria, L. (eds.)
LATIN 2008: Theoretical Informatics, 8th Latin American Symposium,
Búzios, Brazil, April 7-11, 2008, Proceedings, Lecture Notes in Computer
Science 4957, Springer-Verlag, Berlin, 2008, pp. 747–758.
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Chapter 2

Primer on
Optimization and Approximation

A key ingredient of this thesis is approximation algorithms for certain opti-
mization problems. Hence it is useful to formally define what an optimization
problem is and what types of approximation algorithms we distinguish.

In addition to defining the classic types of approximation schemes, we
propose a new type of approximation scheme, the asymptotic approximation
scheme. Many of the approximation algorithms that we will encounter later
are essentially an asymptotic approximation scheme. We prove however that
two classes of optimization problems having such a scheme, namely FPTASω

and FIPTASω, both coincide with the well-known class EPTAS. Hence instead
of placing problems in a class of problems with an asymptotic approximation
scheme, we can place these problems in the more familiar EPTAS class as well.

2.1 Classic Notions

To make formal statements about (equivalences among) classes of approxima-
tion schemes, we have to be precise about the machine model that we use,
the type of problems that are considered, and the definitions of the studied
classes. Throughout, we assume the random access machine model with loga-
rithmic costs and representations in bits. This machine model is polynomially
equivalent to the classic Turing machine and thus defines equivalent complex-
ity classes up to polynomial factors. Furthermore, all numbers in this chapter
are assumed to be rationals, unless otherwise specified.

Using this model, we study optimization problems following the definitions
as can be found for example in Ausiello et al. [19].

Definition 2.1.1 An optimization problem P is characterized by four prop-
erties:

• a set of instances (bitstrings) IP ;

• a function SP that maps instances of P to (nonempty) sets of feasible
solutions (bitstrings) for these instances;

11
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• an objective function mP that gives for each pair (x, y) consisting of
instance x ∈ IP and solution y ∈ SP (x) a positive integer mP (x, y), the
objective value;

• a goal goalP ∈ {min,max} depending on whether P is a minimization
or a maximization problem.

We denote by S∗
P (x) ⊆ SP (x) the set of optimal solutions for an instance

x ∈ IP , i.e. for every y∗ ∈ S∗
P (x),

mP (x, y∗) = goalP {mP (x, y) | y ∈ SP (x)}.

The objective value attained by an optimal solution for an instance x is denoted
by m∗

P (x).

Definition 2.1.2 An optimization problem P is in the class NPO if

• the set of instances IP can be recognized in polynomial time;

• there is a (monotone nondecreasing) polynomial (say qP ) such that |y| ≤
qP (|x|) for any instance x ∈ IP and any feasible solution y ∈ SP (x);

• for any instance x ∈ IP and any y with |y| ≤ qP (|x|), one can decide in
polynomial time whether y ∈ SP (x);

• there is a (monotone nondecreasing) polynomial (say rP ) such that the
objective function mP is computable in rP (|x|, |y|) time for any x ∈ IP

and y ∈ SP (x).

All problems considered below will be in NPO and all considered classes will
be subclasses of NPO.

Note that for any problem P ∈ NPO and any n ∈ N the maximum objective
value of instances of size n, i.e. max{mP (x, y) | x ∈ IP , |x| = n, y ∈ SP (x)},
is bounded by 2rP (n,qP (n)), as the objective function value of any x ∈ IP and
y ∈ SP (x) can be represented by at most rP (|x|, |y|) ≤ rP (|x|, qP (|x|)) bits.
Let MP (n) = 2rP (n,qP (n)).

If one compares NPO to the class NP, then PO is the ‘equivalent’ of P. PO is
the class of problems in NPO for which an optimal solution y∗ ∈ S∗

P (x) can be
computed in time polynomial in |x| for any x ∈ IP . Paz and Moran [221] proved
that P=NP implies PO=NPO and vice versa. Because it is not expected that
all problems in NPO also fall in PO, several classes have been defined that
contain NPO-problems for which an approximate solution can be found in
polynomial time. Approximation algorithms are classified by two properties:
their running time and their approximation ratio.

Definition 2.1.3 ([19, 115]) For an optimization problem P ∈ NPO, any
x ∈ IP , and any y ∈ SP (x), the approximation ratio achieved by y for x is

R(x, y) = max

{
mP (x, y)

m∗
P (x)

,
m∗

P (x)

mP (x, y)

}
.
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Problem class Running time Approx. ratio

APX Polynomial in |x| c
PTAS Polynomial in |x| (for every fixed ǫ) (1 + ǫ)
FPTAS Polynomial in |x| and 1/ǫ (1 + ǫ)
FIPTAS Polynomial in |x| (1 + ǫ)
PO Polynomial in |x| 1

Table 2.1: Problem classes and the distinguishing properties of the
approximation algorithms admitted by problems in a particular class.

We say y is within (a factor) r of m∗
P (x) if R(x, y) ≤ r. The approximation

ratio of an algorithm A is defined as

RA = max{R(x,A(x)) | x ∈ IP }.

Observe that irrespective of whether goalP = min or goalP = max, the ap-
proximation ratio is a number that is at least 1. Sometimes however, in the
case where goalP = max, we will instead use

R′(x, y) =
1

R(x, y)
=

mP (x, y)

m∗
P (x)

,

which is at most 1. To keep the exposition simple, we will only use R(x, y) in
this chapter.

Any textbook on approximation algorithms covers at least the classes of
Table 2.1. The table should be interpreted as follows: PTAS for instance is
the class of optimization problems P in NPO having a ptas, i.e. having an
algorithm A such that for any instance x ∈ IP and any ǫ > 0, A(x, ǫ) runs
in time polynomial in |x| for every fixed ǫ and the solution output by A(x, ǫ)
has approximation ratio (1 + ǫ). We use lowercase for a scheme name and
uppercase for the name of the corresponding class (i.e. ptas and PTAS).

APX is the class of problems having a constant-factor approximation al-
gorithm, meaning a polynomial-time algorithm that returns a solution of ap-
proximation ratio c, for some fixed constant c.

The class FIPTAS (Fully Input-Polynomial-Time Approximation Scheme)
in Table 2.1 is a new class. Clearly, FIPTAS=PO (use ǫ = 1/MP (|x|)), but
the reason for defining this class will become apparent later.

A relatively new class that is of increasing interest is EPTAS [26, 53].

Definition 2.1.4 Algorithm A is an efficient polynomial-time approximation
scheme (eptas) for problem P if there is a computable function f : Q+ → N

such that for any x ∈ IP and any ǫ > 0, A(x, ǫ) runs in time f(1/ǫ) times a
polynomial in |x| and the solution output by A(x, ǫ) has approximation ratio
(1+ ǫ). An NPO-problem is in the class EPTAS if and only if it has an eptas.
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The popularity of eptas is not only due to the separate dependence on 1/ǫ
and instance size in the running time, but also to the beautiful relation to the
widely researched class FPT: any problem admitting an eptas is also in FPT
w.r.t. its standard parameterization [26, 53]. An intriguing exploration of the
type of problems that admit an eptas may be found in Cai et al. [48].

It is well-known that PO ⊆ FPTAS ⊆ EPTAS ⊆ PTAS ⊆ APX ⊆ NPO.
In most cases, the inclusion is strict (unless P=NP), except that EPTAS ⊂
PTAS unless FPT=W[1] [26, 53]. The question whether FPT=W[1] is an open
problem for fixed-parameter complexity theory akin to the question whether
P=NP for classic complexity theory (see e.g. Downey and Fellows [92]).

2.2 Asymptotic Approximation Schemes

We introduce a new type of approximation scheme, the asymptotic approxi-
mation scheme.

Definition 2.2.1 An approximation scheme A for an optimization problem
P ∈ NPO is asymptotic if there is a computable function a : Q+ → N (the
threshold function) such that for any ǫ > 0 and any x ∈ IP , it returns a
y ∈ SP (x) and if |x| ≥ a(1/ǫ), then y is within (1 + ǫ) of m∗

P (x).

This definition leads to the following classes of asymptotic approximation
schemes.

Class Running time Approx. ratio

PTASω Polynomial in |x| (for every fixed ǫ) (1 + ǫ) if |x| ≥ a(1/ǫ)
FPTASω Polynomial in |x| and 1/ǫ (1 + ǫ) if |x| ≥ a(1/ǫ)
FIPTASω Polynomial in |x| (1 + ǫ) if |x| ≥ a(1/ǫ)

Example 2.2.2 Maximum Independent Set has a fiptasω on bounded ply disk
graphs (see the proof of Theorem 7.3.9). Disk graphs are intersection graphs
of disks in the plane. A set of disks has ply γ if γ is the smallest integer such
that any point of the plane is strictly contained in at most γ disks. One can
find in O(n10 log4 n) time an independent set of a graph induced by n disks. If
for some ǫ > 0 an odd integer k can be chosen such that max{5, 4(1 + ǫ)/ǫ} ≤
k ≤ c1 log n/ log(c2γ) (where c1, c2 are fixed constants), then this independent
set will be within (1 + ǫ) of the optimum. If γ = γ(n) = O(no(1)), such an
integer exists if |x| ≥ n ≥ a(1/ǫ) for some function a.

We start with some easy observations about the asymptotic classes.

Proposition 2.2.3 The following relations hold:

• FIPTASω ⊆ FPTASω ⊆ PTASω and

• FIPTAS ⊆ FIPTASω, FPTAS ⊆ FPTASω, PTAS ⊆ PTASω.
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The relations given by this proposition are straightforward and one might
expect that the inclusions are strict under some hardness condition. However,
this turns out not to be true for all of them. We can in fact prove very
interesting equivalences and at the same time tie these new classes to existing
approximation classes, in particular to EPTAS.

Theorem 2.2.4 EPTAS = FPTASω = FIPTASω.

Proof: We first show that EPTAS ⊆ FIPTASω. Let P ∈ EPTAS and let A be
an eptas for P with running time at most p(|x|) · f(1/ǫ) for some computable
function f and polynomial p. Construct a fiptasω for P as follows. Given an
arbitrary instance x ∈ IP and an arbitrary ǫ > 0, run A(x, ǫ) for p(|x|) · |x|
time steps. If A(x, ǫ) finishes, return the solution given by A(x, ǫ). Otherwise,
return A(x, 1/2). This algorithm clearly runs in time polynomial in |x| and
always returns a feasible solution. Furthermore if |x| ≥ f(1/ǫ), A(x, ǫ) always
finishes and returns a feasible solution with approximation ratio (1+ǫ). Hence
we constructed a fiptasω for P with a = f .

We next prove that FPTASω ⊆ EPTAS. Let P ∈ FPTASω and let A be an
fptasω for P with threshold function a. Construct an eptas as follows. Given
an arbitrary instance x ∈ IP and an arbitrary ǫ > 0, compute a(1/ǫ). By
assumption, a(1/ǫ) is computable. The amount of time it takes to compute
a(1/ǫ) is some computable function depending on 1/ǫ. If |x| ≥ a(1/ǫ), simply
compute and return A(x, ǫ) in time polynomial in |x| and 1/ǫ. If |x| < a(1/ǫ),
proceed as follows. As FPTASω ⊆ NPO, any feasible solution for x has size at
most q(|x|) for some polynomial q. Furthermore, given any y with |y| ≤ q(|x|),
one can determine in polynomial time whether y ∈ SP (x). The objective
value of a feasible solution can also be computed in polynomial time. Hence
by employing exhaustive search, one can find a y∗ ∈ S∗

P (x) in time

2q(|x|) · rP (|x|, q(|x|)) = 2q(a(1/ǫ)) · poly(a(1/ǫ)).

The result is an eptas for P with appropriately defined function f .
Since FIPTASω ⊆ FPTASω, we have EPTAS ⊆ FIPTASω ⊆ FPTASω ⊆

EPTAS, and hence all classes must be equal.

The exponential increase in running time in the reduction from an fptasω to
an eptas might be reduced by using an exact or fixed-parameter algorithm
specific to the problem.

The equivalence of F(I)PTASω and EPTAS allows an indirect proof of
the existence of an eptas for a problem, where a direct proof seems more
difficult. For instance, Maximum Independent Set on disk graphs of bounded
ply has a fiptasω (Example 2.2.2) and thus, as an immediate consequence of
Theorem 2.2.4, it also has an eptas.

We now show that PTASω and PTAS are equivalent.

Theorem 2.2.5 PTAS = PTASω.
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Proof: By Proposition 2.2.3 it suffices to prove that PTASω ⊆ PTAS. Let
P ∈ PTASω and let A be a ptasω for P . For an arbitrary instance x ∈ IP

and an arbitrary ǫ > 0, compute a(1/ǫ). If |x| ≥ a(1/ǫ), compute and return
A(x, ǫ). Otherwise, apply the same exhaustive search trick as in the proof of
Theorem 2.2.4. The result is a ptas for P .

This implies that FPTASω ⊂ PTASw, unless FPT=W[1].



Chapter 3

Guide to
Geometric Intersection Graphs

The introduction of this thesis presented geometric intersection graphs in the
context of their many application areas, including wireless networks, computa-
tional biology, and map labeling. This chapter aims to provide a more formal
and thorough introduction to these interesting graph classes. In particular,
we will be concerned with the structure of (geometric) intersection graphs and
the complexity of recognizing such graphs.

First however, we give a formal definition of intersection graphs and ge-
ometric intersection graphs. These are supported by examples of classes of
(geometric) intersection graphs being studied in the literature. We describe
the inclusion relations of these classes. We give special attention to some
classes that are being studied in relation to wireless communication networks.
We also expose connections between geometric intersection graphs and both
general graphs and planar graphs. General graphs are shown to be intersec-
tion graphs of convex objects in R3 [268] and planar graphs are the intersection
graphs of internally disjoint boxes in R3 [251] and of internally disjoint trian-
gles [80], disks [169], or smooth convex objects in R2 [237].

We then consider questions related to recognizing geometric intersection
graphs. We present several positive results on the recognition of certain classes
of geometric intersection graphs, such as interval graphs, which can be recog-
nized in polynomial time [38]. Most of these results however are on intersection
graphs of one-dimensional objects. Recognizing intersection graphs of two-
dimensional objects, such as intersection graphs of disks or polygons, is often
NP-hard [41, 174, 42]. In fact, for intersection graphs of disks of equal radius,
one can even give an approximation hardness result [184]. Several recogni-
tion problems are NP-hard and not NP-complete, as membership of NP is not
known for these problems. A full discussion of this particular issue is deferred
to Chapter 4.

3.1 Intersection Graphs

We define intersection graphs as follows. All considered graphs are simple,
finite, and undirected, unless otherwise stated.

17
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Definition 3.1.1 Given a universe U and some finite collection S of subsets
of U, the intersection graph G = G[S] of S is the graph where each S(u) ∈ S
corresponds to a unique vertex u ∈ V (G) and there is an edge between two
vertices if and only if the corresponding subsets intersect (i.e. (u, v) ∈ E(G) if
and only if S(u) ∩ S(v) 6= ∅).

If a graph G is (isomorphic to) the intersection graph of some set system (U,S),
then this set system is a representation of G, whereas G is said to be induced
by (U,S). Usually, we will not distinguish between the sets of the set system
and the vertices they correspond to.

It is easy to prove that any graph is an intersection graph of some set
system [248]. Given a graph G, take U = E(G) and let S = {Sv | v ∈ V (G)},
where Sv = {e = (u, v) ∈ E(G)}. One can however prove more interesting
theorems. For instance, chordal graphs (the class of graphs having no induced
cycle of length greater than three) are precisely the intersection graphs of
subtrees of a fixed tree (see e.g. [135, 46, 118, 265]). A nice overview of these
and other results can be found in the books by McKee and McMorris [208]
and Spinrad [246] and the survey by Kozyrev and Yushmanov [171].

It is not easy to give a precise definition of geometric intersection graphs,
as ‘geometry’ is not easily defined. For the purpose of this thesis however, the
following definition is used.

Definition 3.1.2 Given some finite collection S of subsets of Rd for some
d ≥ 0, the intersection graph G[S] is called a geometric intersection graph.

Commonly, there is a restriction on the nature of the sets as well. This is
expressed in the following definition.

Definition 3.1.3 Let A be a set of subsets of Rd for some d > 0. Then G
is an A-intersection graph if it is (isomorphic to) the intersection graph G[S]
for some collection S of translated copies of objects in A.

It is these restrictions that we will be most interested in. We note here that
we only consider sets A of objects that are either all closed sets or all open
sets. We prohibit mixing open and closed sets to simplify the presentation.

3.1.1 Interval Graphs and Generalizations

Perhaps the first and most frequently studied class of geometric intersection
graphs are interval graphs. Here the universe is R1 and the sets are intervals
or segments of the real line (i.e. connected subsets of R1). Sometimes these
intervals are forced to have unit length (i.e. equal length, usually assumed to
be 1), leading to unit interval graphs (or indifference graphs).

Several characterizations of interval graphs are known. Lekkerkerker and
Boland [189] proved that G is an interval graph if and only if it is a chordal
graph and has no asteroidal triple (a set of three vertices of the graph, any two
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of which are connected by a path containing no vertex of the neighborhood
of the third vertex). Gilmore and Hoffman [123] proved that G is an interval
graph if and only if it is a chordal graph and a cocomparability graph (a graph
with a partial order on the vertices where two vertices are adjacent if and only
if they are not related in the ordering). Unit interval graphs are precisely the
interval graphs with no K1,3 induced subgraph [268].

Interval graphs are recognizable in linear time [38]. Several optimization
problems that are NP-hard on general graphs are easily polynomial-time solv-
able on interval graphs, such as Maximum Clique and Minimum Vertex Cover.
An important structural property of interval graphs is that interval graphs
are perfect graphs. Further properties and characterizations of (unit) inter-
val graphs may be found in the books by Golumbic [126] and McKee and
McMorris [208], and the paper by Kozyrev and Yushmanov [171].

Most classes of geometric intersection graphs can be viewed as generaliza-
tions of interval graphs, either because they stick to the idea of segments or
because the considered geometric objects are intervals when restricted to R1.
We first consider other classes of intersection graphs of segments.

In multi-interval graphs, we allow the sets S(u) to consist of multiple in-
tervals on the real line. Clearly, any graph is a multi-interval graph by taking
sufficiently many intervals for each vertex. However, determining whether the
minimum number of intervals needed per vertex (the interval number) is at
most k is an NP-complete problem for any fixed integer k ≥ 2 [269].

Tolerance (interval) graphs place a restriction on the nature of the inter-
section when determining whether two vertices are adjacent. Each vertex is
assigned a positive value (its tolerance) and two vertices are adjacent if the
value of some function of the intersection of their intervals is at least the value
of some function of their tolerances. For instance, in a max-tolerance graph,
the length of the intersection should be at least the maximum of the toler-
ances. Note that the idea behind tolerance graphs is not necessarily restricted
to interval graphs, but can be applied to any intersection graph [208]. The
book by Golumbic and Trenk [127] provides a good overview of this subject.
Here however we consider only tolerance interval graphs.

If instead of intervals on the real line, one considers intervals (arcs) on a
circle, circular-arc graphs are obtained. Even though they are only a slight
generalization of interval graphs, their structure is fundamentally different.
Circular-arc graphs are not necessarily chordal or perfect, as they can contain
induced cycles of any length. In fact, no characterization in terms of forbidden
subgraphs is known [208]. They can however be recognized in linear time [207].
If all intervals have equal length (unit circular-arc graphs), a structural char-
acterization does exist [253] and recognition is possible in linear time [195].

If we stick to line segments, but in R2, we arrive at k-DIR graphs, which
are intersection graphs of line segments that can point in one of k directions.
Recognizing graphs in this class is NP-complete for any fixed k ≥ 2 [173]. Inter-
section graphs of piecewise linear curves consisting of at most k line segments
(k-segment intersection graphs) are NP-hard to recognize for fixed k ≥ 2 [179].
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It is not known whether the recognition problem is in NP. Demonstrating mem-
bership of NP seems hard, as there are 1-segment intersection graphs where
the coordinates of the endpoints of the segments must be double exponential
integers [179].

Generalizing further, we have intersection graphs of arbitrary simple curves
(string graphs). String graphs are NP-hard to recognize [172]. Recognizing
string graphs surprisingly is in NP [233] and thus NP-complete. Note that
every graph is the intersection graph of simple curves in R3. This is not true
however in R2 (i.e. not every graph is a string graph) [241, 242, 98].

A relatively recent overview of the results in this area and a description of
further classes can be found in the course notes of Kratochv́ıl [175].

3.1.2 Intersection Graphs of Higher Dimensional Objects

Another way to generalize interval graphs, more in line with further topics of
this thesis, is to consider d-dimensional objects that are intervals if d = 1. A
good example are intersection graphs of d-dimensional axis-parallel boxes. A
d-dimensional axis-parallel box is simply the Cartesian product of d orthogonal
intervals, e.g. [a1, b1] × · · · × [ad, bd] for numbers ai < bi. For the case d = 2,
these are also known as rectangle intersection graphs.

An important related property of general graphs is their boxicity, the min-
imum number d such that the given graph is isomorphic to an intersection
graph of d-dimensional axis-parallel boxes. Roberts [228] (who was the first
to study boxicity) proved that any n-vertex graph has boxicity at most ⌊n/2⌋.
Determining the boxicity of a graph is NP-hard [71]. Recognizing whether the
boxicity is at most d is NP-complete for any fixed d ≥ 2 [173, 273, 196]. Note
that for d = 1, the recognition problem is equal to the problem of recognizing
interval graphs, which is in P.

Given the above, it is not hard to imagine a natural generalization of unit
interval graphs. This leads to intersection graphs of d-dimensional axis-parallel
unit cubes, which are d-dimensional axis-parallel boxes with side length equal to
one. For d = 2, these are called unit square intersection graphs, or simply unit
square graphs. The notion of cubicity can be defined analogously to boxicity.
Roberts [228] bounded the cubicity of n-vertex graphs by ⌊2n/3⌋, the tight
example being complete k-partite graphs with k = ⌊n/3⌋. Recognizing graphs
of cubicity d is NP-complete [273, 40, 70, 73] for any fixed d ≥ 2. The case
d = 1 is in P, as these are precisely the unit interval graphs.

As an intermediate step between unit cubes and rectangles, one could con-
sider axis-parallel cubes of arbitrary side length. In two dimensions, these are
square (intersection) graphs. There seem to be no results on the minimum
dimension d needed for a graph to be isomorphic to an intersection graph
of d-dimensional axis-parallel cubes. Breu [40] showed that testing whether a
graph is an intersection graph of squares where the ratio between the size of the
largest and of the smallest square is some fixed constant ρ ≥ 1, is NP-hard.
The recognition problem of intersection graphs of arbitrary-sized squares is



3.2. Disk Graphs and Ball Graphs 21

NP-hard as well [182].
A further relevant class of geometric intersection graphs are triangle in-

tersection graphs. It is known that any planar graph is an intersection graph
of internally disjoint triangles [80] and conjectured that any planar graph is
an intersection graph of homothetic triangles [176]. The class of intersection
graphs of isosceles right triangles is also interesting, as this class was shown to
be equivalent to max-tolerance interval graphs [160].

The definitions of box, cube, and triangle intersection graphs invite to
generalizations to intersection graphs of other geometric objects. One could for
instance consider intersection graphs of convex objects. Again, for d = 1, this
corresponds to interval graphs and hence they can be recognized in linear time.
For d = 2, recognition is NP-hard [178]. Proving membership of NP is likely
to be very difficult, as Pergel (see [176]) proved that convex object intersection
graphs exist for which any integer representation requires double exponential
integers. However, recognizing the intersection graph of scaled and translated
copies of a fixed convex polygon is both NP-hard [182] and in NP [261], and
thus NP-complete. The recognition problem for higher dimensions is trivial,
because as shown later in Theorem 3.3.1, any graph is the intersection graph
of three-dimensional convex objects.

Finally, we treat a subclass of planar convex object intersection graphs,
namely the class of polygon-circle graphs. These are the intersection graphs
of polygons inscribed in a circle, i.e. all corners of the polygons should lie
on one given circle. Recognizing these graphs is NP-complete [180, 224], but
polynomial if the girth is greater than four [181]. It can be proved by a simple
argument that chordal graphs are polygon-circle graphs (see Corollary 3.3.3).

3.2 Disk Graphs and Ball Graphs

A different generalization of interval graphs are ball graphs, intersection graphs
of d-dimensional balls. A d-dimensional ball is given by its center and consists
of all points within a certain distance. For d = 2, these are the well-known
disk graphs.

Definition 3.2.1 A graph isomorphic to an intersection graph of two-dimen-
sional balls (i.e. disks) is called a disk graph.

We emphasize disk graphs as they motivated most of the research in this thesis.
Recognizing disk graphs is NP-hard [174], even if the ratio between the radii

of the largest and smallest disk is bounded by a constant [41]. The complexity
of recognizing intersection graphs of higher dimensional balls is unknown, but
expected to be NP-hard [42].

When generalizing unit interval graphs, we get unit ball graphs, i.e. inter-
section graphs of d-dimensional balls of equal radius.

Definition 3.2.2 A graph isomorphic to an intersection graph of two-dimen-
sional balls (i.e. disks) of radius 1/2 is called a unit disk graph.
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Although we define unit disk graphs to have a representation with disks of
radius 1/2, this number is mostly chosen for convenience. The most important
property is that all disks have equal radius. By scaling, one can always assume
this common radius to be 1/2.

We should note here that disk graphs and unit disk graphs are really dif-
ferent graph classes. For instance, unit disk graphs cannot have a K1,6 or K2,3

induced subgraph [257], whereas these graphs are disk graphs. An example of
a graph that is not a disk graph is K3,3. In fact, all triangle-free disk graphs
must be planar [199].

Instead of focusing on intersections of d-dimensional balls, another way to
define unit ball graphs is to place n points in Rd and say that two vertices are
adjacent if and only if they are at distance at most 1. If d = 1, this definition
corresponds to the definition of indifference graphs.

Unit disk graphs are sometimes also called geometric graphs (see for exam-
ple DeWitt and Krieger [86]). This should not be confused with the currently
used definition of geometric graphs, namely graphs where each vertex is as-
signed a point in Rd and edges are drawn as straight lines between the points.
Although under this modern definition, a representation of a unit disk/ball
graph induces a geometric graph, it can be readily observed that not every
geometric graph is a unit disk/ball graph.

The (unit) sphericity of a graph is the minimum d such that the graph is
isomorphic to an intersection graph of d-dimensional unit balls [144, 145, 109].
Maehara [198] proved that the sphericity of any n-vertex graph G is at most
n − ω(G), where ω(G) denotes the size of the largest clique of G. Moreover,
this bound is essentially tight. Recognizing unit disk graphs (i.e. graphs of
sphericity two) is NP-hard, even if the graph is planar or has sphericity at
most three [42]. Recognizing graphs of sphericity at most three is also NP-
hard, but the complexity for higher constants is unknown (though conjectured
to be NP-hard) [42].

Kuhn, Moscibroda, and Wattenhofer [184] provide a strengthening of the
NP-hardness result in two dimensions. Define

q(G, c) =
max(u,v)∈E(G) ‖cu − cv‖
min(u,v) 6∈E(G) ‖cu − cv‖

as the quality of a mapping c : V (G) → R2 of a unit disk graph G, where cu

(cv) denotes the location of the center of the disk corresponding to u (v). Note
that any (nontrivial) unit disk graph by definition has a mapping of quality
less than one. Kuhn, Moscibroda, and Wattenhofer [184] show however that
it is NP-hard to decide if a mapping of quality at most

√
3/2− ǫ exists, where

ǫ tends to 0 as the number of vertices of the graph approaches infinity. On the
positive side, Moscibroda et al. [215] give a polynomial-time algorithm yielding

a mapping of quality O((log5/2 n) · √log log n). This clearly leaves a large gap
and a major open question.

An important special case of (unit) ball graphs are intersection graphs
of internally disjoint (unit) balls, called (unit) ball touching graphs or (unit)
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ball contact graphs. In two dimensions, ball contact graphs are also called
disk contact graphs or coin graphs [231]. Coin graphs are interesting, as they
coincide with the class of all planar graphs [169] (see also Section 3.3.1). Hence
these graphs are recognizable in linear time [152]. If however the ratio of the
radii of the largest and smallest disk is any fixed constant, then the recognition
problem becomes NP-hard [41]. The complexity for recognition of ball contact
graphs in higher dimensions is open. For d = 1, (unit) ball contact graphs are
disjoint unions of paths and are thus recognizable in linear time.

In the case of unit ball contact graphs, we know a bit more. Any n-vertex
graph is a unit ball contact graph in dimension n − 1 [147]. Recognizing unit
ball contact graphs is known to be NP-hard for dimension 2 [42], 3, 4, 5 [146],
8, 9, 24, and 25 [147]. The hardness proofs for dimensions 5, 9, and 25 follow
from a construction of Kirkpatrick and Rote (see Hliněný [146]) who showed
that a graph G is isomorphic to a unit d-ball contact graph if and only if G⊕K2

is isomorphic to a unit (d + 1)-ball contact graph, where G ⊕ K2 is obtained
from the disjoint union of G and K2 by adding all edges between the vertices
of the summands.

Another generalization of disk graphs are intersection graphs of noncross-
ing arc-connected sets [174]. A set is arc-connected if between any two points
of the set an arc can be drawn containing only points of the set. The class
of intersection graphs of arc-connected sets in the plane coincides with the
class of string graphs [174]. Two arc-connected sets X and Y are said to
be noncrossing if both X − Y and Y − X are arc-connected. Intersection
graphs of noncrossing arc-connected sets are not equivalent to string graphs,
as K3,3, which is a string graph, is not an intersection graph of noncross-
ing arc-connected sets [174]. Recognizing intersection graphs of noncrossing
arc-connected sets in the plane is NP-hard [174]. However, each graph is an
intersection graph of three-dimensional noncrossing arc-connected sets.

Noncrossing arc-connected sets in the plane are essentially k-admissible
regions for some even integer k, which are a collection of noncrossing arc-
connected sets each bounded by a simple closed Jordan curve, such that each
pair of curves intersects at most k′ times, for some even k′ ≤ k [226]. We call
a collection of 2-admissible regions a collection of pseudo-disks.

We should note that several of the NP-hard recognition problems described
in this chapter that are not in P, such as the problem of recognizing disk
graphs, are not known to be in NP. In particular, we know of no polynomially-
sized representation for these graph classes. However, one can prove that the
recognition problems are in PSPACE [179, 147, 51].

3.2.1 Models for Wireless Networks

In the introduction (Chapter 1), we mentioned wireless networks as one of the
main application areas of geometric intersection graphs. Particularly (unit)
disk graphs are frequently used as a model in this setting. To bring these
models even closer to the situations encountered in practice, several more
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sophisticated graph models have been proposed. We describe some of them.
Further models can be found in the survey by Schmid and Wattenhofer [236].

A restriction of disk graphs is the following. Suppose that the radii of the
disks model broadcasting ranges. Then u can hear v if and only if u is within
v’s broadcasting range, i.e. if u lies within the disk centered on v. Use this to
determine the adjacency of vertices in the graph (so that u and v are adjacent if
and only if u lies within the disk centered on v or v lies within the disk centered
on u) and one obtains a containment disk graph [129, 199]. Malesińska [199]
proved that the class of containment disk graphs is not contained in the class of
disk graphs, as K3,3 is a containment disk graph, but not a disk graph (recall
that triangle-free disk graphs are planar). It is unclear whether a disk graph
exists that is not a containment disk graph. However, any unit disk graph is
a containment disk graph.

We presented the containment disk graph as an undirected graph. Given
its motivation however, it makes more sense to define it as a directed graph.
In this case, there is a directed edge from v to u if and only if u is contained
in the disk centered on the location of v. This graph is called a directed disk
graph [93], but in many cases it is also referred to as a (directed) geometric
radio network [69].

A graph class that generalizes both disk graphs and containment disk
graphs is the class of double disk graphs [129, 199, 94]. As the name im-
plies, centered on the location of a vertex are two disks, s and b, such that the
radius of b is at least the radius of s. Then two vertices u and v are adjacent if
and only if s(u) and b(v) intersect or s(v) and b(u) intersect. The idea behind
this graph model is that any wireless device has a range within which it can
communicate with other devices and a larger range within which its signal
interferes with the signals of other devices.

Another generalization of unit disk graphs is the quasi unit disk graph. In
a unit disk graph, two vertices are adjacent if and only if the distance between
their locations is at most one. Usually however, the probability of successfully
connecting to another device decreases as it is further away from the source
of the signal. In a quasi unit disk graph, given some ρ ∈ [0, 1], two vertices
are adjacent if they are within distance ρ, can be adjacent if they are within
distance more than ρ but at most one, and are not adjacent if their distance is
more than one [187]. Note that the behavior is undefined if the distance is in
(ρ, 1]. This could be determined by an adversary or some probabilistic model.
Kuhn, Moscibroda, and Wattenhofer [184] prove that recognizing ρ-quasi unit
disk graphs with ρ ≥

√
1/2 is NP-hard.

Both unit disk graphs and quasi unit disk graphs have the property that the
size of any independent set of the r-neighborhood of any vertex is polynomial
in r, where the r-neighborhood of a vertex u consists of all vertices having a
path of length at most r to u. This behavior can be used to define a class
of graphs. A bounded independence graph or a graph of polynomially-bounded
growth is a graph where for any r and any vertex u, all independent sets in
the r-neighborhood of u have cardinality polynomial in r [219].
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3.3 Relation to Other Graph Classes

Geometric intersection graphs have many relations to other well-known graph
classes, for which it might be surprising that they are contained in a particular
class of geometric intersection graphs. Some of these relations were already
discussed in the previous section. Here we expand on these results and (where
possible) sketch a proof. In particular, we will discuss the strong connections
between geometric intersection graphs and planar graphs.

We begin by showing that any graph is an intersection graph of (inter-
nally disjoint) three-dimensional convex polytopes. This result is frequently
attributed to Wegner [268]. Wegner himself [268, p. 28] however attributes it
to Grünbaum, but this proof seems to be unpublished. Kalinin [158] also gives
a proof. Here we follow Wegner’s proof [268].

Theorem 3.3.1 Any graph is the intersection graph of a set of (internally
disjoint) three-dimensional convex polytopes.

Proof: For any integer n, there exists a family S of n internally disjoint three-
dimensional convex polytopes with nonempty interior, any two of which inter-
sect. Moreover, the intersection of polytopes u and v is a (two-dimensional)
facet of u or v. Finding such a family is known as Crum’s problem [33, 227]
and was solved by Besicovitch [33] and Rado [227].

Let G be any n-vertex graph and S a family as described above. Now let
S ′ be obtained from S by taking for each s ∈ S a convex subset of the interior
of s. Furthermore, for any (u, v) ∈ E(G), choose a point puv in the interior
of the intersection of S(u) and S(v). Let Pu denote the set of such points

involving vertex u. Let S̃ be the set obtained by taking for each u ∈ V (G)

the convex hull of S ′(u) and Pu. If H is the graph induced by S̃, then clearly
E(H) ⊇ E(G). Suppose that (u, v) ∈ E(H)−E(G). Without loss of generality,
the intersection of S(u) and S(v) is a facet of S(u). By the choice of Pu and

S ′(u), there is a hyperplane separating S̃(u) and this facet. As S̃(u) (S̃(v)) is a

convex subset of S(u) (S(v)), S̃(u) and S̃(v) cannot intersect. This contradicts
that (u, v) ∈ E(H). Hence E(H) = E(G).

Note that the constructed polytopes in fact have at most one point in common.
So what about intersection graphs of two-dimensional convex polytopes? If

the polytopes are internally disjoint, they can be fully characterized (see The-
orem 3.3.5). If we allow arbitrary intersections however, no characterization is
known. Wegner [268, p. 25] showed that K5 with each edge bisected is not the
intersection graph of convex two-dimensional polytopes, since this would imply
a planar drawing of K5. (This is also implied by a result of Sinden [241, 242]
and Ehrlich, Even, and Tarjan [98], who showed that this bisection of K5 is
not a string graph.)

We can give the following positive result. A planar graph is outerplanar if
it has a planar embedding in which each vertex lies on the boundary of the
outer face. We call this an outerplanar embedding.
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Theorem 3.3.2 The intersection graph G of a collection H of connected sub-
graphs of a fixed outerplanar graph H is a polygon-circle graph.

Proof: We may assume that H is connected, otherwise we apply the proof
given below to each connected component of H. Consider an outerplanar em-
bedding of H. Going along the entire boundary of the outer face, let v1, . . . , vk

be the vertices consecutively encountered. This induces an ordering u1, . . . , un

on the vertices of V (H), where n = |V (H)|.
Now place n points p1, . . . , pn on (any arc of) a circle and map ui to pi. By

the definition of the ordering on V (H), this induces an outerplanar embedding
of H. For any connected subgraph H(w) = {ui1 , . . . , uik

} ⊆ V (H) for w ∈
V (G), let C(w) be the convex hull of pi1 , . . . , pik

. One can verify that for
v, w ∈ V (G), C(v) intersects C(w) if and only if H(v) intersects H(w).

As a corollary, we obtain a result by Duchet [95].

Corollary 3.3.3 Any chordal graph is a polygon-circle graph.

Proof: It is known that any chordal graph G is the intersection graph of a
family T of subtrees of a fixed tree T . (This result is attributed to Surányi
in [135]. Proofs can be found in [46, 118, 265]). Trees are clearly outerplanar.
Now apply Theorem 3.3.2.

3.3.1 Relation to Planar Graphs

Most results about the structure of geometric intersection graphs are related
to planar graphs. Sometimes one can prove that planar graphs form a subclass
of some class of geometric intersection graphs (or vice versa), but often one
can give a full characterization. We will see examples of both.

Recall that k-interval graphs are intersection graphs of unions of k intervals.
The interval number of a graph G is the minimum number k such that G is
isomorphic to a k-interval graph. Scheinerman and West [235] proved that any
planar graph has interval number at most three.

For higher dimensions, the following famous result is known.

Theorem 3.3.4 (Koebe [169]) A graph G is planar if and only if G is iso-
morphic to a disk contact graph (coin graph).

This result was rediscovered several times (see Sachs [231] for a history).
The radii of the disks in a disk contact representation of a planar graph are

not necessarily polynomially bounded integers. The radii might differ by an
exponential factor. Hansen [139] (see Malitz and Papakostas [200]) shows that
there exist wheels for which disks of exponentially large radius are needed in
any disk contact representation. Also, Breu and Kirkpatrick [41] showed that
it is NP-hard to test whether such large disks are necessary.

Moreover, one cannot expect the radii of the disks to be integers. This
would imply that any planar graph has a straight line embedding such that all
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edges have integer length. Although Geelen, Guo, and McKinnon [119] proved
that any planar graph has an integer straight line embedding, Brightwell and
Scheinerman [43] demonstrated that there exist planar graphs for which no in-
teger straight line embedding can be induced by a disk contact representation.
Otherwise one could trisect an angle of π/3 using ruler and compass.

An approximation to the coordinates and radii of a disk contact represen-
tation can be given though for 3-connected planar graphs. In fact, this holds
for an even more general representation. Brightwell and Scheinerman [43]
proved that for any n-vertex planar graph G, both G and the dual of G have
a disk contact representation, S and S ′ respectively, such that for any edge
e = (u, v) ∈ E(G) and its dual edge e∗ = (f∗, g∗), the intersection point
of S(u) and S(v) coincides with the intersection point of S ′(f∗) and S ′(g∗).
Moreover, the line through the centers of S(u) and S(v) is perpendicular to
the line through the centers of S ′(f∗) and S ′(g∗). Mohar [211, 212] gives an
algorithm to determine the centers and radii of such a primal-dual representa-
tion to a precision of ǫ in time polynomial in n and max{log 1/ǫ, 1}. A similar
result is proved by Smith [243].

A consequence of Koebe’s result is that planar graphs are string graphs,
where any pair of curves is nowhere tangent and intersects at most twice.
Chalopin, Gonçalves, and Ochem [56] showed that in fact one intersection suf-
fices. This was a step forward in proving the following conjecture, sometimes
referred to as Scheinerman’s conjecture [234]: any planar graph is isomorphic
to a 1-segment intersection graph. The conjecture was previously shown to
hold for triangle-free [77], bipartite [141, 79], and several other types of planar
graphs [78]. Recently, Chalopin and Gonçalves [55] managed to prove the con-
jecture, i.e. any planar graph is indeed isomorphic to a 1-segment intersection
graph.

Disk graphs are generally not planar. However, Malesińska [199] proves
that triangle-free disk graphs are planar. This also holds for triangle-free in-
tersection graphs of pseudo-disks [174]. As planar graphs are disk intersection
graphs, triangle-free (pseudo-)disk graphs are recognizable in polynomial time.

Characterizations similar to Koebe’s theorem have been proved for other
convex objects. The following result is implied by Koebe’s theorem, but has a
relatively easy proof due to Wegner [268], which we give below.

Theorem 3.3.5 A graph is planar if and only if it is isomorphic to the inter-
section graph of a set of internally disjoint two-dimensional convex polytopes.

Proof: The if-part is trivial. For the converse, let G be a planar graph. Aug-
ment G to an (edge) maximal planar graph G′ by adding edges. Add a dummy
vertex z in the unbounded face of G′ and connect it to all vertices on the un-
bounded face of G′. Call the resulting graph G′′. Since G′′ is maximal planar,
it is 3-connected and hence its dual is planar and 3-connected as well [213].
Following Stein [247] (see also Tutte [254] and Kelmans [162]), this implies
that the dual of G′′ has a straight line embedding such that each bounded face
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is convex and the face corresponding to z is the unbounded face. Hence we ob-
tain a collection of internally disjoint two-dimensional convex polytopes whose
intersection graph is G′. Using the same idea as in the proof of Theorem 3.3.1,
we can remove unwanted edges to obtain a representation of G.

A result of Thomassen [250] implies that finding such a representation actually
takes linear time. Interestingly, Kratochv́ıl and Kuběna [177] showed that
the complement of a planar graph is the intersection graph of a set of two-
dimensional convex polytopes as well.

From the above proof, it seems that one might need polytopes with an
arbitrary number of corners, but this is not necessarily the case. Some pla-
nar graphs are rectangle contact graphs. Thomassen [251] proved that G
is a rectangle contact graph if and only if G is a proper subgraph of a 4-
connected planar triangulation. Bipartite planar graphs are also rectangle
intersection graphs [79, 141]. Generalizing in this direction, Thomassen [251]
showed that any planar graph is the intersection graph of internally disjoint
three-dimensional axis-parallel boxes.

De Fraysseix, Ossona de Mendez, and Rosenstiehl [80] proved that G is
planar if and only if G is a triangle contact graph. Moreover, they gave a
polynomial time algorithm to construct a representation by internally disjoint
triangles. Although triangles are sufficient, the shapes of the triangles can be
very different. Can one prove that they must be similar somehow?

Definition 3.3.6 We say that two geometric objects are homothetic if one
can be obtained from the other by only scaling and translating.

There are planar graphs that are not the intersection graphs of internally
disjoint homothetic triangles, although Kratochv́ıl and Pergel [176] conjecture
that planar graphs are homothetic triangle graphs, i.e. without the constraint
that the triangles should touch.

Observe that Koebe’s result states that any planar graph is an intersection
graph of internally disjoint homothetic disks. Schramm [237, 238] generalizes
Koebe’s theorem to homothetic copies of arbitrary convex planar bodies with
smooth boundaries. The result actually is slightly more general.

Theorem 3.3.7 (Schramm [237, 238]) Let G be any n-vertex planar graph
and A = {Av | v ∈ V } a collection of n planar convex bodies with smooth
boundaries. Then G is the intersection graph of S = {Sv | v ∈ V }, where Sv

is a homothetic copy of Av. Moreover, the objects in S are internally disjoint.

Note that Theorem 3.3.7 requires the convex objects to have smooth bound-
aries and thus does not contradict the statement that planar graphs are not
the intersection graphs of internally disjoint homothetic triangles.



Chapter 4

Geometric Intersection Graphs
and Their Representation

As is clear from the previous chapter, a fundamental problem for most classes of
geometric intersection graphs is how to recognize such graphs. The recognition
problem is often NP-hard and in PSPACE, but membership of NP is not always
known. One way of proving membership of NP is to find a representation of the
graph that uses polynomially many bits (polynomial in the number of vertices
of the graph). This is a polynomial representation.

For several classes of geometric intersection graphs, bounds on the number
of bits needed to represent each object are known. These were already implic-
itly mentioned in Chapter 3. We mention some of them explicitly in Table 4.1.
The main graph class missing in this table are (unit) disk graphs. We know of
no polynomial or finite representation for this class.

This chapter gives new insight into whether polynomial representations
exist for intersection graphs of any of a large class of geometric objects, called
scalable objects, which includes convex objects.

We prove that any intersection graph of scalable objects has a representa-
tion using finitely many bits, i.e. using rationals. The main tool in this proof
is the notion of ǫ-separation, a measure of the relative degree of overlap or dis-
jointness of two objects. For several types of scalable objects (including disks
and squares), we show that an intersection graph of such objects has a polyno-
mial representation if and only if it has a representation that is polynomially
separated (i.e. ǫ-separated where ǫ = 2−q(n) for some polynomial q in the num-
ber of vertices n of the graph). We can even give an algorithm showing that
the two are computationally equivalent as well. This equivalence might give a
new way to prove or disprove the existence of polynomial representations for
these classes of geometric intersection graphs.

4.1 Scalable and ǫ-Separated Objects

We start by formally defining the above notions. We then prove that any inter-
section graph of closed scalable objects has an ǫ-separated representation. The
same holds for open scalable objects. Consequently, the classes of intersection
graphs of closed scalable objects and their open counterparts coincide.

29
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Graph class Bound on largest coordinate
Interval graphs 2n (trivial)
Unit interval graphs O(n2) [70]
Rectangle int. graphs O(n) [196]
Unit square graphs O(n2) [70, 73]

Homothetic convex polygon int. graphs 2O(n4) [261]

Table 4.1: The table gives a bound on the value of the largest object
coordinate in some representation of a graph in the given class, where
we assume that all object coordinates are integers greater than 0.

Throughout, we will assume objects to be either open or closed. For an
object s, let int(s), cl(s), and bd(s) respectively denote the interior, the closure,
and the boundary of s.

Definition 4.1.1 A scaling of the space Rd by some τ > 0 maps any point
p ∈ Rd to τ · p. An object s is said to be scaled around a point p by τ > 0 if
(assuming s is the only object in the space) s is translated by −p, the space is
scaled by τ , and then s is translated by p.

Scaling an object around a point gives more control over the scaling, which is
needed in the following definition.

Definition 4.1.2 An object s is scalable if there is a point p ∈ int(s) such
that for any τ ∈ R>0\{1}, scaling s around p by τ gives an object s′ for which
cl(s) ⊆ int(s′) or cl(s′) ⊆ int(s). If s is scalable, fix such a point p and call it
the scaling point of s, denoted by cs.

Alternatively, we could demand that the distance between bd(s) and bd(s′) is
greater than zero. This would yield an equivalent definition.

The constraint that cs ∈ int(s) is there for convenience. All results of this
section would also hold if cs 6∈ cl(s). The mixing of both object types is not
considered here. Hence we restrict to cs ∈ int(s).

We can easily determine which objects are scalable and which are not. An
object s is said to be strongly star-shaped if there is a point ts ∈ int(s) such
that for any point p ∈ s the straight line segment tsp is contained in s, but
does not contain any point of bd(s), except possibly p.

Proposition 4.1.3 An object s is scalable if and only if it is strongly star-
shaped.

Proof: Suppose that s is scalable and has scaling point cs. We claim that s is
strongly star-shaped with ts = cs. For suppose there is a point p ∈ s for which
the straight line segment csp contains a point z ∈ bd(s), where z 6= p. By
appropriately scaling (shrinking) s around cs, we can map p to the position of
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z. But then for this scaled object s′, neither cl(s) ⊆ int(s′), since we shrunk s
to obtain s′, nor cl(s′) ⊆ int(s), by the preceding observation. This contradicts
that s is scalable.

Now suppose that s is strongly star-shaped for some ts ∈ int(s). We claim
that s is scalable with scaling point cs = ts. For let τ ∈ (0, 1) and let s′ be
the object obtained when scaling s around ts by τ . Then any point p ∈ s gets
mapped to a point p′ on the straight line segment tsp. Because p′ 6= p (unless
p = ts), p′ ∈ int(s). Hence cl(s′) ⊆ int(s). The case τ ∈ R>1 is similar.

Using this proposition, it is easy to see that for instance convex objects are
scalable, as are L-shaped objects. Donut-shaped objects for example, such as
a torus, are not scalable.

All objects we consider below are assumed to be scalable and hence we will
not always mention this explicitly. Also, when scaling a scalable object, we
implicitly mean scaling it around its scaling point.

We now define two measures of the degree of overlap or disjointness of a
collection of objects.

Definition 4.1.4 Two objects s and s′ are ǫ-distant for some ǫ ≥ 0 if for any
two vectors ~a and ~b with ‖~a‖ = ‖~b‖ ≤ ǫ, s + ~a and s′ +~b intersect if and only
if s and s′ intersect.

Definition 4.1.5 Two objects s and s′ are ǫ-separated for some 0 ≤ ǫ < 1 if
for any τ with 1 − ǫ ≤ τ ≤ 1 + ǫ, sτ and s′τ intersect if and only if s and s′

intersect, where sτ (s′τ ) denotes the scaling of s (s′) by τ .

A collection of objects S is ǫ-distant (ǫ-separated) if the objects of S are
pairwise ǫ-distant (ǫ-separated). Observe that any ǫ-distant (ǫ-separated) col-
lection of objects is also ǫ′-distant (ǫ′-separated) for any 0 ≤ ǫ′ ≤ ǫ.

Lemma 4.1.6 A collection of objects S is ǫ-distant for some ǫ > 0 if and only
if it is ǫ′-separated for some ǫ′ > 0.

Proof: Suppose that S is ǫ-distant for some ǫ > 0. As the scaling points of the
objects in S are fixed, one can scale each object s ∈ S by some τs to an object
s′ such that any point of bd(s′) is within distance ǫ of bd(s). Let ǫ′ > 0 be
any number such that 1− ǫ′ ≤ τs ≤ 1+ ǫ′ for all s ∈ S. Then S is ǫ′-separated.

Suppose that S is ǫ′-separated for some ǫ′ > 0. Let d be the smallest
distance between the scaling point of s and the boundary of s for any s ∈ S.
Clearly d > 0, because the definition of scalable ensures that the scaling point
of an object cannot lie on the object boundary. Then, when scaling an object
s ∈ S by τs with 1−ǫ′ ≤ τs ≤ 1+ǫ′ to an object s′, the distance between bd(s)
and bd(s′) is at least |τs − 1| · d. Hence S is ǫ-distant with ǫ ≥ ǫ′ · d.

In spite of Lemma 4.1.6, we think of ǫ-separated as being a slightly more
general notion, since the property of being ǫ-separated is invariant under a
scaling of the space.
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We now show that any intersection graph of scalable objects has an ǫ-
separated representation.

Theorem 4.1.7 For a family A of closed scalable objects, any A-intersection
graph has an ǫ-separated representation for some ǫ > 0.

Proof: Let G be an A-intersection graph and S any representation of G. We
prove that S can be turned into an ǫ-separated representation of G.

For any u, v ∈ S, let δuv be maximal such that u and v are δuv-separated.
Let δ be the smallest of the nonzero δuv, or 1 if all δuv are zero. Because the
objects are scalable and closed, for any s ∈ S and any τs with 1 ≤ τs ≤ 1+δ, we
can scale s by τs and the resulting set S ′ still induces G. Choose α and ǫ such
that 0 < α < δ, 0 < ǫ < 1, 1 ≤ (1− ǫ) · (1+α), and (1+ ǫ) · (1+α) ≤ 1+ δ, for
instance α = 1

2δ and ǫ = 1
4δ. Scale any object in S by (1 + α) and denote the

resulting set by S ′. By the choice of α and ǫ, S ′ is ǫ-separated. Furthermore,
S ′ still induces G.

Finally, scale the space by 1/(1 + α). Then the objects of S ′ regain their
original size, i.e. they are translates of the objects in S. Hence the resulting set
S ′′ contains only translated copies of members of A. As separation is invariant
under a scaling of the space, S ′′ is an ǫ-separated representation of G.

The same theorem holds for open scalable objects.

Theorem 4.1.8 Given a family A of open scalable objects, any A-intersection
graph has an ǫ-separated representation for some ǫ > 0.

Proof: The proof is essentially the same as the proof of the previous theorem,
except now we are free to scale any s ∈ S by τs with 1 − δ ≤ τs ≤ 1. Choose
α and ǫ such that 0 < α < δ, 0 < ǫ < 1, 1 − δ ≤ (1 − ǫ) · (1 − α), and
(1 + ǫ) · (1 − α) ≤ 1, for instance α = 1

2δ and ǫ = 1
2δ. Scale the objects

by (1 − α) and the space by 1/(1 − α). The resulting collection of objects is
ǫ-separated and is a representation of the graph.

By Lemma 4.1.6, these two theorems imply the following corollary.

Corollary 4.1.9 Given a family A of closed or of open scalable objects, any
A-intersection graph has an ǫ-distant representation for some ǫ > 0.

This fact is useful when proving the following corollary.

Theorem 4.1.10 Let A be any family of closed scalable objects and A′ =
{int(s) | s ∈ A} the family of their interiors. Then the class of A-intersection
graphs equals the class of A′-intersection graphs.

Proof: Given an A-intersection graph G, let S be an ǫ-distant representation
of G for some ǫ > 0. Such a representation exists by Corollary 4.1.9. But then
S ′ = {int(s) | s ∈ S} also induces G. Moreover, S ′ uses only translated copies
of members of A′. Hence G is an A′-intersection graph. The reverse relation
is proved similarly.
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This implies for instance that the class of closed disk (square, triangle, . . . )
graphs equals the class of open disk (square, triangle, . . . ) graphs.

Because of the equivalence of open and closed graph classes, we will focus
only on closed scalable objects from now on. Theorem 4.1.10 guarantees that
the results translate to open scalable objects.

4.2 Finite Representation

With the ǫ-separated and ǫ-distant representations we know to exist now, we
can prove that intersection graphs of closed scalable objects have a represen-
tation using rationals.

Assume that any object s contains a point ds, its distinguished point. We
show that the coordinates of this point can always be rational.

Theorem 4.2.1 For a family A of closed scalable objects, any A-intersection
graph has a representation S such that the distinguished point of each object
in S has rational coordinates.

Proof: Let G be any A-intersection graph and S ′ an ǫ-distant representation
for G for some ǫ > 0, which exists by Corollary 4.1.9. Because the rationals
are dense in the reals, there exists for any s ∈ S ′ a vector ~as with ‖~as‖ ≤ 1

2ǫ
such that ds + ~as has rational coordinates.

Translate each s ∈ S ′ by ~as and let S be the resulting set of objects.
Clearly, the distinguished point of each object in S has rational coordinates.
As S ′ is ǫ-distant, it follows from the choice of the ~as that S still induces G.
Moreover, S is 1

2ǫ-distant.

A similar idea applied in the context of convex objects may be found in Czy-
zowicz et al. [73].

Besides having rational coordinates for the distinguished point of an object,
we would like the objects in a representation to have rational size as well. This
requires a precise definition of the size of an object.

Definition 4.2.2 Associate with any object s two distinct points (the size
points of s). Then the size of s is the distance between its two size points.

Although it seems more natural to use the volume of the object here, this is
much harder to work with and the volume might be infinite. Furthermore,
this definition of object size captures the way many objects are specified. For
instance, a disk is specified by its radius (the distance between the disk center
and a point on the boundary) and a square by its side length (the distance
between two corners).

The following theorem follows straightforwardly from Theorem 4.2.1.

Theorem 4.2.3 Let A be a family of closed scalable objects, each of rational
size. Then any A-intersection graph has a representation S such that the
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distinguished point of each object in S has rational coordinates and all objects
in S have rational size.

For families containing objects of nonrational size, one needs to be more careful.
We restrict the attention to families that are complete.

Definition 4.2.4 A family A of scalable objects is complete if for any s ∈ A
and for any τ > 0 the scaling of s by τ is also in A.

The family of all disks or of all squares are good examples of complete families.
We can now prove the following result.

Theorem 4.2.5 Given a complete family A of closed scalable objects, any A-
intersection graph has a representation S such that the distinguished point of
each object in S has rational coordinates and all objects in S have rational size.

Proof: Let G be any A-intersection graph and S ′ an ǫ-separated representation
for G for some ǫ > 0, which exists by Theorem 4.1.7. For any object s ∈ S ′ of

size zs, there exists some τs with 1 ≤ τs ≤ 1+
1
2 ǫ

1+ 1
2 ǫ

such that zs ·τs is rational.

Scale each s ∈ S ′ by τs and let S be the resulting set of objects. Clearly,
each object in S has rational size. As S ′ is ǫ-separated, it follows from the
choice of the τs that S still induces G. Moreover, S is 1

2ǫ-separated.
Let A′ be the family of objects in A having rational size. By the preced-

ing argument, G is an A′-intersection graph. The theorem now follows from
Theorem 4.2.3.

This implies for instance that a representation for any (unit) disk graph can
be specified using only rationals. We should note that by Theorem 4.1.10 the
above results also hold for families of open scalable objects. Furthermore, by
scaling the space appropriately, we can replace ‘rational’ with ‘integer’ in the
statement of Theorem 4.2.5.

4.3 Polynomial Representation and Separation

We proved that intersection graphs of scalable objects have a rational repre-
sentation, i.e. a representation where both the coordinates of the distinguished
point and (if the family is complete) the size of each object is rational. We
now consider what happens when we require these rationals to have polynomial
size, bringing the problem closer to what we want for the recognition problem.

A q-bit rational is a rational number where both the integer and fractional
part of the rational are q-bit integers, i.e. there exist q-bit integers a and b
such that the rational is a + b/2q.

Definition 4.3.1 For a family A of scalable objects, an A-intersection graph
G has a q-representation for some q ≥ 0 if G has a representation S such that
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the distinguished point of each object in S has q-bit rational coordinates and
each object has q-bit rational size.

The class of A-intersection graphs has a q-representation for some func-
tion q : N → N if for each n ∈ N any n-vertex A-intersection graph has a
q(n)-representation. The class has a polynomial representation if it has a
q-representation for some polynomially bounded function q.

It is widely believed that (unit) disk graphs have a polynomial representation.
As far as we know however, no function q (polynomial or exponential) is known
for which (unit) disk graphs have a q-representation. Recall however that (unit)
square graphs have a polynomial representation (see Table 4.1).

Definition 4.3.2 For a family A of scalable objects, an A-intersection graph
G has a q-separated (q-distant) representation for q ≥ 0 if G has a represen-
tation such that S is ǫ-separated (ǫ-distant) for some q-bit rational ǫ > 0.

The class of A-intersection graphs has a q-separated (q-distant) representa-
tion for some function q : N → N if for each n ∈ N any n-vertex A-intersection
graph has a q(n)-separated (q(n)-distant) representation. The class has a poly-
nomial separation if it has a q-separated representation for some polynomially
bounded function q.

We would like to know which classes of geometric intersection graphs have
a polynomial representation. In particular, we are interested in (unit) disk
graphs and (unit) square graphs. To gain better insight into this question,
we show that the existence of a q-representation implies the existence of a q′-
separated representation for these graph classes. We prove that the converse
holds as well.

4.3.1 From Representation to Separation

Throughout, we assume that the scaling point and the distinguished point of
a disk or square coincide with its center. The size of a disk is its radius and
the size of a square is its side length.

Theorem 4.3.3 If a (unit) disk graphs has a q-representation for some q ≥ 0,
then it has a (4q + 6)-separated representation.

Proof: Let G be a (unit) disk graph and S a q-representation for G. Scale the
space by 2q such that all numbers of S are 2q-bit integers. We claim that any
two nontouching disks in S are δ-separated, where δ = 1/(24q+4).

For any u ∈ S, let cu = (xu, yu) denote the center and ru the radius of disk
u. Suppose two disks u and v intersect but do not touch. Then ‖cu − cv‖ <
ru+rv and thus ‖cu−cv‖2 < (ru+rv)2. As ‖cu−cv‖2 = (xu−xv)2+(yu−yv)2

and (ru + rv)2 are both integral, ‖cu − cv‖2 ≤ (ru + rv)2 − 1. Hence

‖cu − cv‖ ≤
√

(ru + rv)2 − 1
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= (ru + rv) ·
√

1 − 1

(ru + rv)2

≤ (ru + rv) ·
(

1 − 1

4(ru + rv)2

)

≤ (ru + rv) · (1 − δ)

and thus u and v are δ-separated.
Suppose two disks u and v do not intersect. Following a similar argument,

‖cu − cv‖ ≥
√

(ru + rv)2 + 1

= (ru + rv) ·
√

1 +
1

(ru + rv)2

≥ (ru + rv) ·
(

1 +
1

4(ru + rv)2

)

≥ (ru + rv) · (1 + δ)

and thus u and v are δ-separated. It follows from the proof of Theorem 4.1.7
that S can be transformed (using only translations) into a 1

4δ-separated rep-
resentation. This representation is q′-separated for q′ = 4q + 6.

Corollary 4.3.4 If the class of (unit) disk graphs has a q-representation for
some function q : N → N, then it has a q′-separated representation, where
q′(n) = 4q(n)+ 6. In particular, polynomial representation implies polynomial
separation.

Theorem 4.3.5 If a (unit) square graphs has a q-representation for some
q ≥ 0, then it has a (2q + 3)-separated representation.

Proof: Let G be a (unit) square graph and S a q-representation for G. Scale
the space by 2q such that all numbers of S are 2q-bit integers. Since the
squares have side length at most 22q −1, any two nontouching squares in S are
δ-separated, where δ = 1/(22q+1). It follows from the proof of Theorem 4.1.7
that S can be transformed (using only translations) into a 1

4δ-separated rep-
resentation. This representation is q′-separated for q′ = 2q + 3.

Corollary 4.3.6 If the class of (unit) square graphs has a q-representation
for some function q : N → N, then it has a q′-separated representation, where
q′(n) = 2q(n)+ 3. In particular, polynomial representation implies polynomial
separation.

Recall that for unit square graphs a q-representation exists where q(n) =
O(log n) [70, 73] and for square graphs one exists where q(n) = O(n4) [261].

Corollary 4.3.7 Unit square graphs have a q′-separated representation where
q′(n) = O(log n). Square graphs have one where q′(n) = O(n4).
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We believe that results similar to Theorem 4.3.5 can be proved for intersection
graphs of other scalable objects. In particular, we conjecture that similar
techniques apply to intersection graphs of (unit) regular hexagons.

Finally, observe that for the results in this section it does not matter if the
disks or squares are open or closed.

4.3.2 From Separation to Representation

The above theorems were quite specific to the object type. We can prove that
the converse holds in a more general setting. In the following, let zs denote
the size of an object s. Moreover, for a set of objects S = {s1, . . . , sn}, we
assume that zs1 ≤ · · · ≤ zsn . We will sometimes use zi as a shorthand for zsi .

Lemma 4.3.8 Let A be a family of closed scalable objects and let q ≥ 0.
If an n-vertex A-intersection graph G has a q-distant representation S =
{s1, . . . , sn} such that z1 = 1, zn is bounded by a q-bit rational, and the ra-
dius of the smallest enclosing sphere of any object is at most 2q, then G has a
q′-representation, where q′ = q + ⌈log n⌉ + 2.

Proof: Suppose that S is ǫ-distant for some q-bit rational 0 < ǫ < 1. We may
assume that ǫ = 2−q. Scale each object si ∈ S to s′i such that z′i = zi − τi

for the smallest value of 0 ≤ τi ≤ 1
2ǫ for which z′i is a multiple of 1

2ǫ. Let
S ′ = {s′1, . . . , s′n} be the resulting set of objects. By the choice of the τi,
1 = z′1 ≤ · · · ≤ z′n and z′n is bounded by a q-bit rational. Since each z′i is
a multiple of 1

2ǫ and ǫ is a q-bit rational, each z′i is a (q + 1)-bit rational.
Moreover, S ′ is an 1

2ǫ-distant representation of G.
By translating the objects if necessary, we may assume that there is no

hyperplane h which intersects no objects of S ′ such that any two objects, one
on each side of h, are ǫ′-distant for some ǫ′ > 1

2ǫ. This still is an 1
2ǫ-distant

representation. As the radius of the smallest enclosing sphere of any object
is (still) at most 2q, all objects are contained in a box with sides of length at
most

2n · 2q + (n − 1)ǫ < 2n(2q + 1) < 2q+⌈log n⌉+2.

Hence the integer part of the distinguished point of any object in S ′ needs at
most q + ⌈log n⌉ + 2 bits. Furthermore, following the proof of Theorem 4.2.1,
the fractional part needs at most q+2 bits, by translating the objects slightly if
necessary. The result is a q′-representation of G with q′ = q+⌈log n⌉+2.

Theorem 4.3.9 Let A be a family of closed scalable objects, let q ≥ 0, and
let 0 < δ < 1. If an n-vertex A-intersection graph G has a q-separated repre-
sentation S = {s1, . . . , sn} such that z1 = 1, zn is bounded by a q-bit rational,
the radius of the smallest enclosing sphere of any object is at most 2q, and all
points within distance δ of the scaling point of any s ∈ S belong to s, then G
has a q′-representation, where q′ = q + ⌈log n⌉ + ⌈log 1/δ⌉ + 2.
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Proof: Since all points within distance δ of the scaling point of s belong
to s, any n-vertex A-intersection graph has a q′′-distant representation with
q′′ = q + ⌈log 1/δ⌉ by the proof of Lemma 4.1.6. The theorem then follows
immediately from Lemma 4.3.8.

If G is a unit disk graph or a unit square graph with a q-separated represen-
tation for some q ≥ 0, then G clearly has a (q + ⌈log n⌉+ 3)-representation by
Theorem 4.3.9.

Corollary 4.3.10 If the class of unit disk graphs or of unit square graphs has a
q-separated representation for some q : N → N, then it has a q′-representation,
where q′(n) = q(n) + ⌈log n⌉ + 3. In particular, polynomial separation implies
polynomial representation.

Note that we can replace unit square here with any unit regular polygon.
For disk graphs or square graphs, a result as Corollary 4.3.10 is not im-

mediate, as we have no bound (yet) on the size of the disks or squares in an
ǫ-separated representation. (This size is constant, 1/2 and 1 respectively, in
the unit case.) We prove such a bound for arbitrary disks and squares below.

Lemma 4.3.11 Let G be an n-vertex disk graph with an ǫ-separated represen-
tation for some ǫ > 0 for which 1/ǫ is integer. Then G has a 1

2ǫ-separated

representation in which all radii are at least 1 and at most (256n/ǫ)
3n+1

.

The proof of this lemma uses trigonometry and linear programming and is
quite long. It is given in [262]. Here we give a simpler inductive proof. Recall
that the size of disk u is its radius and the scaling point cu is its center.

Lemma 4.3.12 Let G be an n-vertex disk graph with an ǫ-separated repre-
sentation S = {s1, . . . , sn} for some 0 < ǫ < 1. Then G has a 1

2ǫ-separated

representation S̃ = {s̃1, . . . , s̃n} such that 1 = z̃1 ≤ · · · ≤ z̃n ≤ (8n/ǫ)
n−1

.

Proof: We apply induction on n. If n = 1, the lemma is trivial. Suppose that
n > 1. By scaling the space if necessary, we may assume that zn = (8n/ǫ)

n−1
.

Recall that separation is invariant under a scaling of the space.
If zi/zi−1 ≤ (8n/ǫ) for any 2 ≤ i ≤ n, then z1 ≥ 1 and the lemma holds

(by scaling the space if necessary). So let i be the largest index for which
zi/zi−1 > (8n/ǫ). Let S ′ = {s1, . . . , si−1} and S ′′ = {si, . . . , sn}. Note that

by the choice of i, zi ≥ (8n/ǫ)
i−1 ≥ 1.

For each u ∈ S ′, let Bu denote the disk with radius 1
4ǫ zi centered at cu.

Furthermore, let
Nu = {v ∈ S ′′ | u ∩ v 6= ∅}.

Call u, t ∈ S ′ equivalent if Nu = Nt. Consider any equivalence class E . By
induction, G[E ] has an 1

2ǫ-separated representation Ẽ = {ẽ1, . . . , ẽk} with

1 = zẽ1
≤ · · · ≤ zẽk

≤ (8k/ǫ)
k−1 ≤ (8n/ǫ)

k−1 ≤ (8n/ǫ)
n−1

.
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Let BE = Bu for some (fixed) u ∈ E . Similar to Lemma 4.3.8, we can assume,

by translating if necessary, that Ẽ is contained in a disk of radius at most

k (8n/ǫ)
k−1

+ (k − 1)ǫ (8n/ǫ)
k−1 ≤ (2k − 1) (8n/ǫ)

k−1

≤ (2k − 1) (8n/ǫ)
i−2

≤ (2k − 1) 1
8n ǫ zi.

Hence we may assume that Ẽ is contained in BE . Now replace E by Ẽ and let
S̃ denote the resulting set of disks.

We show that S̃ is a representation of G. We first give an auxiliary property.
Let vτ be the scaling of v by τ . We claim that for each u ∈ S ′,

(1) Bu is contained in v1− 1
2 ǫ for each v ∈ Nu;

(2) Bu is disjoint from v1+ 1
2 ǫ for each v ∈ S ′′ − Nu.

Suppose that v ∈ Nu. Since v ∈ S ′′, zv ≥ zi, and thus zu ≤ 1
8nǫ zv. Because

S is ǫ-separated, cu ∈ v1− 3
4 ǫ. But then Bu ⊆ v1− 1

2 ǫ. This proves (1).

Suppose that v ∈ S ′′−Nu. Because S is ǫ-separated, cu 6∈ v1+ǫ. As zi ≤ zv,
Bu and v1+ 1

2 ǫ are disjoint. This proves (2).

Now by (1) and the definition of equivalent, u ∈ S and v ∈ S ′′ intersect if
and only if ũ and ṽ intersect. Moreover, by induction, u, t ∈ S ′ in the same
equivalence class intersect if and only if ũ and t̃ intersect. We show below that
if u, t ∈ S ′ are not in the same equivalence class, then Bu and Bt are disjoint.
Since u ⊆ Bu and t ⊆ Bt, u and t are disjoint. Moreover, by the choice of the
BE , ũ and t̃ are disjoint. This implies that S̃ is a representation of G.

We in fact prove a stronger statement, namely that if Nu 6= Nt for u, t ∈ S ′,
then Bu and Bt are disjoint and 1-separated. So assume that Nu 6= Nt and
w.l.o.g. that |Nu −Nt| > 0. Let v ∈ Nu −Nt. Then by (1), Bu is contained in
v1− 1

2 ǫ. By (2), Bt is disjoint from v1+ 1
2 ǫ. Hence Bu and Bt have distance at

least ǫ zv. Because 1
4ǫ zi ≤ 1

4ǫ zv, Bu and Bt are disjoint and 1-separated.

Hence S̃ = {s̃1, . . . , s̃n} is a representation of G. By construction, 1 =

z̃1 ≤ · · · ≤ z̃n ≤ (8n/ǫ)
n−1

. From the construction of S̃, (1), and (2), S̃ is
1
2ǫ-separated. The lemma follows.

Theorem 4.3.13 If an n-vertex disk graph has a q-separated representation
representation for some q ≥ 0, then it has a q′-representation, where q′ =
n(q + ⌈log n⌉ + 3).

Proof: Let G be a disk graph with an ǫ-separated representation for some
q-bit rational 0 < ǫ < 1. Apply Lemma 4.3.12 to obtain a 1

2ǫ-separated

representation S̃ = {s̃1, . . . , s̃n} such that 1 = z̃1 ≤ · · · ≤ z̃n ≤ (8n/ǫ)
n−1

.

Note that (8n/ǫ)
n−1

< (8n2q)
n−1

is an ((n − 1)(q + ⌈log n⌉ + 3))-bit rational.
Following Theorem 4.3.9, G has a q′-representation, where

q′ = (n − 1)(q + ⌈log n⌉ + 3) + ⌈log n⌉ + 3 ≤ n(q + ⌈log n⌉ + 3).

The theorem follows.
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Corollary 4.3.14 If the class of disk graphs has a q-separated representa-
tion for some q : N → N, then it has a q′-representation, where q′(n) =
n(q(n) + ⌈log n⌉+ 3). In particular, polynomial separation implies polynomial
representation.

The same results hold, mutatis mutandis, for square graphs. Moreover, the
theorems apply both to open and closed disks or squares.

We can now prove the following result.

Theorem 4.3.15 The class of intersection graphs of closed (unit) disks has
a polynomial representation if and only if the class of intersection graphs of
open (unit) disks has a polynomial representation.

Proof: Suppose that the class of intersection graphs of closed (unit) disks has a
polynomial representation. By Corollary 4.3.4, it has a polynomial separation.
Hence the class of intersection graphs of open (unit) disks has a polynomial
separation. But then Corollary 4.3.14 implies that it has a polynomial repre-
sentation. The reverse relation follows in a similar manner.

This theorem also holds mutatis mutandis for (unit) squares. Hence when
looking for a polynomial representation of the class of (unit) disk or of (unit)
square graphs, it does not matter whether we consider disks or squares that
are open or closed. This strengthens Theorem 4.1.10.

As a last observation, note that the proofs of this section are constructive.
Hence there is an algorithm to transform a q-separated representation to a q′-
representation. Furthermore, it is easy to see that the above corollaries imply
the existence of a recognition algorithm for (unit) disk graphs and (unit) square
graphs, provided that q-separated representations exist for finite q.

By O∗(·) we mean that polynomial terms are ignored.

Theorem 4.3.16 If the class of disk graphs or of square graphs has a q-
separated representation for some function q : N → N, then it can be recognized
in O∗(26n2(q(n)+⌈log n⌉+3)) time. In the unit case, the time bound improves to
O∗(26n(q(n)+⌈log n⌉+3)).

Proof: We only consider (unit) disk graphs. The case for (unit) square graphs
is similar. By Corollary 4.3.14, disk graphs have a q′-representation, where
q′(n) = n(q(n)+⌈log n⌉+3). Hence any n-vertex disk graph G has a represen-
tation by 3n q′(n)-bit rationals. We now enumerate all possible representations
and verify whether one induces G. The bound in the case of unit disk graphs
follows from Corollary 4.3.10.
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Overview

Wireless communication networks increase their influence on human interac-
tion on a daily basis. Many people do away with their fixed landline phone and
only use a cell phone, wireless Internet allows one to check e-mail everywhere,
etcetera. Making such networks work has led to a lot of new problems and
challenges, ranging from practical questions to theoretical conundrums.

The purpose of this part of the thesis is to advance insight into some of these
theoretical problems. We address them by considering a model that is com-
monly used for wireless networks, the geometric intersection graph model, and
in particular the (unit) disk graph model. We then study several optimization
problems on wireless networks, which translate to well-known graph optimiza-
tion problems (such as Maximum Independent Set and Minimum Connected
Dominating Set) on geometric intersection graphs. As geometric intersection
graphs have a geometric representation, we can show that these problems can
be better solved or approximated on such graphs than on general graphs.

Problems

We consider various optimization problems on graphs that are relevant to geo-
metric intersection graph models and specifically to (unit) disk graphs models
of wireless communication networks.

Definition II.1 Let G be a graph. A set S ⊆ V (G) is an independent set if
there are no u, v ∈ S such that (u, v) ∈ E(G). A set S ⊆ V (G) is a vertex
cover if for each (u, v) ∈ E(G) it holds that u ∈ S or v ∈ S.

Observe that an independent set is the complement of a vertex cover (and vice
versa) [115]. Furthermore, we are usually looking for a maximum independent
set and a minimum vertex cover. An independent set is maximum if there is no
independent set of greater cardinality. A vertex cover is minimum if there is no
vertex cover of smaller cardinality. In the context of wireless communication
networks, an independent set of a (unit) disk graph can be seen as a set of
nodes that can transmit simultaneously without signal interferences. Vertex
covers are mostly interesting from a theoretical point of view in this context.

Definition II.2 Let G be a graph. A set S ⊆ V (G) is a dominating set if for
each vertex v ∈ V , v ∈ S or there is a vertex u ∈ S for which (u, v) ∈ E(G).

Definition II.3 Let G be a graph. A set S ⊆ V (G) is a connected dominating
set if S is a dominating set and the subgraph of G induced by S is connected.
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A dominating set in a wireless communication network can be seen as a set
of emergency transmitters capable of reaching every node in the network, or
as central nodes in node clusters. A connected dominating set can be used as
a backbone for easier and faster communications. The problem is to find a
minimum (connected) dominating set, i.e. we look for (connected) dominating
sets of minimum cardinality.

Previous Work

All problems mentioned above are NP-complete on general graphs (see Garey
and Johnson [115]). Since (unit) disk graphs are a restricted class of graphs
with a nice geometric interpretation, one might hope that these problems are
better solvable. Unfortunately, these problems are NP-complete on unit disk
graphs and other classes of intersection graphs of planar objects as well [267,
17, 67]. The NP-hardness holds even if the degree is at most 3 and (except for
Maximum Independent Set and Minimum Vertex Cover) the graph is bipar-
tite [65]. Therefore most research has focused on approximation algorithms.

We survey the previous work in this area, with strong emphasis on geo-
metric intersection graphs and (unit) disk graphs in particular. Work specific
to a particular chapter will be surveyed there. A detailed survey of available
approximation algorithms and inapproximability results on general graphs can
be found (for example) in the compendium of Ausiello et al. [19].

Maximum Independent Set

On general n-vertex graphs, Maximum Independent Set has a polynomial time
O(n/ log2 n)-approximation algorithm [39] and is not approximable within
O(n1−ǫ) for any ǫ > 0, unless NP=ZPP [142]. On geometric intersection
graphs however, it is easy to give a constant-factor approximation algorithm.
Many geometric intersection graphs have no K1,m induced subgraph for some
m > 1. Unit disk graphs have no K1,6 induced subgraph for example. In gen-
eral, Maximum Independent Set has a polynomial-time m/2-approximation
algorithm on graphs with no K1,m induced subgraph, even in the weighted
case [137, 276, 21, 31]. This immediately gives a 3-approximation for Max-
imum (Weighted) Independent Set on unit disk graphs (see for example Yu,
Kouvelis, and Luo [277]).

A similar result can be obtained by a greedy algorithm based on the rep-
resentation of the unit disk graph. Marathe et al. [201] showed that greedily
choosing the vertex corresponding to the leftmost disk gives a 3-approximation
algorithm for the unweighted case. On general disk graphs, which can have a
K1,m induced subgraph for any m ≥ 1, greedily choosing the vertex with the
smallest disk radius results in a 5-approximation algorithm [201].

Agarwal and Mustafa [2] provide a more general approach and consider
the intersection graph of a family S of convex two-dimensional objects. If α is
the cardinality of the maximum independent set of this graph, their algorithm
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returns an independent set of cardinality (α/(2 log(2n/α)))
1
3 in O(n3 + τ(S))

time, where τ(S) is the time needed to compute the left- and rightmost point
of each object and test which objects intersect. A set of disks clearly is a set
of convex two-dimensional objects and hence the algorithm of Agarwal and
Mustafa also applies to (unit) disk graphs.

Maximum Independent Set on (unit) disk graphs also has a polynomial-
time approximation scheme (ptas) using the so-called shifting technique. This
is a general technique, independently discovered by Baker [22] and Hochbaum
and Maass [150]. The basic idea is the following. A set of regularly spaced
separators is used to decompose the problem into smaller, easier solvable sub-
problems. The solutions of the subproblems are merged to form a solution to
the global problem. This is repeated for several placements of the separator
set. The best solution over these placements is then selected as an approxi-
mation of the optimum. Moving the separator set can be regarded as shifting
the set through the problem. Hence the name ‘shifting technique’.

Since its discovery, the shifting technique has been used to solve various
problems [4, 154, 103, 272]. In the context of (unit) disk graphs, Matsui [206]
and Hunt et al. [154] both presented a ptas using the shifting technique, em-
ploying different proof ideas. Nieberg, Hurink, and Kern [219] give a (robust)
ptas for Maximum Independent Set on unit disk graphs for which no disk
representation is given. The ptas extends to graphs of polynomially bounded
growth. A robust algorithm on unit disk graphs solves the problem correctly
for every unit disk graph. For graphs that are not unit disk graphs, the al-
gorithm may either produce the correct output for the problem, or provide a
certificate that the input is not a unit disk graph.

Hunt et al. [154] also consider unit disk graphs with a representation where
the disk centers are at least λ apart, so-called λ-precision unit disk graphs.
Using the shifting technique, they give an eptas for Maximum Independent
Set on unit disk graphs of constant precision.

Erlebach, Jansen, and Seidel [103] generalize the shifting technique to give
a ptas for Maximum Independent Set on general disk graphs, which extends
to intersection graphs of fat objects. Li and Wang [192] extend these ideas
to several other disk models for wireless networks, such as the ones discussed
in Section 3.2.1. Chan [57] presents a ptas for Maximum Independent Set on
the intersection graph of a set of fat objects. The scheme uses polynomial
space. Under the used definition, a set of disks is fat. Hence the presented
scheme is a ptas for Maximum Independent Set on disk graphs. The above
schemes extend to the weighted case. Chan and Har-Peled [59] generalize in a
different direction and give a ptas for Maximum Independent Set on intersec-
tion graphs of pseudo-disks. For the weighted case, they give a constant-factor
approximation algorithm.

For rectangle intersection graphs where the rectangles are noncrossing,
Agarwal and Mustafa [2] give a constant-factor approximation algorithm. For
intersection graphs of rectangles that have unit height, Agarwal, van Krev-
eld, and Suri [4] and Chan [58] give a ptas. If the rectangles have arbitrary
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height and are d-dimensional, a O(logd
k n)-approximation algorithm can be

given that runs in O(nO(k)) time [164, 32, 58] for any k ≥ 2. Chalermsook
and Chuzhoy [54] recently improved on this by presenting a polynomial-time
O(logd−2 n log log n)-approximation algorithm. This algorithm does not apply
to the weighted case. For this case however, Chan and Har-Peled [59] give
a O(log n/ log log n)-approximation algorithm. Chleb́ık and Chleb́ıková [65]
prove that Maximum Independent Set is APX-hard on intersection graphs of
d-dimensional axis-parallel boxes for any d ≥ 3.

Minimum Vertex Cover

For general n-vertex graphs, Minimum Vertex Cover can be approximated
in polynomial time within 2 − log log n

2 log n [214, 25] or (for dense graphs) within

2− 2 ln ln n
ln n [138], and cannot be approximated within 1.3606, unless P=NP [87].

On unit disk graphs, one can give a polynomial-time 3/2-approximation
algorithm [201]. Malesińska [199] gives a constant-factor approximation al-
gorithm for Minimum Vertex Cover on general disk graphs. More important
however is the existence of a ptas. Hunt et al. [154] prove that Minimum Ver-
tex Cover has a ptas on unit disk graphs, again using the shifting technique,
and an eptas on constant-precision unit disk graphs. Marx [202] even managed
to show that an eptas exists on arbitrary unit disk graphs. Nieberg, Hurink,
and Kern [219] give a (robust) ptas for Minimum Vertex Cover on unit disk
graphs for which no disk representation is given. The idea behind the scheme
also works on graphs of polynomially bounded growth.

Erlebach, Jansen, and Seidel [103] use their multi-level shifting technique to
give a ptas for Minimum Vertex Cover on general disk graphs, which extends
to intersection graphs of fat objects. Li and Wang [192] give a ptas for other
disk models, such as given in Section 3.2.1. It is interesting to note that the
schemes also apply to the weighted case, but the eptas does not seem to do so.

Chleb́ık and Chleb́ıková [65] demonstrate that Minimum Vertex Cover is
APX-hard on intersection graphs of d-dimensional axis-parallel boxes for d ≥ 3.

Minimum (Connected) Dominating Set

Given any n-vertex graph, Minimum Dominating Set can be approximated
within 1 + lnn in polynomial time [156, 197, 66], but this problem has no
polynomial-time algorithm achieving ratio (1 − ǫ) lnn for any ǫ > 0, unless
NP ⊂ DTIME(nO(log log n)) [108]. Minimum Connected Dominating Set has a
polynomial time (3 + lnn)-approximation algorithm, and similar to Minimum
Dominating Set cannot be approximated within (1 − ǫ) lnn for any ǫ > 0,
unless NP⊂DTIME(nO(log log n)) [132]. Better results can be proved if one
assumes that the maximum vertex degree is bounded by ∆, giving a ratio of
1 + ln ∆ and 3 + ln ∆ respectively.

Marathe et al. [201] propose constant-factor approximation algorithms for
Minimum (Connected) Dominating Set on graphs without a K1,m induced
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subgraph, yielding approximation ratios of m − 1 and 2(m − 1) respectively.
This gives a ratio of 5 and 10 respectively on unit disk graphs. Hunt et al. [154]
give a ptas for Minimum Dominating Set on unit disk graphs and an eptas on
constant-precision unit disk graphs. Nieberg, Hurink, and Kern [219] give a
(robust) ptas for Minimum Dominating Set on unit disk graphs for which no
disk representation is given. The idea behind the scheme also works on graphs
of polynomially bounded growth.

A ptas for Minimum Connected Dominating Set on unit disk graphs was
discovered by Cheng et al. [64]. It was recently improved by Zhang et al. [278].
Zhang et al. also give a ptas for Minimum Connected Dominating Set on three-
dimensional unit ball graphs.

Chleb́ık and Chleb́ıková [65] show that Minimum (Connected) Dominating
Set is APX-hard on intersection graphs of d-dimensional axis-parallel boxes
for any d ≥ 3.

The approximability of the weighted case of Minimum (Connected) Domi-
nating Set on unit disk graphs was a longstanding open problem, until recently,
when Ambühl et al. [13] gave a 72- and a 89-approximation algorithm respec-
tively. Huang et al. [153] proposed a polynomial-time (6+ǫ)-approximation al-
gorithm for any (fixed) ǫ > 0 for Minimum-Weight Dominating Set on unit disk
graphs. This was subsequently improved upon by Dai and Yu [74], who pre-
sented a polynomial-time (5+ǫ)-approximation algorithm for any (fixed) ǫ > 0.
Applying the 3.875-approximation algorithm for Node-Weighted Steiner Tree
on unit disk graphs by Zou et al. [279], one immediately obtains a (8.875 + ǫ)-
approximation for Minimum-Weight Connected Dominating Set.

Local (Distributed) Algorithms

Because many of the problems described here are motivated by applications
in wireless networks, a large amount of research has focused on distributed
algorithms, particularly on so-called local algorithms, where the state of a node
depends only on the state of nodes at a constant distance.

Kuhn et al. [185] give a local ptas for Maximum Independent Set and
Minimum Dominating Set on graphs of polynomially bounded growth using
nodes at distance O(log∗ n). Wiese and Kranakis [270] show that on unit disk
graphs, a local ptas exists for Maximum Independent Set and Minimum Vertex
Cover which only requires constant distance.

For Minimum Connected Dominating Set the first distributed approxi-
mation algorithm, attaining a ratio of 8, was given by Wan, Alzoubi, and
Frieder [12, 266]. It has message complexity O(n log n) and time complex-
ity O(n). Czyzowicz et al. [72] presented the first local algorithm for Mini-
mum Connected Dominating Set on unit disk graphs, yielding a (7.453 + ǫ)-
approximation for any ǫ > 0.

This is only a small portion of the known distributed algorithms for these
problems. Since we study centralized algorithms in this thesis, we chose to
survey only local algorithms here.
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Other Optimization Problems

We briefly survey results on two optimization problems that are frequently
studied on geometric intersection graphs, but are not studied in this thesis.

The maximum clique problem is to find a largest subset of pairwise con-
nected vertices of a graph. It is the complement of the maximum independent
set problem. Interestingly, this problem is polynomial-time solvable on rectan-
gle intersection graphs [155], unit disk graphs [67], and intersection graphs of
homothetic triangles [160]. On intersection graphs of two-dimensional convex
polygons however, it is NP-hard [23] by reduction from Maximum Indepen-
dent Set on planar graphs. It is APX-hard on intersection graphs of ellipses of
eccentricity 0 < e < 1 [14]. Intriguingly, the problem is still open on general
disk graphs.

Another frequently studied problem on geometric intersection graphs is
Chromatic Number, where one wants to determine the smallest number of col-
ors needed for which each vertex can be assigned a color such that no two adja-
cent vertices receive the same color. On unit disk graphs it is NP-hard to decide
if k colors are sufficient for any fixed k ≥ 3 [130]. One can even show that Chro-
matic Number has no polynomial-time (4/3)-approximation algorithm [67].
Chromatic Number has a 3-approximation algorithm on unit disk graphs and
a 5-approximation algorithm on disk graphs [222, 201, 199, 130, 101] by a
simple greedy strategy. Kim, Kostochka, and Nakprasit [167] extend this to a
3-approximation algorithm on intersection graphs of translated copies of a fixed
convex compact set and a 6-approximation algorithm on intersection graphs
of homothetic copies of a fixed convex compact set. It is worth noting that
these results follow from an appropriate upper bound on the coloring number
in terms of the clique number of the intersection graph.

An interesting related problem is the geometric version of the conflict-free
coloring problem, where a coloring has to be found such that each point in the
covered part of the plane is overlapped by an object with a color that is unique
among the colors of all objects overlapping this point. See for example [106,
140, 245] and the references therein.



Chapter 5

Algorithms on
Unit Disk Graph Decompositions

Decompositions form an important way to optimally solve graph optimization
problems. Well known decompositions include branch and tree decomposi-
tions. We describe a new graph decomposition, called a relaxed tree decom-
position, and use it to define the relaxed treewidth of a graph. The relaxed
treewidth of a graph is no larger than the (ordinary) treewidth and might be
up to a factor of two smaller. Hence it could also be smaller than the branch-
width. We investigate the relation of relaxed treewidth to ordinary treewidth
and to the strong treewidth of a graph.

Relaxed tree decompositions and tree decompositions have a different struc-
ture. We need new algorithms that take a relaxed tree decomposition as in-
put. We give such algorithms for Maximum Independent Set, Minimum Vertex
Cover, and Minimum (Connected) Dominating Set. The performance of these
algorithms matches that of algorithms using just a tree decomposition.

The motivation for studying relaxed tree decompositions is that they arise
in a natural way in unit disk graphs. We propose a geometric parameter of
unit disks, the so-called thickness, which translates into an upper bound on the
relaxed treewidth. We use this to give algorithms for Maximum Independent
Set, Minimum Vertex Cover, and Minimum (Connected) Dominating Set on
unit disk graphs of bounded thickness. We show that for Minimum Connected
Dominating Set one can improve significantly on the analysis in the general
case if the input graph is a unit disk graph. By applying noncrossing parti-
tions instead of general partitions we prove that unit disk graphs of bounded
thickness have a relaxed tree decomposition with Catalan structure.

We start with a description and analysis of the graph decompositions we
use. The definition of thickness follows in Section 5.2. Section 5.3 gives algo-
rithms on general graphs and relaxed tree decompositions. Improved analysis
for unit disk graphs of bounded thickness is offered in Section 5.4.

5.1 Graph Decompositions

The algorithms of this chapter use various decompositions of the graph. Al-
though the definitions of tree and branch decompositions are widely known by
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now, we give them here for completeness.

Definition 5.1.1 ([230]) A branch decomposition (T, l) of a graph G is a
ternary tree T and a bijection l between the edges of E(G) and the leafs of T .
Associated with every edge e ∈ E(T ) is the middle set of e, defined as the set of
vertices in V (G) for which there are two incident edges e1, e2 such that the leafs
l(e1) and l(e2) are in different components of T − e. The width of a branch
decomposition is the maximum cardinality of any middle set. The branchwidth
bw(G) of a graph G is the minimum width of any branch decomposition of G.

Definition 5.1.2 ([229]) A tree decomposition (T, X) of a graph G is a tree
T and a collection of bags Xt ⊆ V (G), one for each vertex t ∈ V (T ), satisfying
three conditions:

(i).
⋃

t∈V (T ) Xt = V (G),

(ii). for all (u, v) ∈ E(G), there is a vertex t ∈ V (T ) such that u, v ∈ Xt, and

(iii). Xt ∩ Xt′′ ⊆ Xt′ for any t, t′′ ∈ V (T ) and for any t′ ∈ V (T ) on the t–t′′

path in T .

The width of a tree decomposition is maxt∈V (T ){|Xt|} − 1. The treewidth
tw(G) of a graph G is the minimum width of any tree decomposition of G.

If the tree of a tree decomposition is in fact a path, we speak of a path de-
composition. The pathwidth pw(G) of a graph G is the minimum width of any
path decomposition of G.

The notions of branch-, tree-, and pathwidth are closely related.

Theorem 5.1.3 ([230, 36]) For any graph G, max{bw(G), 2} ≤ tw(G)+1 ≤
max{⌊ 3

2 · bw(G)⌋, 2} and tw(G) ≤ pw(G) ≤ tw(G) · log |V (G)|.

See Bodlaender [36, 37] for surveys on these graph decompositions.
The problems discussed in this chapter all have algorithms that leverage

bounds on the branch-, tree-, or pathwidth. We summarize the running times
of the current best results in the following table.

Branchwidth Treewidth Pathwidth

Max. Indep. Set 2bw(G)ω/2 [89] 2tw(G) [249] 2pw(G) [249]

Min. Vertex Cover 2bw(G)ω/2 [89] 2tw(G) [249] 2pw(G) [249]

Min. Dom. Set 22·bw(G) [89] 22·tw(G) [6, 8] 3pw(G) [6, 8]

Min. Con. D. Set bw(G)bw(G) [89] tw(G)tw(G) [84] pw(G)pw(G) [84]

Here ω ≤ 2.376 is the best known matrix multiplication exponent.
For unit disk graphs, it is usually better to consider the following variation

of treewidth, which might be interesting in its own right.
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Definition 5.1.4 A relaxed tree decomposition (T, X) is a tree T and a col-
lection of bags Xt ⊆ V (G), one for each vertex t ∈ V (T ), satisfying:

(i).
⋃

t∈V (T ) Xt = V (G),

(ii). for all (u, v) ∈ E(G), there is a vertex t ∈ V (T ) such that u, v ∈ Xt or
there is an edge (t, t′) ∈ E(T ) such that u ∈ Xt and v ∈ Xt′ , and

(iii). Xt ∩ Xt′′ ⊆ Xt′ for any t, t′′ ∈ V (T ) and for any t′ ∈ V (T ) on the t–t′′

path in T .

The width of a relaxed tree decomposition is maxt∈V (T ){|Xt|}. The relaxed
treewidth rtw(G) of a graph G is the minimum width of any relaxed tree de-
composition of G.

If the tree of a relaxed tree decomposition is in fact a path, we speak of a
relaxed path decomposition. The relaxed pathwidth rpw(G) of a graph G is the
minimum width of any relaxed path decomposition of G.

The difference between treewidth and relaxed treewidth lies in constraint
(ii) of the underlying decomposition and the absence or presence of the −1
term in the definition of width (note that rtw(T ) = tw(T ) = 1 for any tree T ).
The treewidth and the relaxed treewidth of a graph are related though.

Proposition 5.1.5 For any graph G, 1
2 (tw(G) + 1) ≤ rtw(G) ≤ tw(G) + 1

and 1
2 (pw(G) + 1) ≤ rpw(G) ≤ pw(G) + 1. Moreover, these bounds are tight.

Proof: Let (T, X) be a relaxed tree decomposition of a graph G. For each
edge (t, t′) ∈ E(T ), replace it by a two-edge path with new vertex tt′ and let
Xtt′ = Xt ∪Xt′ . This yields a tree decomposition of G of width at most twice
the width of (T, X) minus one. This bound is tight, as rtw(Kn) = ⌈n/2⌉ and
tw(Kn) = n − 1 for any n > 0.

Any tree decomposition of width k is also a relaxed tree decomposition of
width k + 1. This bound is tight, as exhibited by the following graph. Let
k ≥ 2 and let U = {u1, . . . , uk+1} and W = {w1, . . . , wk+1} be disjoint sets of
k + 1 vertices each. Add edges to make U a clique and for each wi ∈ W add
edges to all vertices uj ∈ U\{ui}. That is, for each i ∈ {1, . . . , k + 1}, (ui, wi)
is a nonedge. Call the resulting graph G.

Clearly, tw(G) = k and rtw(G) ≤ k + 1. Suppose for sake of contradiction
that G has a relaxed tree decomposition (T, X) of width at most k. Since
|U | = k + 1, no bag can contain all vertices of U . As U is a clique, there must
be bags Xt and Xt′ such that (t, t′) ∈ E(T ) and U ⊆ Xt ∪ Xt′ . Moreover,
there must be vertices ui, uj ∈ U such that ui ∈ Xt − Xt′ and uj ∈ Xt′ − Xt.
This implies that W −{wi, wj} ⊆ Xt ∪Xt′ . But then |Xt ∪Xt′ | ≥ 2k and thus
Xt ∩ Xt′ = ∅. Assume w.l.o.g. that |Xt ∩ U | ≤ |Xt′ ∩ U |. Then wj ∈ Xt ∪ Xt′

and thus |Xt ∪ Xt′ | ≥ 2k + 1, a contradiction.
The same arguments hold for (relaxed) path decompositions.
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The definition of relaxed tree- and pathwidth is reminiscent of the definition
of strong treewidth by Seese [239].

Definition 5.1.6 A strong tree decomposition (T, X) is a relaxed tree decom-
position where the bags are pairwise disjoint. The strong treewidth stw(G) of
a graph G is the minimum width over all strong tree decompositions of G.

The definitions of the notions of strong path decomposition and strong path-
width spw(G) easily follow.

Proposition 5.1.7 On any graph G, rtw(G) ≤ stw(G), tw(G) ≤ 2·stw(G)−1,
rpw(G) ≤ spw(G), and pw(G) ≤ 2 · spw(G) − 1.

Proof: The bound rtw(G) ≤ stw(G) is immediate from Definition 5.1.6. The
bound tw(G) ≤ 2·stw(G)−1 follows from Proposition 5.1.5 and was also proved
by Seese [239]. The inequalities for strong pathwidth follow similarly.

It is not clear yet what relation exists between the strong treewidth of a graph
and its (relaxed) treewidth, although a large gap might exist.

Proposition 5.1.8 Let G be a wheel graph with k(k + 2) spokes for k ≥ 2.
Then tw(G) = rtw(G) = 3, but stw(G) = k + 1.

Proof: One can easily show that tw(G), rtw(G) ≤ 3. As G has a K4-minor,
tw(G) ≥ 3. A cycle has relaxed treewidth 2 and from this rtw(G) ≥ 3.

To prove that stw(G) = k + 1, consider any strong tree decomposition
(T, X) of G. Let Xh be the bag containing the hub of G. Any other vertex
of G must be either in Xh or a bag Xt with (h, t) ∈ E(T ). Consider any edge
(u, v) ∈ E(G) that is not a spoke and for which there is no bag containing
both u and v. Then w.l.o.g. u ∈ Xh and v ∈ Xt for t 6= h. Call (u, v) a
crossing edge of t. Clearly, any bag t 6= h has at least two (unique) crossing
edges. Moreover, any vertex in Xh can be incident with at most two crossing
edges. As the hub is not incident with any crossing edge, |V (T )| ≤ |Xh|. But
then the width of (T, X) is greater than k by simple counting. A strong tree
decomposition with k bags of k + 1 vertices each and a central bag Xh with k
vertices and the hub has width k + 1. Hence stw(G) = k + 1.

Finally, we give an important property of relaxed tree decompositions, similar
to a result by Kloks [168, p. 149] for tree decompositions.

Lemma 5.1.9 Let (T, X) be a relaxed tree decomposition of width w of a graph
G. Then there exists a relaxed tree decomposition (T ′, X ′) of width w of G such
that any vertex in T ′ has degree at most 3.

Proof: If t ∈ V (T ) has degree larger than three, split the set of neighbors of
t into two sets (N1 and N2) of cardinality at least two. Remove t from T and
replace it by two vertices t′, t′′, connected by an edge. Let Xt′ = Xt′′ = Xt.
Now connect all vertices in N1 to t′ and all vertices in N2 to t′′. Clearly
the result is a relaxed tree decomposition of G. Iteratively apply the above
splitting process to obtain the requested relaxed tree decomposition.
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5.2 Thickness

The reason for studying strong and relaxed path and tree decompositions is
that there is a natural way to bound the width of such decompositions on unit
disk graphs. We capture the width in a geometric notion, called thickness.
Below we define the thickness of a unit disk graph and give a relation to
strong and relaxed pathwidth.

Assume that we are given a unit disk graph G with a known representation
D = {D(v) = (cv, rv) | v ∈ V (G)}, where cv ∈ R2 is the center of the disk
corresponding to vertex v and rv = 1/2 is its radius.

The thickness of a unit disk graph is determined by a slab decomposition
of a representation of that graph. Given an angle α (0 ≤ α < π) and a point
p ∈ R2, partition the plane using an infinite set of parallel lines (called bars)
such that the distance between any two consecutive lines is precisely 1, the
lines are parallel and intersect the x-axis at angle α, and (exactly) one line
goes through p. The area within distance 1/2 of a bar is called a slab. A disk
is said to be in a slab if its center is contained in the interior or lies on the left
boundary of the slab. The parallel lines thus induce a partition of D, which
we call a slab decomposition (α, p) of D. This in turn induces a decomposition
of V (G) into pairwise disjoint, but collectively exhaustive subsets Y1, . . . , Yk

such that Yj contains the vertices corresponding to the disks contained in the
j-th nonempty slab from the left.

Definition 5.2.1 The thickness of a slab decomposition (α, p) of D is the
maximum number of disks of D in any slab of the decomposition, i.e. it is
max1≤j≤k{|Yj |}.
For any fixed angle α (0 ≤ α < π), the min-thickness t∗α(D) is the minimum
thickness of any slab decomposition (α, p) over all p ∈ R2. Similarly, the max-
thickness t̄α(D) is the maximum thickness of any slab decomposition (α, p)
over all p ∈ R2.

Definition 5.2.2 The thickness t∗(D) is the minimum min-thickness t∗α(D)
over all angles α (0 ≤ α < π). The minimax thickness t̄(D) is the minimum
max-thickness t̄α(D) over all angles α (0 ≤ α < π).

The thickness and the minimax thickness can both be computed in polynomial
time by exhaustively enumerating all relevant angles and points [258].

There is an easy relation between the thickness of D and its minimax
thickness, given by the following proposition.

Proposition 5.2.3 t∗(D) ≤ t̄(D) ≤ 2·t∗(D). Moreover these bounds are tight.

Proof: The inequality t∗(D) ≤ t̄(D) holds by definition. For any angle α, a slab
of one slab decomposition with angle α can overlap at most two of any other.
Hence t̄α(D) ≤ 2 · t∗α(D) for any angle α (0 ≤ α < π) and thus t̄(D) ≤ 2 · t∗(D).
The tightness of these inequalities is demonstrated by respectively two disjoint
disks and two disks with intersecting interiors.
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The definition of minimax thickness already hints at a relation to the path-
width of a unit disk graph.

Theorem 5.2.4 The pathwidth of a unit disk graph with representation D is
at most t̄(D) − 1.

Proof: Let α be an angle such that t̄α(D) = t̄(D). Let B be the set of all
straight lines parallel to a line intersecting the x-axis at angle α. For any b ∈ B,
define Xb as the set of disks intersecting b. Let B′ be any minimal subset of
B such that {Xb | b ∈ B′} = {Xb | b ∈ B}. By definition, maxb∈B′{|Xb|} ≤
t̄α(D). Moreover, by ordering the bars in B′ from left to right, the sets Xb

with b ∈ B′ induce a path decomposition.

This implies that the relaxed pathwidth is at most t̄(D). One can however
improve on this bound by considering the strong pathwidth of a unit disk
graph instead of its pathwidth.

Theorem 5.2.5 The strong pathwidth of a unit disk graph with representation
D is at most t∗(D).

Proof: Consider any slab decomposition of thickness t∗(D) and let Y1, . . . , Yk

be the induced partition of V (G). Since the slabs have width 1 and two unit
disks intersect if and only if the distance between their centers is at most 1,
Y1, . . . , Yk is a strong path decomposition of G of width t∗(D).

Corollary 5.2.6 The relaxed pathwidth of a unit disk graph with representa-
tion D is at most t∗(D).

Observe that following Proposition 5.2.3 this bound is always better, possibly
by as much as a factor of 2, then the bound that followed from Theorem 5.2.4.
Hence it makes sense to consider algorithms for relaxed path decompositions,
as we might attain better worst-case running times than when using the path
decomposition given by Theorem 5.2.4.

5.3 Algorithms on Strong, Relaxed Tree Decompositions

We have shown how to transform an optimum slab decomposition into a strong
and a relaxed path decomposition. However, as far as we know, no algorithms
exist for problems like Maximum Independent Set and Minimum (Connected)
Dominating Set that make use of such a decomposition. We develop these
algorithms in this section and prove that we can match or improve on the
running times attained for path decompositions. In fact, the given algorithms
apply to relaxed tree decompositions and thus can also be applied in a more
general setting.
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5.3.1 Maximum Independent Set and Minimum Vertex Cover

The idea behind the algorithm is similar to the idea behind the algorithm on
tree decompositions by Telle and Proskurowski [249]. Let G be any graph and
(T, X) a relaxed tree decomposition of G. Fix a vertex r ∈ V (T ) and root the
tree T at r. Define a function size as follows. If u ∈ V (T ) has no children,
then for any independent set Au ⊆ Xu,

sizeu(Au) = 0.

For all u ∈ V (T ) with children u1, . . . , uρ, let for any independent set Au ⊆ Xu,

sizeu(Au) =

ρ∑

i=1

max
Aui

{
|Aui

| + sizeui
((Au ∪ Aui

) ∩ Xui
)
}

,

where the maximum is over all independent sets Aui
⊆ Xui

− Xu − N(Au).
For any u ∈ V (T ), let Tu denote the subtree of T rooted at u.

Lemma 5.3.1 The cardinality of a maximum independent set of graph G is
maxAr

{sizer(Ar)+ |Ar|}. The maximum is over all independent sets Ar ⊆ Xr.

Proof: We claim that for any u ∈ V (T ) and for any Au ⊆ Xu, sizeu(Au) is the
maximum cardinality of any set I ⊆ ⋃t∈V (Tu)\{u} Xt −Xu for which I ∪Au is
an independent set, or −∞ if no such set exists.

We prove this by induction. If u has no children, then
⋃

t∈V (Tu)\{u} Xt = ∅
and the claim is immediate from the definition of sizeu. So suppose that
u has children u1, . . . , uρ and that the claim holds for u1, . . . , uρ. For any
i ∈ {1, . . . , ρ} and any independent set Au ⊆ Xu, it follows by induction that

max
Aui

{
|Aui

| + sizeui
((Au ∪ Aui

) ∩ Xui
)
}

,

where the maximum is over all independent sets Aui
⊆ Xui

−Xu−N(Au), is the
maximum cardinality of any set Ii ⊆

⋃
t∈V (Tui

) Xt−Xu for which Ii∪Au is an

independent set, or −∞ is no such set exists. Furthermore,
⋃

t∈V (Tui
) Xt −Xu

and
⋃

t∈V (Tuj
) Xt − Xu for any 1 ≤ i < j ≤ ρ are not connected. Hence

sizeu(Au) is indeed as claimed.
The lemma is immediate from the proof of the claim.

It is also easy to compute (the cardinality of) a maximum independent set
using size. Let w be the width of (T, X), let M = max(t,t′)∈E(T ) |Xt ∪ Xt′ |,
and let n = |V (G)|.

Theorem 5.3.2 One can compute (the cardinality of) a maximum indepen-
dent set of G in O(nw 2M ) time.

Proof: This follows from the definition of size and from Lemma 5.3.1.
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If (T, X) is a strong or a relaxed tree decomposition, then M is at most twice
the width of the decomposition. If (T, X) is an ordinary tree decomposition
of width w, then we can assume that M ≤ w + 1 [168, p. 149].

Corollary 5.3.3 One can compute (the cardinality of) a maximum indepen-
dent set of G in O(nw 22·stw(G)), O(nw 22·rtw(G)), or O(nw 2tw(G)) time, as-
suming the appropriate graph decomposition is given.

Recall that rtw(G) ≤ tw(G) ≤ 2 · rtw(G)− 1. For Maximum Independent Set,
it is therefore more beneficial to have a tree decomposition.

The same holds for Minimum Vertex Cover. It is well-known that I is an
independent set of a graph G if and only if V (G) − I is a vertex cover of G.

Theorem 5.3.4 One can compute (the cardinality of) a minimum vertex cov-
er of G in O(nw 22·stw(G)), O(nw 22·rtw(G)), or O(nw 2tw(G)) time, assuming
the appropriate graph decomposition is given.

5.3.2 Minimum Dominating Set

We give two algorithms for Minimum Dominating Set. First, we present a
simple algorithm using a strong path decomposition. It has a running time
of O(nw 23·spw(G)) and is crucial to the approximation schemes of Chapter 6.
We then consider a more complex algorithm, which can use any relaxed tree
decomposition as input and has running time O(nw 22·rtw(G)) or O(nw 3pw(G)).

A Simple Algorithm

Let G be any graph and (T, X) a strong path decomposition of G. We can
view the bags as being in sequence and number them accordingly X1, . . . , Xp.
Observe that for any i, the vertices in Xi can only be dominated by vertices in
Xi−1 (if i > 1), Xi, or Xi+1 (if i < p). This idea can be exploited as follows.
Define for any A1 ⊆ X1 and A2 ⊆ X2,

size1(A1, A2) =

{
0 if A1 ∪ A2 dominates X1

∞ otherwise.

Define for any i = 2, . . . , p − 1, any Ai ⊆ Xi, and any Ai+1 ⊆ Xi+1,

sizei(Ai, Ai+1) = min{|Ai−1| + sizei−1(Ai−1, Ai) |
Ai−1 ⊆ Xi−1 and Ai−1 ∪ Ai ∪ Ai+1 dominates Xi}.

Moreover, for any Ap ⊆ Xp,

sizep(Ap) = min{|Ap−1| + sizep−1(Ap−1, Ap) |
Ap−1 ⊆ Xp−1 and Ap−1 ∪ Ap dominates Xp}.

Lemma 5.3.5 The cardinality of a minimum dominating set of graph G is
minAp

{sizep(Ap) + |Ap|}, where the minimum is over all Ap ⊆ Xp.
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Proof: We claim that for any i ∈ {1, . . . , p − 1}, any Ai ⊆ Xi, and any

Ai+1 ⊆ Xi+1, sizei(Ai, Ai+1) is the cardinality of a smallest set R ⊆ ⋃i−1
j=1 Xj

such that R ∪ Ai ∪ Ai+1 dominates
⋃i

j=1 Xj , or ∞ if no such set exists. Ap-
plying induction, this follows immediately from the definition of size. Hence
for any Ap ⊆ Xp, sizep(Ap) is the cardinality of a smallest set R ⊆ ⋃p−1

j=1 Xj

such that R ∪ Ap dominates
⋃p

j=1 Xj , or ∞ if no such set exists. As G has
a dominating set, minAp

{sizep(Ap) + |Ap|} is the cardinality of a minimum
dominating set.

Theorem 5.3.6 One can compute (the cardinality of) a minimum dominating
set of G in O(nw 23w) time, given a strong path decomposition of width w.

Clearly this algorithm extends to strong tree decompositions, although this
increases the running time of the algorithm. It can even be extended to relaxed
tree decompositions at a higher cost. Here we chose to keep the algorithm and
its description simple. We will only use it on a strong path decomposition.
Moreover, a much faster algorithm exists on relaxed tree decompositions.

A Better Algorithm

We improve on the running time of the above algorithm by extending it to
relaxed tree decompositions. We apply an idea similar to the one used in the
algorithm by Alber et al. [6, 8].

Let G be any graph and (T, X) a relaxed tree decomposition of G. By
Lemma 5.1.9, we may assume that any vertex of T has degree at most three.
Fix a vertex r ∈ V (T ) which has degree at most one and root the tree T at
r. Define a function size as follows. If u ∈ V (T ) has no children, then for any
Au ⊆ Xu and any Bu ⊆ Xu − Au,

sizeu(Au, Bu) =

{
0 if Bu ⊆ N(Au)
∞ otherwise.

If u ∈ V (T ) has children u1, . . . , uρ, then for any Au ⊆ Xu and Bu ⊆ Xu−Au,

sizei
u(Au, Bu)

= min
{
|Aui

| + sizeui

(
(Au ∪ Aui

) ∩ Xui
, Xui

− Xu − N [Au ∪ Aui
]
) ∣∣∣

Aui
⊆ Xui

− Xu, Bu ⊆ N(Aui
∪ Au)

}

sizeu(Au, Bu) = min
(B1, . . . , Bρ) partitioning Bu

{
ρ∑

i=1

sizei
u(Au, Bi)

}
.

Lemma 5.3.7 The cardinality of a minimum dominating set of graph G is
minAr⊆Xr

{sizer(Ar, Xr − Ar) + |Ar|}.
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Proof: It suffices to prove the following. We claim that for any u ∈ V (T ), any
Au ⊆ Xu, and any Bu ⊆ Xu−Au, sizeu(Au, Bu) is the cardinality of a smallest
set R ⊆ ⋃t∈V (Tu) Xt−Xu such that R∪Au dominates Bu∪

(⋃
t∈V (Tu) Xt−Xu

)
,

or ∞ if no such set exists.
If u ∈ V (T ) has no children, then this is immediate from the definition

of size. So suppose that u ∈ V (T ) has children u1, . . . , uρ and the claim
holds for each child. Let Au ⊆ Xu, Bu ⊆ Xu − Au. Then sizei

u(Au, Bu) is
the cardinality of a smallest set Ri ⊆ ⋃

t∈V (Tui
) Xt − Xu such that Ri ∪ Au

dominates Bu ∪ (
⋃

t∈V (Tui
) Xt −Xu), or ∞ if no such set exists. Observe that⋃

t∈V (Tui
) Xt − Xu and

⋃
t∈V (Tuj

) Xt − Xu are disjoint for any 1 ≤ i < j ≤ ρ.

Hence using its definition, sizeu(Au, Bu) is indeed as claimed.

A trivial way to compute the function size would be to follow its definition.
However, the running time would be O(nw (2w3w +5w)), where w is the width
of the decomposition. One can improve on this naive analysis to get a better
worst-case running time. Let again M = max(t,t′)∈E(T ) |Xt ∪ Xt′ |.

Theorem 5.3.8 One can compute (the cardinality of) a minimum dominating
set of graph G in O(nw (2M + 4w)) time.

Proof: If u ∈ V (T ) has no children, then sizeu is computable in O(w3w) time.
Consider some u ∈ V (T ) with children u1, . . . , uρ. We compute sizei

u in two
phases. First, enumerate all Au ⊆ Xu and Aui ⊆ Xui −Xu. Set Bu = N(Au ∪
Aui)∩Xu. If this set Bu was not encountered before or if |Aui |+ sizeui(. . .) is
smaller than the previous value of sizei

u(Au, Bu), then set

sizei
u(Au, Bu) = |Aui | + sizeui((Au ∪ Aui) ∩ Xui , Xui − Xu − N [Au ∪ Aui ]).

This takes O(wρ 2M ) time.
There is no guarantee that we see all values Bu ⊆ Xu −Au for a given Au.

However, we do see all ‘maximal’ values. Note that the following inequality
should hold: sizei

u(Au, B′
u) ≤ sizei

u(Au, Bu) for any Au ⊆ Xu and any B′
u ⊆

Bu ⊆ Xu − Au. So enumerate all Au ⊆ Xu and Bu ⊆ Xu − Au with Bu 6= ∅
in order, meaning that if B′

u ⊆ B′′
u , then B′′

u is considered before B′
u. Now

update sizei
u as follows. For any x ∈ Bu, let

sizei
u(Au, Bu\{x}) = min{sizei

u(Au, Bu\{x}), sizei
u(Au, Bu)},

where we assume that sizei
u(Au, Bu) = ∞ or sizei

u(Au, Bu\{x}) = ∞ if Bu or
Bu\{x} respectively was not considered in the first step. This takes O(w 3w)
time. Moreover, we have now correctly computed sizei

u.
To compute sizeu, recall that any vertex of T has degree at most three

and that r is a leaf of T . Hence ρ ≤ 2. Now by enumerating all Au ⊆ Xu,
B1 ⊆ Xu − Au, B2 ⊆ Xu − Au − B2, and letting Bu = B1 ∪ B2, it is easy to
compute sizeu. This takes O(4w) time. The theorem follows.
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Observe that if a relaxed path decomposition of width w is given, then ρ ≤ 1,
and the described algorithm runs in O(nw (2M + 3w)) time. If a strong path
decomposition of width w is given, this implies a running time of O(nw 22w),
which is a factor of 2w faster than the previous algorithm.

Corollary 5.3.9 One can compute (the cardinality of) a minimum dominat-
ing set of graph G in O(nw 22·rtw(G)) or O(nw 3pw(G)) time, assuming the
appropriate graph decomposition is known.

The running time for path decompositions follows from the fact that given a
path decomposition of width w, one can assume that M ≤ w + 1 [168].

Minimum Dominating Set is a clear case where having a relaxed tree
decomposition is preferable to having an ordinary tree decomposition. As
rtw(G) ≤ tw(G), and possibly rtw(G) = 1

2 · tw(G) + 1
2 , the worst case run-

ning time of O(nw 22·rtw(G)) is preferable to the O(n 22·tw(G)) algorithm by
Alber et al. [6, 8]. When considering path decompositions, we improve if
rpw(G) ≤ ( 1

2 log 3) · pw(G), where 1
2 log 3 ≈ 0.792.

5.3.3 Minimum Connected Dominating Set

We develop a technique for solving the minimum connected dominating set
problem that augments both proposed algorithms for Minimum Dominating
Set. Hence we effectively obtain two algorithms.

The technique is based on the following general ideas. Let G be a graph
and (T, X) a relaxed tree decomposition of G. Root the tree T at some fixed
vertex r ∈ V (T ). Given X ⊆ V (G), a set W ⊆ V (G) is partially connected
(with respect to X) if each connected component of W intersects X. This
definition is crucial because of the following easy fact. Let u ∈ V (T ) and let
Gu be the graph induced by

⋃
t∈V (Tu) Xt. Then for any connected dominating

set W ⊆ V (G), W ∩ V (Gu) is partially connected with respect to W ∩ Xu if
W ∩Xu 6= ∅. This suggests that during the dynamic programming, we should
construct partially connected dominating sets.

Suppose that W ⊆ V (Gu) is partially connected with respect to W ∩ Xu

for some u ∈ V (T )\{r}. Then W induces an equivalence relation ∼W,u on
the connected components of W ∩ Xu, namely C ∼W,u C ′ for connected com-
ponents C, C ′ of W ∩ Xu if and only if there is a C–C ′ path in G[W ]. Let
(u, v) ∈ E(T ) such that v is closer to r than u. Given a subset Au ⊆ Xu,
an equivalence relation ∼ on the connected components of Au, and a subset
Av ⊆ Xv − Xu, we say that Av is compatible to (Au,∼) if for any equivalence
class C of ∼, there is a connected component C ∈ C such that there is a C–Av

path in G[C ∪ Av]. Then given a set W ⊆ V (Gu) that is partially connected
with respect to W ∩Xu and any Av ⊆ Xv −Xu, W ∪Av is partially connected
with respect to Av if and only if Av is compatible to (W ∩ Xu,∼W,u). Note
that given a compatible set Av, ∼W∪Av,v is uniquely determined by ∼W,u. We
say that ∼W,u determines ∼W∪Av,v.
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We can now use the above ideas as follows. First, we adapt the simple
algorithm given in Paragraph 5.3.2. Suppose that (T, X) is a strong path
decomposition, i.e. the bags are numbered in sequence, X1, . . . , Xp. Define
a function size as follows. Let ∼id denote the identity equivalence relation,
i.e. C ∼id C ′ if and only if C = C ′, and let ∼all denote the total equivalence
relation, i.e. C ∼all C ′ for any C, C ′. Then for any A1 ⊆ X1, any A2 ⊆ X2,
and any equivalence relation ∼ on the connected components of G[A1] such
that A2 is compatible to (A1,∼),

size1(A1, A2,∼) =

{
0 if A1 ∪ A2 dominates Xi and ∼≡∼id

∞ otherwise.

For any i ∈ {2, . . . , p−1}, any Ai ⊆ Xi, any Ai+1 ⊆ Xi+1, and any equivalence
relation ∼ on the connected components of G[Ai] such that Ai+1 is compatible
to (Ai,∼),

sizei(Ai, Ai+1,∼) = min
{
|Ai−1| + sizei−1(Ai−1, Ai,∼′) |

Ai−1 ⊆ Xi−1, Ai compatible to (Ai−1,∼′),
Ai−1 ∪ Ai ∪ Ai+1 dominates Xi,

and ∼′ determines ∼
}
.

Finally, for any Ap ⊆ Xp,

sizep(Ap) = min
{
|Ap−1| + sizep−1(Ap−1, Ap,∼′) |

Ap−1 ⊆ Xp−1, Ap compatible to (Ap−1,∼′),
Ap−1 ∪ Ap dominates Xp,

and ∼′ determines ∼, where ∼≡∼all

}
.

For the analysis, we define q(G, T, X) as the maximum number of equivalence
relations one needs to consider during the algorithm for any subset Au ⊆ Xu

for any u ∈ V (T ).

Lemma 5.3.10 Given a set {c0, . . . , ck}, there is a data structure for storing
equivalence relations of this set that uses space the number of stored relations
times O(k log k) and where insert, update, and find cost O(k log k) time.

Proof: Observe that for any equivalence relation we can always assume that ch

is in the j-th equivalence class for some j ≤ h + 1. Now consider the following
tree. Level h of the tree corresponds to ch. A node on level h has h+1 children,
where the j-th child is used to describe that ch+1 is in equivalence class j. A
path in the tree (from the root to a leaf) thus provides a complete description
of an equivalence relation. One can use level k+1 to store any value associated
with this equivalence relation.

To quickly find the j-th child of a node, we use a balanced binary search
tree to store the children. It follows immediately from this description that
insert, update, and find each cost O(k log k) time. The tree has k + 1 levels
and on each level, one has a search tree of height O(log k) to navigate.
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Of course, one does not store the entire tree, but keeps only those paths that
correspond to a stored relation. Each path costs O(k log k) space to maintain.
As each node uses a balanced binary search tree to store its children, insert,
update, and find still take O(k log k) time. The lemma follows.

Theorem 5.3.11 One can compute (the cardinality of) a minimum connected
dominating set of graph G in O(n·w log w ·q(G, T, X)·23w) time, given a strong
path decomposition (T, X) of width w.

Proof: It immediately follows from the proof of Lemma 5.3.5 that the set
attaining minAp⊆Xp

{sizep(Ap) + |Ap|} is a dominating set of G. Moreover,
the compatibility constraints in the definition of size ensure that this set is
connected. Hence it is easily shown that minAp⊆Xp

{sizep(Ap) + |Ap|} is the
cardinality of a minimum connected dominating set of G.

To compute size, we use the data structure described in the above lemma.
We only maintain those equivalence relations ∼ which are actually realizable,
that is, for which sizei(Ai, Ai+1,∼) 6= ∞. Hence for fixed Ai ⊆ Xi, Ai+1 ⊆
Xi+1, we have a data structure requiring O(w log w · q(G, T, X)) space with
O(w log w) time insert, update, and find operations.

It follows that size1 can be computed in O(w log w · 22w) time. In com-
puting sizei for i > 1, we deviate slightly from the recursive formula. For
any Ai−1 ⊆ Xi−1, Ai ⊆ Xi, and Ai+1 ⊆ Xi+1 such that Ai−1 ∪ Ai ∪ Ai+1

dominates Xi, we consider all relations ∼′ for which sizei−1(Ai−1, Ai,∼′) is
stored. Then we find the equivalence relation ∼ determined by ∼′ and check
whether Ai+1 is compatible to (Ai,∼). We then store sizei(Ai, Ai+1,∼) =
|Ai−1| + sizei−1(Ai−1, Ai,∼′) if ∼ was not encountered before, or update this
value if necessary. One computes sizep similarly.

Observe that during this process, it is not necessary to explicitly enumerate
all equivalence relations. The relevant relations may be obtained from the
tables. Thus in the analysis of the running time, it suffices to bound the
maximum number of equivalence relations, which is q(G, T, X). Hence for any
i > 1, we spend O(w log w · q(G, T, X) · 23w) time. The theorem follows.

In a similar manner, one can adapt the second algorithm of Section 5.3.2.

Theorem 5.3.12 One can compute (the cardinality of) a minimum connected
dominating set of graph G in O(n ·w log w · q(G, T, X) · (2M +4w)) time, given
a relaxed tree decomposition (T, X) of width w.

It remains to bound q(G, T, X). For an arbitrary graph G and an arbitrary
relaxed tree decomposition (T, X) of width w, q(G, T, X) is bounded by the
number of different equivalence relations on a set of cardinality w. In other
words, it is bounded by the number of distinct partitions of a w-element set.

Definition 5.3.13 Given a set S, S1, . . . , Sp is a partition of S if Si 6= ∅ for
any 1 ≤ i ≤ p, S =

⋃p
i=1 Si, and for any 1 ≤ i < j ≤ p, Si ∩ Sj = ∅.
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The number of partitions of an w-element set is equal to the w-th Bell number,
̟w, named for E.T. Bell [29, 30]. We give an upper bound.

Proposition 5.3.14 ̟w ≤ ( w
ln w )w for w ≥ 2.

Proof: Since x ≤ ex−1 for any x ∈ R, we have that ex ≤ ex. Then for any k,

e · k lnw

w
≤ e

k ln w
w ⇒

(
ke lnw

w

)w

≤ ek ln w ⇒

kw ≤
( w

e lnw

)w

wk.

Hence following Dobiński’s formula [88] (see also Wilf [271]),

̟w =
1

e

∞∑

k=0

kw

k!
≤
( w

e lnw

)w ∞∑

k=0

wk

k!
=
( w

e lnw

)w

ew =
( w

lnw

)w

.

The bound follows.

Corollary 5.3.15 One can compute (the cardinality of) a minimum connected
dominating set of graph G in O(n · w log w · ( w

ln w )w 23w) time, given a strong
path decomposition (T, X) of width w.

Corollary 5.3.16 One can compute (the cardinality of) a minimum connected
dominating set of graph G in O(n · w log w · ( w

ln w )w (2M + 4w)) time, given a
relaxed tree decomposition (T, X) of width w.

It can be easily verified that all algorithms in this section also apply to the
weighted case of the problems.

5.4 Unit Disk Graphs of Bounded Thickness

Recall from Theorem 5.2.5 that the strong pathwidth of a unit disk graph with
representation D is at most t∗(D). The results in the previous section yield
the following theorem.

Theorem 5.4.1 Let G be a unit disk graph with representation D and let
t = t∗(D). Then Maximum Independent Set, Minimum Vertex Cover, and
Minimum Dominating Set can be solved in O(nt 22t) time. Minimum Con-
nected Dominating Set can be solved in O(n · t log t · ( t

ln t )
t 22t) time.

The theorem implies that if the thickness is bounded, say by a constant, then
these problems can be solved in polynomial time.

One can improve on the worst-case analysis of the algorithm for Minimum
Connected Dominating Set by using that the given strong path decomposition
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comes from a strip decomposition. So let (T, X) be such a strong path de-
composition. Instead of bounding q(G, T, X) by ̟w, we will show that many
relations are in fact the same. Hence we can use so-called noncrossing parti-
tions to bound q(G, T, X) instead of general partitions.

Definition 5.4.2 Let S be a finite set and � a total order of its elements.
Then S1, . . . , Sp is a noncrossing partition of S if S1, . . . , Sp is a partition of
S and for any 1 ≤ i, j ≤ p with i 6= j, any a, c ∈ Si, and any b, d ∈ Sj,
a � b � c � d is false.

Noncrossing partitions were first considered by Becker [27, 28]. Refer to
Simion [240] for numerous applications of such partitions. By Becker [28]
and Kreweras [183], the number of noncrossing partitions of a w-element set is
Cw, the w-th Catalan number. It is well-known that Cw ≈ 4w. If the cardinal-
ity of a set can be bounded by a polynomial in Cw, it is said to have Catalan
structure. Catalan structure was considered before in the context of Mini-
mum Connected Dominating Set, for example on planar graphs [84]. These
ideas were subsequently generalized by Dorn, Fomin, and Thilikos [90, 91] to
more general graph classes (see also Section 6.5). This however is the first
application to unit disk graphs.

Let G be a unit disk graph with representation D and (T, X) a strong path
decomposition induced by a strip decomposition through Theorem 5.2.5. The
bags are numbered in sequence X1, . . . , Xp. We exhibit the existence of Catalan
structure. We start with an easy bound. Without loss of generality, assume
that no two disk centers have the same y-coordinate. Then the following is a
total order. For any two vertices u, v ∈ V (G), let u � v if and only if u = v or
the disk center of D(u) lies below the disk center of D(v).

Lemma 5.4.3 For any 1 ≤ i ≤ p, let W ⊆ ⋃i
j=1 Xj be partially connected

with respect to Ai := W ∩Xi and for any u, v ∈ Ai, u ∼ v if and only if u = v
or there is a u–v path Puv in W such that Puv ∩ Ai = {u, v}. If a ∼ c and
b ∼ d for distinct a, b, c, d ∈ Ai such that a � b � c � d, then a, b, c, and d
are connected in W .

Proof: As a � b � c � d, Pac and Pbd must cross, meaning there are adjacent
vertices w, x ∈ Pac and adjacent vertices y, z ∈ Pbd such that the line segment
cwcx intersects the line segment cycz. As G is a unit disk graph, both segments
have length at most 1 and cw is within distance 1 of cy or cz, or cx is within
distance 1 of cy or cz. Thus at least one of the edges (w, y), (w, z), (x, y), or
(x, z) must be in E(G). Hence a, b, c, and d are connected in W .

Observe that a relation ∼ on the vertices of Ai as in the above lemma induces
an equivalence relation ∼W,i on the connected components of W ∩Xi as needed
for the algorithm for Minimum Connected Dominating Set. In fact, one can
construct a surjective map from equivalence relations ∼ to ∼W,i. Hence if we
bound the number of equivalence relations ∼, we have bounded the number of
equivalence relations ∼W,i.
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D(u) √
3

Figure 5.1: In the left figure, the disk D(u) is drawn dashed. The
solid circle indicates the area in which the centers of D(v) and D(w)
cannot lie, or they would intersect D(u). Then the centers of D(v) and
D(w) have to be within the shaded areas. In the right figure, the area
in which the centers of D(a) and D(b) cannot lie is indicated.

Theorem 5.4.4 One can compute (the cardinality of) a minimum connected
dominating set of a unit disk graph G in O(n ·t log t ·25t) time, where t = t∗(D)
is the thickness of a representation D of G.

Proof: From Lemma 5.4.3, it follows that ∼ induces a noncrossing partition
on the vertices of Ai. Hence we can bound q(G, T, X) by Ct. The theorem
now follows from Theorem 5.3.11.

Using Theorem 5.3.12, we can give the following slightly better result.

Theorem 5.4.5 One can compute (the cardinality of) a minimum connected
dominating set of a unit disk graph G in O(n ·t log t ·24t) time, where t = t∗(D)
is the thickness of a representation D of G.

It is possible to improve on this analysis if the number of connected components
of Ai is smaller than |Ai|. Instead of applying noncrossing partitions to the
vertices, we apply them to (parts of) connected components.

By rotating if necessary, we may assume that the slab boundaries of the
underlying slab decomposition are parallel to the y-axis. Let i ∈ V (T ). Define
the y-range ȳ(S) of a connected subset ∅ 6= S ⊆ Xi as the range between the
smallest and the largest y-coordinate of any disk center of S. The contour
of S is the perimeter of the union of the disks of S. Consider the connected
components of G[Ai] for some Ai ⊆ Xi. Two connected components are said
to interact if their y-ranges intersect.

Proposition 5.4.6 No three connected components can pairwise interact.
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Proof: If three connected components C, C ′, and C ′′ pairwise interact, their
y-ranges pairwise intersect and thus the y-ranges have a common y-coordinate.
Without loss of generality, this common coordinate corresponds to the y-
coordinate y(u) of a disk center for some u ∈ C. Then y(u) ∈ ȳ(C ′) and
y(u) ∈ ȳ(C ′′). Consider C ′ and let v be the vertex in C ′ such that y(v) is
minimal under the condition that y(v) ≥ y(u). Similarly, let w ∈ V (C ′) such
that y(w) is maximal, but y(w) ≤ y(u). Define a, b ∈ C ′′ in a similar way.
By symmetry, we may assume that the center of D(u) lies on or to the left of
the middle of the slab. Then the centers of D(v) and D(w) lie in the shaded
area of Figure 5.1. In the best case, u lies on the left boundary of the slab
and y(v) = y(u) + ǫ, y(w) = y(u) − ǫ for infinitesimally small ǫ > 0. But
then the centers of D(a) and D(b) must be at distance at least

√
3 > 1, which

contradicts that D(a) and D(b) intersect.

Corollary 5.4.7 If G[Ai] has c connected components, then at most c − 1
pairs of connected components interact.

Proof: Consider the (interval) graph H induced by the y-ranges of the con-
nected components of G[Ai]. By Proposition 5.4.6, no three intervals of H
pairwise intersect. Hence H is a forest, where each vertex corresponds to a
connected component and each edge to an interaction. Since H is a forest, the
number of edges of H, and thus the number of pairwise interacting connected
components is at most c − 1.

This corollary will prove to be useful in counting arguments later on.
Following the proof of Proposition 5.4.6 and as the contours of no two

connected components intersect, we can say of two interacting connected com-
ponents C and C ′ that C is in front of C ′, if (when their y-ranges overlap) the
contour of C lies to the left of the contour of C ′.

Suppose that two connected components C and C ′ interact and C is in
front of C ′. Now split the vertices of C ′ into three parts: those vertices u
for which y(u) > ȳ(C), for which y(u) ∈ ȳ(C), and for which y(u) < ȳ(C).
Iteratively decompose the connected components this way. What remains are
blocks of vertices. Let B denote the set of all blocks. By construction, for
any two distinct blocks B, B′ ∈ B, either ȳ(B) ∩ ȳ(B′) = ∅, ȳ(B) ⊆ ȳ(B′), or
ȳ(B) ⊇ ȳ(B′). Note that the vertices of a block are connected. If ȳ(B) ⊆ ȳ(B′)
for two blocks B and B′, then B is occluded by B′. We may also call B′ the
occluder of B.

Consider the following total order � on the blocks. For B, B′ ∈ B, let B �
B′ if and only if B = B′, ȳ(B) < ȳ(B′), or ȳ(B) ⊆ ȳ(B′). Let W ⊆ ⋃i

j=1 Xj

be such that W is partially connected with respect to Ai := W ∩ Xi. Define
∼ on B such that B ∼ B′ if and only if B = B′ or there is a B–B′ path in
(W −Ai)∪B∪B′. We claim that ∼ induces a noncrossing partition on B with
respect to �.

Lemma 5.4.8 Consider distinct Ba, Bb, Bc, Bd ∈ B such that Ba ∼ Bc, Bb ∼
Bd, and Ba � Bb � Bc � Bd. Then Ba ∼ Bb.
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Proof: We aim to show that ȳ(Ba) < ȳ(Bb) < ȳ(Bc) < ȳ(Bd). The lemma
then follows from Lemma 5.4.3. Let (B, B′) be an arbitrary pair of (Ba, Bb),
(Bb, Bc), (Bc, Bd). By assumption, B � B′ and B 6∼ B′. We show that
ȳ(B) < ȳ(B′). Using the definition of � and since B 6= B′, it suffices to prove
that assuming ȳ(B) ⊆ ȳ(B′) leads to a contradiction.

So suppose that ȳ(B) ⊆ ȳ(B′). By the construction of the blocks, this
implies that B′ occludes B. But then N(B) ∩ Xi−1 ⊆ N(B′) ∩ Xi−1. Hence
any path in W to or from B must contain a vertex not in B neighboring a
vertex in B′. As there is such a path, B ∼ B′, a contradiction.

It follows that ȳ(Ba) < ȳ(Bb) < ȳ(Bc) < ȳ(Bd) and thus that Ba ∼ Bb by
using Lemma 5.4.3.

Observe that one can construct a surjective map from relations ∼ on the blocks
to relations ∼W,i on connected components of Ai. Hence it suffices to bound
the number of relations ∼ on the blocks.

Theorem 5.4.9 One can compute (the cardinality of) a minimum connected
dominating set of a unit disk graph G with representation D in O(n · c log c ·
23c23t) time, where t = t∗(D) and c is the largest number of connected compo-
nents in any Ai ⊆ Xi in the strong path decomposition (T, X) corresponding
to the slab decomposition supporting t∗(D).

Proof: It follows from Corollary 5.4.7 that the number of blocks is at most
3(c − 1). Lemma 5.4.8 showed that ∼ induces a noncrossing partition of B
with respect to �. Hence the number of relations ∼ is at most C|B| ≤ C3(c−1)

and we can bound q(G, T, X) by C3(c−1). The theorem immediately follows
from Theorem 5.3.11.

Because c ≤ t, the running time of the above algorithm is O(n·t log t·26t) in the
worst case, which is worse than the running time guaranteed by Theorem 5.4.4.
We will see in the next chapter however that there are cases where c ≪ t.

The results developed above also apply to the algorithm of Theorem 5.3.12
and we thus improve on the running time of Theorem 5.4.9 as follows.

Theorem 5.4.10 One can compute (the cardinality of) a minimum connected
dominating set of a unit disk graph G with representation D in O(n·c log c·23c ·
22t) time, where t = t∗(D) and c is the largest number of connected components
in any Ai ⊆ Xi in the strong path decomposition (T, X) corresponding to the
slab decomposition supporting t∗(D).

This gives a worst-case running time of O(n · t log t · 25t).



Chapter 6

Density and Unit Disk Graphs

The thickness of a unit disk graph is a good parameter by which to investi-
gate the complexity of various graph optimization problems. We even obtain
polynomial-time algorithms if the thickness is small. However, a given unit
disk graph might not have small thickness. To alleviate this, we introduce a
new notion for unit disk graphs, called density. Intuitively, the density of a set
of disks is the number of disk centers in any 1 × 1 box. Using this notion, we
are able to give a tight upper bound on the thickness of a unit disk graph.

Moreover, the density is instrumental in the design of a set of new approxi-
mation schemes for unit disk graphs. Using a uniform approach, we are able to
obtain an eptas on unit disk graphs of bounded density and a ptas on general
unit disk graphs for all studied graph optimization problems. These schemes
both generalize and improve on previous work on approximation algorithms
for unit disk graphs.

6.1 The Density of Unit Disk Graphs

The density of a unit disk graph is defined analogously to the thickness. As-
sume that we are given an n-vertex unit disk graph G with a representation
D = {D(v) = (cv, rv) | v ∈ V (G)}, where cv ∈ R2 is the center of the disk
corresponding to vertex v ∈ V (G) and rv = 1/2 is its radius.

The density of a unit disk graph is determined by a grid decomposition of
a representation of that graph. Given an angle α (0 ≤ α < π/2) and a point
p ∈ R2, partition the plane using an infinite grid, such that each grid square
has width and height 1, the grid is rotated (clockwise) by α with respect to the
x-axis, and the corner of some grid square coincides with p. The horizontal and
vertical lines defining the grid are the horizontal and vertical grid boundaries.
Observe that the partitioning of the plane imposed by the grid remains the
same after a rotation of π/2 around p. Hence it is valid to restrict α to
0 ≤ α < π/2.

A disk is said to be in a grid square if its center is contained in the interior of
the square or the center lies on the left vertical or top horizontal grid boundary
determining the square. Given (α, p), this induces a grid decomposition of D.

67
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Definition 6.1.1 Given (α, p), the density of a set of disks D is the maximum
number of disks in any grid square induced by the grid decomposition of D
determined by (α, p).

For any (fixed) angle 0 ≤ α < π/2, the density d∗α(D) is the minimum density
of any grid decomposition (α, p) over all p ∈ R2. The max-density d̄α(D) is
the maximum density of any grid decomposition (α, p) over all p ∈ R2.

Definition 6.1.2 The density d∗(D) of a set of unit disks D is the minimum
density d∗α(D) over all angles 0 ≤ α < π/2. The max-density d̄(D) is the
maximum max-density d̄α(D) over all angles 0 ≤ α < π/2.

The density and max-density of a given set of unit disks can be computed in
polynomial time by enumerating all relevant angles and points [258].

Observe that the notion of density is more general than the notion of λ-
precision unit disk graphs [154], in which the disk centers are at least λ apart.

The studied optimization problems are all NP-hard when restricted to unit
disk graphs of bounded density. Maximum Independent Set, Minimum Vertex
Cover, and Minimum (Connected) Dominating Set are NP-hard on arbitrary
unit disk graphs [194, 267, 17, 67], even if the degree is at most 3 and (except
for Maximum Independent Set and Minimum Vertex Cover) the graph is bi-
partite [65]. To show NP-hardness in case of bounded density, we can adapt a
reduction by Clark, Colbourn, and Johnson [67] from Maximum Independent
Set and Minimum Vertex Cover on planar graphs of degree 3 and 4 to the
same problems on unit disk graphs, giving the following theorem [258].

Theorem 6.1.3 Maximum Independent Set and Minimum Vertex Cover are
NP-hard on unit disk graphs of density 1.

Minimum Connected Dominating Set was proved NP-hard on unit disk graphs
by Lichtenstein [194]. The instances of Connected Dominating Set constructed
in this proof have density 3. The NP-hardness gadget given by Clark, Col-
bourn, and Johnson [67] however has density 1. This is also true for their
gadget for Minimum Dominating Set. These results imply that Maximum
Independent Set, Minimum Vertex Cover, and Minimum (Connected) Domi-
nating Set are NP-hard on unit disk graphs of any (fixed) density.

Because Maximum Independent Set, Minimum Vertex Cover, and Mini-
mum (Connected) Dominating Set on unit disk graphs of density 1 are NP-hard
and the values of their optima are bounded by a polynomial in the instance
size, they cannot have an fptas, unless P=NP. In Section 6.4, we exhibit further
inapproximability results for these problems.

6.2 Relation to Thickness

A first strategy to deal with the NP-hardness of the studied optimization
problems on unit disk graphs of bounded density is to consider fast exact
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algorithms (with exponential running time). We can do this by bounding the
thickness of a unit disk graph in terms of its density.

Theorem 6.2.1 For any n-vertex unit disk graph with representation D of
max-density d = d̄(D),

t∗(D) ≤ t̄(D) ≤ 5.7 ·
√

nd log n.

Moreover, this bound is tight (up to constants).

Proof: The theorem essentially follows from a result by Alon, Katchalski, and
Pulleyblank [10]. We follow their proof.

If d > n/(16 log n), the theorem is trivial, so assume that d ≤ n/(16 log n).
Let k = ⌊√n/

√
d log n⌋ and note that k ≥ 4. For each integer 0 ≤ i < k/2,

the thickness t̄αi(D) with αi = π · i/k is equivalent to the maximum number
of disks intersecting any line at angle αi with respect to the x-axis. Let li be a
line with angle αi intersecting the largest number of disks of D. Then for any
0 ≤ i < k/2, t̄αi

(D) equals the number of disks intersecting li and none of the
other lj plus the number of disks intersecting li and at least one other lj .

We first bound the second quantity. Consider i 6= j with 0 ≤ i, j < k/2.
Then using that sinα ≥ 2α/π for any 0 ≤ α ≤ π/2, the disk centers of all disks
intersecting both li and lj can be contained in a 2 by 2 + ⌈k/|i− j|⌉ rectangle,
such that two sides of this rectangle are parallel to li. Hence the number of
disks intersecting both li and lj is at most (4 + 2⌈k/|i− j|⌉)d. For any fixed i,
the number of disks intersecting li and at least one of the other lj ’s is at most

d · 2
⌊k/2⌋∑

h=1

(
4 + 2⌈k/h⌉

)
≤ 6kd + 4kd ·

⌊k/2⌋∑

h=1

1/h

≤ 6kd + 4kd · (0.58 + 1/4 + ln k − ln 2)

≤ 3kd log k + 0.28kd log k + 2.78kd log k

= 6.06 · kd log k

≤ 3.03 ·
√

dn log n.

The first quantity can only be bounded existentially. By the pigeonhole
principle, there is a value of i such that the number of disks intersected by li
is at most n/(k/2) ≤ (8/3) · √dn log n. Hence for this value of i, t̄αi(D) ≤
5.7 · √dn log n. Therefore t̄(D) ≤ 5.7 · √dn log n.

Adapting a construction by Alon, Katchalski, and Pulleyblank [10], we can
give for any d ≤ h a set of O(dh2/ log h) unit disks of max-density d and of
thickness Ω(hd). In other words, for any n, a set of n unit disks with thickness
Ω(

√
dn log n) and max-density d exists.

Using Theorem 5.2.5, we immediately obtain the following corollary.

Corollary 6.2.2 The strong pathwidth of any n-vertex unit disk graph with
representation D is at most 5.7 · √dn log n, where d is the max-density of D.



70 Chapter 6. Density and Unit Disk Graphs

This naturally implies a bound of 5.7 ·√dn log n on the relaxed pathwidth of a
unit disk graph. It is possible to improve considerably on this bound though.
Van Leeuwen [258] shows that for any set of unit disks D there exists a slab of
width 1 containing at most (2 + 4/π)

√
dn + o(

√
dn) disks such that the disks

outside the slab are partitioned into two pieces of at most 2n/3 pieces each.
In other words, the unit disk graph has a

√
dn-separator theorem. Smith and

Wormald [244] show that the constant in this bound can be further improved
to 2

√
dn using a circular separator. Using a result of Bodlaender [36], this

implies the following bound on the relaxed pathwidth.

Theorem 6.2.3 The (relaxed) pathwidth of any n-vertex unit disk graph with
representation D of max-density d is at most 6

√
dn.

One can use these bounds on the strong and relaxed pathwidth to analyze the
worst-case running times of the algorithms given in the previous chapter.

Theorem 6.2.4 For a n-vertex unit disk graph with representation D of max-
density d, Maximum Independent Set and Minimum Vertex Cover can be solved

in O(n
√

dn 26
√

dn) time, Minimum Dominating Set in O(n
√

dn 36
√

dn) time,

and Minimum Connected Dominating Set in O(dn2 222.8
√

nd log n) time.

This follows from Theorem 5.3.3, 5.3.4, 5.3.9, and 5.4.5.
Further improvement follows from work by Fu [112]. He showed that if

d = 1, a 1.2126
√

n-separator exists. By mapping disk centers to a grid and
then using this separator, Fu shows the following.

Theorem 6.2.5 (Fu [112]) Maximum Independent Set and Minimum Ver-
tex Cover can be solved in O∗(2O(

√
n)) time.

The O∗(·) means that we omit polynomially bounded terms. The technique
used by Fu is believed to extend to Minimum Dominating Set as well. We
conjecture that using the techniques developed in Section 5.4, one can obtain
an O∗(2O(

√
n)) time algorithm for Minimum Connected Dominating Set.

In this context of exact algorithms, we should also mention results on the
parameterized complexity of these problems. Alber and Fiala [7] gave an

nO(
√

k)-time algorithm to determine whether a unit disk graph has an indepen-
dent set of cardinality at least k. If the unit disk graph has constant precision,

this improves to 2O(
√

k) time. Marx [202, 203] showed however that Maximum
Independent Set and Minimum Dominating Set are W[1]-hard on arbitrary
unit disk graphs. Hence it is unlikely that these problems are fixed-parameter
tractable, unless FPT=W[1].

6.3 Approximation Schemes

Another way to get around the NP-hardness of the graph optimization prob-
lems on unit disk graphs of bounded density is to restrict to a polynomial
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running time, but allow the algorithm to return an approximation to the op-
timum. In particular, we are interested in approximation schemes, giving a
(1 + ǫ)-approximation for any ǫ > 0. We present a unified approach that
yields optimal approximation schemes for Maximum Independent Set, Mini-
mum Vertex Cover, and Minimum (Connected) Dominating Set on unit disk
graphs with a known representation. The density of this representation is
crucial to the analysis. For each of the aforementioned problems, we give an
approximation scheme that is both an eptas if the density is bounded and a
ptas in the general case. The running times of these schemes improves on the
running times achieved by previous schemes for these problems.

The approximation schemes use the shifting technique, originally proposed
by Baker [22] and Hochbaum and Maass [150]. Here we use a decomposition
of the disks similar to one proposed by Hunt et al. [154].

Assume that we are given a unit disk graph G with representation D, such
that each disk in D has radius 1/2. First, we find a grid decomposition (α, p) of
D of minimum density d = d∗(D). We may assume that α = 0 and p = (0, 0).
Now we can speak of the columns and the rows of the grid decomposition,
i.e. row ri for some i ∈ Z contains all grid squares between the lines y = i
and y = i + 1. The idea of the proposed schemes is to group (the disks
in) several consecutive rows together in a strip. Decomposing the plane in
this way, we obtain a strip decomposition. The strips will each have bounded
thickness, making it easier to solve the problems we consider. We then combine
the solutions of these subproblems to a solution for the global problem. By
repeating this for several appropriately constructed strip decompositions, we
show that for (at least) one strip decomposition, the solution we obtain is the
required approximation to the optimum.

6.3.1 Maximum Independent Set

Let k ≥ 2 be an integer (whose precise value we determine later). Decompose
the rows of the grid such that the b-th strip consists of rows ri with bk + 1 ≤
i ≤ (b + 1)k − 1 for any b ∈ Z. Observe that rows where i ≡ 0 (mod k) are
not in any strip. Hence the strips can be thought of as being independent. Let
Db ⊆ D denote the set of disks contained in the b-th strip and Sb ⊆ D the set
of disks contained in row rbk or r(b+1)k.

Lemma 6.3.1 For any b ∈ Z, the thickness of Db is at most (k − 1)d.

Proof: The columns of the grid decomposition induce a slab decomposition.
Any column contains k − 1 grid squares of the b-th strip and thus the centers
of at most (k − 1)d disks. The lemma follows.

Using this lemma, we can already conclude from Theorem 5.3.3 that for any
b ∈ Z, one can compute the cardinality of a maximum independent set in
O(n 22kd) time. We can improve on this by more refined analysis.



72 Chapter 6. Density and Unit Disk Graphs

We require the following auxiliary results. Let e = 2.718... be the base of
the natural logarithm.

Lemma 6.3.2 Let c1, s be positive integers and c2 ≥ 1 a number. Then a set
of cardinality c1s has at most c2s · (c1e)

c2s
distinct subsets of cardinality at

most ⌊c2s⌋.

Proof: Suppose that ⌊c2s⌋ < c1s/2. Using Åslund’s [18] upper bound on the
binomial coefficient and that the function xx is convex,

(
c1s

⌊c2s⌋

)
≤ (c1s)

c1s

(⌊c2s⌋)⌊c2s⌋
(c1s − ⌊c2s⌋)c1s−⌊c2s⌋

≤ (c1s)
c1s

(c2s)
c2s

(c1s − c2s)
c1s−c2s

=

(
(c1s)

c1

(c2s)
c2 (c1s − c2s)

c1−c2

)s

=

(
cc1
1

cc2
2 (c1 − c2)

c1−c2

)s

≤
(

cc2
1 · cc1−c2

1

(c1 − c2)
c1−c2

)s

=

(
cc2
1 ·
(

c1

c1 − c2

)c1−c2
)s

=

(
cc2
1 ·
(

1 +
c2

c1 − c2

)c1−c2
)s

≤ (c1e)
c2s

.

Hence the number of subsets is at most c2s · (c1e)
c2s

.

If ⌊c2s⌋ ≥ c1s/2, the number of distinct subsets is at most 2c1s. If c1 ≥ 2,
then 2c1s ≤ 22c2s = 4c2s ≤ (c1e)

c2s
. If c1 = 1, then 2c1s ≤ (c1e)

c1s ≤ (c1e)
c2s

.
The lemma follows.

Lemma 6.3.3 Consider the slab decomposition induced by Lemma 6.3.1. The
maximum cardinality of any independent set of the disks in any c ≥ 1 consec-
utive slabs is at most 4(c + 1)k/π.

Proof: All disks in these c slabs are contained in an appropriately placed c+1
by k rectangle. A simple area bound gives the lemma.

Lemma 6.3.4 For any b ∈ Z, one can compute a maximum independent set
Ib of Db in O(k2dn (ed)12k/π) time.
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Proof: Consider the algorithm for computing a maximum independent set as
described in the proof of Lemma 5.3.1 in the case where we have a strong path
decomposition. For any i and any independent set Ai ⊆ Xi,

sizei(Ai) = max
Ai−1

{|Ai−1| + sizei−1(Ai−1)},

where the maximum is over all independent sets Ai−1 ⊆ Xi−1 − N(Ai). Fur-
thermore, X0 = ∅ and size0(∅) = 0.

Assume we are given a strong path decomposition induced by Lemma 6.3.1.
It suffices to enumerate those sets Ai and Ai−1 for which Ai ∪ Ai−1 is an in-
dependent set. Following Lemma 6.3.3, no independent set of two consecutive
slabs has cardinality more than 12k/π. By Lemma 6.3.1, |Xi| + |Xi−1| ≤
2(k − 1)d < 2kd. Then Lemma 6.3.2 gives that all of these independent sets
can be enumerated in O(k (ed)12k/π) time. The lemma follows.

Recall that a separation of a graph G is a pair {A, B} such that A∪B = V (G)
and there is no path in G from A − B to B − A.

Lemma 6.3.5
⋃

b∈Z
Ib is an independent set.

Proof: In general, it is easy to see that the following is true. If G is a graph
and {A, B} is any separation of G, then given independent sets IA ⊆ A − B
and IB ⊆ B − A, IA ∪ IB is an independent set of G. By observing that
{Db ∪Sb,D−Db} induces a separation for any b ∈ Z and recursively applying
the preceding observation, we prove the lemma.

Now apply the shifting technique. For each integer 0 ≤ a ≤ k − 1 (the shifting
parameter), we define a strip decomposition as follows. The b-th strip consists
of rows ri with bk + 1 + a ≤ i ≤ (b + 1)k − 1 + a, i.e. rows with i ≡ a (mod k)
are not in any strip. This induces a strip decomposition as before (note that
for a = 0, it actually is the same). Hence we can use Lemma 6.3.4 to compute
a maximum independent set of these strips.

For each integer 0 ≤ a ≤ k − 1 and b ∈ Z, let Db
a denote the set of disks

contained in the b-th strip induced by shifting parameter a and let Ib
a be the

independent set returned by the algorithm of Lemma 6.3.4 in this case. Let
Ia =

⋃
b∈Z

Ib
a and let Imax denote a largest such set.

Lemma 6.3.6 |Imax| ≥ (1−1/k) · |I|, where I is a maximum independent set
of G.

Proof: Because Ib
a is a maximum independent set of Db

a, |Ib
a| ≥ |I ∩ Db

a|. Let
Da =

⋃
b∈Z

Db
a. Then |Ia| ≥ |I ∩Da|. Observe that a disk is in Da for precisely

k − 1 values of a. Hence

k · |Imax| ≥
k−1∑

a=0

|Ia| ≥
k−1∑

a=0

|I ∩ Da| = (k − 1) · |I|,

and thus |Imax| ≥ (1 − 1/k) · |I|.
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Combining Lemma 6.3.4 and Lemma 6.3.6, we obtain the following.

Lemma 6.3.7 For any k ≥ 2, one can obtain a (1 − 1/k)-approximation
for Maximum Independent Set on n-vertex unit disk graphs G with a known
representation D of density d in O(k3n2d (2ed)12k/π) time.

Proof: There are at most n nonempty strips for each of the k values of a.
Hence one can compute Imax in O(k3n2d (ed)12k/π) time.

Since the notion of density is more general than the notion of λ-precision,
the scheme presented above is more general than the scheme given by Hunt et
al. [154] on unit disk graphs of constant precision. Moreover, the above scheme
has a better running time.

Theorem 6.3.8 There is an eptas for Maximum Independent Set on unit disk
graphs with n vertices and bounded density, i.e. density d = d(n) = O(no(1)).

Proof: Consider any ǫ > 0. Choose k as the largest integer such that (12k/π) ·
log(ed) ≤ log n. If k < 2, output any single vertex. Otherwise, apply the algo-
rithm of Lemma 6.3.7 and compute Imax in O(n4 log3 n) time. Furthermore, if
d = d(n) = O(no(1)), there is a cǫ such that k ≥ 1/ǫ and k ≥ 2 for all n ≥ cǫ.
Therefore, if n ≥ cǫ, it follows from Lemma 6.3.6 and the choice of k that Imax

is a (1 − ǫ)-approximation of the optimum. Hence there is a fiptasω for Maxi-
mum Independent Set on n-vertex unit disk graphs of bounded density, i.e. of
density d = d(n) = O(no(1)). The theorem follows from Theorem 2.2.4.

Observe that d is always bounded by n. Hence the worst-case running time of
the algorithm described in Lemma 6.3.7 is O(k3n3 (en)12k/π).

Theorem 6.3.9 There is a ptas for Maximum Independent Set on unit disk
graphs.

The ptas given here matches the nO(1/ǫ)-time ptas given by Hunt et al. [154].

6.3.2 Minimum Vertex Cover

There are (at least) two ways to give an approximation scheme for Minimum
Vertex Cover on unit disk graphs. We can a) transfer the ideas of the previous
paragraph to Minimum Vertex Cover or b) use the approximation scheme for
Maximum Independent Set as a black box. We present both approaches.

We first use the scheme for Maximum Independent Set as a black box.
Recall that an independent set is the complement of a vertex cover.

Lemma 6.3.10 For some m > 1, let G be a nonempty graph with no isolated
vertices and no K1,m induced subgraph. For any k ≥ 1, if C is a minimum
vertex cover of G, I is a maximum independent set of G, and I any independent

set of G for which |I| ≥
(
1 − 1

(2m−1)k

)
· |I|, then |V (G) − I| ≤ (1 + 1/k) · |C|.
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Proof: The proof is essentially due to Wiese and Kranakis [270]. We claim
that |V (G)| ≤ 2m|C|. Let M be a maximal matching of G and V (M) the set of
its endpoints. Consider V (G)−V (M). Since M is a maximal matching, no two
vertices in V (G)− V (M) are adjacent. Hence, as G is K1,m-free, no vertex in
V (M) is adjacent to more than m−1 vertices in V (G)−V (M). It follows that
|V (G)−V (M)| ≤ (m−1)|V (M)| and thus |V (G)| = |V (G)−V (M)|+|V (M)| ≤
m · |V (M)|. Now observe that any vertex cover of G must contain at least one
endpoint of each edge in M . Then |V (G)| ≤ m · |V (M)| ≤ 2m · |C|.

Using this claim,

|V (G) − I| ≤ |V (G)| −
(

1 − 1

(2m − 1)k

)
· |I|

= |V (G)| −
(

1 − 1

(2m − 1)k

)
· (|V (G)| − |C|)

= |C| + 1

(2m − 1)k
· (|V (G)| − |C|)

≤ |C| + 1

(2m − 1)k
· (2m · |C| − |C|)

= (1 + 1/k) · |C|

The lemma follows.

We know that unit disk graphs have no K1,6 induced subgraph. Combining
this observation with Lemma 6.3.7 and Lemma 6.3.10, we obtain the following.

Lemma 6.3.11 For any k ≥ 1, one can obtain a (1 + 1/k)-approximation for
Minimum Vertex Cover on n-vertex unit disk graphs with a known represen-
tation D of density d in O(k3n2d (ed)132k/π) time.

Even though this already leads to an approximation scheme, we can improve
on the running time of the scheme by transferring the ideas of the previous
paragraph to Minimum Vertex Cover.

Let k ≥ 2 be an integer. For each integer 0 ≤ a ≤ k − 1 and b ∈ Z, the
b-th strip consists of rows ri with bk + a ≤ i ≤ (b + 1)k + a, i.e. rows with
i ≡ a (mod k) are in two strips. Define Db

a to be the set of disks in the b-th
strip induced by shifting parameter a and Sb

a = (Db−1
a ∩Db

a) ∪ (Db
a ∩Db+1

a ) as
the set of disks in row rbk+a or r(b+1)k+a.

Following Lemma 6.3.4, one can compute a minimum vertex cover Cb
a of Db

a

in O(k2nd (ed)12(k+2)/π) time. Let Ca =
⋃

b∈Z
Cb

a and let Cmin be a smallest
such set.

Lemma 6.3.12 Any Ca is a vertex cover of G and |Cmin| ≤ (1 + 1/k) · |C|,
where C is a minimum vertex cover of G.

Proof: The following is true in general. If {A, B} is a separation of a graph G,
then given vertex covers CA ⊆ A and CB ⊆ B of A and B respectively, CA∪CB
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is a vertex cover of G. Observing that {Db
a,D − (Db

a − Sb
a)} is a separation of

G for any b ∈ Z and recursively applying the preceding observation, we prove
that Ca is a vertex cover of G for any value of a.

Because Cb
a is a minimum vertex cover of Db

a,

|Ca| ≤
∑

b∈Z

|Cb
a| ≤

∑

b∈Z

|Db
a ∩ C| = |C| + 1

2

∑

b∈Z

|Sb
a ∩ C|.

A vertex is in
⋃

b∈Z
Sb

a for precisely one value of a. For this value of a, it is in

Sb
a for precisely two values of b. Hence

k · |Cmin| ≤
k−1∑

a=0

|Ca| ≤ k|C| + 1
2

k−1∑

a=0

∑

b∈Z

|Sb
a ∩ C| = k|C| + |C|

and thus |Cmin| ≤ (1 + 1/k) · |C|.

We can now offer the following improvement on Lemma 6.3.11.

Lemma 6.3.13 For any k ≥ 2, one can obtain a (1 + 1/k)-approximation for
Minimum Vertex Cover on n-vertex unit disk graphs G with a known repre-
sentation D of density d in O(k3n2d (ed)12(k+2)/π) time.

As in Theorem 6.3.8 and Theorem 6.3.9, we can now prove the existence of
an eptas for Minimum Vertex Cover on unit disk graphs of bounded density
and a ptas on arbitrary unit disk graphs. The scheme on unit disk graphs
of bounded density generalizes the scheme by Hunt et al. [154] on unit disk
graphs of bounded precision. Moreover, we attain a better running time.

We can prove a better result however, owing to an idea by Marx [202].

Lemma 6.3.14 For any k ≥ 1, let Gk be the graph obtained from G by iter-
atively removing all cliques with at least k + 1 vertices. If C if a (1 + 1/k)-
approximation for Minimum Vertex Cover on Gk, then C ∪ (V (G) − V (Gk))
is a (1 + 1/k)-approximation on G.

Proof: Observe that for any clique K of G, any vertex cover of G must contain
either |V (K)| or |V (K) − 1| vertices of K. Hence if |V (K)| ≥ k + 1, then

|V (K)| ≤ (1 + 1/k) · (|V (K)| − 1) ≤ (1 + 1/k) · |C ∩ V (K)|

for a minimum vertex cover C of G. Let K = {K1, . . . ,Kp} be any sequence of
cliques with at least k + 1 vertices whose sequential removal results in Gk. As

|C| ≤ (1 + 1/k) · |C(Gk)| ≤ (1 + 1/k) · |C ∩ Gk|,

it follows that

|C ∪ (V (G) − V (Gk))|
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= |C| +
∑

K∈K
|V (K)|

≤ (1 + 1/k) · |C ∩ Gk| +
∑

K∈K

(
(1 + 1/k) · |C ∩ V (K)|

)

= (1 + 1/k) · |C|.

Note that V (Gk), V (K1), . . . , V (Kp) are pairwise disjoint sets. Moreover, for
any clique K of G, C is a vertex cover of G − K if and only if C ∪ V (K) is a
vertex cover of G. The lemma follows.

Clark, Colbourn, and Johnson [67] showed that Maximum Clique can be solved
in O(n9/2) time on unit disk graphs. Hence we can reduce a unit disk graph
G to a graph Gk (for any k ≥ 1) in O(n11/2/k) time.

Theorem 6.3.15 There is an eptas for Minimum Vertex Cover on unit disk
graphs.

Proof: For any ǫ > 0, let k = ⌈1/ǫ⌉. Let G be a unit disk graph and reduce it
to Gk. Following Lemma 6.3.13, one can obtain a (1+1/k)-approximation for
Minimum Vertex Cover on Gk in O(k3n2d (ed)12(k+2)/π) time. As Gk contains
only cliques of size k or less, the density is at most 4k. Applying Lemma 6.3.14,
one can obtain a (1 + 1/k)-approximation for Minimum Vertex Cover on G in
O(k4n2 (4ek)12(k+2)/π + n11/2/k) time.

The above 2O(ǫ−1 log ǫ−1)-time scheme improves on the earlier 2O(ǫ−2)-time
scheme by Marx [202].

6.3.3 Minimum Dominating Set

The analysis for the scheme for Minimum Dominating Set is slightly more
involved. Let k ≥ 3 be an integer. For each integer 0 ≤ a ≤ k − 1 and
b ∈ Z, the b-th strip consists of rows ri with bk + a ≤ i ≤ (b + 1)k + a + 1,
i.e. rows with i ≡ a (mod k) and i ≡ a + 1 (mod k) are in two strips. Define
Db

a to be the set of disks in the b-th strip induced by shifting parameter a,
Sb

a = (Db−1
a ∩ Db

a) ∪ (Db
a ∩ Db+1

a ), and N b
a as the set of disks in rbk+a or

r(b+1)k+a+1.

Lemma 6.3.16 For any 0 ≤ a ≤ k − 1 and any b ∈ Z, one can compute a
minimum set Cb

a ⊆ Db
a dominating Db

a − N b
a in O(k2nd (ed)24(k+3)/π) time.

Proof: We use the algorithm described in Theorem 5.3.6. Observe that it
suffices to enumerate for three consecutive slabs all possible sets of disks that
can be in a minimum dominating set. Disks in these slabs dominate vertices
in five consecutive slabs, adding the slab to the left and the one to the right
of the original three slabs. As any maximal independent set is a dominating
set, a set of disks in the three slabs in a minimum dominating set should not
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have cardinality more than 24(k + 3)/π, according to Lemma 6.3.3. As three
consecutive slabs contain at most 3(k+2)d vertices, it follows from Lemma 6.3.2
and Theorem 5.3.6 that the algorithm takes O(k2nd (ed)24(k+3)/π) time.

Let Ca =
⋃

b∈Z
Cb

a for any value of a and Cmin a smallest such set. We have
to show that Cmin is a dominating set that approximates the optimum well.

Definition 6.3.17 The pair {A, B} is a double separation of a graph G if
A ∪ B = V (G) and there is no 1- or 2-edge path in G from A − B to B − A.

Lemma 6.3.18 Any Ca is a dominating set and |Cmin| ≤ (1+2/k) · |C|, where
C is a minimum dominating set of G.

Proof: The following is true in general. If {A, B} is a double separation
of G, then given sets CA ⊆ A and CB ⊆ B dominating (A − B) ∪ M and
(B−A)∪((A∩B)−M) respectively for some subset M ⊆ A∩B, CA∪CB is a
dominating set of G. Observing that {Db

a,D−(Db
a−Sb

a)} is a double separation
of G for any b ∈ Z and recursively applying the preceding observation, we prove
that Ca is a dominating set of G for any value of a.

Because Cb
a ⊆ Db

a is a smallest set dominating Db
a − N b

a,

|Ca| ≤
∑

b∈Z

|Cb
a| ≤

∑

b∈Z

|C ∩ Db
a| = |C| + 1

2

∑

b∈Z

|C ∩ Sb
a|.

A vertex is in
⋃

b∈Z
Sb

a for precisely two values of a. For these values of a, it is

in Sb
a for precisely two values of b. Hence

k · |Cmin| ≤
k−1∑

a=0

|Ca| ≤ k|C| + 1
2

k−1∑

a=0

∑

b∈Z

|C ∩ Sb
a| = k|C| + 2|C|

and thus |Cmin| ≤ (1 + 2/k) · |C|.

We can conclude the following.

Lemma 6.3.19 For any k ≥ 3, one can obtain a (1 + 2/k)-approximation
for Minimum Dominating Set on n-vertex unit disk graphs G with a known
representation D of density d in O(k3n2d (ed)24(k+3)/π) time.

This scheme generalizes the scheme by Hunt et al. [154] on unit disk graphs of
bounded precision. Moreover, we attain a better running time.

Theorem 6.3.20 There is an eptas for Minimum Dominating Set on unit disk
graphs with n vertices and bounded density, i.e. density d = d(n) = O(no(1)).

Proof: Consider any number ǫ > 0. Choose k as the largest integer such
that (24(k + 3)/π) · log(ed) ≤ log n. If k < 3, output V (G). Otherwise,
apply the algorithm of Lemma 6.3.19 and compute Cmin in O(n4 log3 n) time.
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Furthermore, if d = d(n) = O(no(1)), there is a cǫ such that k ≥ 2/ǫ and
k ≥ 3 for all n ≥ cǫ. Therefore, if n ≥ cǫ, it follows from Lemma 6.3.18 and
the choice of k that Cmin is a (1 + ǫ)-approximation of the optimum. Hence
there is a fiptasω for Minimum Dominating Set on n-vertex unit disk graphs of
bounded density, i.e. of density d = d(n) = O(no(1)). The theorem now follows
from Theorem 2.2.4.

Observe that d is always bounded by n. Hence the worst-case running time of
the algorithm described in Lemma 6.3.19 is O(k3n3 (en)24(k+3)/π).

Theorem 6.3.21 There is a ptas for Minimum Dominating Set on unit disk
graphs.

The ptas given here improves on the nO(ǫ−2)-time ptas given by Hunt et
al. [154].

6.3.4 Minimum Connected Dominating Set

The problems treated thus far are very much local problems, where a solution
can be verified by just considering the neighborhood of each vertex. Connec-
tivity is a global constraint on the solution and hence tougher to satisfy. We
show however that in the case of Minimum Connected Dominating Set, this
global property can be dealt with efficiently.

We start by proving some auxiliary results, which hold not only on unit
disk graphs, but on arbitrary graphs as well. Throughout this entire section,
we assume graphs to be connected.

Definition 6.3.22 The pair {A, B} is a quadruple separation of a graph G
if A ∪ B = V (G), and there is no 1-, 2-, 3-, or 4-edge path in G from A − B
to B − A.

Lemma 6.3.23 Let {A, B} be a quadruple separation of some graph G. Let
CA ⊆ A and CB ⊆ B form a set dominating A−N(B−A) and B−N(A−B)
respectively such that W ∩ CA and X ∩ CB are connected for each connected
component W and X of respectively A and B. Then CA ∪ CB is a connected
dominating set of G.

Proof: As {A, B} is a quadruple separation, (A−N(B−A))∪(B−N(A−B)) =
V (G) and thus CA ∪ CB is a dominating set of G. Suppose that CA ∪ CB

is not connected and let Y and Z be two distinct connected components of
CA ∪ CB . Consider a shortest Y –Z path P = p1 . . . pm such that p1 ∈ Y . By
assumption m ≥ 3. Since {A, B} is a quadruple separation, either p1, p2, p3 ∈
A−N(B−A) or p1, p2, p3 ∈ B−N(A−B). Without loss of generality, assume
that p1, p2, p3 ∈ A−N(B −A). Then there is a vertex v ∈ CA dominating p3.
Moreover v ∈ Y , as p1 and v belong to the same connected component of A.
Therefore vp3 . . . pm is a shorter Y –Z path than P , a contradiction. Hence
CA ∪ CB is connected.
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Suppose that CA has minimum cardinality under the above constraints. We
show that there is an upper bound to the cardinality of CA in terms of the
cardinality of a minimum connected dominating set.

Proposition 6.3.24 If G is a connected graph and S an arbitrary dominating
set of G such that S has c connected components, then G has a connected
dominating set of cardinality at most |S| + 2(c − 1).

Proof: The case c = 1 is trivial. If c > 1, then since S is a dominating set,
there exist two connected components of S that can be connected by adding
at most two vertices to the set. Now apply induction.

Lemma 6.3.25 Let {A, B} be a quadruple separation of a graph G and let
CA ⊆ A be a smallest set dominating A−N(B −A) such that CA ∩Z is con-
nected for each connected component Z of A. If C is any connected dominating
set of G, then |CA| ≤ |C ∩ A| + 2 · |N(B − A) ∩ C|.

Proof: Clearly, C ∩A is a dominating set of A−N(B−A). However, for each
connected component Z of A, C∩Z might consists of several connected compo-
nents. Observe that each such connected component must intersect N(B−A),
as {N(B − A), V (G)} is a separation of G. Hence the number of connected
components of C ∩ Z is at most |N(B − A) ∩ C ∩ Z|. By Proposition 6.3.24,
we can augment C ∩A to C ′ such that C ′ ∩Z is connected by adding at most
2|N(B − A) ∩ C ∩ Z| vertices. Applying this to each connected component
of A, we obtain a set C ′ ⊆ A dominating A − N(B − A) such that C ′ ∩ Z is
connected for each connected component Z of A and

|C ′| ≤ |C ∩ A| + 2 ·∑Z |N(B − A) ∩ C ∩ Z|
≤ |C ∩ A| + 2 · |N(B − A) ∩ C|.

But then

|CA| ≤ |C ′| ≤ |C ∩ A| + 2 · |N(B − A) ∩ C|

and the lemma follows.

Lemma 6.3.26 Let U ⊆ V (G) for some graph G. If C is a connected dom-
inating set of G and CU ⊆ N [U ] a set dominating N [U ] such that CU ∩ Z is
connected for each connected component Z of N [U ], then C ′ = (C − U) ∪ CU

is a connected dominating set.

Proof: Observe that C − U is a dominating set of V (G) − N [U ]. As CU

dominates N [U ], C ′ is a dominating set. It remains to prove that C ′ is con-
nected. To this end, we prove the following claim: If s, t ∈ C, then for any
s′ ∈ N [s] ∩ C ′ and t′ ∈ N [t] ∩ C ′, there is an s′–t′ path in C ′.

Note that C contains an s–t path Q. Consider Q∩N [U ]. If this is nonempty,
it consists of one or more subpaths Q1, . . . , Qm. For each such path Qi, con-
sider its start and end vertices si, ti. Because CU dominates N [U ], there exist
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vertices s′i ∈ N [si]∩CU and t′i ∈ N [ti]∩CU (if possible, let s′i = s′ and t′i = t′).
As Qi ⊆ N [U ], s′i and t′i are in the same connected component of CU . Hence
there is an s′i–t′i path Q′

i in CU . Let Q′′
i be the path induced by si (if si 6∈ U),

Q′
i, and ti (if ti 6∈ U). Replace Qi by Q′′

i . This gives an s′–t′ path in C ′.
Suppose that C ′ is not connected. Consider two distinct connected com-

ponents Y and Z of C ′ and let s′ ∈ Y and t′ ∈ Z. Because C is a dominating
set, there exist vertices s ∈ N [s′] ∩ C and t ∈ N [t′] ∩ C. But then it follows
from the above claim that C ′ has an s′–t′ path, contradicting that Y and Z
are distinct connected components of C ′. The lemma follows.

Now we apply these ideas to unit disk graphs, together with the shifting
technique. Let k ≥ 5 be an integer. For each integer 0 ≤ a ≤ k − 1 and
b ∈ Z, the b-th strip consists of rows ri with bk + a ≤ i ≤ (b + 1)k + a + 3,
i.e. rows with i ≡ a (mod k), i ≡ (a + 1) (mod k), i ≡ (a + 2) (mod k), and
i ≡ (a + 3) (mod k) are in two strips. Define Db

a to be the set of disks in the
b-th strip induced by shifting parameter a. Let Sb

a = (Db−1
a ∩Db

a)∪(Db
a∩Db+1

a )
and let N b

a be the set of disks in rbk+a or r(b+1)k+a+3.

Lemma 6.3.27 For any 0 ≤ a ≤ k − 1 and any b ∈ Z, one can compute a
minimum set Cb

a dominating Db
a − N b

a such that Cb
a ∩ Z is connected for each

connected component Z of Db
a in O(k3n (ed)72(k+5)/π224(k+5)/π) time.

Proof: We will apply the algorithm described in Theorem 5.4.9. Similar to
Lemma 6.3.16, one needs to bound the maximum number of disks of a mini-
mum connected dominating set appearing in three consecutive slabs, by con-
sidering the slabs to the left and to the right of these three slabs. Following
Lemma 6.3.3, Lemma 6.3.16, and Proposition 6.3.24, a dominating set C of
cardinality 3 · 24(k + 5)/π exists for these five slabs such that C ∩ Z is con-
nected for each connected component Z of these slabs. As three consecutive
slabs contain at most 3(k + 4)d disks, Lemma 6.3.26 and Lemma 6.3.2 show
that one needs to consider at most O(k (ed)72(k+5)/π) different subsets.

Observe furthermore that the number of connected components of a subset
of the disks in a single slab is bounded by the maximum cardinality of an
independent set. Using Lemma 6.3.3, this number is at most 8(k + 5)/π. The
lemma now follows from Theorem 5.4.9.

Applying Lemma 6.3.23, we can show that for any 0 ≤ a ≤ k − 1, Ca =⋃
b∈Z

Cb
a is a connected dominating set, since {Db

a,D−(Db
a−Sb

a)} is a quadruple
separation. Let Cmin be a smallest such set.

Lemma 6.3.28 |Cmin| ≤ (1 + 8/k) · |C|, where C is a minimum connected
dominating set of G.

Proof: It follows from Lemma 6.3.25 that for any 0 ≤ a ≤ k−1 and any b ∈ Z,
|Cb

a| ≤ |C ∩ Db
a| + 2|C ∩ N b

a|. As Ca =
⋃

b∈Z
Cb

a,

|Ca| ≤
∑

b∈Z

(
|C ∩ Db

a| + 2|C ∩ N b
a|
)

≤ |C| + 1
2

∑

b∈Z

(
|C ∩ Sb

a| + 4|C ∩ N b
a|
)
.
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A disk is in
⋃

b∈Z
Sb

a for four values of a (and then for two values of b) and in⋃
b∈Z

N b
a for two values of a. Then

k · |Cmin| ≤
k−1∑

a=0

|Ca| ≤ k|C| + 1
2

k−1∑

a=0

∑

b∈Z

(
|C ∩ Sb

a| + 4|C ∩ N b
a|
)

≤ k|C| + 4|C| + 4|C|

and thus |Cmin| ≤ (1 + 8/k) · |C|.

Lemma 6.3.29 For any k ≥ 5, one can obtain a (1 + 8/k)-approximation for
Minimum Connected Dominating Set on n-vertex unit disk graphs G with a
known representation D of density d in O(k4n2 (ed)72(k+5)/π224(k+5)/π) time.

We can now give an eptas in a manner similar as we did for the other problems
in this chapter.

Theorem 6.3.30 There is an eptas for Minimum Connected Dominating Set
on unit disk graphs with n vertices and bounded density, i.e. density d = d(n) =
O(no(1)).

Proof: Consider any number ǫ > 0. Choose k as the largest integer such
that (72(k + 5)/π) · log(ed) ≤ log n. If k < 5, output V (G). Otherwise,
apply the algorithm of Lemma 6.3.29 and compute Cmin in O(n4 log4 n) time.
Furthermore, if d = d(n) = O(no(1)), there is a cǫ such that k ≥ 8/ǫ and k ≥ 5
for all n ≥ cǫ. Therefore, if n ≥ cǫ, it follows from Lemma 6.3.28 and the
choice of k that Cmin is a (1 + ǫ)-approximation of the optimum. Hence there
is a fiptasω for Minimum Connected Dominating Set on n-vertex unit disk
graphs of bounded density, i.e. of density d = d(n) = O(no(1)). The theorem
now follows from Theorem 2.2.4.

Recall that d is always bounded by n. Hence the worst-case running time of
the algorithm described in Lemma 6.3.29 is O(k4n2 (en)72(k+5)/π224(k+5)/π).

Theorem 6.3.31 There is a ptas for Minimum Connected Dominating Set
on unit disk graphs.

The ptas given here improves on the nO(ǫ−2 log2 ǫ−1)-time ptas given by Cheng et
al. [64] and the nO(ǫ−2)-time ptas by Zhang et al. [278].

6.3.5 Generalizations

We considered Maximum Independent Set, Minimum Vertex Cover, and Min-
imum (Connected) Dominating Set on unit disk graphs. For all of these prob-
lems, we obtained a ptas in general and an eptas if the density of the given
representation is O(no(1)). For Minimum Vertex Cover, we even have an eptas
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on arbitrary unit disk graphs. These schemes extend to any constant dimen-
sion. It is easy to extend the notion of density to any finite dimension. Then
consider boxes of infinite width and all other sides of length ≈ k, a natu-
ral extension of strips. This yields approximation schemes with running time

O(poly(n, 1/ǫ) dO(ǫ−l−1)) on unit ball graphs in Rl with density d.

Observe that extension to unit ball graphs in any dimension is not possible.
Any n-vertex graph can be embedded as a constant-density unit ball graph
in (n − 1)-dimensional space [198, 147]. Hence Maximum Independent Set,
Minimum Vertex Cover, and Minimum (Connected) Dominating Set in (n−1)-
dimensional space are as hard as in general.

Furthermore, we can extend the schemes to intersection graphs of other
geometric objects than unit disks, for instance unit squares, unit triangles,
etc., as long as the unit object is sufficiently ‘disk-like’. In other words, the
object should be fat. Many formal definitions of ‘fat’ exist, but as an example,
it is easy to see that the algorithms extend to translated copies of any α-fat
object. A convex subset s of Rl is α-fat for some α ≥ 1 if the ratio between
the radii of the smallest sphere enclosing s and the largest sphere inscribed in
s is at most α [97].

If we generalize these problems further, for instance when considering their
weighted case, the worst-case analysis worsens. In the presence of (arbitrary)
weights on the vertices of the graph, the presented schemes are extendable to
an eptas for Minimum-Weight Vertex Cover and Maximum-Weight Indepen-
dent Set if the density is bounded by O(no(1)). They are a ptas on general
unit disk graphs and extend to fat objects and to any constant dimension.
Unfortunately, the idea behind Lemma 6.3.14 that reduces the density of the
unit disk graph for the minimum vertex cover problem does not seem to carry
over to the weighted case, so the existence of an eptas in this case is open.

For Minimum Dominating Set on unit disk graphs, we used in the analysis
that the cardinality of a maximum independent set yields a linear upper bound
to the cardinality of a dominating set. This property is not transferable to the
weighted case and hence we lose the upper bound implied by Lemma 6.3.2.
Hence the scheme of Lemma 6.3.19 now has a worst-case running time of
O(poly(n, 1/ǫ) 2O(d/ǫ)) on unit disk graphs of density d. Therefore we have
(analogously to Theorem 6.3.20) an eptas for Minimum-Weight Dominating
Set, but only if the density is o(log n). Moreover, the scheme does not extend to
a ptas on general unit disk graphs. Although a constant-factor approximation
algorithm exists in this case [13, 153, 74], the existence of a ptas is open.

The connected dominating set problem on weighted unit disk graphs is
even harder. We inherit the difficulties described above for Minimum-Weight
Dominating Set, but now Lemma 6.3.25 also fails. At the moment, it is un-
clear whether a result similar to Lemma 6.3.25 applies to Minimum-Weight
Connected Dominating Set. This would immediately yield an eptas for this
problem on unit disk graphs of density d = d(n) = o(log n).

Instead of considering unit objects, one can also extend the schemes to
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intersection graphs of objects of bounded size, e.g. unit disks of bounded radius.
If the ratio between the smallest and the largest object is constant, the usual
analysis holds and we obtain O(poly(n, 1/ǫ) dO(1/ǫ))-time schemes, where the
hidden constants depend on the radius ratio. This yields an eptas if the density
is bounded by O(no(1)), and a ptas in the general case.

If only an upper bound to the size is known, one can no longer bound the
size of a maximum independent set in a slab by a number independent of d as
in Lemma 6.3.3. Hence we obtain O(poly(n, 1/ǫ) 2O(d/ǫ))-time schemes, where
the hidden constants depend on the maximum object size. This gives an eptas
on intersection graphs of fat objects if the density is o(log n). These schemes
extend to the weighted case, except for Minimum Connected Dominating Set.

Finally, we consider subgraphs of disk graphs of bounded radius. In other
words, we consider geometric graphs of bounded edge length. If the subgraph
actually is a ρ-quasi unit disk graph for some constant ρ, we again obtain
O(poly(n, 1/ǫ) dO(1/ǫ))-time approximation schemes, improving on the schemes
implied by Nieberg, Hurink, and Kern [219]. If ρ cannot be bounded by a con-
stant, then we obtain O(poly(n, 1/ǫ) 2O(d/ǫ))-time schemes, where the hidden
constants depend on the maximum edge length. Moreover, these schemes also
apply to the weighted case (except for Minimum-Weight Connected Dominat-
ing Set). This gives an eptas on geometric graphs if the density is o(log n).
This generalizes results of Hunt et al. [154], who showed that such schemes ex-
ist on civilized graphs, which are geometric graphs of bounded edge length and
bounded precision (recall that density is a more general notion than precision).

The extension to disk graphs with disks of arbitrary ratio requires new
techniques and is considered in Chapter 7 and 8.

6.4 Optimality

Beyond these generalizations, an important question is whether one can im-
prove on the algorithms given in this chapter. We show that the schemes given
here are optimal, up to constants. This result follows essentially from close
inspection of work by Marx [204].

The optimality results given here are under the condition of the exponen-
tial time hypothesis, which states that n-variable 3SAT cannot be decided in
2o(n) time. Using probabilistically checkable proof systems, one can show the
following. An m-clause SAT formula is called α-satisfiable for some 0 ≤ α ≤ 1
if there is a truth setting such that at least αm clauses are satisfied.

Lemma 6.4.1 (Marx [204]) There is a constant 0 < α < 1 such that if

there is an algorithm that can distinguish in 2O(m)1−β

time for some β > 0
whether an m-clause 3SAT formula is satisfiable or not α-satisfiable, then the
exponential time hypothesis is false.

One can show that 3SAT formulas are reducible to instances of Maximum
Independent Set and Minimum Dominating Set on unit disk graphs.
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Lemma 6.4.2 (Marx [204]) Given an m-clause 3SAT formula ϕ and an in-
teger k, there is an instance x of Maximum Independent Set on unit disk graphs
of density d = O(3m/k) such that for every 0 < α < 1:

• if ϕ is satisfiable, then m∗(x) = f(k)

• if ϕ is not α-satisfiable, then m∗(x) < f(k) − k(1 − α)/2 + 1,

where f(k) = Θ(k2) is a polynomial. Moreover, this instance x can be computed
in time polynomial in m, d, and k.

These two lemmas can be used to prove the following theorem.

Theorem 6.4.3 If there exist constants δ ≥ 1, 0 < β < 1 such that Maximum
Independent Set on unit disk graphs of density d has a ptas with running time

2O(1/ǫ)δ

dO(1/ǫ)1−β

nO(1), then the exponential time hypothesis is false.

Proof: We show that if a ptas as in the theorem statement exists, then an
algorithm as in the statement of Lemma 6.4.1 exists. Let ϕ be an m-clause
3SAT formula. Set k = ⌈m1/(2δ+1)⌉ and apply Lemma 6.4.2 to obtain an
instance x of Maximum Independent Set on unit disk graphs with density

O(3m/k) = O(3m1−1/(2δ+1)

). This takes 2O(m)1−1/(2δ+1)

time.

Now let α be as in Lemma 6.4.1 and choose ǫ = k(1−α)/2−1
f(k) , with f as in

Lemma 6.4.2. If ϕ is satisfiable, then m∗(x) = f(k). If ϕ is not α-satisfiable,
then m∗(x) < f(k)−k(1−α)/2+1 = (1−ǫ) ·f(k). As the ptas gives a solution
y for which m(x, y) ≥ (1− ǫ) ·m∗(x), the choice of ǫ is sufficient to distinguish
whether ϕ is satisfiable or not α-satisfiable. For this choice of ǫ, the ptas runs
in time

2O(1/ǫ)δ

dO(1/ǫ)1−β

nO(1) = 2O(1/ǫ)δ+O(1/ǫ)1−β log d+O(log mdk).

Since

O(1/ǫ)δ + O(1/ǫ)1−β log d + O(log d) + O(log mk)

= O(f(k)/k)δ + O(f(k)/k)1−β · O(m/k) + O(m/k) + O(log m)

= O(k)δ + O(k)1−β · O(m)1−1/(2δ+1)

= O(m)δ/(2δ+1) + O(m)(1−β)/(2δ+1) · O(m)2δ/(2δ+1)

= O(m)1−(δ+1)/(2δ+1) + O(m)((1−β)+2δ)/(2δ+1)

= O(m)1−(δ+1)/(2δ+1) + O(m)1−β/(2δ+1)

= O(m)1−β/(2δ+1)

But then one can distinguish whether ϕ is satisfiable or not α-satisfiable in

2O(m)1−β/(2δ+1)

time. As 0 < β/(2δ + 1) < 1, according to Lemma 6.4.1, this
implies that the exponential time hypothesis is false.

Marx [204] gives a reduction similar to Lemma 6.4.2 for Minimum Dominating
Set. This implies the following result.
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Theorem 6.4.4 If there exist constants δ ≥ 1, 0 < β < 1 such that Minimum
Dominating Set on unit disk graphs of density d has a ptas with running time

2O(1/ǫ)δ

dO(1/ǫ)1−β

nO(1), then the exponential time hypothesis is false.

Therefore the approximation schemes for Maximum Independent Set and Min-
imum Dominating Set given in Lemma 6.3.7 and Lemma 6.3.19 are optimal,
up to constants, unless the exponential time hypothesis is false.

The scheme we presented for Minimum Vertex Cover is also optimal, but
a slightly different idea is needed to prove it. In this case, we start out from
2SAT formulas.

Lemma 6.4.5 (Marx [204]) There are constants 0 < α2 < α1 < 1 such

that if there is an algorithm that can distinguish in 2O(m)1−β

time for some
constant β > 0 whether an m-clause 2SAT formula is α1-satisfiable or not
α2-satisfiable, then the exponential time hypothesis is false.

Actually, one may assume that the 2SAT formula is simple (meaning that
it contains no duplicate clauses and each clause is satisfiable) and a variable
appears in a constant number of clauses. We call this a basic 2SAT formula.

We now reduce from 2SAT formulas to instances of Minimum Vertex Cover
on unit disk graphs.

Lemma 6.4.6 (Marx [204]) There is a constant d0 such that given an m-
clause basic 2SAT formula ϕ there is an instance x of Minimum Vertex Cover
on unit disk graphs of density at most d0, such that for every 0 < α2 < α1 < 1:

• if ϕ is α1-satisfiable, then m∗(x) ≥ f(k) + (1 − α1)m,

• if ϕ is not α2-satisfiable, then m∗(x) < f(k) + (1 − α2)m,

where k = Θ(m) and f(k) = Θ(k2). Moreover, this instance x can be computed
in time polynomial in m.

Theorem 6.4.7 If there is a constant 0 < β < 1 such that Minimum Vertex
Cover on unit disk graphs of density at most d0 has an eptas with running time

2O(1/ǫ)1−β

nO(1), then the exponential time hypothesis is false.

Proof: Suppose that an eptas as in the theorem statement does exist. Let
ϕ be a basic m-clause 2SAT formula and use Lemma 6.4.6 to construct an
instance x of Minimum Vertex Cover on unit disk graphs of density at most
d0. If we set ǫ = (α1 − α2)m/f(k) with k and f as in Lemma 6.4.6, then

(1 + ǫ) · (f(k) − (1 − α2)m)

≤
(
f(k) − (1 − α2)m

)
+
(
f(k) − (1 − α2)m

)
· (α1 − α2)m

f(k) − (1 − α2)m

= f(k) − (1 − α1)m
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and thus the eptas applied to x and ǫ can distinguish whether ϕ is α1-satisfiable
or not α2-satisfiable. The running time is

2O(1/ǫ)1−β

nO(1) = 2O(k)1−β

kO(1) = 2O(m)1−β

.

Following Lemma 6.4.5, the exponential time hypothesis is false.

Observe that Lemma 6.3.13 yields an 2O(1/ǫ)nO(1)-time eptas for Minimum
Vertex Cover on unit disk graphs of any constant density. But then the algo-
rithm given in Lemma 6.3.13 is optimal, up to constants, unless the exponential
time hypothesis is false.

The exponential time hypothesis is not very frequently used in proving
hardness of approximation results. If we settle for slightly worse results, we
can use more familiar complexity conditions. Marx [202, 203] showed that
Maximum Independent Set and Minimum Dominating Set are W[1]-hard on
unit disk graphs. As the standard parameterization of any problem permitting
an eptas must be in FPT [26, 53], one has the following result.

Theorem 6.4.8 (Marx [202, 203]) Maximum Independent Set and Mini-
mum Dominating Set on unit disk graphs have no eptas, unless FPT=W[1].

The constructions used in the W[1]-hardness proofs have high density. Using
a small trick, we can obtain the following strengthening of Theorem 6.4.8.

Theorem 6.4.9 Maximum Independent Set and Minimum Dominating Set
on n-vertex unit disk graphs of density d = d(n) = Ω(nα) for some constant
0 < α ≤ 1 cannot have an eptas, unless FPT=W[1].

Proof: Suppose that such an eptas does exist. Then consider any set D of unit
disks, which clearly has density at most n. Take ⌈n(1−α)/α⌉ disjoint copies of
D and let D′ denote the resulting set of disks. The density of D′ is at most
n = (n · n(1−α)/α)α ≤ |D′|α. Now run the eptas on D′ and return the best
solution over all copies of D. This construction gives an eptas on arbitrary
unit disk graphs, which is impossible by Theorem 6.4.8.

The bound of Theorem 6.4.9 is a precise match with Theorem 6.3.8 and The-
orem 6.3.20, where we showed that Maximum Independent Set and Mini-
mum Dominating Set have an eptas on n-vertex unit disk graphs of density
d = d(n) = O(no(1)). Hence no better approximation scheme is possible then
given in these theorems, unless FPT=W[1].

Note that this last result does not imply anything about the actual running
time of the schemes, and hence it is slightly weaker than Theorem 6.4.3 and
Theorem 6.4.4. Also, we know that Minimum Vertex Cover does have an eptas
and hence we cannot say much about it using FPT versus W[1]. In fact, using
classic complexity theory, we can (at the moment) only say that Minimum
Vertex Cover does not have an fptas on unit disk graphs, unless P=NP.
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Similarly, it is hard to give an optimality result for Minimum Connected
Dominating Set. We conjecture that Lemma 6.3.29 is optimal and that Min-
imum Connected Dominating Set on unit disk graphs has no eptas. To prove
this, one could give an L-reduction from Maximum Independent Set or Min-
imum Dominating Set to Minimum Connected Dominating Set on unit disk
graphs to apply Lemma 6.4.1 in the manner of Theorem 6.4.3 and Theo-
rem 6.4.4, or extend the reduction of Theorem 6.4.8.

Finally, we note that since the required auxiliary results of Marx carry over
to unit square graphs [202, 203, 204], all results of this section also apply.

6.5 Connected Dominating Set on Graphs Excluding a

Minor

Although this chapter has solely focused on unit disk graphs, we end the
chapter with a small aside on minor-closed classes of graphs excluding a fixed
minor. Note that such graphs are not a generalization of unit disk graphs, as
unit disk graphs are not minor closed (see Section 3.2).

To be precise, we will study minor-closed classes of graphs excluding an
apex graph as a minor, in short, apex-minor-free graph classes. An apex graph
is a graph H that possesses a vertex v (the apex ) such that H−v is planar. Ex-
amples of apex-minor-free graph classes are planar graphs, graphs of bounded
genus, and single-crossing-minor-free graphs [99, 85].

We direct the attention to Minimum Connected Dominating Set on apex-
minor-free graph classes. Demaine and Hajiaghayi [84] proved that Minimum
Connected Dominating Set has an nO((1/ǫ) log(1/ǫ) log log n)-time approximation
scheme (an almost-ptas) on apex-minor-free graphs, a ptas on single-crossing-
minor-free graphs, and an eptas on planar graphs. The last two schemes follow
from a generic approach to approximating so-called bidimensional problems.
The first scheme is based on a generalization of Baker’s shifting technique [22]
in the way proposed by Eppstein [99] and Grohe [131]. We show that this
generalization can actually be used in a way that improves on all these schemes.

The goal of this section is to prove the following theorem.

Theorem 6.5.1 There is a 2OH(1/ǫ) nO(1)-time eptas for Minimum Connected
Dominating Set on the minor-closed class of graphs excluding some fixed apex
graph H as a minor.

Here OH(1/ǫ) means that the hidden constant depends on (the number of
vertices of) the excluded graph H.

The scheme employs the shifting technique as proposed by Eppstein [99]
and Grohe [131] and relies heavily on the ideas developed in Section 6.3.4.

The basic idea is the following. Let G be a connected graph from a minor-
closed class of graphs that excludes some fixed apex graph H. Fix a vertex
v0 ∈ V (G) and consider the layers of G with respect to v0. We say that u ∈ Li

(i.e. u is in layer i) if the shortest v0–u path has length i. Clearly, every vertex
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of G is in some layer and there are at most n = |V (G)| layers. One may group

layers together, such that Li,j =
⋃j

h=i Lh. For simplicity, we assume that
Li = ∅ for all i < 0.

We first show how the shifting technique can be applied to obtain a (1+ǫ)-
approximation. Let k ≥ 5 be an integer. For each integer 0 ≤ a ≤ k − 1
and b ∈ Z, let Lb

a = Lbk+a,(b+1)k+a+3. Let Sb
a = (Lb−1

a ∩ Lb
a) ∪ (Lb

a ∩ Lb+1
a )

and N b
a = Lbk+a ∪ L(b+1)k+a+3. Suppose that we can compute for each 0 ≤

a ≤ k − 1 and b ∈ Z a minimum set Cb
a ⊆ Lb

a dominating Lb
a − N b

a such
that Cb

a ∩ Z is connected for each connected component Z of Lb
a. Observe

that {Lb
a, V (G)− (Lb

a −Sb
a)} is a quadruple separation of G. Hence, according

to Lemma 6.3.23, Ca =
⋃

b∈Z
Cb

a is a connected dominating set of G. Let
Cmin be a set Ca of minimum cardinality. Then Lemma 6.3.28 proves that
|Cmin| ≤ (1 + 8/k) · |C|, where C is a minimum connected dominating set.

It now remains to show that the sets Cb
a can be computed in 2OH(k) nO(1)

time. We prove this in two steps. Step one is to bound the treewidth of Lb
a.

Lemma 6.5.2 tw(Lb
a) = OH(k) for any 0 ≤ a ≤ k − 1 and any b ∈ Z.

Proof: We may assume that Lb
a 6= ∅. Eppstein [99] showed that a minor-closed

class of graphs does not contain all apex graphs if and only if every graph in this
class that has diameter D has treewidth at most f(D) for some function f . In
fact, Demaine and Hajiaghayi [85] strengthened Eppstein’s result and proved
that this function f is always linear in D. As G is from a minor-closed class
of graphs excluding the apex graph H as a minor, it follows that any minor of
G of diameter D has treewidth OH(D).

Now consider Lb
a = Lbk+a,(b+1)k+a+3. Let L̂b

a be the minor of G obtained
by contracting layers L0, . . . , Lbk+a−1 into v0 and removing layers Li for all
i > (b + 1)k + a + 3. By the construction of the layers, L̂b

a has diameter at
most k + 5. From the above results, this implies that tw(L̂b

a) = OH(k). As Lb
a

is a minor of L̂b
a, tw(Lb

a) ≤ tw(L̂b
a) and thus tw(Lb

a) = OH(k).

Step two is to use this bound in an algorithm for Minimum Connected Domi-
nating Set.

Lemma 6.5.3 For any 0 ≤ a ≤ k − 1 and b ∈ Z, Cb
a can be computed in

2OH(k) nO(1) time.

Proof: Dorn, Fomin, and Thilikos [91] present an algorithm that given an
integer w and a graph G from some H-minor-free graph class either certifies
that bw(G) ≥ w or returns a branch decomposition with Catalan structure of
width OH(w). Moreover, the algorithm runs in OH(1)nO(1) time. By a branch
decomposition with Catalan structure, we mean that for any middle set M the
number of equivalence classes induced by M ∩ Z is at most 2OH(|M |), where
Z ranges over all families of connected subgraphs of G. (Actually, the result
by Dorn, Fomin, and Thilikos is stronger, but the above will be sufficient
here.) We are now in a similar case as in Theorem 5.4.9, but on branch
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decompositions. Adapting the algorithm of Theorem 5.4.9 or using the faster
algorithms by Dorn [89], one can solve Minimum Connected Dominating Set
in 2OH(w) nO(1) time.

Because Lemma 6.5.2 shows that bw(Lb
a) ≤ tw(Lb

a) + 1 = OH(k), one
can find a branch decomposition with Catalan structure of width OH(k) in
OH(1)nO(1) time. Then we use a slight variation of the above algorithm to
compute Cb

a using this branch decomposition. Hence Cb
a can be computed in

2OH(k) nO(1) time.

Proof of Theorem 6.5.1: Given any 0 < ǫ < 1, choose k = max{5, ⌈8/ǫ⌉}.
Compute Cmin in 2OH(1/ǫ) nO(1) time. Then Cmin is a (1 + ǫ)-approximation
of the optimum.

We conjecture that Theorem 6.5.1 can be extended to a ptas or even an eptas on
H-minor-free graphs for arbitrary graphs H by using the techniques developed
by Grohe [131]. We leave this to future research.

Baker [22] showed, using similar ideas as presented above, that Maximum
Independent Set, Minimum Vertex Cover, and Minimum Dominating Set have
an 2O(1/ǫ) nO(1)-time eptas on planar graphs. These were extended by Epp-
stein [99] to apex-minor-free graphs. Recently, Marx [204] showed that under
the exponential time hypothesis, these schemes are essentially optimal, mean-

ing that they have no 2O(1/ǫ)1−β

nO(1)-time eptas for any β > 0. We conjecture
that the above scheme is also optimal under the exponential time hypothesis.
A proof direction would be to find an L-reduction from Maximum Independent
Set, Minimum Vertex Cover, or Minimum Dominating Set on planar graphs to
Minimum Connected Dominating Set on planar graphs. Combined with the
results of Marx [204], this would prove the optimality of Theorem 6.5.1.



Chapter 7

Better Approximation Schemes
on Disk Graphs

In the previous chapter, we considered unit disk graphs of bounded density,
leading to new approximation schemes for several optimization problems. Here
we extend these ideas to disk graphs and introduce the notion of bounded level
density. We give an eptas for Maximum Independent Set on disk graphs of
bounded level density, which is also a ptas on arbitrary disk graphs. Further-
more, we show that there is an eptas for Minimum Vertex Cover on arbitrary
disk graphs, improving results of Erlebach, Jansen, and Seidel [103]. The given
description of these schemes also establishes a general framework, making it
easier to obtain efficient approximation schemes for other problems. We will
in fact see further applications of this framework in later chapters.

These results all form a geometric generalization to the schemes for planar
graphs obtained by Baker [22], because each planar graph is a disk graph of
ply 1 [169, 210], and thus a disk graph of bounded level density as well.

7.1 The Ply of Disk Graphs

Let D = {Di | i = 1, . . . , n} be a set of disks in the plane and G = (V,E)
the corresponding disk graph. Scale the disks by a factor 2w for some integer
w, such that each disk has radius at least 1

2 . In the following, we will not
distinguish between the disks in D and the vertices of the graph they induce.

Previously, we showed that an eptas exists for Maximum Independent Set,
Minimum Vertex Cover, and Minimum (Connected) Dominating Set on unit
disk graphs of bounded density. The density of a unit disk graph is (informally)
the maximum number of disk centers in any 1× 1 box. A careful examination
of the proof of these schemes showed that they can be extended to disk graphs
of bounded density and constant maximum radius, but do not generalize to
disk graphs of arbitrary density and radius. Hence another approach is needed.

The ply of a point p in the plane with respect to D is the number of disks
of D strictly containing p (i.e. having p strictly inside the disk). Then the ply
of D is the maximum ply of any point in the plane [210]. Observe that disk
graphs of bounded ply are more general than disk graphs of bounded density
and bounded maximum radius. Hence an eptas on disk graphs of bounded

91
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ply would generalize previous results. Below we give such an approximation
scheme for Minimum Vertex Cover. The analysis relies heavily on the following
properties of disk graphs of bounded ply.

Lemma 7.1.1 Given a set D of disks of ply γ, the number of disks of radius
at least r intersecting

• a line of length k is at most 4
rπ (k + 4r)γ,

• the boundary of a k × k square (k ≥ 4r) is at most 16
rπ kγ,

• a k × k square is at most (k+4r)2

r2π γ,

• two perpendicular, intersecting lines of length k is at most 8
rπ (k + 2r)γ.

Proof (Sketch): Consider a line of length k. Replace each disk D of radius
at least r intersecting the line by a canonical disk D′ of radius precisely r, such
that D′ intersects the line and D′ ⊆ D. Any such canonical disk is contained
in a size (4r)× (k+4r) rectangle centered over the line. As the canonical disks
have ply at most γ and each has area r2π, one can readily see that at most
4

rπ (k + 4r)γ disks intersect the line. The other bounds follow similarly.

Lemma 7.1.2 A set D of disks of ply γ, radius at least r and at most r′,
and intersecting a k × k square, has a path decomposition of width at most
4

rπ (k + 2r′ + 4r)γ − 1 and consisting of at most (k+4r)2

r2π γ bags.

Proof (Sketch): Sweep a vertical line of length k + 2r′ through the square
from left to right. At any position of the line, place the disks intersecting the
line in a bag. This yields a valid path decomposition. Moreover, one can find
such a decomposition in O(|D| log |D|) time [258]. The bounds follow from the
previous lemma.

7.2 Approximating Minimum Vertex Cover

To approximate the minimum vertex cover problem, we use the (geometric)
shifting technique introduced by Hochbaum and Maass [150]. To apply this
technique, a decomposition of the minimum vertex cover problem into smaller
subproblems is needed. Here we use a decomposition of the disks similar
to the ones proposed by Hochbaum and Maass [150], Erlebach, Jansen, and
Seidel [103], and Chan [57]. Combining the shifting technique with this de-
composition yields the desired approximation factor (see Section 7.2.4).

First partition the disks into levels. A disk has level j ∈ Z≥0 if its radius
r satisfies 2j−1 ≤ r < 2j . Since all disks have radius at least 1

2 , each disk is
indeed assigned a level. The level of the largest disk is denoted by l. For a set
of disks D, let D=j denote the set of disks in D of level j. Similarly, we define
D≥j as the set of disks of level at least j, and so on. Finally, D>j,<j′ is the set
of disks of level greater than j, but less than j′.
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Now let k ≥ 5 be an odd positive integer (whose precise value is determined
later). For each level j, we decompose the plane into squares of size k2j × k2j

such that these squares induce a quadtree. Formally, for each level j, we
consider the horizontal lines y = hk2j and vertical lines x = vk2j (h, v ∈ Z).
The squares induced by these lines are called level j squares, or put simply,
j-squares.

Note that each j-square is completely contained in some (j + 1)-square.
Conversely, each (j + 1)-square S contains exactly four j-squares, denoted by
S1 through S4. The squares S1, . . . , S4 are siblings of each other. We let DS

denote the set of disks intersecting S and Db(S) denotes the set of disks which
intersect the boundary of S. Furthermore, we define Di(S) = DS − Db(S)

(i.e. the set of disks fully contained in the interior of S) and let D+(S) =

Di(S) −⋃4
i=1 Di(Si) =

⋃4
i=1 Db(Si) −Db(S) (i.e. the set of disks intersecting the

boundary of at least one of the four children of S, but not the boundary of S

itself). The meaning of combinations like Db(S)
≤j should be self-explaining. We

use j(S) to denote the level of a square S.

7.2.1 A Close to Optimal Vertex Cover

We prove the following theorem, which will be auxiliary to the main theorem.

Theorem 7.2.1 Let D be a set of n disks of ply γ and k ≥ 5 an odd positive
integer. Then in time O(k2n2 γ64k/π), one can find a vertex cover VC of D
such that |VC | ≤ ∑

S

∣∣∣OPTS
=j(S)

∣∣∣, where the sum is over all squares S and

OPT is any minimum vertex cover of D.

We can obtain a vertex cover of the required cardinality by applying bottom-up
dynamic programming to the j-squares. Roughly speaking, for each j-square

S, we consider all subsets of Db(S)
>j (the disks of level greater than j intersecting

the boundary of S). For each such subset, we compute a close to optimal vertex
cover for DS containing this subset. Formally, we define for each j-square S

and each W ⊆ Db(S)
>j a function size(S, W ). The function is defined recursively

on j.

size(S, W ) =





min
{
|T |
∣∣ T ⊆ DS

=j ∪ Di(S)
>j ; T ∪ W covers DS

}
if j = 0;

min
U⊆D+(S)

≥j
∪Db(S)

=j

{
|U | +

4∑

i=1

size
(
Si, (U ∪ W )b(Si)

)}
if j > 0.

Here we define the minimum over an empty set to be ∞. Observe that W must

be a vertex cover of Db(S)
>j and U must be a vertex cover of D+(S)

≥j ∪Db(S)
=j . Let

sol(S, W ) be the subfamily of D attaining size(S, W ), or ∅ if size(S, W ) is ∞.

7.2.2 Properties of the size- and sol-Functions

We first show that the sum of size(S, ∅) over all level l squares S attains the
value stated in Theorem 7.2.1. In fact, we prove a slightly more general result.
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Let C be any vertex cover for D.

Lemma 7.2.2
∑

S; j(S)=l size(S, ∅) ≤∑S

∣∣∣CS
=j(S)

∣∣∣.

Proof: Apply induction on j. We prove that the following invariant holds:

size
(
S, Cb(S)

>j

)
≤
∣∣∣Ci(S)

>j

∣∣∣+
∑

S′⊆S

∣∣∣CS′

=j(S′)

∣∣∣ .

Here S is some j-square. For j = 0, the correctness of the invariant follows
from the definition of size. So assume that j > 0 and that the invariant holds
for all j′-squares with j′ < j. Note that

4∑

i=1

∣∣∣Ci(Si)
>j−1

∣∣∣ =
∣∣∣Ci(S)

>j

∣∣∣+
∣∣∣Ci(S)

=j

∣∣∣−
∣∣∣C+(S)

≥j

∣∣∣ .

Then from the description of size and by applying induction,

size
(
S, Cb(S)

>j

)

≤
∣∣∣C+(S)

≥j

∣∣∣+
∣∣∣Cb(S)

=j

∣∣∣+
4∑

i=1

size

(
Si,
(
Cb(S)
≥j ∪ C+(S)

≥j

)b(Si)
)

=
∣∣∣C+(S)

≥j

∣∣∣+
∣∣∣Cb(S)

=j

∣∣∣+
4∑

i=1

size
(
Si, Cb(Si)

>j−1

)

≤
∣∣∣C+(S)

≥j

∣∣∣+
∣∣∣Cb(S)

=j

∣∣∣+
4∑

i=1

∣∣∣Ci(Si)
>j−1

∣∣∣+
4∑

i=1

∑

S′
i
⊆Si

∣∣∣CS′
i

=j(S′
i
)

∣∣∣

=
∣∣∣Ci(S)

>j

∣∣∣+
∣∣CS

=j

∣∣+
4∑

i=1

∑

S′
i
⊆Si

∣∣∣CS′
i

=j(S′
i
)

∣∣∣

=
∣∣∣Ci(S)

>j

∣∣∣+
∑

S′⊆S

∣∣∣CS′

=j(S′)

∣∣∣ .

Since l is the level of the largest disk, Ci(S)
>j = ∅ and Cb(S)

>j = ∅ for all j-squares
S with j ≥ l. Hence

∑

S; j(S)=l

size(S, ∅) ≤
∑

S; j(S)=l

∑

S′⊆S

∣∣∣CS′

=j(S′)

∣∣∣ =
∑

S

∣∣∣CS
=j(S)

∣∣∣ .

This proves the lemma.

The lemma implies that
∑

S; j(S)=l size(S, ∅) ≤ ∑
S

∣∣∣OPTS
=j(S)

∣∣∣, where OPT

is a minimum vertex cover of D. We now prove that the union of sol(S, ∅) over
all level l squares S is a vertex cover of D.
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Lemma 7.2.3
⋃

S; j(S)=l sol(S, ∅) is a vertex cover of D.

Proof: For any level j0 and any collection of sets {WS ⊆ Db(S)
>j0

| j(S) = j0},
we prove the following claim:

⋃
S;j(S)=j0

sol(S, WS) ∪ WS covers
⋃

S;j(S)=j0
DS if∑

S;j(S)=j0
size(S, WS) 6= ∞.

Apply induction on j0. For j0 = 0, this follows trivially from the definition of
size and sol. So assume that j0 > 0 and that the claim holds for all j′0 < j0.

Suppose
∑

S;j(S)=j0
size(S, WS) 6= ∞ is true for some collection of sets

{WS ⊆ Db(S)
>j0

| j(S) = j0}. For any j0-square S, let

U∗
S = arg min

U⊆D+(S)

≥j0
∪Db(S)

=j0

{
|U | +

4∑

i=1

size
(
Si, (U ∪ WS)b(Si)

)}
.

As size(S, WS) 6= ∞, it must be that size(Si, (U
∗
S ∪ WS)b(Si)) 6= ∞ for i =

1, . . . , 4 as well. For any S′ where S′ = Si for some j0-square S and i ∈
{1, . . . , 4}, let WS′ = (U∗

S ∪ WS)b(S′). It follows that

∑

S′;j(S′)=j0−1

size(S′, WS′) 6= ∞.

Then by induction,
⋃

S′;j(S′)=j0−1 sol(S′, WS′)∪WS′ covers
⋃

S′;j(S′)=j0−1 DS′

.
Observe that for any j0-square S

WS ∪ sol(S, WS) = WS ∪ U∗
S ∪

4⋃

i=1

sol(Si, (U
∗
S ∪ WS)b(Si))

=

4⋃

i=1

(
(U∗

Si
∪ WSi)

b(Si) ∪ sol
(
Si, (U

∗
Si

∪ WSi)
b(Si)

))

=
⋃

S′=Si
i=1,...,4

WS′ ∪ sol(S′, WS′).

As
⋃

S′;j(S′)=j0−1 DS′

=
⋃

S;j(S)=j0
DS , we have

⋃
S;j(S)=j0

sol(S, WS) ∪ WS

covers
⋃

S;j(S)=j0
DS .

From the previous lemma, we know that
∑

S;j(S)=l size(S, ∅) 6= ∞. Because

each edge is induced by DS for some l-square S,
⋃

S; j(S)=l sol(S, ∅) is a vertex
cover of D.

7.2.3 Computing the size- and sol-Functions

We show that it is sufficient to compute size and sol for a limited number of
j-squares. This can be done in the time stated in Theorem 7.2.1.
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Call a j-square nonempty if it is intersected by a level j disk and empty
otherwise. A j-square S is relevant if one of its three siblings is nonempty or
there is a nonempty square S′ containing S, such that S′ has level at most
j + ⌈log k⌉ (so each nonempty j-square is relevant). Note that this definition
induces O(k2n) relevant squares. A relevant square S is said to be a relevant
child of another relevant square S′ if S ⊂ S′ and there is no third relevant
square S′′, such that S ⊂ S′′ ⊂ S′. Conversely, if S is a relevant child of S′,
S′ is a relevant parent of S.

Lemma 7.2.4 For each relevant 0-square S, all size- and sol-values for S can
be computed in O

(
nk3γ γ(24k+8)/π

)
time.

Proof: From Lemma 7.1.1,
∣∣∣Db(S)

>0

∣∣∣ is bounded by 16kγ/π. As an independent

set has γ = 1, all independent sets and hence all vertex covers of Db(S)
>0 can

be enumerated in O(k γ16k/π) time using Lemma 6.3.2. For a fixed set W ,

size(S, W ) is defined as the cardinality of a minimum subset of DS
=0 ∪ Di(S)

>0 ,

such that this subset and W cover DS . We may assume that W covers Db(S)
>0 ,

otherwise such a subset does not exist and size(S, W ) is ∞. Then the requested
subset is a minimum vertex cover for DS − W . Similar to Lemma 7.1.2, one
can show that DS has a path decomposition of width at most 8

π (k + 4)γ and
O(|DS |) bags. Moreover, these path decompositions can be precomputed for all
level 0 squares in O(n log n) time. Adapting the algorithm of Lemma 5.3.4 and
using Lemma 6.3.2, the cover can be computed in O(|DS |k2γ γ8(k+4)/π) time.
Therefore one can compute all size- and sol-values for S in O

(
nk3γ γ(24k+8)/π

)

time.

Assume that the size- and sol-values of all relevant children of S are known.

Lemma 7.2.5 For each relevant j-square S (j > 0) with relevant (j − 1)-
square children, all size- and sol-values for S can be computed in O(k γ64k/π)
time.

Proof: If one of the children S1, . . . , S4 of S is relevant, then, by the definition
of relevant, all children of S must be relevant. Following the definition of size,

we enumerate all vertex covers W of Db(S)
>j and for each such W all vertex covers

U of D+(S)
≥j ∪Db(S)

=j . Using the ideas of Lemma 7.1.1, we can show that
∣∣Db(S)

>j

∣∣ ≤
16kγ/π,

∣∣D+(S)
≥j ∪ Db(S)

=j

∣∣ ≤ 48kγ/π, and
∣∣Db(S)

≥j ∪ D+(S)
≥j

∣∣ ≤ 48kγ/π. Then all

independent sets, and hence all vertex covers, of Db(S)
>j and of D+(S)

≥j ∪ Db(S)
=j

can be enumerated in O(k γ64k/π) time by applying Lemma 6.3.2. Since size

and sol of all relevant children of S are known and assuming that for a given
W and U we can compute |U |+∑4

i=1 size(Si, (U ∪W )b(Si)) in constant time,
the running time of O(k γ64k/π) follows immediately.

Lemma 7.2.6 For each relevant j-square S (j > 0) with no relevant children
of level j−1, all size- and sol-values for S can be computed in O(n γ32/π) time.
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Proof: We start with two simple observations. The first is that S must be
empty, because S has no relevant children of level j − 1. Secondly, one notes
that by the definition of relevant, the nearest nonempty square containing S

(if it exists) has level at least j + ⌈log k⌉. Hence Db(S)
>j = Db(S)

≥j+⌈log k⌉.

Now consider any j′-square S′ ⊆ S for which there is no relevant square
S′′ such that S′ ⊆ S′′ ⊂ S. Then the nearest nonempty square containing S′

(if it exists) has level at least j + ⌈log k⌉. Hence any disk of level at least j′

intersecting S′ has level at least j +⌈log k⌉. This implies that Db(S′
i)

>j′−1 = Db(S′)
>j′

for any i = 1, . . . , 4 and that Db(S′)
=j′ = ∅. Since S′ is empty, it also follows that

Di(S′)
≥j′ = ∅ and, if j′ > 0, D+(S′)

≥j′ = ∅ as well.
Using these observations, we can simplify the definition of size considerably

for such S′. For any set W ′ ⊆ Db(S′)
>j′ ,

size(S′, W ′) =





0 if j′ = 0, W ′ covers Db(S′)
>j′ ;

∞ if j′ = 0, W ′ not covers Db(S′)
>j′

∑4
i=1 size

(
S′

i, W
′b(S′

i)
)

if j′ > 0.

Applying this simplification repeatedly, it can be seen that for any W ⊆ Db(S)
>j ,

size(S, W ) =





0 if S has no relevant children and

W covers Db(S)
>j ;

∞ if S has no relevant children and

W doesn’t cover Db(S)
>j ;

∑
S′′ size

(
S′′, W b(S′′)

)
otherwise,

where the sum is over all relevant children S′′ of S.
Any relevant child of S is either nonempty, or the sibling of a nonempty

square. As the number of nonempty squares is O(n) and a square has three
siblings, the number of relevant children of S is O(n). So for fixed W , it takes

O(n) time to compute size(S, W ). As Db(S)
>j = Db(S)

≥j+⌈log k⌉, we know from

Lemma 7.1.1 and Lemma 6.3.2 that all vertex covers W ⊆ Db(S)
>j = Db(S)

≥j+⌈log k⌉
can be enumerated in O(γ32/π) time.

Lemma 7.2.7
∑

S; j(S)=l size(S, ∅) can be computed in O(k2n2 γ64k/π) time.

Proof: Recall that there are O(k2n) relevant squares. Let S be a relevant
j-square without a relevant parent. Following Lemmas 7.2.4, 7.2.5, and 7.2.6,
we can compute size(S, ∅) for all such squares S in O(k2n2 γ64k/π) time.

Now consider any level l square S. If S is relevant, then it cannot have a
relevant parent. Hence by the preceding argument, size(S, ∅) is known. If S is
not relevant, then we can use the same arguments as in Lemma 7.2.6 to show
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that size(S, ∅) =
∑

S′′ size (S′′, ∅), where the sum is over all relevant j′′-squares
S′′ ⊂ S without a relevant parent. It follows that

∑
S; j(S)=l size(S, ∅) can be

computed in O(k2n2 γ64k/π) time.

Proof of Theorem 7.2.1: Follows by Lemmas 7.2.2, 7.2.3, and 7.2.7.

7.2.4 An eptas for Minimum Vertex Cover

We now apply the shifting technique to obtain a (1 + ǫ) approximation of the
optimum. For some integer a (0 ≤ a ≤ k − 1), define the decomposition as
follows. We call a line of level j active if it is of the form y = (hk + a2l−j)2j

or x = (vk + a2l−j)2j (h, v ∈ Z). The active lines partition the plane into j-
squares as before, except that they are now shifted by the shifting parameter a.
The structure however remains the same, and thus we can apply Theorem 7.2.1
to compute a close to optimal vertex cover.

Let VC a denote the set returned by the algorithm for some value of a
(0 ≤ a ≤ k − 1) and let VCmin be a smallest such set.

Lemma 7.2.8 |VCmin| ≤ (1 + 12
k ) |OPT |.

Proof: We claim a line of level j (i.e. of the form y = h′2j or x = v′2j)
is active for precisely one value of a. A horizontal line y = h′2j is active if
h′ = hk+a2l−j for some h and a, i.e. if h′ ≡ a2l−j mod k. As gcd(k, 2l−j) = 1,
such a value of a exists. Hence the line is active for at least one value of a.

Suppose that a horizontal line of level j is active for two values of a. Then
hk + a2l−j = h′k + a′2l−j for some choice of h, h′, a, and a′. Simplifying gives
(h − h′)k = (a′ − a)2l−j , or k|(a′ − a)2l−j . Since k is odd, k|(a′ − a), which
is impossible as 1 ≤ |a′ − a| ≤ k − 1. Hence each horizontal line of level j is
active for precisely one value of a. The same arguments hold for vertical lines
of level j.

Define Db
a as the set of disks intersecting the boundary of a j-square S

at their level, i.e. Db
a =

⋃
S Db(S)

=j(S). A level j disk is in Db
a if and only if it

intersects an active line of level j. It can be in Db
a for at most four different

values of a, intersecting both a horizontal and a vertical active line at most
twice, because a line of level j is active for exactly one value of a, the distance
between consecutive lines is 2j , and disks of level j have radius less than 2j .
Hence there is a value of a (say a∗) for which

∣∣OPT ∩ Db
a∗

∣∣ ≤ 4
k |OPT |.

From Lemma 7.2.2, we know that |VC a∗ | ≤∑S |OPTS
=j(S)|. Observe that

for a fixed value of a, any disk can intersect at most four squares at its level.
Then

|VC a∗ | ≤
∑

S

∣∣∣OPTS
=j(S)

∣∣∣

=
∑

S

∣∣∣OPTS
=j(S) − OPT

b(S)
=j(S)

∣∣∣+
∑

S

∣∣∣OPT
b(S)
=j(S)

∣∣∣
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≤ |OPT | −
∣∣OPT ∩ Db

a∗

∣∣+ 4
∣∣OPT ∩ Db

a∗

∣∣
≤ |OPT | + 12

k |OPT | .

Hence |VCmin| ≤ |VC a∗ | ≤ (1 + 12
k ) |OPT | and the lemma follows.

Combining Theorem 7.2.1 and Lemma 7.2.8, we obtain the following result.

Theorem 7.2.9 There is an eptas for Minimum Vertex Cover on disk graphs.

Proof: The idea is similar to Lemma 6.3.14 and Theorem 6.3.15, except we
have no polynomial-time algorithm to find a maximum clique in a disk graph.
However, it suffices to reduce the ply. Consider a point p in the plane of
ply more than 1

ǫ . Note that the set of disks Dp containing p form a clique.
Marx [202] observed that Dp is actually a (1+ ǫ)-approximation of a minimum
vertex cover for Dp. Hence we remove Dp from D and repeat until the ply is
bounded by 1

ǫ . Using the algorithm by Eppstein, Miller, and Teng [100] to
determine the ply of a set of disks, this can be done in O(n3 log n) time.

Let D0 denote the remaining set of disks. Choose k as the smallest odd
integer larger than 12

ǫ . Compute and output VCmin in O(k3n2 k64k/π) time
using Theorem 7.2.1. Following Lemma 7.2.8 and the choice of k, this results
in a (1 + ǫ)-approximation of a minimum vertex cover of D0. Combining the
different approximations gives a (1 + ǫ)-approximation of a minimum vertex
cover of D. This gives the eptas.

This result improves the nO(ǫ−2)-time ptas for Minimum Vertex Cover on disk
graphs by Erlebach, Jansen, and Seidel [103].

7.3 Approximating Maximum Independent Set

The maximum independent set problem can also be approximated well using
the ideas of the previous sections. We can show that it has an eptas on disk
graphs of bounded ply. In fact, we can prove a more general result, namely
that Maximum Independent Set has an eptas on disk graphs of bounded level
density. This notion is defined as follows. Partition the disks into levels as
before (i.e. a disk has level j if its radius is in [2j−1, 2j)). For each level j, let
dj denote the maximum number of level j disks in any 2j × 2j box. Then the
level density, denoted by d, is the maximum dj over all levels j. Scaling a set
of disks by a constant factor can reduce the level density by a factor of 2, but
this is of little consequence to the analysis of the algorithm below.

Disk graphs of bounded level density are more general than disk graphs of
bounded ply, as a disk graph of ply γ has level density at most 4γ. However,
a disk graph of bounded level density can contain overlapping disks from an
arbitrary number of levels, giving it arbitrarily large ply.

Consider a set of disks D of level density d. Let k ≥ 5 be an odd positive
integer to be determined later and let the plane be partitioned into j-squares
as before. We prove the following auxiliary theorem.
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Theorem 7.3.1 Let D be a set of disks of level density d and k ≥ 5 an odd
positive integer. Then one can find in O(k3n9(2ed)32k/π) time an independent

set IS of
⋃

S Di(S)
=j(S) such that |IS | ≥ ∑

S

∣∣∣OPT
i(S)
=j(S)

∣∣∣, where sum and union

are over all squares S and OPT is any maximum independent set of D.

We employ a similar approach as with Minimum Vertex Cover. For any j-

square S and any independent set W ⊆ Db(S)
>j , we compute (the cardinality

of) a close to maximum independent set of Di(S)
>j ∪⋃S′⊆S Di(S′)

=j(S′) that is inde-

pendent of W . For each j-square S and each independent set W ⊆ Db(S)
>j ,

size(S, W ) =





max
{
|T |
∣∣∣ T ⊆ Di(S); T ∪ W independent

}
if j = 0;

max
U⊆D+(S)

≥j

{
|U | +

4∑

i=1

size
(
Si, (U ∪ W )b(Si)

)}
if j > 0.

Let sol(S, W ) be the subset of D attaining size(S, W ).

Lemma 7.3.2
∑

S; j(S)=l size(S, ∅) ≥∑S

∣∣∣I i(S)
=j(S)

∣∣∣ for any independent set I.

Proof: Define

up(S) =
⋃

S′⊃S

I i(S′)
=j(S′).

We use induction on j to prove the following invariant for any j-square S:

size
(
S, (up(S))b(S)

)
≥
∣∣∣I i(S)

>j

∣∣∣+
∑

S′⊆S

∣∣∣I i(S′)
=j(S′)

∣∣∣ .

It follows immediately from the definition of size that the invariant is true for
j = 0. So consider a j > 0 and assume the invariant holds for all j′ < j. Then

size
(
S, (up(S))b(S)

)

≥
∣∣∣I+(S)

≥j

∣∣∣+
4∑

i=1

size

(
Si,
(
I+(S)
≥j ∪ (up(S))b(S)

)b(Si)
)

=
∣∣∣I+(S)

≥j

∣∣∣+
4∑

i=1

size
(
Si, (up(Si))

b(Si)
)

≥
∣∣∣I+(S)

≥j

∣∣∣+
4∑

i=1

∣∣∣I i(Si)
>j−1

∣∣∣+
4∑

i=1

∑

S′
i
⊆Si

∣∣∣I i(S′
i)

=j(S′
i
)

∣∣∣

=
∣∣∣I i(S)

>j

∣∣∣+
∑

S′⊆S

∣∣∣I i(S′)
=j(S′)

∣∣∣ , (7.1)
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where the equality

(
I+(S)
≥j ∪ (up(S))b(S)

)b(Si)

= (up(Si))
b(Si)

holds, because by definition

(
I+(S)
≥j

)b(Si)

=
(
I i(S)
≥j

)b(Si)

=

((⋃
S′⊇S I i(S′)

=j(S′)

)i(S)
)b(Si)

and
(
I i(S)

=j(S)

)b(S)

= ∅. Then

(
I+(S)
≥j ∪

(⋃
S′⊃S I i(S′)

=j(S′)

)b(S)
)b(Si)

=

((⋃
S′⊇S I i(S′)

=j(S′)

)i(S)

∪
(⋃

S′⊇S I i(S′)
=j(S′)

)b(S)
)b(Si)

=
(⋃

S′⊇S I i(S′)
=j(S′)

)b(Si)

= (up(Si))
b(Si).

Returning to Equation 7.1, as l is the level of the largest disk, up(S) = ∅ and

I i(S)
>j = ∅ for any square S of level at least l. Then

∑

S; j(S)=l

size(S, ∅) ≥
∑

S; j(S)=l

∑

S′⊆S

∣∣∣I i(S′)
=j

∣∣∣ =
∑

S

∣∣∣I i(S)
=j(S)

∣∣∣ .

The lemma follows.

Clearly, the lemma implies that
∑

S; j(S)=l size(S, ∅) ≥∑S

∣∣∣OPT
i(S)
=j(S)

∣∣∣, where

OPT is a maximum independent set.

Lemma 7.3.3
⋃

S; j(S)=l sol(S, ∅) is an independent set of
⋃

S Di(S)
=j(S).

This lemma follows straightforwardly from the definitions of size and sol in a
similar way as in Lemma 7.2.3.

To compute
∑

S; j(S)=l size(S, ∅), it is again sufficient to consider only rele-
vant j-squares, where the definition of relevant is the same as before. As was
observed earlier, we need only to consider independent sets W , T , and U in
the definition of size, as size will be −∞ otherwise. Crucial in the analysis of
the algorithm will therefore be bounds on the maximum cardinality of certain
independent sets. In particular, we apply the following theorem.

Theorem 7.3.4 The maximum number of disjoint disks of radius r intersect-
ing a square of size 2r × 2r is 7.
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The (lengthy) proof is detailed in Section 7.5.

Lemma 7.3.5 For each relevant 0-square S, all size- and sol-values can be
computed in O(k2n8d (2ed)24k/π) time.

Proof: As disks in Db(S)
≥⌈log k⌉ have radius at least 1

2k, we can use Theorem 7.3.4

to bound the maximum cardinality of any independent set in Db(S)
≥⌈log k⌉ by 7.

Hence all independent sets in Db(S)
≥⌈log k⌉ can be enumerated in O(n7) time.

To enumerate all independent subsets of Db(S)
>0 , we should consider inde-

pendent subsets of Db(S)
>0,<⌈log k⌉ as well. For some j′ with 0 < j′ < ⌈log k⌉, we

can use an area bound to show that
∣∣∣Db(S)

=j′

∣∣∣ ≤ 4kd2j−j′

. Then

∣∣∣Db(S)
>0,<⌈log k⌉

∣∣∣ ≤
⌈log k⌉−1∑

j′=1

(
4kd2j−j′

)
≤ 4kd.

As an independent set of disks has ply 1, it follows from Lemma 7.1.1 that

any independent subset of Db(S)
>0,<⌈log k⌉ has cardinality at most 16k/π. Then,

following Lemma 6.3.2, all independent sets of disks in Db(S)
>0,<⌈log k⌉ can be

enumerated in O(k (ed)16k/π) time. Hence all independent sets W ⊆ Db(S)
>0

can be enumerated in O(kn7 (ed)16k/π) time.

For fixed W ⊆ Db(S)
>0 , it remains to compute a maximum T ⊆ Di(S)

≥0 such
that T∪W is an independent set. That is, to compute a maximum independent

set of Di(S)
≥0 − N [W ], where N [W ] is the closed neighborhood of W . We use a

path decomposition to find this set. First, observe that Di(S)
≥⌈log k⌉ = ∅. For any

j′ with 0 ≤ j′ < ⌈log k⌉, the number of disks of Di(S)
=j′ intersecting a vertical

line of length k in S is bounded by 2⌈(k − 2j′

)/2j′⌉d. Hence the number of

disks of Di(S)
≥0 intersecting such a line is at most

⌈log k⌉−1∑

j′=0

(
2⌈2−j′

k − 1⌉d
)

≤ 4kd.

It follows that Di(S)
≥0 − N [W ] has a path decomposition of width at most

4kd and O(n) bags. Following Lemma 7.1.1, any independent set of disks

in Di(S)
≥0 −N [W ] intersecting a vertical line in S has cardinality at most 8k/π.

Adapting the algorithm of Theorem 5.3.2 to only consider independent sets,
the maximum T can be found in O(k2nd (2ed)8k/π) time.

Lemma 7.3.6 For each relevant j-square S with relevant (j − 1)-square chil-
dren, all size- and sol-values can be computed in O(k2n7 (2ed)32k/π) time.
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Proof: Using the same arguments as in the previous lemma, all independent

subsets W of Db(S)
>j can be enumerated in O(kn7 (ed)16k/π) time. For any j′

with j − 1 < j′ < j + ⌈log k⌉,
∣∣∣D+(S)

=j′

∣∣∣ ≤ (4⌈2j−j′

k − 1⌉ − 4)d. Hence

∣∣∣D+(S)
>j−1

∣∣∣ ≤
j+⌈log k⌉−1∑

j′=j

(4⌈2j−j′

k − 1⌉ − 4)d ≤ 8kd.

Following Lemma 7.1.1, any independent set of disks in D+(S)
≥j has cardinality

at most 16k/π. Then, for any fixed W ⊆ Db(S)
>j , all independent sets U ⊆

D+(S)
≥j − N [W ] can be enumerated in O(k (2ed)16k/π) time.

Lemma 7.3.7 For each relevant j-square S with no relevant (j − 1)-square
children, all size and sol-values can be computed in O(n8) time.

Proof: Using the same arguments as in Lemma 7.2.6, for any W ⊆ Db(S)
>j ,

size(S, W ) =





0 if S has no relevant children and
W is an independent set;

−∞ if S has no relevant children and
W is not an independent set;

∑
S′′ size

(
S′′, W b(S′′)

)
otherwise,

where the sum is over all relevant children S′′ of S. Since the number of
relevant children of S is O(n), for fixed W , it takes O(n) time to compute

size(S, W ). As Db(S)
>j = Db(S)

≥j+⌈log k⌉, we know from previous lemmas that all

W ⊆ Db(S)
>j = Db(S)

≥j+⌈log k⌉ can be enumerated in O(n7) time.

Proof of Theorem 7.3.1: Applying similar ideas as in Lemma 7.2.7, this
follows immediately from Lemmas 7.3.2, 7.3.3, 7.3.5, 7.3.6, and 7.3.7.

Let a (0 ≤ a ≤ k − 1) be an integer. Shift the decomposition as before. Let
ISa be the independent set returned by the algorithm for some value of a
(0 ≤ a ≤ k − 1) and let ISmax be a largest such set. Using similar ideas as in
Lemma 7.2.8, we obtain the following.

Lemma 7.3.8 |ISmax| ≥ (1 − 4
k ) |OPT |.

Proof: Define Db
a again as the set of disks intersecting the boundary of a j-

square S at their level, i.e. Db
a =

⋃
S Db(S)

=j(S). Following Lemma 7.2.8, a disk of

level j is in Db
a for at most 4 different values of a. Hence there is a value of a

(say a∗) for which
∣∣OPT ∩ Db

a∗

∣∣ ≤ 4
k |OPT |.

From Theorem 7.3.1, we know that |ISa∗ | ≥∑S

∣∣∣OPT
i(S)
=j(S)

∣∣∣.
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Then

|ISa∗ | ≥ ∑
S

∣∣∣OPT
i(S)
=j(S)

∣∣∣

= |OPT | −
∣∣(OPT ∩ Db

a∗)
∣∣

≥ |OPT | − 4
k |OPT | .

Hence |ISmax| ≥ |ISa∗ | ≥ (1 − 4
k ) |OPT | and the lemma follows.

We can now prove the following.

Theorem 7.3.9 There is an eptas for Maximum Independent Set on disk
graphs of bounded level density, i.e. of level density d = d(n) = O(no(1)).

Proof: Consider any ǫ > 0. Choose k as the largest odd integer such that
(32k/π) · log(2ed) ≤ log n. If k < 5, output any single vertex. Otherwise, using
Theorem 7.3.1 and the choice of k, compute and output ISmax in O(n10 log4 n)
time. Furthermore, if d = d(n) = O(no(1)), there is a cǫ such that k ≥ 4/ǫ and
k ≥ 5 for all n ≥ cǫ. Therefore, if n ≥ cǫ, it follows from Lemma 7.3.8 and
the choice of k that ISmax is a (1 − ǫ)-approximation of the optimum. Hence
there is a fiptasω for Maximum Independent Set on n-vertex unit disk graphs
of level bounded density, i.e. of level density d = d(n) = O(no(1)). Because the
existence of a fiptasω implies the existence of an eptas (see Theorem 2.2.4),
the theorem follows.

Now observe that d is bounded by n. Hence the worst case running time of
the scheme is O(k4n9(2en)

32
π k).

Theorem 7.3.10 The above algorithm is a ptas for Maximum Independent
Set on disk graphs.

The ptas given here improves on the nO(k2)-time ptas by Erlebach, Jansen,
and Seidel [103] and matches the nO(k)-time ptas by Chan [57].

7.4 Further Improvements

We gave an eptas for Minimum Vertex Cover on general disk graphs and an
eptas for Maximum Independent Set on disk graphs of bounded level density.
The latter scheme is also a ptas on general disk graphs. These algorithms
extend to any constant dimension. Furthermore, they can be extended to in-
tersection graphs of more general objects than disks, such as squares, triangles,
etc., as long as the objects are sufficiently ‘disk-like’. In other words, the ob-
jects should be fat. Many formal definitions of ‘fat’ exist, but as an example,
it is easy to see the algorithms work for α-fat objects (a convex subset s of
R2 is α-fat for some α ≥ 1 if the ratio between the radii of the smallest disk
enclosing s and the largest disk inscribed in s is at most α [97]).
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We cannot hope for a ptas on intersection graphs of nonfat objects in three
dimensions, even if they have ply 1. Theorem 3.3.1 showed that any graph is
an intersection graph of a set of three-dimensional convex polytopes of ply 1.
Hence Maximum Independent Set and Minimum Vertex Cover are as hard on
such intersection graphs as on general graphs.

In the presence of (arbitrary) weights on the vertices of the graph, the
presented schemes are extendable to an eptas for Minimum-Weight Vertex
Cover and Maximum-Weight Independent Set if the level density is bounded.
These schemes are a ptas on disk graphs of arbitrary density. Moreover, they
extend to fat objects and to any constant dimension. Unfortunately, the idea
of Theorem 7.2.9 that reduces the ply of the disk graph for the minimum vertex
cover problem does not seem to carry over to Minimum-Weight Vertex Cover.
Therefore the question of the existence of an eptas in the weighted case on
disks of arbitrary size remains open.

Beyond these generalizations, an important question is whether one can
improve on the algorithms given in this chapter? Here we refer to the results
of Section 6.4. Recall that Maximum Independent Set on unit disk graphs
of density d cannot have a ptas with running time 2O(poly(1/ǫ))do(1/ǫ)nO(1).
Furthermore, there is a constant d0 such that Minimum Vertex Cover on unit
disk graphs of density at most d0 has no 2O(poly(1/ǫ))nO(1) time eptas. Both
results are under the condition that the exponential time hypothesis is true.
Because the notions of ply, level density, and density are essentially the same for
unit disk graphs, the following result immediately follows from Theorem 6.4.3
and Theorem 6.4.7.

Theorem 7.4.1 If there exist constants δ ≥ 1, 0 < β < 1 such that Maximum
Independent Set on disk graphs of level density d has a ptas with running time

2O(1/ǫ)δ

dO(1/ǫ)1−β

nO(1), then the exponential time hypothesis is false. If there
is a constant 0 < β < 1 such that for any constant γ0 Minimum Vertex Cover

on disk graphs of ply at most γ0 has a 2O(1/ǫ)1−β

nO(1)-time eptas, then the
exponential time hypothesis is false.

The approximation schemes for Maximum Independent Set on disk graphs of
level density d and for Minimum Vertex Cover on disk graphs of ply γ described
in this chapter are clearly optimal with respect to the above theorem.

Theorem 7.4.2 Maximum Independent Set on n-vertex disk graphs of level
density d = d(n) = Ω(nα) for some constant 0 < α ≤ 1 cannot have an eptas,
unless FPT=W[1].

The bound in this theorem matches the bound in Theorem 7.3.9, where we
showed that Maximum Independent Set has an eptas on n-vertex disk graphs
of level density d = d(n) = O(no(1)).

These results make it very unlikely that one can (significantly) improve on
the schemes in this section.
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7.5 The Maximum Number of Disjoint Unit Disks Inter-

secting a Unit Square is 7

We prove Theorem 7.3.4, which basically asks the following. Consider a unit
square (i.e. a 1×1 square) and unit disks (i.e. disks of radius 1

2 ). Determine the
maximum number of nonintersecting unit disks intersecting the unit square.
Here touching disks are assumed to intersect.

A trivial lower bound is 7. Placing a central disk in the center of the unit
square and 6 disks around it gives a set of 7 nonintersecting disks.

A trivial upper bound is 9. All disks intersecting the unit square are com-
pletely contained in a 3× 3 square around the unit square. De Groot, Peikert,
and Würtz [81, 223] have shown that in the densest packing of 10 nonover-
lapping (but possibly touching) disks in a 3 × 3 square, the disks have radius
≈ 0.444612. Hence a packing with 10 radius 1

2 disks cannot exist. The upper
bound of 9 follows.

We now aim to lower the upper bound. We first prove an upper bound of
8 and then further reduce it to 7, matching the lower bound.

In the following, we assume without loss of generality that the unit square
is axis-aligned and that its center lies on the origin. We will not directly prove
upper bounds on the number of nonintersecting unit disks intersecting the unit
square, but instead focus on the bounding the number of nonintersecting unit
disks intersecting the unit square, but not intersecting the origin. It can be
readily seen that an upper bound of x on the latter number implies an upper
bound of x + 1 on the former number.

Consider Figure 7.1. The unit square is drawn dashed. The rounded rect-
angle R around the unit square contains all points at distance exactly 1

2 from
the unit square. Now the center of any unit disk intersecting the unit square,
but not intersecting the origin, must lie on or within R, but outside of the unit
disk C centered on the origin. This ‘allowed’ area is shaded in the figure and
is denoted by A.

Let c be the center of an arbitrary unit disk with c ∈ A. Consider the line
segment from the origin to c and extend this segment until it intersects R (see
Figure 7.2). Call this intersection point cp. We use superscript ‘p’ to indicate
that cp is the projection of c onto R.

Now let disk(x, r) denote the disk of radius r centered on point x. If c and
c′ are the centers of two nonintersecting unit disks, then obviously disk(c, 1

2 )∩
disk(c′, 1

2 ) = ∅. Equivalently, it must be that c′ 6∈ disk(c, 1) and c 6∈ disk(c′, 1).
We will combine this observation with the following lemma.

Lemma 7.5.1 Let c and x be arbitrary points in A. If x 6∈ disk(c, 1), then
x 6∈ disk(cp, 1).

Proof: It is sufficient to prove that the two intersection points of the bound-
aries of disk(c, 1) and disk(cp, 1) are not in A. Furthermore, we only need to
consider points c on C. Because if c is on C, then the two intersection points
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Figure 7.1: The unit disk C,
rounded rectangle R at distance 1

2
from the unit square, and the al-
lowed area A.
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c

Figure 7.2: The projection
point cp of c on R.

c1

c2
c3

c4

c5

c6

c7

corner

separator

straight

Figure 7.3: Corners, separators, and straights.
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Figure 7.4: The situation if 1
2π − tan−1( 1

2 ) ≤ β ≤ 1
2π.

α′
s

l

β

cp

c

i

Figure 7.5: The situation if 1
4π ≤ β ≤ 1

2π − tan−1( 1
2 ).
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of the boundaries of disk(c, 1) and disk(cp, 1) are closer to A than the two in-
tersection points of the boundaries of disk(c′, 1) and disk(c′p, 1) for some c′ on
ccp. Due to symmetry, it is sufficient to consider angles β with 1

4π ≤ β ≤ 1
2π

(see Figure 7.4 and 7.5).
In Figure 7.4 and 7.5, i is the point in the middle between c and cp. Then

‖i‖ = 1
2

(
‖cp‖ − 1

2

)
+ 1

2 = 1
2

(
‖cp‖ + 1

2

)

and

‖s‖ =

√
1 − ‖i − c‖2

=

√
1 −

(
1
2

(
‖cp‖ − 1

2

))2
.

This implies that

‖l‖ =

√
‖i‖2

+ ‖s‖2

=
√

1
4 ‖cp‖2

+ 1
4 ‖cp‖ + 1

16 + 1 − 1
4 ‖cp‖2

+ 1
4 ‖cp‖ − 1

16

=
√

1 + 1
2 ‖cp‖.

It remains to determine ‖cp‖. We distinguish two cases.
If 1

2π − tan−1( 1
2 ) ≤ β ≤ 1

2π, then α is between 0 and tan−1( 1
2 ). But then

we can easily see that ‖cp‖ = 1
cos α , and thus

‖l‖ =

√
1 +

1

2 cos α

We next compute the derivative

d ‖l‖
dα

=
1√

1 + 1
2 cos α

· 1

4 cos2 α
· sinα

For 0 ≤ α ≤ tan−1( 1
2 ), d‖l‖

dα is strictly positive. Hence for 1
2π − tan−1( 1

2 ) ≤
β ≤ 1

2π, ‖l‖ is at least
√

1 + 1
2 cos 0 =

√
3/2 ≈ 1.225.

If 1
4π ≤ β ≤ 1

2π − tan−1( 1
2 ), then 0 ≤ α′ ≤ 1

4π. Using the Cosine Law,

‖cp‖ =
√

1
2 + 1

4 − 2 1√
2

1√
4
· cos

(
α′ + 3

4π
)

=
√

3
4 − 1

2

√
2 · cos

(
α′ + 3

4π
)
.

Then

‖l‖ =

√
1 + 1

2

√
3
4 − 1

2

√
2 · cos

(
α′ + 3

4π
)
.

We again look at the derivative

d‖l‖
dα′ = 1

16

√
2 · 1

‖l‖
1

‖cp‖ · sin
(
α′ + 3

4π
)
.

If 0 ≤ α′ ≤ 1
4π, then d‖l‖

dα′ is nonnegative. Hence for 1
4π ≤ β ≤ 1

2π − tan−1( 1
2 ),

‖l‖ is at least
√

1 + 1
2

√
5/4 ≈ 1.249.
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Observe that the radius of the smallest circle enclosing R is 1
2 + 1

2

√
2 ≈

1.207. Since ‖l‖ ≥
√

3/2 ≈ 1.225, ‖l‖ > 1
2 + 1

2

√
2. Hence the two intersection

points of the boundaries of disk(c, 1) and disk(cp, 1) are not in A.

Given any set of nonintersecting disks intersecting the unit square, but not
intersecting the origin, with centers c1, . . . , ck, we can thus find an equivalent
set of disks with centers cp

1, . . . , c
p
k, which are also nonintersecting and intersect

the unit square, but not the origin. So we may assume that all disk centers of
disks not intersecting the origin are on R.

Theorem 7.5.2 The maximum number of nonintersecting unit disks, inter-
secting the unit square, but not intersecting the origin, is at most 7.

Proof: Because the centers of any such a set of unit disks lie on R, the distance
between any two centers on R must be at least 1 as well (follows from the
triangle inequality). Because R has length 4+π ≈ 7.142, there can be at most
7 such centers on R.

Corollary 7.5.3 The number of nonintersecting unit disks intersecting the
unit square is at most 8.

In the proof of the above theorem, we used that the distance on R between
any two disk centers must be at least 1. By considering this distance more
closely, we can improve the bound.

Theorem 7.5.4 The number of nonintersecting unit disks, intersecting the
unit square, but not intersecting the origin, is at most 6.

Proof: For sake of contradiction, assume c1, . . . , c7 are the centers of 7 such
unit disks. Partition R into corners and straights as shown in Figure 7.3. A
point on a separator is assumed to belong to the adjacent corner. Then the 4
corners and the 4 straights partition R. Furthermore, a corner or a straight
can contain at most one disk center ci (1 ≤ i ≤ 7). Then there is either a
corner or a straight which does not contain a disk center ci.

Suppose there is a corner which does not contain a disk center. Consider
a corner which does contain a disk center (see Figure 7.6). We determine the
length on R of edges cici+1 and cici−1, depending on α. So let l = ‖cici+1‖R +
‖cici−1‖R. We know that ‖cici+1‖ ≥ 1. Using that triangle T is an isosceles
triangle, β = π−α

2 . Then basic trigonometry gives that the part of the straight
covered by cici+1 has length at least

√
1 −

(
1
2 − 1

2 cos α
)2 − 1

2 sinα.

But then

‖cici+1‖R ≥
√

1 −
(

1
2 − 1

2 cos α
)2 − 1

2 sin α + 1
2α.
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Figure 7.6: The triangle T is formed by the three thick lines. As
T is an isosceles triangle, β = π−α

2 . From the figure, we derive that
‖h‖ = 1

2 sinα, ‖r‖ = 1
2 cos α, and ‖w‖ = 1

2 − 1
2 cos α.

c1

c2
c3
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1
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2
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Figure 7.7: The top straight contains no disk center. Clearly, ‖x‖+‖y‖
is minimal if α = α′ = 1

2 .
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Similarly,

‖cici−1‖R ≥
√

1 −
(

1
2 − 1

2 sinα
)2 − 1

2 cos α + 1
4π − 1

2α.

Hence

l ≥
√

1 −
(

1
2 − 1

2 cos α
)2

+

√
1 −

(
1
2 − 1

2 sinα
)2 − 1

2 sinα − 1
2 cos α + 1

4π.

Then the derivative is

dl

dα
= − 1

2
1√

1−( 1
2− 1

2 cos α)
2

(
1
2 − 1

2 cos α
)
sinα

+ 1
2

1√
1−( 1

2− 1
2 sin α)

2

(
1
2 − 1

2 sin α
)
cos α

− 1
2 cos α + 1

2 sinα.

If 0 ≤ α < 1
4π, then dl

dα < 0. If 1
4π < α ≤ 1

2π, dl
dα > 0. If α = 1

4π, dl
dα = 0.

So l = ‖cici+1‖R + ‖cici−1‖R is minimal if α = 1
4π and has value lmin ≈ 2.057.

Because the disk centers can be numbered arbitrarily, we may assume that c2,
c4, and c6 are on corners. Using symmetry, we may also assume that they are
on counter-clockwise consecutive corners, as shown in Figure 7.3. Then

(‖c1c2‖R + ‖c2c3‖R) + (‖c3c4‖R + ‖c4c5‖R) + (‖c5c6‖R + ‖c6c7‖R) + ‖c7c1‖R

≥ 3lmin + 1 ≈ 7.17

This is larger than the length of R, which is a contradiction.
So there must be a straight which does not contain a disk center. Using

symmetry, we may assume that this is the top straight (see Figure 7.7). Note
that 0 ≤ α, α′ ≤ 1

2π. We minimize ‖x‖ + ‖y‖. Trivially, this minimum is
attained if α = α′ = 1

2π. In this case,

‖x‖ + ‖y‖ = 2

(√
1 −

(
1
2

)2 − 1
2

)
=

√
3 − 1.

Hence

(‖c1c2‖R + ‖c2c3‖R + ‖c3c4‖R) + ‖c4c5‖R + ‖c5c6‖R + ‖c6c7‖R + ‖c7c1‖R

≥ (
√

3 − 1 + 1
2π + 1) + 4 ≈ 7.30

This is larger than the length of R, which is a contradiction. Therefore there
can be at most 6 nonintersecting unit disks intersecting the unit square, but
not intersecting the origin.

Using this upper bound and the lower bound given before, we have proved
Theorem 7.3.4.



Chapter 8

Domination on
Geometric Intersection Graphs

This chapter only treats the minimum dominating set problem on geomet-
ric intersection graphs. Although on general graphs the approximability of
Minimum Dominating Set has been settled [156, 197, 66, 108], the problem
is still open on numerous graph classes, including several classes of geometric
intersection graphs.

In studying approximation algorithms for fundamental graph optimization
problems on geometric intersection graphs, we demonstrated the power of the
geometric shifting technique to approximate these problems. In particular, we
were able to obtain better polynomial-time approximation schemes for Maxi-
mum Independent Set and Minimum Vertex Cover on unit disk graphs (Chap-
ter 6) and on general disk graphs (Chapter 7). Moreover, we found a better ptas
for Minimum (Connected) Dominating Set on unit disk graphs (Chapter 6),
again using the shifting technique. These algorithms extend to intersection
graphs of (unit) fat objects in any constant dimension and (at least partially)
to the weighted case (see Section 6.3.5 and 7.4).

Interestingly, as pointed out by Erlebach, Jansen, and Seidel [103], these
techniques do not seem sufficient for handling Minimum Dominating Set on
intersection graphs of objects of different sizes. As far as we know, there
are no results on intersection graphs of arbitrary disks, squares, etc., beyond
the (1 + lnn)-approximation ratio of the greedy algorithm [156, 197, 66]. In
particular, we know of no constant-factor approximation algorithm or approx-
imation hardness results. In this chapter, we address this open problem by
studying Minimum Dominating Set on intersection graphs of different types of
fat objects and providing new insights into its approximability.

In Section 8.2, we present a new general approach to deriving approxima-
tion algorithms for Minimum Dominating Set on geometric intersection graphs.
We apply it to obtain the first constant-factor approximation algorithms for
Minimum Dominating Set on intersection graphs of pairwise homothetic poly-
gons with a constant number of corners and on intersection graphs of rectangles
of bounded aspect-ratio.

We also obtain a constant-factor approximation algorithm for Minimum
Dominating Set on disk graphs of constant ply (see Section 8.4). A surprising
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corollary of this is a constant integrality gap of the standard linear program
(LP) for Minimum Dominating Set on planar graphs. For disk graphs of
bounded ply, we can improve this result to a (3 + ǫ)-approximation algorithm
by using a new variant of the shifting technique. This algorithm extends to
intersection graphs of fat objects of bounded ply and constant dimension.

The type of fat objects one considers has a strong impact on the ap-
proximability of Minimum Dominating Set, as shown in Section 8.5. We
prove that on intersection graphs of n convex fat objects, approximation ra-
tio (1 − ǫ) lnn is not achievable in polynomial time for any ǫ > 0, unless
NP ⊂ DTIME(nO(log log n)). This also holds on intersection graphs of pair-
wise homothetic objects. Finally, we solve an open problem of Chleb́ık and
Chleb́ıková [65], who asked whether their APX-hardness results for Minimum
Dominating Set on intersection graphs of d-dimensional axis-parallel boxes if
d ≥ 3 extend to the case where d = 2. We affirm this by showing that Minimum
Dominating Set is APX-hard on rectangle intersection graphs.

8.1 Small ǫ-Nets

The core of the algorithmic results of Section 8.2 relies on the availability of
small ǫ-nets. Given a universe U, a family S of subsets of U (called objects),
and a (positive) weight function w over S, we say that R ⊆ S is an ǫ-net
for S if any element u ∈ U for which

∑
s∈S:u∈s w(s) > ǫW is covered by R

(i.e. u ∈ ⋃R), where W =
∑

s∈S w(s). In the classic definition of an ǫ-net, it
assumed that all weights are equal to 1. That is, R ⊆ S is a binary ǫ-net for
S if any element u ∈ U covered by more than ǫ|S| sets in S is also covered by
R. The size of a (binary) ǫ-net is the cardinality of R.

We should note that in a way there are two definitions of an ǫ-net, that
are essentially dual to each other [143, 68]. In the covering version of ǫ-nets,
described above, we aim to select objects to cover elements that are covered
by a lot of objects. In the dual definition, the hitting version, we need to select
elements to hit all objects containing a large number of elements. Here we
only need the covering variant and thus disregard the hitting version.

There have been several results on ǫ-nets in the past (e.g. [143, 35, 170,
205, 62, 44, 68, 188, 226]). The most general result is the following. Given a
(finite) universe U and a family S of subsets of U, let S(u) = {s ∈ S | u ∈ s}
for any S ⊆ S. Then the dual Vapnik-Chervonenkis dimension or dual VC-
dimension of (U,S) is equal to the cardinality of a largest set S ⊆ S for which
{S(u) | u ∈ U} equals the power set of S [143].

Theorem 8.1.1 ([170]) Suppose that (U,S) has dual VC-dimension d. Then
for any ǫ > 0 that is sufficiently small with respect to d there is a binary ǫ-net
for S of size at most (d/ǫ) · (log(1/ǫ) + 2 log log(1/ǫ) + 3).

There are many examples of set systems with constant dual VC-dimension.
For instance, recall from Chapter 3 the representation of an arbitrary graph
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as an intersection graph. Given a graph G, let U = E(G) and S = {Sv | v ∈
V (G)}, where Sv = {(u, v) ∈ E(G) | u ∈ V (G)} for any v ∈ V (G). This set
system can easily be shown to have dual VC-dimension at most 2. Hence, by
Theorem 8.1.1, it has an ǫ-net of size O( 1

ǫ log 1
ǫ ). One can however improve on

this bound.

Theorem 8.1.2 Let (U,S) be induced by a graph G (as described above) and
let w be a positive weight function over S. Then one can find an ǫ-net of S of
size at most 2/ǫ in linear time.

Proof: We need to cover all elements of U covered by sets of S with total
weight exceeding ǫW . Any u ∈ U is in at most 2 sets of S, say s1

u and s2
u. If

w(s1
u) + w(s2

u) > ǫW , then max{w(s1
u), w(s2

u)} > ǫW/2. Hence R = {s ∈ S |
w(s) > ǫW/2} is an ǫ-net. Moreover, |R| < 2/ǫ.

The bound of Theorem 8.1.2 is essentially tight. For m > 0, let G = K2m and
let (U,S) be the set system induced by G. Set w(s) = 1 for each s ∈ S and
set ǫ = 1/(m + 1

4 ). An ǫ-net for (U,S) is equal to a vertex cover of all edges
(u, v) ∈ E(G) for which w(u) + w(v) > ǫW . Clearly, w(u) + w(v) = 2 > ǫ · 2m
for each (u, v) ∈ E(G). But each vertex cover of G needs at least 2m − 1
vertices, while 2/ǫ < 2m + 1. As m tends to infinity, this is tight.

For geometric intersection graphs one can prove similar bounds. A family
S of subsets of U = R2 is a family of pseudo-disks if the sets in S are bounded
by simple closed Jordan curves, such that each pair of curves intersects at
most twice. Examples are families of disks, squares, or homothetic polygons.
Given such U and S, the next theorem follows from results of Chazelle and
Friedman [62], Clarkson and Varadarajan [68], and Kedem et al. [161].

Theorem 8.1.3 For any ǫ > 0, there is a binary ǫ-net for S of size O(1/ǫ).

Such a net can be found by a randomized algorithm with polynomial expected
running time [62, 68]. By derandomizing the algorithm using the method of
conditional expectations, we can prove that a binary ǫ-net as in Theorem 8.1.3
can be found in time polynomial in |S| and 1/ǫ [62, 256].

The above results are actually corollaries of more general theorems that
relate the size of the ǫ-net to the union complexity of the set S. An extensive
treatment may be found in [62, 68, 256].

Pyrga and Ray [226] recently improved on Theorem 8.1.3 and the associated
algorithms. The ǫ-nets following from their results also have size O(1/ǫ), but
with a much better hidden constant. Moreover, both the analysis and the
algorithm needed to compute the net are easier.

Theorem 8.1.4 For any ǫ > 0, one can obtain a binary ǫ-net for S of size
O(1/ǫ) in time polynomial in |S| and 1/ǫ.

Linear-sized ǫ-nets also exist for three-dimensional objects. Clarkson and
Varadarajan [68] showed that an ǫ-net exists for unit cubes. This result was
subsequently generalized by Laue [188].
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Theorem 8.1.5 ([188]) For any ǫ > 0, one can obtain a binary ǫ-net of size
O(1/ǫ) for a set S of translates of a fixed three-dimensional polytope in time
polynomial in |S| and 1/ǫ.

Note that the above algorithms find binary ǫ-nets. One can transform them
into algorithms to find a (weighted) ǫ-net at relatively small cost.

Definition 8.1.6 Algorithm A is a net finder with size-function g for (U,S)
if for any ǫ > 0 and any (positive) weight function w over S, A gives an ǫ-net
for (U,S) of size at most g(1/ǫ) in time polynomial in |S|, 1/ǫ, and the size
of a representation of w.

The definition of a binary net finder with size-function g is similar. We will
always assume the size-function g to be nondecreasing.

Proposition 8.1.7 ([45]) If A is a binary net finder with size-function g for
some (U,S), then there is a net finder A′ with size-function g′(1/ǫ) = g(2/ǫ)
for (U,S).

Proof: Let some ǫ > 0 and some (positive) weight function w over S be given.
Scale the weights to w′ such that W ′ =

∑
s∈S w′(s) = |S|. Take ⌈w′(s)⌉ copies

of each s ∈ S and denote the resulting set of objects by S ′. Then

|S ′| =
∑

s∈S
⌈w′(s)⌉ <

∑

s∈S
(1 + w′(s)) = W ′ + |S| = 2|S| = 2W ′.

Choose ǫ′ = ǫ/2 and apply A to S ′ and ǫ′. This gives an ǫ′-net for S ′ of size
g(2/ǫ). Since ǫ′|S ′| < ǫW ′, it induces an ǫ-net of S with respect to w′, and
hence with respect to w as well. Observe that the above algorithm takes time
polynomial in |S|, 1/ǫ, and the size of the representation of w.

8.2 Generic Domination

We give a generic approach to approximating Minimum Dominating Set, par-
ticularly on geometric intersection graphs. To this end, we introduce the novel
notion of �-dominating sets, which we then use in combination with ǫ-nets to
approximate Minimum Dominating Set.

Let � be a binary reflexive relation on the vertices of a graph G. For
example, if G is some geometric intersection graph with representation S,
u � v if the size of S(u) is at most the size of S(v). We say that v ∈ V (G)
is �-larger than u ∈ V (G) if u � v. Denote by N�(u) = {v ∈ V (G) |
(u, v) ∈ E(G), u � v} the set of �-larger neighbors of some u ∈ V (G) and let
N�[u] = N�(u) ∪ {u} denote u’s closed �-larger neighborhood. Similarly, we
define N�(u) = {v ∈ V (G) | (u, v) ∈ E(G), v � u} and N�[u] = N�(u) ∪ {u}.

Definition 8.2.1 Given a graph G and a binary reflexive relation � on the
vertices of G, C ⊆ V (G) is a �-dominating set of G if for any u ∈ V (G),
u ∈ C or there is a �-larger neighbor of u in C.
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Alternatively, C ⊆ V (G) is a �-dominating set of G if C ∩ N�[u] 6= ∅ for
all u ∈ V (G). Observe that �-dominating sets are a proper generalization of
ordinary dominating sets. Simply take � to be the complete relation, i.e. u � v
for all u, v ∈ V (G). Moreover, the definition of �-dominating set is sound, as
V (G) is a �-dominating set of G, regardless of the definition of �.

For a given relation �, one can try to find a relation between the cardinality
of a smallest dominating and of a smallest �-dominating set.

Definition 8.2.2 Given a graph G and a binary reflexive relation � on V (G),
the �-factor is the cardinality of a minimum �-dominating set divided by the
cardinality of a minimum dominating set.

Clearly, the �-factor is at least 1 for any relation �. Knowing an upper bound
on the �-factor is more interesting however, as this leads to one of the main
theorems of this chapter.

Theorem 8.2.3 Let (U,S) be a set system for which a net finder with size-
function g exists and let � be a binary reflexive relation on the vertices of
G = G[S] with �-factor at most c1 such that for any u ∈ V (G) there exist
at most c2 elements of U in S(u) jointly hitting all S(v) with v ∈ N�(u). If
the cardinality of a minimum dominating set of G is k, then one can find a
dominating set of G of cardinality at most g(c1c2k) in time polynomial in |S|.

Proof: Consider the standard integer LP of the minimum �-dominating set
problem:

z∗I = min
∑

u∈V (G)

xu

s.t.
∑

v∈N�[u]

xv ≥ 1 ∀u ∈ V (G)

xu ∈ {0, 1} ∀u ∈ V (G)

Observe that z∗I ≤ c1k. Relax the above integer LP by replacing its last
constraint by xu ≥ 0 ∀u ∈ V (G). Let x∗ be a vector attaining the optimum
fractional value z∗. Because for any u ∈ V (G), all S(v) with v ∈ N�(u) can
be jointly hit by c2 elements in S(u), each S(u) contains an element p such
that

∑
v:p∈S(v) x∗

v ≥ 1/c2. Call such an element heavily covered.

Now define a weight function w by w(S(u)) := x∗
u|S|/z∗. Let W =∑

u∈V (G) w(S(u)) and ǫ = 1/(c2z
∗). Following the previous observation, this

implies that any object s ∈ S contains an element p such that

∑

v:p∈S(v)

w(S(v)) =
∑

v:p∈S(v)

x∗
v|S|/z∗ = (|S|/z∗) ·

∑

v:p∈S(v)

x∗
v ≥ |S|/(c2z

∗) = ǫW.

Hence an ǫ-net R ⊆ S for this choice of ǫ will cover all heavily covered elements.
But then R induces a dominating set of G. Moreover,

|R| ≤ g(c2z
∗) ≤ g(c2z

∗
I ) ≤ g(c1c2k).
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Finally note that R can be found in time polynomial in |S|. The optimum
solution to the linear program can be found in polynomial time [163, 159].
Hence the weights of the weight function can be represented using a polynomial
number of bits and therefore the ǫ-net can be found in polynomial time.

Observe that if instead of a (weighted) net finder we only have a binary net
finder with size-function g, then the above algorithm yields a dominating set
of cardinality at most g(2c1c2k) by Proposition 8.1.7.

The running time of the algorithm described in Theorem 8.2.3 is determined
by the time it takes to find the ǫ-net and to solve the linear program. The
latter takes O(n3.5 log2 n) time [159], where we ignore some sublogarithmic
terms. Young [275] showed that a (1 + δ)-approximate solution to the linear
program can be found much quicker, in O(n2 log n/δ2) time. If we use such a
solution in Theorem 8.2.3, the dominating set has cardinality g((1 + δ)c1c2k).

The proof of Theorem 8.2.3 solves a linear program and finds an ǫ-net
once, following a technique of Even, Rawitz, and Shahar [107]. Alternatively,
one could use the iterative reweighting technique proposed by Brönnimann and
Goodrich [45], where an ǫ-net is constructed in every iteration. In this chapter,
finding the ǫ-net is usually quite expensive and hence we prefer the technique
of Even, Rawitz, and Shahar. Moreover, it makes for an easier proof.

Another consequence of the proof of Theorem 8.2.3 is a bound on the inte-
grality gap of the standard LP of Minimum Dominating Set. The integrality
gap of an LP is the ratio of its optimum integral value and its optimum frac-
tional value. For this bound, we need a fractional equivalent of the �-factor.

Definition 8.2.4 Given a graph G and a binary reflexive relation � on V (G),
the fractional �-factor is the ratio of the optimum fractional value of the stan-
dard LP for Minimum �-Dominating Set and the optimum fractional value of
the standard LP for Minimum Dominating Set.

For all relations � described in this chapter, we can find the same bound on
the �-factor as on the fractional �-factor. It is not clear whether this is a
coincidence.

We can now prove a fractional equivalent of Theorem 8.2.3.

Theorem 8.2.5 Let (U,S) be a set system for which a net finder with size-
function g exists and let � be a binary reflexive relation on the vertices of
G = G[S] with fractional �-factor at most c3 such that for any u ∈ V (G) there
exist at most c2 elements of U in S(u) jointly hitting all S(v) with v ∈ N�(u).
If the optimum fractional value of the standard LP for Minimum Dominating
Set is z∗, then one can find a dominating set of G of cardinality at most
g(c2c3z

∗) in time polynomial in |S|.
Proof: Let z∗� denote the optimum fractional value of the standard LP for
Minimum �-Dominating Set on G. Following the proof of Theorem 8.2.3, one
can find a dominating set of cardinality at most g(c2z

∗
�) in polynomial time.

As z∗� ≤ c3z
∗, this dominating set has cardinality at most g(c2c3z

∗).
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In other words, the integrality gap is at most g(c2c3z
∗)/z∗.

Again if only a binary net finder with size-function g exists, then one can
find a dominating set of G of cardinality at most g(2c2c3z

∗) in polynomial
time. This implies that the integrality gap is at most g(2c2c3z

∗)/z∗.
As an example and to demonstrate the generality of Theorem 8.2.3 and

Theorem 8.2.5, we apply them to general graphs. For a graph G, let ∆(G)
denote the maximum degree of a vertex of V (G).

Theorem 8.2.6 Minimum Dominating Set has a polynomial-time 2∆(G)-
approximation algorithm on any graph G. Moreover, the integrality gap is
at most 2∆(G).

Proof: Let G be any graph and (U,S) a representation of G, i.e. U = E(G)
and S = {Sv | v ∈ V (G)}, where Sv = {(u, v) ∈ E(G) | u ∈ V (G)} for any
v ∈ V (G). Define a binary relation � such that u � v for all u, v ∈ V (G).
Observe that the (fractional) �-factor is 1. For any u ∈ V (G), N�(u) = N(u),
and thus there exist (at most) ∆(G) elements of U in S(u) that jointly hit
all S(v) with v ∈ N�(u). Simply take all edges incident to u. Theorem 8.1.2
showed that any graph G with representation (U,S) has an ǫ-net of size 2/ǫ,
which can be found in polynomial time. The theorem statement follows from
Theorem 8.2.3 and Theorem 8.2.5.

Note that the above algorithm can only guarantee an approximation ratio of
2∆(G), whereas a greedy algorithm giving ratio 1 + ln∆(G) exists [156, 197,
66, 149]. Theorem 8.2.6 merely serves as an indication of the power of Theo-
rem 8.2.3 and Theorem 8.2.5. The real challenges and offered improvements
lie with geometric intersection graphs.

8.3 Dominating Set on Geometric Intersection Graphs

The main result of this section is a constant-factor approximation algorithm
for Minimum Dominating Set on intersection graphs of homothetic convex
polygons. The constant depends on the number of corners (i.e. the complexity)
of the base polygon. We also show that on intersection graphs of regular
polygons the dependence on the complexity of the base polygon can be reduced.
Although homotheticity is crucial in the analysis of these results, we show
that on intersection graphs of axis-parallel rectangles that are not necessarily
homothetic, but have constant aspect-ratio, one can obtain a constant-factor
approximation algorithm as well. A discussion of disk graphs is deferred to
Section 8.4.

8.3.1 Homothetic Convex Polygons

We show that Minimum Dominating Set on intersection graphs of homothetic
convex polygons with r corners has a polynomial-time O(r4)-approximation
algorithm. We require two auxiliary results before we are ready to prove this.
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First we need a way to bound the (fractional) �-factor of a relation �. The
next two lemmas hold for arbitrary graphs.

Lemma 8.3.1 Let � be a binary reflexive relation on the vertices of a graph
G such that for any u ∈ V (G) a minimum �-dominating set for Uu = {v | v 6�
u, v ∈ N(u)} has cardinality at most c. Then the �-factor is at most c + 1.

Proof: Consider some dominating set C of G and for each u ∈ C, let Cu be
a minimum �-dominating set of Uu. We claim that C ′ = C ∪ ⋃u∈C Cu is a
�-dominating set of G. For suppose that there is some v ∈ V (G) − C ′ that is
not �-dominated by a vertex in C ′. Because C is a dominating set of G and
C ⊆ C ′, v ∈ Uu for some u ∈ C. But then v is �-dominated by Cu and hence
by C ′, a contradiction. Finally, note that |C ′| ≤ (c + 1) · |C|. Therefore the
�-factor is at most c + 1.

Observe that one only needs an upper bound on |Cu| for vertices u appearing
in the dominating set C.

Lemma 8.3.2 Let � be a binary reflexive relation on the vertices of some
graph G such that for any u ∈ V (G) a minimum �-dominating set for Uu =
{v | v 6� u, v ∈ N(u)} has cardinality at most c. Then the fractional �-factor
is at most c + 1.

Proof: Let x∗ be an optimal fractional solution to the standard LP for Mini-
mum Dominating Set, with value z∗. For any u ∈ V (G), let Cu be a minimum
�-dominating for Uu. Set x′

v to x∗
v for each v ∈ V (G) and then add x∗

u to x′
v

for each u ∈ V (G) with v ∈ Cu. Then for any u ∈ V (G),

∑

v∈N�[u]

x′
v ≥

∑

v∈N�[u]

x∗
v +

∑

v∈N [u]−N�[u]

x∗
v =

∑

v∈N [u]

x∗
v ≥ 1.

Hence x′ is a solution to the standard LP for Minimum �-Dominating Set. It
has value ∑

u∈V (G)

x′
u ≤

∑

u∈V (G)

(c + 1)x∗
u = (c + 1) · z∗.

Therefore the fractional �-factor is at most c + 1.

We are now ready to present the relation used in the approximation algorithm.
Call the straight line segment between two corners of a convex polygon a chord.
Observe that some chords correspond to sides of the polygon and that each
chord is contained in the polygon. Let G = G[S] be the intersection graph of
a set S of homothetic convex polygons. Define a relation �1/3 as follows. For
any two vertices u, v ∈ V (G), let v �1/3 u if S(u) contains a corner of S(v) or
S(u) covers at least one third of a chord of S(v).

The next lemma is crucial to the analysis of the approximation algorithm.
For its proof, recall the following definitions of points and lines of a triangle.
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An altitude of a corner is the straight line through this corner, perpendicular to
the side opposite the corner. A median of a corner is the straight line through
this corner and the midpoint of the opposite side. The intersection point of
the medians of a triangle is its centroid or barycenter.

Lemma 8.3.3 Let G = G[S] be the intersection graph of a collection S of
homothetic convex polygons with r corners for some r ≥ 3. Then the �1/3 -
factor is at most 2r(r − 2) + 1.

Proof: Consider a dominating set C of G such that for each u ∈ C there is no
v ∈ V (G) for which S(v) strictly contains S(u). Clearly, G always has a domi-
nating set with this property that is also a minimum dominating set. Let u ∈ C
and consider the set U = {v | v 6�1/3 u, v ∈ N(u)}. Following Lemma 8.3.1, it
suffices to bound the cardinality of a minimum �1/3 -dominating set of U by
2r(r − 2) to prove the lemma.

Observe that for any v ∈ U , S(u) does not contain a corner of S(v). As
the polygons are convex and homothetic, each S(v) with v ∈ U must contain a
corner of S(u). Consider a corner p of S(u) and let Up = {v | v ∈ U, p ∈ S(v)}
be the set of vertices v ∈ U for which p ∈ S(v). Because S(v) has no corner in
S(u) for each v ∈ Up, there must be precisely one side of S(v) that intersects
S(u). This side is not incident with the corner of S(v) corresponding to p. Let
Up,s be the set of vertices v ∈ Up for which side s of S(v) intersects S(u).

For any p, s, reduce S(u) and each S(v) with v ∈ Up,s to the triangle
induced by the corner corresponding to p and the side corresponding to s.
This gives a collection S ′ of homothetic triangles all containing p, but no
triangle S ′(v) with v ∈ Up,s contains S ′(u) or has a corner in S ′(u). Moreover,
the sides of the triangles correspond to chords of the original polygons.

Assume without loss of generality that one side of the triangles of S ′ is
parallel to the x-axis and that p corresponds to the left corner of S ′(u). Now
let vt ∈ Up,s be a vertex such that the top corner of S ′(vt) has the largest
distance to the altitude of the left corner of S ′(u) among all top corners of
triangles in Up,s. Similarly, let vr be a vertex such that the right corner S ′(vr)
has the largest distance to the altitude of the left corner of S ′(u). We claim
that vt and vr form a �1/3 -dominating set of Up,s.

Let w be a vertex in Up,s (see Figure 8.1). We may assume that S ′(w) has
no corner in S ′(vt), S ′(vr), or S ′(u). Then S ′(w) contains a corner of S ′(vt),
S ′(vr), and S ′(u). Furthermore, by the choice of vt and vr, S ′(w) cannot
strictly contain either S ′(vt) or S ′(vr), as the top or right corner of S ′(w)
would be further from the altitude than the top or right corner of S ′(vt) or
S ′(vr) respectively.

Observe that there must be a side of S ′(w) such that p is at least as far from
this side as the centroid of S ′(w). Suppose w.l.o.g. that S ′(vr) protrudes this
side of S ′(w). Then the corner of S ′(vr) in S ′(w) is at least as far from this side
as p, and thus at least as far from the side as the centroid of S ′(w). An easy
calculation shows that S ′(vr) covers at least one third of the side of S ′(w). But



122 Chapter 8. Domination on Geometric Intersection Graphs

w

u

vr

vt

Figure 8.1: Triangles S ′(u), S ′(vt), S ′(vr), and S ′(w) of the proof of
Lemma 8.3.3. The two dots represent p and the centroid of w. The
dotted line inside S ′(u) is the altitude of p.

then S(vr) covers at least one third of a chord of S(w) and hence w �1/3 vr.
Therefore vt and vr are a �1/3 -dominating set of Up,s.

As each of the r corners of the base polygon has r−2 sides not incident with
it, U has a �1/3 -dominating set of cardinality at most 2r(r − 2). Following
Lemma 8.3.1, the �1/3 -factor is at most 2r(r − 2) + 1.

Combining Lemma 8.3.3 with Theorem 8.2.3, we obtain the following result.

Theorem 8.3.4 Let r ≥ 3 be an integer. There is a polynomial-time O(r4)-
approximation algorithm for Minimum Dominating Set on intersection graphs
of homothetic convex r-polygons.

Proof: Let G = G[S] be the intersection graph of a collection S of homothetic
convex r-polygons for some r ≥ 3. Use the relation �1/3 . Lemma 8.3.3 showed
that the �1/3 -factor is at most 2r(r − 2) + 1. To hit all �1/3 -larger neighbors
of a vertex, place a point on each corner of the corresponding polygon and two
on all chords, such that each chord is divided into three equal parts. This gives
a total of r+2

(
r
2

)
= r2 points. Observe that homothetic convex polygons form

a set of pseudo-disks. The theorem statement now follows from Theorem 8.1.4
and Theorem 8.2.3.

This also implies an O(r4)-approximation algorithm for Minimum Connected
Dominating Set on intersection graphs of homothetic convex r-polygons for
r ≥ 3 by using Proposition 6.3.24.

Another consequence of Theorem 8.3.4 is a constant-factor approximation
algorithm for Minimum Dominating Set on max-tolerance (interval) graphs,
because Kaufmann et al. [160] proved that max-tolerance graphs are intersec-
tion graphs of isosceles right triangles.

Using a similar proof as for Lemma 8.3.3, we can show that the fractional
�1/3 -factor is at most 2r(r − 2) + 1. Then the following may be easily proved
from Theorem 8.2.5.
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Theorem 8.3.5 Let r ≥ 3 be an integer. The integrality gap of the standard
LP for Minimum Dominating Set on intersection graphs of homothetic convex
r-polygons is O(r4).

8.3.2 Regular Polygons

If the given polygons are homothetic regular polygons, then we can improve on
the analysis of the previous section. We distinguish between regular polygons
with an odd and with an even number of corners. Let G = G[S] be the
intersection graph of a set S of homothetic odd regular polygons. Define a
relation �1/2 such that for any u, v ∈ V (G), u �1/2 v if S(v) contains a corner
of S(u) or S(v) covers at least half of a side of S(u).

Lemma 8.3.6 Let G = G[S] be the intersection graph of a set S of homothetic
odd regular polygons with r corners for some odd integer r ≥ 5. Then the �1/2 -
factor is at most 2r + 1.

Proof: Let C be a dominating set such that for each u ∈ C there is no v ∈ V (G)
for which S(u) ⊂ S(v). Consider the set U = {v | v 6�1/2 u, v ∈ N(u)} for some
u ∈ V (G). For each corner p of S(u), let Up = {v | v ∈ U, p ∈ S(v)} be the
set of vertices in U for which the corresponding polygon contains p. Because
S(u) does not contain a corner of S(v) for any v ∈ Up and the polygons are
odd and regular, S(u) protrudes the same side of each S(v) with v ∈ Up.

Similar to Lemma 8.3.3, let vt and vb be two vertices for which this side
of the corresponding polygons extends furthest in either direction. Then any
S(w) with w ∈ U is at most twice as large as S(vt) or S(vb), or this would
contradict the choice of vt or vb. We may assume that S(vt) and S(vb) contain
no corner of S(w), otherwise w �1/2 vt or w �1/2 vb. Since S(w) intersects
S(vt) and S(vb), the largest of S(vt) and S(vb) covers at least half of a side
of S(w). Hence w �1/2 vt or w �1/2 vb. But then vt and vb form a �1/2 -
dominating set of U . It follows immediately from Lemma 8.3.1 that the �1/2 -
factor is at most 2r + 1.

Theorem 8.3.7 Let r ≥ 3 be an odd integer. There is a polynomial-time
O(r2)-approximation algorithm for Minimum Dominating Set on intersection
graphs of homothetic regular r-polygons.

Proof: The case when r = 3 follows from Theorem 8.3.4. So let G = G[S] be
the intersection graph of a set S of homothetic regular r-polygons for some odd
integer r ≥ 5. Observe that all �1/2 -larger neighbors of a u ∈ V (G) can be
hit by the corners of S(u) and the midpoint of each side. Then Theorem 8.1.4
and Theorem 8.2.3 immediately give the theorem.

Furthermore, we can adapt Lemma 8.3.6 to bound the fractional �1/2 -factor.
Therefore the integrality gap of the standard LP of Minimum Dominating Set
on intersection graphs of homothetic regular r-polygons for odd integers r ≥ 3
is O(r2) as well by Theorem 8.2.5.
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For homothetic even regular polygons, we use a completely different relation
to improve on the approximation ratio attained by the algorithm of Theo-
rem 8.3.4. We require the following consequence of Lemma 8.3.1. A binary
relation � is a preorder if it is both reflexive and transitive. It is total if u � v
or v � u for any pair u, v.

Lemma 8.3.8 Let � be a total preorder on the vertices of a graph G such that
for any u ∈ V (G) the cardinality of any independent set of N�(u) is bounded
by c. Then the �-factor is at most c + 1.

Proof: Find a �-dominating set of N�(u) as follows. Since � is a total
preorder, there is a v ∈ N�(u) that is maximum, i.e. w � v for each w ∈ N�(u).
Observe that v �-dominates N(v)∩N�(u). Now remove N [v] from N�(u) and
iterate. This yields a �-dominating set of N�(u) that is also an independent
set. Hence it has cardinality at most c. It follows from Lemma 8.3.1 that the
�-factor is at most c + 1.

A similar lemma can be proved for the fractional �-factor.
Now let G = G[S] be the intersection graph of a collection S of homothetic

regular r-polygons for some even integer r ≥ 2. Define a total preorder �Leb

on V (G) such that u �Leb v for u, v ∈ V (G) if the Lebesgue measure of S(u)
is at most the Lebesgue measure of S(v).

Lemma 8.3.9 Let G = G[S] be the intersection graph of a collection S of
homothetic convex compact sets in R2. Then the �Leb -factor is at most 5 if S
is a collection of homothetic parallelograms and at most 6 otherwise.

Proof: Following Lemma 8.3.8, it suffices to bound the cardinality of any
independent set of N�Leb

(u) for each u ∈ V (G) by 4 and 5 respectively. So for
some u ∈ V (G), define a set S ′ = {S ′(v) | v ∈ N�Leb

[u]} of translated copies
of S(u) such that S ′(v) ⊆ S(v) and S ′(v) ∩ S ′(u) 6= ∅ for each v ∈ N�Leb

[u].
An independent set of N�Leb

(u) corresponds to one of G[S ′], and vice versa.
We now apply a result of Kim, Kostochka, and Nakprasit [167], who showed

that if H is the intersection graph of a set of translated copies of a fixed convex
compact set in the plane with ω(H) ≥ 2, then the maximum degree of H is
at most 4ω(H) − 4 if this fixed set is a parallelogram and at most 6ω(H) − 7
otherwise, where ω(H) is the cardinality of a maximum clique of H. Let H ′ be
the subgraph of G[S′] induced by u and any independent set of G[S ′] (i.e. of
N�Leb

(u)). Then ω(H ′) = 2 and thus the degree of u in H ′ is bounded by 4
and 5 respectively. The lemma follows.

Note that the bounds of this lemma are tight, as demonstrated by a suitable
representation of K1,5 and K1,6 respectively.

Theorem 8.3.10 Let r ≥ 2 be an even integer. There is a polynomial-time
O(r)-approximation algorithm for Minimum Dominating Set on intersection
graphs of homothetic regular r-polygons.
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Proof: Use the relation �Leb . Lemma 8.3.9 proved that the �Leb -factor is at
most 6. All �Leb -larger neighbors of a vertex can be hit by placing a point
on each corner of the corresponding polygon. The theorem statement then
follows from Theorem 8.1.4 and Theorem 8.2.3.

It follows from Theorem 8.2.5 that the integrality gap of the standard LP of
Minimum Dominating Set is O(r) on intersection graphs of homothetic regular
r-polygons for even integers r ≥ 2.

Note that although the algorithm of Theorem 8.3.10 also applies to Mini-
mum Dominating Set on intersection graphs of homothetic regular 2-polygons
(i.e. interval graphs), a linear-time exact algorithm exists in this case [61] and
the integrality gap of the standard LP is 1 [47].

8.3.3 More General Objects

Observe that the proof of Theorem 8.3.10 goes through for arbitrary homoth-
etic parallelograms. In fact, we can extend Theorem 8.3.7 and Theorem 8.3.10
to the following theorem. An affine regular polygon is any polygon that can
be obtained from a regular polygon by an invertible affine transformation.

Theorem 8.3.11 For any integer r ≥ 2, there is a polynomial-time approxi-
mation algorithm for Minimum Dominating Set on intersection graphs of ho-
mothetic affine regular r-polygons, attaining approximation ratio O(r) if r is
even and O(r2) otherwise.

Proof: Let S be a collection of homothetic affine regular r-polygons for some
r ≥ 2. Apply the inverse affine transformation to transform S into a collection
S ′ of homothetic regular r-polygons and note that G[S] = G[S ′]. The theorem
statement is now immediate from Theorem 8.3.7 and Theorem 8.3.10.

A consequence of this result is a constant-factor approximation algorithm for
intersection graphs of homothetic rectangles. By placing a mild restriction on
the type of rectangles, we can drop the homotheticity constraint.

We consider intersection graphs of axis-parallel rectangles whose aspect-
ratio is constant. The aspect-ratio of a rectangle is the length of its longest
side divided by the length of its shortest side.

Lemma 8.3.12 Let S be a collection of axis-parallel rectangles with aspect-
ratio at most c for some c ≥ 1. Then for any ǫ > 0, one can obtain a binary
ǫ-net of size O(c/ǫ) in time polynomial in |S| and c/ǫ.

Proof: Construct a set of homothetic squares S ′ by replacing each rectangle
s ∈ S by at most c axis-parallel squares, the union of which is precisely s. Now
use Theorem 8.1.4 to find an ǫ′-net for S ′, where ǫ′ = ǫ/c.

Theorem 8.3.13 For any integer c ≥ 1, there is a polynomial-time O(c3)-
approximation algorithm for Minimum Dominating Set on intersection graphs
of axis-parallel rectangles with aspect-ratio at most c.
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Proof: Let G = G[S] be the intersection graph of a collection S of axis-parallel
rectangles with aspect-ratio at most c, for some integer c ≥ 1. Consider a �Leb -
larger neighbor v of some vertex u. Without loss of generality, S(u) is a 1 × c
rectangle. Then all sides of S(v) have length at least 1 and S(v) contains a
corner of S(u) or covers at least a 1/c-fraction of a long side of S(u). Hence
2c + 2 points in S(u) suffice to hit all �Leb -larger neighbors. But then any
independent set of N�Leb

(u) has cardinality at most 2c+2 and the �Leb -factor
is at most 2c+3 by Lemma 8.3.8. The theorem now follows from Lemma 8.3.12
and Theorem 8.2.3.

The result of Theorem 8.3.13 does not seem to extend to similarly defined
variants of regular pentagons, regular hexagons, or other regular polygons.

To show that Theorem 8.2.3 may also be applied beyond two dimensions, we
prove the following theorem about Minimum Dominating Set on intersection
graphs of translated copies of an affine three-dimensional box. We should note
that the results of Section 6.3.3 imply the existence of a ptas for this case.

Theorem 8.3.14 There exists a constant-factor approximation algorithm for
Minimum Dominating Set on intersection graphs of translated copies of an
affine three-dimensional box.

Proof: Using the idea of the proof of Theorem 8.3.11, we may assume that we
are given the intersection graph G = G[S] of a set S of translated copies of a
three-dimensional box. It is easy to see that the �Leb -factor is at most 9 by
Lemma 8.3.8 and that any �Leb -larger neighborhood can be hit by 8 points.
Hence, following a result by Laue [188] (see Theorem 8.1.5), we may apply
Theorem 8.2.3 with a linear function g and the theorem follows.

Since Theorem 8.1.5 applies to translated copies of any fixed three-dimensional
polytope, it seems likely that the above theorem could be extended to more
general or more complex three-dimensional objects.

8.4 Disk Graphs of Bounded Ply

The obvious class of intersection graphs missing in the above discussion is the
class of disk graphs. We proved in Chapter 6 that Minimum Dominating Set
has a ptas on unit disk graphs, but this scheme does not carry over to general
disk graphs. The ideas developed in Chapter 6 also seem to be insufficient
to handle this problem. Finally, even though the �Leb -factor is at most 6 for
disk graphs, we do not know how to apply Theorem 8.2.3. The problem (when
using �Leb ) is that we cannot choose a constant number of points inside a disk
to hit all �Leb -larger neighbors. All �Leb -larger neighbors of a disk can be hit
by a constant number of points, but some would have to lie outside the disk.
Unfortunately, Theorem 8.2.3 does not seem to extend to this case.
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If we know however that the ply of the set of disks representing the disk
graph is bounded, then the above techniques do work and we obtain a constant-
factor approximation algorithm. We give these algorithms below, in order of
descending approximation ratio. Recall that the ply of a set of objects is the
maximum over all points p of the number of objects strictly containing p.

8.4.1 Ply-Dependent Approximation Ratio

The approximation ratio of the first approximation algorithms we present de-
pend (linearly) on the ply of the set of disks representing the disk graph.

Lemma 8.4.1 Given a set of disks of ply γ, the cardinality of the closed �Leb -
larger neighborhood of any disk is at most 9γ.

The proof uses an area bound in a manner similar to Lemma 7.1.1 (see also
Miller et al. [210]). We can now immediately prove the following result.

Theorem 8.4.2 There is a polynomial-time O(γ)-approximation algorithm
for Minimum Dominating Set on disk graphs of ply γ.

Proof: By Lemma 8.4.1, all �Leb -larger neighbors of a disk can be hit by at
most 9γ points. Lemma 8.3.9 shows that the �Leb -factor is at most 6. The
theorem now follows from Theorem 8.1.4 and Theorem 8.2.3.

A different technique improves on Theorem 8.4.2. We essentially give a sec-
ond general approach to approximate Minimum Dominating Set using �-
dominating sets, but this time without using ǫ-nets.

Theorem 8.4.3 Let G be a graph and let � be a binary reflexive relation
on the vertices of G with fractional �-factor at most c3. Suppose that the
maximum cardinality of the �-larger closed neighborhood of any u ∈ V (G) is at
most c2. Then the integrality gap of the standard LP for Minimum Dominating
Set on G is at most c2c3.

Proof: From Definition 8.2.4, the integrality gap of (the standard LP for)
Minimum �-Dominating Set on G multiplied by the fractional �-factor is
an upper bound to the integrality gap of (the standard LP for) Minimum
Dominating Set on G. By assumption, the fractional �-factor is at most c3.
Hence it suffices to bound the integrality gap of Minimum �-Dominating Set
on G.

We transform the minimum �-dominating set problem on G to an instance
of Minimum Set Cover. Let U = V (G) and S = {S(v) | v ∈ V (G)} where
S(v) = {u | v ∈ N�[u]}. Hochbaum [148] showed that the integrality gap
of Minimum Set Cover is bounded by the element frequency. The element
frequency of (U,S) is at most the maximum cardinality of any �-larger closed
neighborhood of G, which is at most c2 by assumption.
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Observe that a (fractional) �-dominating set of G corresponds directly to
a (fractional) set cover of (U,S) and vice versa. Hence the integrality gap of
Minimum �-Dominating Set on G is at most c2. This gives a bound on the
integrality gap of Minimum Dominating Set on G of c2c3.

Theorem 8.4.4 The integrality gap of the standard LP for Minimum Domi-
nating Set on disk graphs of ply γ is at most 54γ. If γ = 1, then the gap is at
most 42. Hence the gap on planar graphs is at most 42.

Proof: By Lemma 8.3.9, the fractional �Leb -factor is at most 6. The maximum
cardinality of any �Leb -larger closed neighborhood of G is at most 9γ by
Lemma 8.4.1. Hence the gap is at most 54γ by Theorem 8.4.3. If γ = 1,
then the maximum cardinality of any �Leb -larger closed neighborhood of S is
at most 7, yielding the bound of 42 on the gap. As planar graphs are disks
graphs of ply 1 [169, 210], the gap on planar graphs is at most 42.

Although a ptas for Minimum Dominating Set on planar graphs is known [22],
we are not aware of any previous results on the integrality gap of the standard
LP for Minimum Dominating Set on this class of graphs.

The reduction from Minimum �-Dominating Set to Minimum Set Cover
given in the proof of Theorem 8.4.3 can be exploited algorithmically.

Theorem 8.4.5 Let G be a graph and let � be a binary reflexive relation
on the vertices of G with �-factor at most c1. Suppose that the maximum
cardinality of the �-larger closed neighborhood of any u ∈ V (G) is at most
c2. Then there is a linear-time c1c2-approximation algorithm for Minimum
Dominating Set on G.

Proof: Transform the minimum �-dominating set instance on G to an instance
of Minimum Set Cover, as in Theorem 8.4.3. Bar-Yehuda and Even [24] proved
that Minimum Set Cover has a linear-time approximation algorithm with ap-
proximation ratio at most the maximum element frequency. Following the
proof of Theorem 8.4.3, the maximum element frequency is at most c2. As the
�-factor is at most c1, the theorem follows.

Using the proof of Theorem 8.4.4, we can then show the following.

Theorem 8.4.6 There exists a linear-time (54γ)-approximation algorithm for
Minimum Dominating Set on disk graphs of ply γ.

Note that the approximation ratio improves to 42 on disk graphs of ply 1,
i.e. on planar graphs.

Theorem 8.4.3 and 8.4.5 also have implications for Minimum Dominating
Set on general graphs. Following Lemma 8.3.1 and 8.3.2, the (fractional) �-
factor of any relation � is at most the maximum cardinality of any �-larger
closed neighborhood of G.
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Corollary 8.4.7 Let G be a graph and let � be a binary reflexive relation on
the vertices of G. Suppose that the maximum cardinality of the �-larger closed
neighborhood of any u ∈ V (G) is at most c. Then the integrality gap of the
standard LP for Minimum Dominating Set on G is at most c2. Moreover,
there is a linear-time c2-approximation algorithm for Minimum Dominating
Set on G.

Clearly, c ≤ ∆(G) for any relation �, yielding an integrality gap of ∆2(G) and
a linear-time ∆2(G)-approximation algorithm for Minimum Dominating Set on
any graph G. This is far worse than the (1+ln ∆(G))-approximation algorithm
for Minimum Dominating Set known in the literature [156, 197, 66, 149]. One
could however imagine that a relation � for which c is minimum over all
relations � beats this bound.

Theorem 8.4.8 Let G be a graph. We can find in polynomial time a binary
reflexive relation � such that the maximum cardinality of any �-larger closed
neighborhood of G is minimized.

Proof: First note that there is an asymmetric binary reflexive relation �
attaining the minimum. Now observe that an asymmetric binary reflexive
relation � on G corresponds to an orientation ~G of G and vice versa. Simply
let u � v if and only if there is a directed edge from u to v in ~G. Hence it
suffices to find an orientation ~G of G minimizing the maximum out-degree of
any vertex. Using a result of Frank and Gyárfás [111], such an orientation can
be found in polynomial time.

If an upper bound to the maximum cardinality of any �-larger closed neighbor-
hood of G is known for some relation �, then we can bound the approximation
ratio of the algorithm of Corollary 8.4.7.

Theorem 8.4.9 There exists a linear-time (9γ)2-approximation algorithm for
Minimum Dominating Set on disk graphs of ply γ, even if no representation
of the graph is given.

Proof: By Lemma 8.4.1, a disk graph G of ply γ has a binary reflexive relation
� for which the maximum cardinality of any �-larger closed neighborhood of
G is at most 9γ, namely �Leb . The theorem follows from Theorem 8.4.8 and
Corollary 8.4.7.

Note that to apply the approximation algorithm, one does not need to know the
ply of the given disk graph. The fact that the graph has a disk representation
of ply γ only turns up in the analysis of the approximation factor.

8.4.2 A Constant Approximation Ratio

We can improve the approximation ratio further by using the shifting tech-
nique. We show that Minimum �Leb -Dominating Set on n-vertex disk graphs
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of bounded ply, i.e. of ply γ = γ(n) = o(log n), has an eptas. Because the
�Leb -factor is at most 6, this implies the existence of a (6 + ǫ)-approximation
algorithm for Minimum Dominating Set on such disk graphs.

We use the shifting technique in the way outlined in Chapter 7. Assume
that we are given a set of disks D such that the smallest disk has radius 1/2.
We aim to find a small �Leb -dominating set of G = G[D].

Partition the disks into levels. A disk of radius r has level j (j ∈ Z≥0) if
2j−1 ≤ r < 2j . The level of the largest disk is denoted by l. The set D=j is
defined as the set of disks in D having level j. Similarly, we can define D≥j as
the set of disks in D having level at least j, and so on.

For each level j, define a grid induced by horizontal lines y = hk2j and
vertical lines x = vk2j (h, v ∈ Z) for some odd integer k ≥ 7, whose value we
determine later. The grid formed in this way partitions the plane into squares
of size k2j × k2j , called j-squares. Furthermore, any j-square is contained
in precisely one (j + 1)-square and each (j + 1)-square contains exactly four
j-squares, denoted by S1, . . . , S4. These four squares are siblings of each other.
The set of disks intersecting a j-square S is denoted by DS , while the set of
disks intersecting the boundary of S is denoted by Db(S). Similarly, Di(S) =
DS −Db(S) is the set of disks fully contained in the interior of S, Dc(S) denotes
the set of disks whose center is contained in S, and D+(S) =

⋃4
i=1 Db(Si)−Db(S)

is the set of disks intersecting the boundary of at least one of the four children
of S, but not the boundary of S itself. The meaning of combinations such as

Db(S)
≤j should be self-explaining. The level of a square S is denoted by j(S).

Similarly, let Dor(S) denote the set of disks having their center outside a
j-square S and intersecting a band of width 2j along the outer boundary of S.
This band is called the outer ring of S. We also define several inner rings.
Let Dirj′ (S) ⊆ Dc(S) denote the set of disks having their center inside S and
intersecting a band of width 2j′

along the inner boundary of S. Observe that
this implies that Dirj(S)+⌈log k⌉(S) = Dc(S). For convenience, we also define

Dir(S) =
⋃

j′≥0 D
irj′ (S)

≥j′ =
⋃

j′≥0 D
irj′ (S)

=j′ . Now define D+r(S) =
⋃4

i=1 Dir(Si) −
Dir(S), extending the notion of D+(S) we had before.

We now prove the following auxiliary theorem. Let D be a set of disks of
ply γ and let OPT be a �Leb -dominating set of D of minimum cardinality.

Theorem 8.4.10 Let D be a set of disks of ply γ and k ≥ 7 an odd pos-
itive integer. Then in O(k2n2 2(80k−68)γ/π3(64k−60)γ/π) time, we can find a

�Leb -dominating set C of D such that |C| ≤∑S

(∣∣∣OPT
c(S)
=j(S)

∣∣∣+
∣∣∣OPT

or(S)
=j(S)

∣∣∣
)
,

where the sum is over all squares S.

We perform bottom-up dynamic programming on the j-squares. Observe that

for each j-square S, disks in Dc(S)
≤j can be �Leb -dominated by disks in Dc(S)

and Dor(S). Following the approach developed in Chapter 7, we consider the

status of disks in Dor(S)
>j . However, the outer ring of a j-square might partially
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overlap sibling j-squares, creating a problem when ‘gluing’ results together.
Therefore we also consider the status of disks in the inner ring(s).

During the dynamic programming, we compute a �Leb -dominating set of

Dc(S) − Dir(S)
>j , given the status of disks in Dor(S)

>j ∪ Dir(S)
>j and using disks in

Dc(S) − Dir(S)
>j and Dor(S)

≤j . A disk in Dor(S)
>j is either in the dominating set,

or it is not. A disk in Dir(S)
>j has three possible statuses: either it is in the

dominating set, or it is �Leb -dominated by a disk in Dor(S)
>j ∪ Dc(S)

>j , or it is
�Leb -dominated by a yet undetermined disk. We define for each j-square S

and any two disjoint sets W1 ⊆ Dor(S)
>j ∪ Dir(S)

>j and W2 ⊆ Dir(S)
>j the function

size(S, W1, W2) as

min
{
|T |
∣∣∣ T ⊆ Dor(S)

=j ∪
(
Dc(S) −Dir(S)

>j

)
;

W1 ∪ T �Leb -dominates W2 ∪
(
Dc(S) −Dir(S)

>j

)}

if j = 0 and

min

{
|U | +

4∑

i=1

size

(
Si,
(
W1 ∪ U

)
∩
(
Dor(Si)

>j−1 ∪ Dir(Si)
>j−1

)
, Xi

) ∣∣∣∣

U ⊆ D+r(S)
>j−1 ∪ Dor(S)

=j ∪ Dirj(S)
=j

Xi =

((
W2 ∪ D+r(S)

>j−1 ∪ Dirj(S)
=j

)
− N�Leb

[
W1 ∪ U

])
∩ Dir(Si)

>j−1

}

if j > 0. Here the minimum over an empty set is ∞. Let sol(S, W1, W2) be
the subset of D attaining size(S, W1, W2), or ∅ if size(S, W1, W2) = ∞. The
meaning of W1 and W2 is as follows. The disks in W1 are dominators, whereas

the disks in W2 need to be �Leb -dominated by disks in W1 or Dc(S) −Dir(S)
>j .

Properties of the size- and sol-Functions

Functions size and sol are reasonably easy to compute, as we will show later.
First, we prove that the size and sol functions attain the properties set forth
in Theorem 8.4.10.

Lemma 8.4.11
∑

S; j(S)=l size(S, ∅, ∅) ≤ ∑
S

(∣∣∣Cc(S)
=j(S)

∣∣∣+
∣∣∣Cor(S)

=j(S)

∣∣∣
)
, where C

is any �Leb -dominating set.

Proof: We apply induction on the level j and show that the following invariant
holds for any j-square S:

size

(
S,
(
Cor(S)

>j ∪ Cir(S)
>j

)
,Dir(S)

>j − Cir(S)
>j − N�Leb

[
C − Cc(S) − Cor(S)

])

≤
∣∣∣Cc(S)

>j

∣∣∣−
∣∣∣Cir(S)

>j

∣∣∣+
∑

S′⊆S

(∣∣∣Cc(S′)
=j(S′)

∣∣∣+
∣∣∣Cor(S′)

=j(S′)

∣∣∣
)

.
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For j = 0, the invariant holds from the definition of size, as

|T | ≤
∣∣∣Cor(S)

=j

∣∣∣+
∣∣∣Cc(S)

∣∣∣−
∣∣∣Cir(S)

>j

∣∣∣

=
∣∣∣Cor(S)

=j

∣∣∣+
∣∣∣Cc(S)

=j

∣∣∣+
∣∣∣Cc(S)

>j

∣∣∣−
∣∣∣Cir(S)

>j

∣∣∣ .

So assume that j > 0 and that the invariant holds for all j-squares with j′ < j.
Then from the description of size and by applying induction,

size

(
S,
(
Cor(S)

>j ∪ Cir(S)
>j

)
,Dir(S)

>j − Cir(S)
>j − N�Leb

[
C − Cc(S) − Cor(S)

])

≤
∣∣∣C+r(S)

>j−1

∣∣∣+
∣∣∣Cor(S)

=j

∣∣∣+
∣∣∣Cirj(S)

=j

∣∣∣

+

4∑

i=1

size

(
Si,
(
Cor(Si)

>j−1 ∪ Cir(Si)
>j−1

)
,

Dir(Si)
>j−1 − Cir(Si)

>j−1 − N�Leb

[
C − Cc(Si) − Cor(Si)

])

≤
∣∣∣C+r(S)

>j−1

∣∣∣+
∣∣∣Cor(S)

=j

∣∣∣+
∣∣∣Cirj(S)

=j

∣∣∣

+

4∑

i=1

(∣∣∣Cc(Si)
>j−1

∣∣∣−
∣∣∣Cir(Si)

>j−1

∣∣∣
)

+

4∑

i=1

∑

S′
i
⊆Si

(∣∣∣Cc(S′
i)

=j(S′
i
)

∣∣∣+
∣∣∣Cor(S′

i)

=j(S′
i
)

∣∣∣
)

=
∣∣∣C+r(S)

>j−1

∣∣∣+
∣∣∣Cor(S)

=j

∣∣∣+
∣∣∣Cirj(S)

=j

∣∣∣

+
∣∣∣Cc(S)

>j−1

∣∣∣−
∣∣∣Cir(S)

>j−1

∣∣∣−
∣∣∣C+r(S)

>j−1

∣∣∣+
4∑

i=1

∑

S′
i
⊆Si

(∣∣∣Cc(S′
i)

=j(S′
i
)

∣∣∣+
∣∣∣Cor(S′

i)

=j(S′
i
)

∣∣∣
)

=
∣∣∣Cc(S)

>j

∣∣∣−
∣∣∣Cir(S)

>j

∣∣∣+
∣∣∣Cc(S)

=j

∣∣∣+
∣∣∣Cor(S)

=j

∣∣∣

+

4∑

i=1

∑

S′
i
⊆Si

(∣∣∣Cc(S′
i)

=j(S′
i
)

∣∣∣+
∣∣∣Cor(S′

i)

=j(S′
i
)

∣∣∣
)

=
∣∣∣Cc(S)

>j

∣∣∣−
∣∣∣Cir(S)

>j

∣∣∣+
∑

S′⊆S

(∣∣∣Cc(S′)
=j(S′)

∣∣∣+
∣∣∣Cor(S′)

=j(S′)

∣∣∣
)

.

The first inequality above is the crucial one. We give an explicit proof. Let

W1 = Cor(S)
>j ∪ Cir(S)

>j , W2 = Dir(S)
>j − Cir(S)

>j − N�Leb
[C − Cc(S) − Cor(S)], and

U = C+r(S)
>j−1 ∪Cor(S)

=j ∪Cirj(S)
=j . We claim that the inequality holds for this choice

of U .
First we show that (W1 ∪U)∩

(
Dor(Si)

>j−1 ∪Dir(Si)
>j−1

)
= Cor(Si)

>j−1 ∪Cir(Si)
>j−1 for any

i = 1, . . . , 4. Note that

W1 ∪ U = Cor(S)
>j ∪ Cir(S)

>j ∪ C+r(S)
>j−1 ∪ Cor(S)

=j ∪ Cirj(S)
=j
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= Cor(S)
>j−1 ∪ Cir(S)

>j−1 ∪ C+r(S)
>j−1

= Cor(S)
>j−1 ∪

4⋃

i=1

Cir(Si)
>j−1.

But then (W1 ∪U)∩
(
Dor(Si)

>j−1 ∪Dir(Si)
>j−1

)
= Cor(Si)

>j−1 ∪ Cir(Si)
>j−1 for any i = 1, . . . , 4.

For the third parameter, we observe that for any i = 1, . . . , 4

Xi =
((

W2 ∪ D+r(S)
>j−1 ∪ Dirj(S)

=j

)
− N�Leb

[W1 ∪ U ]
)
∩ Dir(Si)

>j−1

=

((
Dir(S)

>j ∪ D+r(S)
>j−1 ∪ Dirj(S)

=j

)
− N�Leb

[
W1 ∪ U

]

−N�Leb

[
C − Cc(S) − Cor(S)

])
∩ Dir(Si)

>j−1

= Dir(Si)
>j−1 − N�Leb

[
W1 ∪ U

]
− N�Leb

[
C − Cc(S) − Cor(S)

]

⊆ Dir(Si)
>j−1 − Cir(Si)

>j−1 − N�Leb

[
C − Cc(Si) − Cor(Si)

]
.

Because for any W and any Xi ⊆ X ′
i, size(Si, W, Xi) ≤ size(Si, W, X ′

i), the
first inequality is correct.

Since l is the level of the largest disk, for any j-square S with j ≥ l,

Cor(S)
>j ∪ Cir(S)

>j = ∅, Dc(S)
>j = ∅, and Dir(S)

>j = ∅. Hence

∑

S; j(S)=l

size(S, ∅, ∅) ≤
∑

S; j(S)=l

∑

S′⊆S

(∣∣∣Cc(S′)
=j(S′)

∣∣∣+
∣∣∣Cor(S′)

=j(S′)

∣∣∣
)

=
∑

S

(∣∣∣Cc(S)
=j(S)

∣∣∣+
∣∣∣Cor(S)

=j(S)

∣∣∣
)

.

This proves the lemma.

It follows that if OPT is a minimum �Leb -dominating set, then

∑

S; j(S)=l

size(S, ∅, ∅) ≤
∑

S

(∣∣∣OPT
c(S)
=j(S)

∣∣∣+
∣∣∣OPT

or(S)
=j(S)

∣∣∣
)

.

Lemma 8.4.12
⋃

S; j(S)=l sol(S, ∅, ∅) is a �Leb -dominating set.

Proof: For any j-square S and any two disjoint sets W1 ⊆ Dor(S)
>j ∪ Dir(S)

>j ,

W2 ⊆ Dir(S)
>j , we claim that W1 ∪ sol(S, W1, W2) is a �Leb -dominating set of

W2 ∪ (Dc(S) −Dir(S)
>j ) if size(S, W1, W2) 6= ∞.

Apply induction on j. If j = 0, this follows trivially from the definition of
size and sol. So assume that j > 0 and that the claim holds for all j′-squares
with j′ < j.
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Suppose that size(S, W1, W2) 6= ∞ for two disjoint sets W1 ⊆ Dor(S)
>j ∪Dir(S)

>j ,

W2 ⊆ Dir(S)
>j . Let U ⊆ D+r(S)

>j−1 ∪ Dor(S)
=j ∪ Dirj(S)

=j attain the minimum in the
definition of size for W1 and W2. Because size(S, W1, W2) 6= ∞, it must be
that size(Si, W

i, Xi) 6= ∞ for i = 1, . . . , 4 as well, where

W i = (W1 ∪ U) ∩
(
Dor(Si)

>j−1 ∪ Dir(Si)
>j−1

)

and

Xi =

((
W2 ∪ D+r(S)

>j−1 ∪ Dirj(S)
=j

)
− N�Leb

[
W1 ∪ U

])
∩ Dir(Si)

>j−1.

Then by induction, W i ∪ sol(Si, W
i, Xi) is a �Leb -dominating set of Xi ∪(

Dc(Si) −Dir(Si)
>j−1

)
. Observe that

4⋃

i=1

W i ∪
4⋃

i=1

sol(Si, W
i, Xi)

=

4⋃

i=1

(
(W1 ∪ U) ∩

(
Dor(Si)

>j−1 ∪ Dir(Si)
>j−1

))
∪

4⋃

i=1

sol(Si, W
i, Xi)

⊆ W1 ∪ U ∪
4⋃

i=1

sol(Si, W
i, Xi)

= W1 ∪ sol(S, W1, W2)

and

4⋃

i=1

(
Xi ∪

(
Dc(Si) −Dir(Si)

>j−1

))
=

4⋃

i=1

Xi ∪
(
Dc(S) −Dir(S)

>j−1 −D+r(S)
>j−1

)
.

Since W1 ∪ sol(S, W1, W2) also �Leb -dominates N�Leb
[W1 ∪ U ], we can derive

that W1 ∪ sol(S, W1, W2) �Leb -dominates

4⋃

i=1

Xi ∪
(
Dc(S) −Dir(S)

>j−1 −D+r(S)
>j−1

)
∪ N�Leb

[W1 ∪ U ]

⊇
4⋃

i=1

((
W2 ∪ D+r(S)

>j−1 ∪ Dirj(S)
=j

)
∩ Dir(Si)

>j−1

)

∪
(
Dc(S) −Dir(S)

>j−1 −D+r(S)
>j−1

)

= W2 ∪
(
Dc(S) −Dir(S)

>j

)
.

From the previous lemma, we know that
∑

S; j(S)=l size(S, ∅, ∅) 6= ∞. Hence⋃
S; j(S)=l sol(S, ∅, ∅) is a �Leb -dominating set of

⋃
S; j(S)=l Dc(S). Because each

disk is in Dc(S) for some l-square S, this is a �Leb -dominating set of D.
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Computing the size- and sol-Functions

We apply the methods outlined in Chapter 7. We show again that it is sufficient
to size and sol for a limited number of j-squares.

The definition of nonempty and empty is slightly different than usual. We
say that that a j-square S is nonempty if S or the outer ring of S is intersected
by a level j disk and empty otherwise.

The definition of relevant remains the same, modulo the new definition of
nonempty. A j-square S is relevant if one of its three siblings is nonempty or
there is a nonempty square S′ containing S, such that S′ has level at most
j + ⌈log k⌉ (so each nonempty j-square is relevant). Note that this definition
induces O(k2n) relevant squares. A relevant square S is said to be a relevant
child of another relevant square S′ if S ⊂ S′ and there is no third relevant
square S′′, such that S ⊂ S′′ ⊂ S′. Conversely, if S is a relevant child of S′,
S′ is a relevant parent of S.

Lemma 8.4.13 For each relevant 0-square S, all size- and sol-values for S
can be computed in O

(
nkγ 2(16k+32)γ/π3(40k−12)γ/π

)
time.

Proof: We use area bounds to bound the cardinality of sets we are interested

in. By Lemma 7.1.1,
∣∣∣Dor(S)

>j

∣∣∣ ≤ 16(k + 2)γ/π. To bound
∣∣∣Dir(S)

>j

∣∣∣, note that
∣∣∣Dirj+1(S)

≥j+1

∣∣∣ ≤ (20k − 60)γ/π and that for any j′ > j,
∣∣∣Dirj′ (S)

≥j′ −Dirj′−1(S)

≥j′−1

∣∣∣ ≤
(3 · 2j−j′+3k − 60)γ/π. Hence

∣∣∣Dir(S)
>j

∣∣∣ ≤
((

20 + 3

∞∑

j′=j+2

2j−j′+3
)
k − 60

)
γ/π ≤ (32k − 60)γ/π.

Therefore we can enumerate all disjoint sets W1 ⊆ Dor(S)
>j ∪Dir(S)

>j , W2 ⊆ Dir(S)
>j

in O
(
2(16k+32)γ/π3(32k−60)γ/π

)
time.

Using Lemma 7.1.2, the pathwidth of Dor(S)
=j ∪

(
Dc(S) − Dir(S)

>j

)
can be

bounded by 8(k+6)γ/π. By adapting the algorithm of Corollary 5.3.9, we can
find the set T required by the definition of size and sol in O(nkγ 3(8k+48)γ/π)
time. The lemma follows.

Now assume that the size- and sol-values of all relevant children of a j-square
S are known.

Lemma 8.4.14 For each relevant j-square S (j > 0) with relevant (j − 1)-
square children, in O(2(80k−68)γ/π3(64k−60)γ/π) time all size- and sol-values for
S can be computed.

Proof: Using similar ideas as in Lemma 8.4.13 and Lemma 7.1.1, we can show

that
∣∣∣Dor(S)

≥j

∣∣∣ ≤ (40k + 60)γ/π and

∣∣∣Dir(S)
≥j

∣∣∣ ≤
((

40 + 3

∞∑

j′=j+1

2j−j′+3
)
k − 60

)
γ/π ≤ (64k − 60)γ/π.
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Now bound
∣∣∣D+r(S)

≥j

∣∣∣. Note that
∣∣∣
⋃4

i=1 D
irj(Si)
≥j −Dirj(S)

≥j

∣∣∣ ≤ (32k − 128)γ/π

and for any j′ > j,

∣∣∣∣∣

(
4⋃

i=1

Dirj′ (Si)

≥j′ −Dirj′ (S)

≥j′

)
−
(

4⋃

i=1

Dirj′−1(Si)

≥j′−1 −Dirj′−1(S)

≥j′−1

)∣∣∣∣∣

≤ (2j−j′+3k − 12) · γ/π.

Then

∣∣∣D+r(S)
≥j

∣∣∣ ≤
(

32k − 128 +

∞∑

j′=j+1

2j−j′+3k

)
· γ/π

= (40k − 128)γ/π.

The lemma now follows from the definition of size and sol.

Lemma 8.4.15 For each relevant j-square S (j > 0) with no relevant children
of level j−1, all size- and sol-values for S can be computed in O(n 244γ/π316γ/π)
time.

Proof: Following the proof of Lemma 7.2.6, Dir(S)
≥j = Dir(S)

≥j+⌈log k⌉. Then

Lemma 7.1.1 shows that
∣∣∣Dir(S)

≥j

∣∣∣ ≤
∣∣∣Dc(S)

≥j+⌈log k⌉

∣∣∣ ≤ 16γ/π. Lemma 7.2.6 im-

plies that
∣∣∣D+r(S)

≥j

∣∣∣ = 0 and Dor(S)
≥j = Dor(S)

≥j+⌈log k⌉ and thus
∣∣∣Dor(S)

≥j

∣∣∣ ≤ 44γ/π.

Then from the proof of Lemma 7.2.6 and the definition of size and sol, we can
compute all size- and sol-values in O(n 244γ/π316γ/π) time.

Lemma 8.4.16 The value of
∑

S; j(S)=l size(S, ∅, ∅) can be computed in time

O(k2n2 2(80k−68)γ/π3(64k−60)γ/π).

Proof: Follows from Lemma 8.4.13, Lemma 8.4.14, Lemma 8.4.15, and the
proof of Lemma 7.2.7. The number of relevant squares is O(k2n).

Proof of Theorem 8.4.10: Follows directly from Lemmas 8.4.11, 8.4.12,
and 8.4.16.

The Approximation Algorithm

The shifting technique can now be applied as follows. For an integer a (0 ≤
a ≤ k − 1), call a line of level j active if it has the form y = (hk + a2l−j)2j

or x = (vk + a2l−j)2j (h, v ∈ Z). The active lines partition the plane into
j-squares as before, although shifted with respect to the shifting parameter a.
However, we can still apply the algorithm of Theorem 8.4.10.

Let Ca denote the set returned by the algorithm for the j-squares induced
by shifting parameter a (0 ≤ a ≤ k − 1) and let Cmin be a smallest such set.
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Lemma 8.4.17 |Cmin| ≤ (1+24/k) · |OPT |, where OPT is a minimum �Leb -
dominating set.

Proof: Define Dor
a as the set of disks intersecting the outer ring of a j-square S

at their level, i.e. Dor
a =

⋃
S Dor(S)

=j(S). Clearly a disk of level j can be in Dor
a for

at most 8 values of a. Therefore
∑k−1

a=0 |OPT ∩Dor
a | ≤ 8 · |OPT |. Furthermore,

for any fixed value of a, any level j disk can intersect the outer ring of at most
3 j-squares. It follows from Lemma 8.4.11 that

|Ca| ≤
∑

S

(∣∣∣Cc(S)
=j(S)

∣∣∣+
∣∣∣Cor(S)

=j(S)

∣∣∣
)
≤ |OPT | + 3|OPT ∩ Dor

a |.

Then

k · |Cmin| ≤
k−1∑

a=0

|Ca| ≤
k−1∑

a=0

(|OPT | + 3|OPT ∩ Dor
a |) ≤ (k + 24) · |OPT |.

Hence |Cmin| ≤ (1 + 24/k) · |OPT |.

Combining Theorem 8.4.10 and Lemma 8.4.17, we obtain the following ap-
proximation scheme.

Theorem 8.4.18 There is an eptas for Minimum �Leb -Dominating Set on
n-vertex disk graphs of bounded ply, i.e. of ply γ = γ(n) = o(log n).

Proof: Consider any ǫ > 0. Choose k as the largest odd integer such that
(64k−60)γ/π ≤ log3 n. If k < 7, output V (G). Otherwise, apply the algorithm
of Lemma 8.4.10 and compute Cmin in O(n4 log3 n) time. Furthermore, if
γ = γ(n) = o(log n), there is a cǫ such that k ≥ 24/ǫ and k ≥ 7 for all n ≥ cǫ.
Therefore, if n ≥ cǫ, it follows from Lemma 8.4.17 and the choice of k that
Cmin is a (1 + ǫ)-approximation to the optimum. Hence there is a fiptasω for
Minimum �Leb -Dominating Set on n-vertex disk graphs of bounded ply, i.e. of
ply γ = γ(n) = o(log n). The theorem follows from Theorem 2.2.4.

Observe that the above theorem extends to intersection graphs of fat objects
of any constant dimension and the weighted case. Because the �Leb -factor is
at most 6 for disk graphs, we also obtain the following result.

Theorem 8.4.19 There is an algorithm that gives for any ǫ > 0 a (6 + ǫ)-
approximation for Minimum Dominating Set on disk graphs with n vertices
and of bounded ply, i.e. of ply γ = γ(n) = o(log n), in time f(1/ǫ) · nO(1) for
some computable function f of 1/ǫ.

Similar constant-factor approximation algorithms exist for Minimum Dominat-
ing Set on intersection graphs of other fat objects of bounded ply, constant di-
mension, and constant �Leb -factor. For example, a (5+ǫ)-approximation algo-
rithm on square graphs or a (13+ǫ)-approximation algorithm on 3-dimensional
ball graphs follow from Theorem 8.4.18.
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8.4.3 A Better Constant

Although the above approach yields a constant-factor approximation algorithm
for Minimum Dominating Set on disk graphs of bounded ply, we can also
approximate it directly, i.e. without using �Leb -dominating sets. This gives an
easier algorithm with a better approximation ratio. To this end, we apply the
shifting technique in a novel fashion.

Let k ≥ 9 be an odd multiple of 3, let D be partitioned into levels and the
plane into j-squares. We prove the following auxiliary theorem.

Theorem 8.4.20 Let D be a set of disks of ply γ, k ≥ 9 an odd multiple
of 3, and OPT a minimum dominating set. Then we can obtain in time

O(k2n2 332kγ/π216kγ/π416(k+1)γ/π) a set C ⊆ D dominating
⋃

S Di(S)
=j(S) such

that |C| ≤∑S

∣∣∣OPTS
=j(S)

∣∣∣, where the union and sum are over all squares S.

The set C is computed by performing bottom-up dynamic programming on
the j-squares. For each j-square S, we consider each possible dominating set

for Di(S), given the status of disks in Db(S)
>j . A disk in Db(S)

>j can have one of

three statuses: either it is a dominator, or it is dominated by a disk in DS , or
it is dominated by a yet undetermined disk. Now define for each j-square S

and any two disjoint sets W1, W2 ⊆ Db(S)
>j the function size(S, W1, W2) as





min
{
|T |
∣∣∣ T ⊆ Db(S)

=j ∪ Di(S)
≥j ; W1 ∪ T dominates Di(S)

≥j ∪ W2

}
if j = 0;

min
{
|U | +

4∑

i=1

size
(
Si, (W1 ∪ U)b(Si), Xi

) ∣∣∣

U ⊆ D+(S)
>j−1 ∪ Db(S)

=j , Xi ⊆ Db(Si)
>j−1

{X1, . . . , X4} decomposes W2 ∪ (D+(S)
>j−1 − U)

}
if j > 0.

Here we define the minimum over an empty set to be ∞ and we say a family
of pairwise disjoint sets {A1, . . . , Am} decomposes (or is a decomposition of)
some set A if Ai ⊆ A for each i and

⋃
i Ai = A. Note that this definition

explicitly allows empty sets.
Let sol(S, W1, W2) be the subfamily of D attaining size(S, W1, W2), or ∅

if size(S, W1, W2) is ∞. In the function parameters, the set W1 is used for

disks of Db(S)
>j that will be in the dominating set, while W2 is used to denote

the subset of Db(S)
>j that should be dominated by a disk in DS . Note that

one actually only needs to consider sets W2 ⊆ Db(S)
>j − N [W1], but doing so

would not improve the theoretical performance of the algorithm and might
complicate its analysis.

Properties of the size- and sol-Functions

We start again by showing that size and sol are the functions that we need.
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Lemma 8.4.21
∑

S; j(S)=l size(S, ∅, ∅) ≤ ∑
S

∣∣∣CS
=j(S)

∣∣∣, where C is any domi-

nating set.

Proof: We prove using induction that the following inequality holds for all
j-squares S:

size
(
S, Cb(S)

>j , N ii(S)(CS)
b(S)
>j

)
≤
∣∣∣Ci(S)

>j

∣∣∣+
∑

S′⊆S

∣∣∣CS′

=j(S′)

∣∣∣ .

Here N ii(S)(X) is the set of disks d 6∈ X such that d intersects some d′ ∈ X
(i.e. d ∈ N(X)) and d ∩ d′ intersects S.

The base case is trivial, since Cb(S)
>0 ∪ Ci(S)

>0 ∪ CS
=0 = CS clearly dominates

Di(S)
≥j ∪ N ii(S)(CS)

b(S)
>j . For the inductive step, we can show that

size
(
S, Cb(S)

>j , N ii(S)(CS)
b(S)
>j

)

≤
∣∣∣C+(S)

>j−1

∣∣∣+
∣∣∣Cb(S)

=j

∣∣∣+
4∑

i=1

size
(
Si, Cb(Si)

>j−1, N
ii(Si)(CSi)

b(Si)
>j−1

)

≤
∣∣∣C+(S)

>j−1

∣∣∣+
∣∣∣Cb(S)

=j

∣∣∣+
4∑

i=1

∣∣∣Ci(Si)
>j−1

∣∣∣+
4∑

i=1

∑

S′
i
⊆Si

∣∣∣CS′
i

=j(S′
i
)

∣∣∣

=
∣∣∣C+(S)

>j−1

∣∣∣+
∣∣∣Cb(S)

=j

∣∣∣+
∣∣∣Ci(S)

>j−1

∣∣∣−
∣∣∣C+(S)

>j−1

∣∣∣+
4∑

i=1

∑

S′
i
⊆Si

∣∣∣CS′
i

=j(S′
i
)

∣∣∣

=
∣∣∣Ci(S)

>j

∣∣∣+
∣∣CS

=j

∣∣+
4∑

i=1

∑

S′
i
⊆Si

∣∣∣CS′
i

=j(S′
i
)

∣∣∣

=
∣∣∣Ci(S)

>j

∣∣∣+
∑

S′⊆S

∣∣∣CS′

=j(S′)

∣∣∣ .

The first inequality above is the crucial one and that it should hold is not
obvious. We give an explicit proof.

Suppose that to obtain

size
(
S, Cb(S)

>j , N ii(S)(CS)
b(S)
>j

)

using the definition of size, we consider U = C+(S)
>j−1 ∪Cb(S)

=j . As for i = 1, . . . , 4,

(W1 ∪ U)b(Si) =
(
Cb(S)

>j ∪ C+(S)
>j−1 ∪ Cb(S)

=j

)b(Si)

=
(
Cb(S)

>j−1 ∪ C+(S)
>j−1

)b(Si)

by def.
=

(
4⋃

m=1

Cb(Sm)
>j−1

)b(Si)

= Cb(Si)
>j−1,
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the second parameter of the inductive call is correct.
So what about the third parameter? We claim that

W2 ∪ (D+(S)
>j−1 − U) ⊆

4⋃

i=1

N ii(S)(CS)
b(Si)
>j−1 ⊆

4⋃

i=1

N ii(Si)(CSi)
b(Si)
>j−1.

Because C is a dominating set and every disk in D+(S)
>j−1 must be dominated by

a disk in DS ,

N ii(S)(CS)
+(S)
>j−1 = N(CS)

+(S)
>j−1

= D+(S)
>j−1 − C+(S)

>j−1

= D+(S)
>j−1 − U.

Then

W2 ∪ (D+(S)
>j−1 − U) = N ii(S)(CS)

b(S)
>j ∪ N ii(S)(CS)

+(S)
>j−1

⊆ N ii(S)(CS)
b(S)
>j−1 ∪ N ii(S)(CS)

+(S)
>j−1

by def.
=

4⋃

i=1

N ii(S)(CS)
b(Si)
>j−1,

thus proving the first part of the claim.

To prove the second part, consider any disk d in N ii(S)(CS)
b(Si)
>j−1 for all

i ∈ I ⊆ {1, . . . , 4}. As d ∈ N ii(S)(CS), there must be some h ∈ {1, . . . , 4} such
that d ∈ N ii(Sh)(CS), i.e. d ∈ N ii(Sh)(CSh). Furthermore, it is clear that h ∈ I.

But then d ∈ N ii(Sh)(CSh)
b(Sh)
>j−1. This proves the claim.

Following the claim, there exists a decomposition {X1, . . . , X4} of W2 ∪
(D+(S)

>j−1 −U) such that Xi ⊆ N ii(Si)(CSi)
b(Si)
>j−1 and hence Xi ⊆ Db(Si)

>j−1. There-
fore for such Xi and the chosen set U ,

size
(
S, Cb(S)

>j , N ii(S)(CS)
b(S)
>j

)

≤ |U | +
4∑

i=1

size
(
Si, (W1 ∪ U)b(Si), Xi

)

=
∣∣∣C+(S)

>j−1

∣∣∣+
∣∣∣Cb(S)

=j

∣∣∣+
4∑

i=1

size
(
Si, Cb(Si)

>j−1, Xi

)

≤
∣∣∣C+(S)

>j−1

∣∣∣+
∣∣∣Cb(S)

=j

∣∣∣+
4∑

i=1

size
(
Si, Cb(Si)

>j−1, N
ii(Si)(CSi)

b(Si)
>j−1

)
,

where the last inequality follows from Xi ⊆ N ii(Si)(CSi)
b(Si)
>j−1. This proves the

inequality of the previous page.
We now know that

size
(
S, Cb(S)

>j , N ii(S)(CS)
b(S)
>j

)
≤
∣∣∣Ci(S)

>j

∣∣∣+
∑

S′⊆S

∣∣∣CS′

=j(S′)

∣∣∣ .
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Since l is the level of the largest disk, Ci(S)
>j = ∅ and Cb(S)

>j = ∅, and thus

N ii(S)(CS)
b(S)
>j = ∅ for all j-squares S with j ≥ l. Hence

∑

S; j(S)=l

size(S, ∅, ∅) ≤
∑

S; j(S)=l

∑

S′⊆S

∣∣∣CS′

=j(S′)

∣∣∣ =
∑

S

∣∣∣CS
=j(S)

∣∣∣ .

This proves the lemma.

It follows that if OPT is a minimum dominating set, then

∑

S; j(S)=l

size(S, ∅, ∅) ≤
∑

S

∣∣∣OPTS
=j(S)

∣∣∣ .

Lemma 8.4.22
⋃

S; j(S)=l sol(S, ∅, ∅) is a dominating set for
⋃

S Di(S)
=j(S).

Proof: For any j-square S and any two disjoint W1, W2 ⊆ Db(S)
>j , we claim that

W1∪ sol(S, W1, W2) dominates W2∪Di(S)
>j ∪⋃S′⊆S Di(S′)

=j(S′) if size(S, W1, W2) 6=
∞. Apply induction on j. The case j = 0 is trivial, so assume that j > 0 and
that the claim holds for all j′ < j.

Suppose that size(S, W1, W2) 6= ∞ for some j-square S and for disjoint

W1, W2 ⊆ Db(S)
>j . Let U, X1, . . . , X4 attain the minimum in the definition

of size. Then size(Si, (W1 ∪ U)b(Si), Xi) 6= ∞ for i = 1, . . . , 4. By induction,

(W1∪U)b(Si)∪sol(Si, (W1∪U)b(Si), Xi) dominates Xi∪Di(Si)
>j−1∪

⋃
S′

i
⊆Si

Di(S′
i)

=j(S′
i
)

for i = 1, . . . , 4. Observe that

4⋃

i=1

(
(W1 ∪ U)

b(Si) ∪ sol
(
Si, (W1 ∪ U)

b(Si) , Xi

))

= W1 ∪ U ∪
4⋃

i=1

sol
(
Si, (W1 ∪ U)

b(Si) , Xi

)

= W1 ∪ sol(S, W1, W2)

and that

4⋃

i=1

(
Xi ∪ Di(Si)

>j−1 ∪
⋃

S′
i
⊆Si

Di(S′
i)

=j(S′
i
)

)

= W2 ∪
(
D+(S)

>j−1 − U
)
∪

4⋃

i=1

(
Di(Si)

>j−1 ∪
⋃

S′
i
⊆Si

Di(S′
i)

=j(S′
i
)

)
.

Because W1 ∪ sol(S, W1, W2) dominates U , W1 ∪ sol(S, W1, W2) dominates

W2 ∪ D+(S)
>j−1 ∪

4⋃

i=1

(
Di(Si)

>j−1 ∪
⋃

S′
i
⊆Si

Di(S′
i)

=j(S′
i
)

)
= W2 ∪ Di(S)

>j ∪
⋃

S′⊆S

Di(S′)
=j(S′).



142 Chapter 8. Domination on Geometric Intersection Graphs

This proves the claim.
We know that

∑
S; j(S)=l size(S, ∅, ∅) 6= ∞ from Lemma 8.4.21. Since each

disk has level at most l,
⋃

S; j(S)=l sol(S, ∅, ∅) dominates
⋃

S Di(S)
=j(S).

Computing the size- and sol-Functions

We use the same definitions of (non)empty and relevant (child) as in Chapter 7.
That is, a j-square is nonempty if it is intersected by a level j disk and empty
otherwise. A j-square S is relevant if one of its three siblings is nonempty or
there is a nonempty square S′ containing S, such that S′ has level at most
j + ⌈log k⌉ (so each nonempty j-square is relevant). Note that this definition
induces O(k2n) relevant squares. A relevant square S is said to be a relevant
child of another relevant square S′ if S ⊂ S′ and there is no third relevant
square S′′, such that S ⊂ S′′ ⊂ S′. Conversely, if S is a relevant child of S′,
then S′ is a relevant parent of S.

Lemma 8.4.23 For each relevant 0-square S, all size- and sol-values for S
can be computed in O

(
nkγ 3(24k+32)γ/π

)
time.

Proof: We use the bounds of Lemma 7.1.1 and Lemma 7.1.2. Then
∣∣∣Db(S)

>0

∣∣∣ ≤
16kγ/π and all disjoint W1, W2 ⊆ Db(S)

>0 can be enumerated in O(316kγ/π) time.

Furthermore, as the pathwidth of Db(S)
=j ∪Di(S)

>j can be bounded by 8(k+4)γ/π,
we can adapt the algorithm of Corollary 5.3.9 to find the appropriate minimum
dominating set in O(nkγ 3(8k+32)γ/π) time. The lemma follows.

Now assume that the size- and sol-values of all relevant children of a j-square
S are known.

Lemma 8.4.24 For each relevant j-square S (j > 0) with relevant (j − 1)-
square children, in O(332kγ/π216kγ/π416(k+1)γ/π) time all size- and sol-values
for S can be computed.

Proof: Using Lemma 7.1.1, we can show that
∣∣∣Db(S)

≥j

∣∣∣ ≤ 32kγ/π and
∣∣∣D+(S)

≥j

∣∣∣ ≤
16kγ/π. Hence all disjoint W1, W2 ⊆ Db(S)

>j and all U ⊆ D+(S)
>j−1 ∪ Db(S)

=j can

be enumerated in O(332kγ/π216kγ/π) time. To enumerate all decompositions

{X1, . . . , X4} of W2 ∪ (D+(S)
>j−1 −U) for fixed W2 and U such that Xi ⊆ Db(Si)

>j−1,
it suffices to consider decompositions of disks in an ‘extended cross’. Following
Lemma 7.1.1, the number of disks intersecting it is at most 16(k +1)γ/π. The
lemma follows.

Lemma 8.4.25 For each relevant j-square S (j > 0) with no relevant children
of level j−1 all size- and sol-values for S can be computed in O(n 264γ/π332γ/π)
time.
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Proof: From the proof of Lemma 7.2.6, we know that Db(S)
>j = Db(S)

≥j+⌈log k⌉,

D+(S)
>j−1 = ∅, and Db(S)

=j = ∅. Then for any disjoint W1, W2 ⊆ Db(S)
>j , we can

show that size(S, W1, W2) equals





0 if S has no relevant children and
W1 dominates W2;

∞ if S has no relevant children and
W1 doesn’t dominate W2;

min
{XS′′}

∑

S′′

size
(
S′′, W b(S′′)

1 , XS′′

)
otherwise.

The sum is over all relevant children S′′ of S and {XS′′} decomposes W2.

Since Db(S)
>j = Db(S)

≥j+⌈log k⌉,
∣∣∣Db(S)

>j

∣∣∣ ≤ 32γ/π. Then all disjoint W1, W2 ⊆
Db(S)

>j can be enumerated in O(332γ/π) time.
For fixed W1 and W2, we can compute size(S, W1, W2) in O(n) time if S has

no relevant children. Otherwise, number the relevant children of S arbitrarily,
S′′

1 , . . . , S′′
m. Now compute size(S, W1, W2) using the following function s. For

any X ⊆ W2,

s1(X) = size(S′′
1 , W

b(S′′)
1 , X)

si(X) = minXS′′
i
⊆X{size(S′′

1 , W
b(S′′)
1 , X) + si−1(X − XS′′

i
)}

Then size(S, W1, W2) = sm(W2). One can thus compute size(S, W1, W2) in
O(n 264γ/π) time, as m = O(n). The lemma follows.

Lemma 8.4.26 The value of
∑

S; j(S)=l size(S, ∅, ∅) can be computed in time

O(k2n2γ 332kγ/π216kγ/π416(k+1)γ/π).

Proof: Follows from Lemma 8.4.23, Lemma 8.4.24, Lemma 8.4.25, and the
proof of Lemma 7.2.7.

Proof of Theorem 8.4.20: Follows directly from Lemmas 8.4.21, 8.4.22,
and 8.4.26.

The Approximation Algorithm

The shifting technique can now be applied as follows. For an integer a (0 ≤
a ≤ k − 1), call a line of level j active if it has the form y = (hk + a2l−j)2j

or x = (vk + a2l−j)2j (h, v ∈ Z). The active lines partition the plane into
j-squares as before, although shifted with respect to the shifting parameter a.
However, we can still apply the algorithm of Theorem 8.4.20.

Let Ca denote the set returned by the algorithm for the j-squares induced
by shifting parameter a (0 ≤ a ≤ k − 1). Instead of considering each set Ca

individually, we join three such sets to ensure that we have a dominating set.
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So let C3
i = Ci ∪Ci+k/3 ∪Ci+2k/3 for each i = 0, . . . , k/3− 1. This is properly

defined, as k is a multiple of 3. Denote the smallest such set by C3
min. We

claim that C3
min is a dominating set of cardinality at most (3 + 36/k) · |OPT |,

where OPT is a minimum dominating set.
To prove this claim, let Db

a be the set of disks intersecting the boundary of

a j-square S at their level, i.e. Db
a =

⋃
S Db(S)

=j(S).

Lemma 8.4.27 C3
i is a dominating set of D for any i = 0, . . . , k/3 − 1.

Proof: We claim that any disk is in at most two of the sets Db
i ,Db

i+k/3,Db
i+2k/3.

A level j disk is in Db
a if and only if it intersects an active line of level j for a.

We showed in Lemma 7.2.8 that any disk intersects an active horizontal line
for at most two values of a and an active vertical line for at most two values
of a. It is easy to see from the proof of this lemma that the intersections with
an active horizontal line and similarly the intersections with an active vertical
line must occur for consecutive values of a (modulo k). Since k ≥ 9 is an
odd multiple of 3, k/3 > 1, and thus i, i + k/3, i + 2k/3 are nonconsecutive
integers (modulo k). It follows that any disk is in at most two of the sets
Db

i ,Db
i+k/3,Db

i+2k/3, as claimed.

Lemma 8.4.22 shows that Ca is a dominating set of
⋃

S Di(S)
=j(S) = D −Db

a.

Given the previous argument, (D −Db
i ) ∪ (D −Db

i+k/3) ∪ (D −Db
i+2k/3) = D.

Hence C3
i = Ci ∪ Ci+k/3 ∪ Ci+2k/3 is a dominating set of D.

Lemma 8.4.28 |C3
min| ≤ (3+36/k) · |OPT |, where OPT is a minimum dom-

inating set.

Proof: Following the proof of Lemma 7.2.8, a level j disk is in Db
a for at most

4 different values of a. Therefore
∑k−1

a=0 |OPT ∩Db
a| ≤ 4 · |OPT |. Furthermore,

for any fixed value of a, any level j disk can intersect at most 4 j-squares. It
follows from Theorem 8.4.20 that

|Ca| ≤
∑

S

∣∣∣OPTS
=j(S)

∣∣∣

≤
∑

S

(∣∣∣OPT
i(S)
=j(S)

∣∣∣+
∣∣∣OPT

b(S)
=j(S)

∣∣∣
)

≤ |OPT | + 3|OPT ∩ Db
a|.

Then

1
3k · |C3

min| ≤
k/3−1∑

i=0

|C3
i |

≤
k−1∑

a=0

|Ca|
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≤
k−1∑

a=0

(
|OPT | + 3|OPT ∩ Db

a|
)

≤ (k + 12) · |OPT |.

Hence |C3
min| ≤ (3 + 36/k) · |OPT |.

Combining Theorem 8.4.20 and Lemma 8.4.28, we obtain the following ap-
proximation algorithm.

Theorem 8.4.29 There is an algorithm that gives for any ǫ > 0 a (3 + ǫ)-
approximation for Minimum Dominating Set on disk graphs with n vertices
and of bounded ply, i.e. of ply γ = γ(n) = o(log n), in time f(1/ǫ) · nO(1) for
some computable function f of 1/ǫ.

Proof: Consider any ǫ > 0. Choose k as the largest odd multiple of 3 such
that 32kγ/π ≤ log3 n. If k < 9, output V (G). Otherwise, apply the algorithm
of Theorem 8.4.20 and compute C3

min in O(n5 log3 n) time. Furthermore, if
γ = γ(n) = o(log n), there is a cǫ such that k ≥ 36/ǫ and k ≥ 9 for all n ≥ cǫ.
Therefore, if n ≥ cǫ, it follows from Lemma 8.4.28 and the choice of k that
C3

min is a (3 + ǫ)-approximation to the optimum. The theorem now follows
from the proof of Theorem 2.2.4.

We can obtain analogous approximation algorithms on intersection graphs of
fat objects of bounded ply and of any constant dimension.

8.5 Hardness of Approximation

We have seen that although Minimum Dominating Set is a challenging problem
on intersection graphs of arbitrary-sized geometric objects, it still is approx-
imable on a variety of classes of geometric intersection graphs. We show how-
ever that there are also classes of geometric intersection graphs for which no
constant-factor approximation algorithm or approximation scheme can exist,
under certain complexity assumptions.

We prove that Minimum Dominating Set on intersection graphs of convex
polygons or of homothetic polygons is as hard as on general graphs. That
is, it is not approximable within (1 − ǫ) lnn for any ǫ > 0, unless NP ⊂
DTIME(nO(log log n)). This nicely complements Theorem 8.3.4, where we gave
a constant-factor approximation algorithm on intersection graphs of homoth-
etic convex polygons. Hence it seems that both convexity and homotheticity
are essential properties of the objects when designing a constant-factor ap-
proximation algorithm.

We also gain further insight into Minimum Dominating Set on disk graphs.
We show that on a collection of fat almost-disks, Minimum Dominating Set is
as hard as on general graphs. Even if the fat objects have constant description
complexity, the problem is still APX-hard.
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Finally, we solve an open problem of Chleb́ık and Chleb́ıková [65] by proving
that Minimum Dominating Set is APX-hard on rectangle intersection graphs.
This result extends to intersection graphs of ellipses. We should note that all
hardness results given here extend to Minimum Connected Dominating Set.

8.5.1 Intersection Graphs of Polygons

We consider the approximability of Minimum Dominating Set on intersection
graphs of polygons. First we show that convexity of the objects is no guarantee
for the existence of a constant-factor approximation algorithm. Instead of just
looking at arbitrary convex polygons, we prove a stronger result.

Recall from Chapter 3 that a polygon-circle graph is the intersection graph
of a set of polygons for which all corners lie on a fixed circle. Note that in
a polygon-circle graph, all polygons are convex. This graph class is a gener-
alization of circle graphs, which are intersection graphs of chords of a fixed
circle. On circle graphs, we know that Minimum Dominating Set has a (2+ǫ)-
approximation algorithm [76], but no ptas unless P=NP [75]. The slight gen-
eralization to polygon-circle graphs however makes Minimum Dominating Set
much more difficult.

Theorem 8.5.1 Minimum Dominating Set on polygon-circle graphs is not ap-
proximable within (1−ǫ) lnn for any ǫ > 0, unless NP ⊂ DTIME(nO(log log n)).

Proof: We give a gap-preserving reduction from Minimum Set Cover. Consider
an instance (U,S) of Minimum Set Cover and assume that U =

⋃S and U =
{1, . . . , n}. Fix a circle and n + 1 points on this circle, numbered p1, . . . , pn+1

in order of appearance on the circle. Construct a polygon Pj for each set Sj

as the convex hull of the set {pi | i ∈ Sj} ∪ {pn+1}. Furthermore, place a
tiny polygon around each point pi such that these tiny polygons are pairwise
disjoint.

Observe that any polygon dominated by a tiny polygon is also dominated
by some polygon Pj . It is now easy to see that the optima of the minimum set
cover instance and the constructed instance of Minimum Dominating Set on
polygon-circle graphs are the same. As the construction can be computed in
polynomial time, this gives a gap-preserving reduction. The theorem then fol-
lows from Feige’s inapproximability result for Minimum Set Cover [108].

A direct consequence of Theorem 8.5.1 is an inapproximability result on inter-
section graphs of convex polygons.

Corollary 8.5.2 Unless NP ⊂ DTIME(nO(log log n)), Minimum Dominating
Set on intersection graphs of convex polygons cannot be approximated within
(1 − ǫ) lnn for any ǫ > 0.

We give a similar result for intersection graphs of fat convex polygons later.
If the polygons are not convex, but translated copies of a fixed polygon,

the approximability of Minimum Dominating Set does not change.
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Figure 8.2: The left figure shows the rectangle constructed for S1.
The right figure shows the combination of the rectangles for S1, . . . ,S|S|.
This is the base polygon P . The small circles represent the Lu, which
are homothetic copies of P .
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Theorem 8.5.3 Minimum Dominating Set on intersection graphs of homoth-
etic polygons is not approximable within (1 − ǫ) lnn for any ǫ > 0, unless NP
⊂ DTIME(nO(log log n)).

Proof: We give a similar reduction as in the proof of Theorem 8.5.1. Given an
instance (U,S) of Minimum Set Cover, place for each u ∈ U a polygon Lu in
the plane, such that these polygons are aligned in a column (see Figure 8.2).
Now construct a rectangle next to this column. Deform the long side by placing
small bulges on it such that the deformed rectangle intersects an Lu if and only
if u ∈ S1 (see Figure 8.2). Do this for each set in S and stack these rectangles.
This is the base polygon P . By taking a translated copy of P for each set in S
and ensuring that the Lu are homothetic copies of P , we can build the same
graph as in Theorem 8.5.1. The theorem follows.

The hardness results of Corollary 8.5.2 and Theorem 8.5.3 complement The-
orem 8.3.4, where we gave an O(r4)-approximation algorithm on intersection
graphs of homothetic convex polygons with r corners.

The approximability of Minimum Dominating Set on intersection graphs
of convex polygons or of homothetic polygons with r corners has yet to be
determined. The APX-hardness on circle graphs [75] implies APX-hardness
on intersection graphs of convex polygons with two (or more) corners. Hence
no ptas exists, unless P=NP [16]. Using the gadget of Theorem 8.5.1, we can
give a slightly weaker result, but by an easier proof. We use that Minimum
k-Set Cover is APX-hard for any k ≥ 3 (by reduction from Minimum Vertex
Cover on graphs of degree at most 3 [9]). Minimum k-Set Cover is the variation
of Minimum Set Cover where each set has cardinality at most k.

Theorem 8.5.4 Minimum Dominating Set on polygon-circle graphs of convex
polygons with r corners is APX-hard for any r ≥ 4. Hence it has no ptas,
unless P=NP.

Proof: We use the same gadget as in the proof of Theorem 8.5.1 and reduce
from Minimum k-Set Cover, which is APX-hard for any k ≥ 3. The gadget
constructs polygons with at most k + 1 corners. The theorem follows.

Corollary 8.5.5 Minimum Dominating Set on intersection graphs of convex
polygons with r corners is APX-hard for any r ≥ 4. Hence it has no ptas,
unless P=NP.

8.5.2 Intersection Graphs of Fat Objects

The approximation schemes for Maximum Independent Set and Minimum Ver-
tex Cover on disk graphs (see Chapter 7) extend easily to intersection graphs
of fat objects. It is unlikely that an approximation algorithm for Minimum
Dominating Set extends this way, as on intersection graphs of fat objects that
are almost-disks, Minimum Dominating Set becomes hard to approximate.



8.5. Hardness of Approximation 149

du

dj

Figure 8.3: A cut-off disk dj and the disks du for elements u ∈ U of
Theorem 8.5.6.

Recall that a convex subset s of R2 is α-fat for some α ≥ 1 if the ratio
between the radii of the smallest disk enclosing s and the largest disk inscribed
in s is at most α [97].

Theorem 8.5.6 For any α > 1, Minimum Dominating Set on intersection
graphs of α-fat objects is not approximable within (1 − ǫ) lnn for any ǫ > 0,
unless NP ⊂ DTIME(nO(log log n)).

Proof: We reduce from Minimum Set Cover in a manner similar as in the proof
of Theorem 8.5.1. For an instance (U,S) of Minimum Set Cover, construct an
instance of Minimum Dominating Set as follows. Each u ∈ U corresponds to
a ‘small’ disk du. Each Sj corresponds to a disk dj with the top replaced
by a polygonal structure such that dj intersects du if and only if u ∈ Sj (see
Figure 8.3). Packing the du close together makes the fatness of the construction
arbitrarily close to 1. As any object dominated by a du is also dominated by a
dj for which u ∈ Sj , the optima of the two instances are equal. Moreover, the
construction can be computed in polynomial time. The theorem then follows
from Feige’s result [108].

An object has constant description complexity if it is a semialgebraic set de-
fined by a constant number of polynomial (in)equalities of constant maximum
degree [97]. The objects in the proof of Theorem 8.5.6 that model the Sj are
the intersection of a disk with a polygon and thus we can describe each such dj

by one quadratic inequality and |Sj |+ 1 linear inequalities. Hence the objects
in the construction of Theorem 8.5.6 might not have constant description com-
plexity. So for constant description complexity objects, better approximation
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ratios than lnn could be attained. However, we can still prove APX-hardness
by reducing from Minimum k-Set Cover with the same gadget.

Theorem 8.5.7 For any α > 1, Minimum Dominating Set on intersection
graphs of α-fat objects of constant description complexity is APX-hard. Hence
it has no ptas, unless P=NP.

These results say something about intersection graphs of fat objects in general,
and of fat almost-disks in particular. But we can easily prove similar results
for almost-squares, bounded aspect-ratio almost-rectangles, almost-triangles,
etc. Basically, if we slightly relax the shape constraints for a given object,
Minimum Dominating Set on the intersection graphs of such relaxed objects
is hard to approximate. Moreover, the above results can be used to derive
hardness of approximation results for Minimum Connected Dominating Set.

8.5.3 Intersection Graphs of Rectangles

Chleb́ık and Chleb́ıková [65] proved that Minimum Dominating Set is APX-
hard on intersection graphs of three-dimensional axis-parallel boxes and asked
whether this result can be extended to only two dimensions. We prove that
this is indeed the case.

Theorem 8.5.8 Minimum Dominating Set on rectangle intersection graphs
is APX-hard. Hence it has no ptas, unless P=NP.

Proof: We give an L-reduction [220] from Minimum Vertex Cover on graphs
of degree three, which is known to be APX-hard [9]. Consider an arbitrary
instance x of Minimum Vertex Cover on graphs of degree three. Let G = (V,E)
be the graph of x and denote the cardinality of the smallest vertex cover in
G by k. Number the vertices of V arbitrarily v1, . . . , vn, where n = |V |. Now
construct for each vertex vi a horizontal and a vertical rectangle Rh

i and Rv
i

and connect them as shown in Figure 8.4. Call the big rectangle used in the
connection of Rh

i and Rv
i the big plate Pi of i and the two small rectangles

the small plates of i. This models the vertices. Next we model the edges. If
(vi, vj) ∈ E for certain i < j, then add a small rectangle Si,j in the intersection
of rectangles Rv

i and Rh
j (see Figure 8.4). This gives the instance f(x) of

Minimum Dominating Set on rectangle intersection graphs. Observe that this
is indeed a polynomial-time computable function (even if not only the graph,
but also the rectangles are part of the output).

Let C be a vertex cover of G of cardinality k. Let Rh[C] = {Rh
i | vi ∈ C}

be the set of horizontal rectangles induced by C and similarly let Rv[C] be the
set of vertical rectangles induced by C. Furthermore, let P [C] = {Pi | vi 6∈ C}
be the big plates for which the corresponding vertex is not in C.

We claim that D = Rh[C] ∪ Rv[C] ∪ P [C] is a dominating set of G′. Let
r be an arbitrary rectangle. Suppose that r is an Si,j for a certain i, j. Since
C is a vertex cover, vi ∈ C or vj ∈ C. Assume w.l.o.g. that vi ∈ C. Then
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Figure 8.4: The intersection graph used in the proof of Theorem 8.5.8.
If edge (v1, v2) is in E, then the shaded rectangle S1,2 is in G′.
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by construction, Rh
i , Rv

i ∈ D, and thus by construction of G′, Si,j must be
dominated. Suppose that r is a (big or small) plate of i. If vi ∈ C, then
Rh

i , Rv
i ∈ D, and thus the plate must be dominated. If vi 6∈ C, then Pi ∈

P [C] ⊆ D, and the plate is dominated. Using a similar argument, we can
show that if r is Rh

i or Rv
i for certain i, it must be dominated. Hence D is a

dominating set of G′.
Note that |Rh[C]| = |Rv[C]| = |C| = k. Furthermore, |P [C]| = n − k.

Since G has degree three, k ≥ n/4. Hence

m∗(f(x)) ≤ n − k + k + k ≤ 4k + k = 5 · m∗(x). (8.1)

We now take a closer look at the cardinality of dominating sets of G′.
Let D be an arbitrary dominating set of G′. Observe that the rectangles
dominated by small plates and the Si,j are also dominated by the appropriate
big plate or Rh

i respectively Rv
i . Hence we can replace these small plates

and Si,j ’s and obtain a dominating set D′ with |D′| ≤ |D|, where all small
plates and Si,j are dominated by big plates and rectangles of type Rh

i and
Rv

i . Let R2[D′] = {Rh
i , Rv

i | Rh
i , Rv

i ∈ D′} be the rectangles for vi for which
both the horizontal and the vertical version occur in D′, R1[D′] the remaining
rectangles of type Rh

i and Rv
i (i.e. rectangles for vi for which only one version

occurs in D′), and let P [D′] denote the big plates in D′. Furthermore, let
R[D′] = R2[D′] ∪ R1[D′]. Note that R2[D′] ∩ R1[D′] = ∅.

Consider C = {vi | Rh
i ∈ D′ or Rv

i ∈ D′}. Since all Si,j are dominated by
R[D′], C is a vertex cover. Observe that to dominate all plates of i, Pi ∈ D′,
or Rh

i , Rv
i ∈ D′. This holds for all i. Thus |P [D′]| + |R2[D′]|/2 ≥ n. Also, as

C is a vertex cover of G, |R1[D′]| + |R2[D′]|/2 = |C| ≥ k.
Hence

|D′| ≥ |R1[D′]| + |R2[D′]| + |P [D′]|
≥ |R1[D′]| + |R2[D′]|/2 + n (8.2)

≥ k + n.

Together with Equation 8.1, this implies that m∗(f(x)) = n + k.
Now suppose that |D| = m∗(f(x)) + c, for a certain c ≥ 0. Then |D′| ≤

|D| = n + k + c. Using Equation 8.2,

|R1[D′]| + |R2[D′]|/2 + n ≤ n + k + c

|R1[D′]| + |R2[D′]|/2 ≤ k + c

|C| ≤ m∗(x) + c

|C| − m∗(x) ≤ c.

This gives an L-reduction from Minimum Vertex Cover on graphs of degree
three to Minimum Dominating Set on rectangle intersection graphs with α = 5
and β = 1.
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Note that this theorem holds even if the rectangles have to be axis-parallel or if
no rectangle can be fully contained in another rectangle (by slightly changing
the construction of Figure 8.4). Furthermore, the construction in the proof of
Theorem 8.5.8 can be replicated using ellipses instead of rectangles. This gives
the following theorem.

Theorem 8.5.9 Minimum Dominating Set on ellipse intersection graphs is
APX-hard. Hence it has no ptas, unless P = NP.

The proof of Theorem 8.5.9 requires ellipses of relatively high eccentricity (of
the order

√
1 − n−2) as ‘Rh

i ’ and ‘Rv
i ’. Hence the proof does not immediately

carry over to disk graphs.
The construction to prove the APX-hardness of Minimum Dominating Set

in rectangle intersection graphs can be extended to prove the APX-hardness of
Minimum Connected Dominating Set. In fact, the new construction generalizes
the previous construction, as it can also be used to prove the APX-hardness
of Minimum Dominating Set. Below, we give this generalized proof.

Theorem 8.5.10 Minimum Connected Dominating Set on rectangle intersec-
tion graphs is APX-hard. Hence it has no ptas, unless P=NP.

Proof: Consider again an arbitrary instance x of Minimum Vertex Cover on
graphs of degree three. Let G = (V = {v1, . . . , vn}, E) be the graph of x and
denote the cardinality of the smallest vertex cover of x by k. We keep the
construction of Theorem 8.5.8 (see Figure 8.4) and extend it as follows (see
Figure 8.5). For any big plate Pi, we add a horizontal plate Ph

i intersecting Pi

and containing a single small rectangle, ensuring that Ph
i is in any connected

dominating set. We also add three surrounding rectangles S1, S2, and S3, each
containing a single small rectangle, enforcing the presence of S1, S2, and S3

in any connected dominating set. These rectangles are aligned such that S1

intersects all horizontal rectangles Rh
i , S2 intersects S1 and all vertical rect-

angles Rv
i , and S3 intersects S2 and all horizontal plates Ph

i . The intersection
graph G′ of these rectangles is the function f(x) for the L-reduction. It can
be quickly verified that this is indeed a polynomial-time computable function
(even if the rectangles are part of the output).

Let C be a vertex cover of G of cardinality k. Recall that Rh[C] = {Rh
i |

vi ∈ C}, Rv[C] = {Rv
i | vi ∈ C}, and P [C] = {Pi | vi 6∈ C}. Let Ph = {Ph

i |
i = 1, . . . , n}. We claim that D = Rh[C] ∪Rv[C] ∪ P [C] ∪ Ph ∪ {S1, S2, S3} is
a connected dominating set of G′. From the proof of Theorem 8.5.8 and the
construction of G′, it should be clear that D is a dominating set for G′.

To prove that D induces a connected subgraph of G′, let d, d′ ∈ D be any
two distinct rectangles in G′. We show there exists a path in G′[D] between
d and d′. If d or d′ is in Rh[C] (Rv[C]), it takes one step to reach S1 (S2).
Similarly, if d or d′ is in P [C], the appropriate horizontal plate can be used
to reach S3 in two steps. Thus from d or d′, we can reach S1, S2, or S3 in
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Figure 8.5: The intersection graph used in the APX-hardness proof
of Minimum Connected Dominating Set. The rectangles that also ap-
peared in Figure 8.4 have dashed boundaries.
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the subgraph of G′ induced by D in at most two steps. But since {S1, S2, S3}
form a connected induced subgraph in G′, this implies that D is a connected
subgraph of G′. Hence D is a connected dominating set.

We now give an upper bound to |D|. Since the degree of G is three, k ≥ n/4,
and thus

m∗(f(x)) ≤ |D|
= |Rh[C]| + |Rv[C]| + |P [C]| + |Ph| + 3

= k + k + (n − k) + n + 3

= 2n + k + 3 (8.3)

≤ 9k + 3

≤ 12k

= 12 · m∗(x).

Now let D be an arbitrary connected dominating set of G′. We may assume
that D contains all Ph

i and S1, S2, S3 (if not, the small rectangle contained in
these rectangles is in D, which can be easily replaced by the bigger rectangle).
Similarly, as already noted in the proof of Theorem 8.5.8, we may assume that
all small plates and Si,j are dominated by big plates and rectangles Rh

i and
Rv

i . Let R2[D′] = {Rh
i , Rv

i | Rh
i , Rv

i ∈ D} be the set of the rectangles for i
for which both the horizontal and the vertical version occur in D, R1[D] the
set of remaining rectangles of type Rh

i and Rv
i (i.e. rectangles for i for which

only one version occurs in D), and let P [D] denote the set of big plates in D.
Furthermore, let R[D] = R2[D] ∪ R1[D]. Note that R2[D] ∩ R1[D] = ∅.

Consider C = {vi | Rh
i ∈ D or Rv

i ∈ D}. Since all Si,j are dominated by
R[D], C is a vertex cover. Observe that to dominate the small plates of i, Pi ∈
D, or both Rh

i , Rv
i ∈ D. This holds for all i. Therefore |P [D]|+ |R2[D]|/2 ≥ n.

Also, as C is a vertex cover for G, |R1[D]| + |R2[D]|/2 = |C| ≥ k. Hence

|D| ≥ |R1[D]| + |R2[D]| + |P [D]| + |Ph| + 3

≥ |R1[D]| + |R2[D]|/2 + n + n + 3 (8.4)

≥ k + 2n + 3.

Together with Equation 8.3, this implies that m∗(f(x)) = 2n + k + 3.
Now suppose that |D| = m∗(f(x)) + c, for a certain c ≥ 0. Then |D| =

2n + k + 3 + c. Using Equation 8.4,

|R1[D]| + |R2[D]|/2 + 2n + 3 ≤ |D| = 2n + k + 3 + c

|R1[D]| + |R2[D]|/2 ≤ k + c

|C| ≤ m∗(x) + c

|C| − m∗(x) ≤ c.

This gives an L-reduction with α = 12 and β = 1.

This reduction can also be extended to ellipse intersection graphs (where the
ellipses have high eccentricity).
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Overview

One of the most fundamental and best-known optimization problems is Min-
imum Set Cover. It has many applications, for instance in wireless network
planning, as discussed in Section 1.2.2 and below. Given this particular ap-
plication, it is natural to consider Minimum Set Cover in a geometric setting.
Hence this part of the thesis is devoted to the approximability of the geometric
version of Minimum Set Cover, as well as of several of its variants.

Problems

For sake of completeness, we start by defining Minimum Set Cover. Through-
out this part, let U be a universe, P ⊆ U a set of elements, and S a set of
subsets of U.

Definition III.1 The minimum set cover problem is to find a smallest set
C ⊆ S such that each element of P is contained in (covered by) a set in C.

Minimum Set Cover where U = Rd for some d > 0 will be called Geometric
Set Cover. We will mostly discuss the case where U = R2 and the sets in S
are induced by simple geometric objects, such as disks or squares.

A first variation of Minimum Set Cover is its weighted case, where the sets
in S are given a weight and we look for a cover of S of minimum total weight.
We can extend further in this direction by assuming that each element u of
P has a profit p(u), each set Si of S a cost c(Si), and that we are given a
budget B. This leads to the following problem.

Definition III.2 The budgeted maximum coverage problem is find some set
C ⊆ S of total cost at most B that maximizes the total profit of the elements
covered by C.

The geometric version is called Geometric Budgeted Maximum Coverage.
Two further variants of Minimum Set Cover that we will be particularly

interested in are Unique Coverage and Minimum Membership Set Cover. In the
former problem, one is given a collection of sets of elements from some universe
and aims to select sets that maximize the number of elements contained in
precisely one selected set. In the latter problem, the goal is to cover all elements
of the universe while minimizing the maximum number of sets in which any
element is contained. We discuss and formally define both problems below.

The unique coverage problem was proposed by Demaine et al. [83] and is
mainly motivated by wireless network planning. Providers of wireless commu-
nication networks provide service for their customers. This can be achieved

159
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by placing a number of base stations that cover customer locations, which is
a geometric set cover problem. However, if too many base stations cover a
certain customer location, the resulting interference might cause this customer
to receive no service at all. Ideally, each customer is serviced by exactly one
base station and service is provided to as many customers as possible.

Definition III.3 Given a set C ⊆ S, an element u ∈ P is uniquely covered
by C if there is precisely one s ∈ C containing u. The (maximum) unique
coverage problem is to find a set C ⊆ S that maximizes the number of uniquely
covered elements of P.

Of course, it might be more profitable to provide service to certain customers.
Furthermore, placing a base station is costly and providers generally have a
limited budget. This gives rise to the budgeted unique coverage problem.

Definition III.4 The budgeted unique coverage problem is find a set C ⊆ S
of total cost at most B that maximizes the total profit of the elements uniquely
covered by C.

In practice, mobile devices can distinguish between signals from different base
stations. However, this capability is limited and decreases with the number of
base stations in range. Demaine et al. [83] model this by satisfactions s0 = 0,
s1 ≥ s2 ≥ · · · ≥ 0, where an element (customer) u yields satisfaction-modulated
profit si · p(u) if it receives service from exactly i base stations.

Definition III.5 The budgeted low-coverage problem is to find a set C ⊆ S
of total cost at most B that maximizes the satisfaction-modulated profit of the
elements covered by C.

Another way to handle the limited capability of mobile devices to distinguish
signals from different base stations, is to minimize the number of signals a
device receives.

Definition III.6 For a set C ⊆ S, the membership memC(u) of an element
u ∈ P is equal to the number of sets in C that contain u. The maximum mem-
bership is memC(P) = maxu∈P memC(u). Then the minimum membership
set cover problem is to find a set C ⊆ S that covers all elements in P and
minimizes memC(P).

As mentioned before, we want to study these problems in their geometric
version because of the close connection to wireless network planning. For
instance, consider the case when the universe is the plane R2, P is a set of
points corresponding to customer locations, and each s ∈ S is a geometric
object modeling the broadcasting range of the corresponding base station. If
all base stations are equivalent and we ignore obstacles to the signal, these
geometric objects are unit disks.
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One can make the problem more realistic by assuming that the base sta-
tions may have different broadcasting ranges and that they are hindered by
obstacles, but the overlap of the broadcasting ranges of the potential base sta-
tion locations is bounded. The latter assumption is reasonable, as in practice
there are usually very few spots where a base station can or may be placed. We
model this by a set of fat objects where any point in the plane is overlapped
by a bounded number of objects, i.e. a set of fat objects of bounded ply.

Previous Work

Geometric Set Cover

Minimum Set Cover can be approximated within 1 + ln |S| by a greedy al-
gorithm, even in the weighted case [156, 197, 66]. Hochbaum [149] gives a
survey on these and other approximation algorithms for Minimum Set Cover.
The greedy algorithm is also optimal. That is, Minimum Set Cover has no
polynomial-time algorithm attaining an approximation ratio of (1 − ǫ) ln |S|
for any ǫ > 0, unless NP ⊂ DTIME(nO(log log n)) [108].

Geometric Set Cover is NP-hard on unit squares and on unit disks [110,
157], even if the point set P corresponds to the centers of the squares or disks.
By reducing from Minimum Dominating Set on unit disk/square graphs of
bounded density, the NP-hardness continues to hold if the density is 1 [67].

The best approximation ratio for Geometric Set Cover is steadily being
improved. Brönnimann and Goodrich [45] gave the first constant-factor ap-
proximation algorithm for Geometric Set Cover on unit disks, attaining an
unspecified approximation ratio. Călinescu et al. [49] strengthened this re-
sult to a 108-approximation algorithm. Narayanappa and Vojtěchovský [218]
built on the ideas of this algorithm to give a 72-approximation algorithm. The
algorithm by Carmi, Katz, and Lev-Tov [52] has approximation ratio 38.

Recently a ptas for Geometric Set Cover on general disks was discovered.
By a simple transformation, this problem is equivalent to the geometric version
of Minimum Hitting Set (where a smallest subset of points hitting each object
must be found) on three-dimensional half-spaces. Mustafa and Ray [217] give
a ptas for this problem, as well as for Geometric Hitting Set on pseudo-disks.

The above algorithms are not known to be applicable to the weighted case.
Ambühl et al. [13] give a 72-approximation algorithm for Weighted Geometric
Set Cover on unit disks. A 2-approximation algorithm on unit squares is given
by Mihalák [209].

Lev-Tov and Peleg [191] give a ptas for a special case of Geometric Set
Cover on unit disks where the set P is a subset of the set of disk centers. Liao
and Hu [193] consider the case where all points of P lie on the corners of a
constant-size grid and give a ptas that extends to the weighted case.

Clarkson and Varadarajan [68] present a constant-factor approximation
algorithm on pseudo-disks, attaining an unspecified approximation ratio.
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Glaßer, Reitwießner, and Schmitz [125] consider a multi-objective version
of Geometric Set Cover on unit disks, thus providing a trade-off between min-
imizing the number of selected disks and maximizing the number of covered
points. They give a polynomial-time approximation scheme, meaning that for
any (fixed) ǫ > 0 an ǫ-optimal Pareto curve is output in polynomial time,
i.e. for every dominating solution on the Pareto curve, the returned curve
has an ǫ-approximate solution. It should be noted that Glaßer, Reitwießner,
and Schmitz restrict to the case where the selected disks must have constant
precision. Several inapproximability results are also given.

In three dimensions, Laue [188] showed that Geometric Set Cover has a
constant-factor approximation algorithm on translated copies of a fixed poly-
tope. The polytope need not be convex or fat.

Budgeted Maximum Coverage has a (1 − 1
e )-approximation algorithm in

both the unit cost [264, 151, 149] and the general case [165]. Khuller, Moss,
and Naor [165] proved that no polynomial-time algorithm can obtain an ap-
proximation ratio better than (1 − 1

e ), unless NP ⊂ DTIME(nO(log log n)).
As far as we know, the budgeted version of Minimum Set Cover has not been

considered yet on unit squares or unit disks. Geometric Budgeted Maximum
Coverage on unit disks or unit squares, even if the density is 1 and the point
set P corresponds to the centers of the disks or squares, can easily be shown
to be NP-hard by reduction from Geometric Set Cover.

Geometric Unique Coverage and Membership Set Cover

Demaine et al. [83] formulated the unique coverage problem and studied it in
its general setting. They present a polynomial-time Ω(1/ log ρ) = Ω(1/ log n)
approximation algorithm using a greedy method, where n is the number of
elements and ρ is one plus the ratio of the maximum number and the minimum
number of sets in which an element is contained. They give hardness results
to show that this algorithm is (near-)optimal. Demaine et al. give a gap-
preserving reduction from a variant of Balanced Binary Independent Set, so
any (in)approximability result for this problem holds for Unique Coverage as
well. Hence, for any ǫ > 0, it is hard to approximate Unique Coverage within
ratio Ω(1/ logσ(ǫ) n), assuming that NP 6⊆ BPTIME(2nǫ

), where σ(ǫ) is some
constant dependent on ǫ. Under the hypothesis that refuting random instances
of 3SAT is hard on average, one can strengthen this to Ω(1/ log1/3−ǫ n) for any
ǫ > 0. By making a (plausible) assumption on the hardness of Balanced Binary
Independent Set, a further strengthening to Ω(1/ log n) is possible.

The unique hitting set problem, where one tries to select elements to
uniquely hit as many sets as possible, is equivalent to Unique Coverage. If sets
have cardinality at most k, Guruswami and Trevisan [134] give an Ω(1/ log k)-
approximation algorithm. They also consider the more general 1-in-k-SAT
problem and give a 1/e-approximation algorithm on satisfiable instances.

Moser, Raman, and Sikdar [216] showed that if Unique Coverage is param-
eterized by the number k of elements to cover uniquely, it is in FPT. However,
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Budgeted Unique Coverage parameterized by k and the budget B is not in
FPT, unless P=NP. If parameterized by B and the profits and costs are inte-
ger, the problem is not in FPT unless FPT=W[1].

As far as we know, the unique coverage problem as is and its extensions have
not been studied in a geometric setting, although several related problems have.
If one tries to maximize the number of points that are uniquely covered subject
to the constraint that the selected objects are disjoint, this is a maximum-
weight independent set problem, which has a ptas on fat objects of arbitrary
ply (see Chapter 7). For a grid-based version of Unique Coverage on unit
disks, where the disks are restricted to lie at grid points, a ptas has been
announced by Lev-Tov and Peleg [190]. The eptas for fat objects of bounded
ply given in Chapter 10 is significantly more general than this result. Recently,
Glaßer, Reitwießner, and Schmitz [125] considered a multi-objective version of
Geometric Unique Coverage on unit disks, where the selected disks must have
constant precision. Their approximation scheme outputs an ǫ-optimal Pareto
curve in polynomial time for any fixed ǫ > 0.

Minimum Membership Set Cover has a O(lnn)-approximation algorithm,
but no polynomial-time (1 − ǫ) lnn-approximation algorithm for any ǫ > 0,
unless NP⊂ DTIME(nO(log log n)) [186]. The minimum membership set cover
problem has not been studied yet in its geometric setting.

Further Variations

There are many variations of Geometric Set Cover. For instance, suppose that
the point set and the centers of the disks are given, but we are free to choose
the radii of the disks. Lev-Tov and Peleg [191] give a ptas that minimizes the
sum of the radii. Bilò et al. [34] provide a more general scheme that can also be
applied if at most k radii may be nonzero. This problem, called k-clustering,
is also considered by Alt et al. [11].

The related k-center clustering problem, where the maximum radius has
to be minimized, is also well-studied and has a ptas in many cases. A ptas for
the two-dimensional case was given by Agarwal and Procopiuc [3]. Bădoiu,
Har-Peled, and Indyk [20] improved this ptas and generalized to arbitrary
dimension. Agarwal and Procopiuc [3] give a nice overview of earlier results.

If the radius of the disks is fixed, but the positions of the centers of the
disks may be chosen freely, we obtain the geometric covering problem. This
problem is NP-hard on unit disks and on unit squares [110, 157] and a ptas is
known both on unit disks [150] and on unit squares [128]. The variation where
at most k disks may be selected also has a ptas [113].

When we are given both a set of points that should be covered by the objects
and a set of points that should not be covered, we obtain a generalization of
the geometric covering problem called the class cover problem. Cannon and
Cowen [50] give a ptas on unit disks. Efrat et al. [96] give an approximation
algorithm on ellipses, where the eccentricity of the ellipses may also be chosen
freely. The approximation ratio is logarithmic in the optimum.
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A closely related problem is Geometric Piercing, where given a set of ob-
jects, a minimum set of points should be found piercing (hitting) all objects.
This problem has a ptas on fat objects [57].

Glaßer, Reith, and Vollmer [124] consider a maximum coverage problem
where, for each (unit) disk and each point of P in the disk, we are given a
‘signal strength’. Then a point of P is ‘supplied’ if it is covered by a disk whose
signal strength for this point is higher than the sum of the signal strengths
of other selected disks covering this point. If the given set of unit disks has
constant precision, Glaßer, Reith, and Vollmer give a ptas for both the case
where at most k disks can be selected and the number of supplied points must
be maximized, and the case where at least l points must be supplied and the
number of selected disks is minimized.

A problem similar to Geometric Unique Coverage is the problem to find a
subset of a given set of objects that maximizes the total area that is uniquely
covered. Chen et al. [63] provide a ptas for this problem on unit disks.



Chapter 9

Geometric Set Cover
and Unit Squares

Geometric Set Cover can be approximated better than general Minimum Set
Cover, but for many object types the approximability has not been settled yet.
We give a ptas for Geometric Set Cover on unit squares, improving on the ear-
lier 2-approximation algorithm [209]. This is the one of the first approximation
schemes for Geometric Set Cover on two-dimensional objects (together with
the recently appeared [217]) and the first that extends to the weighted case.
The scheme in fact extends to the more general budgeted maximum coverage
problem. Moreover, we prove that the scheme essentially has optimal running
time (up to constants), unless the exponential time hypothesis is false.

Besides these positive algorithmic results, we also give several negative re-
sults. We show that on convex polygons, translated copies of a single polygon,
rotated copies of a single convex polygon, and α-fat objects, Geometric Set
Cover is as hard as Minimum Set Cover. These hardness results all carry
over (mutatis mutandis) to the budgeted case. If the polygons have constant
description complexity, Geometric Set Cover is still APX-hard on convex poly-
gons. We also obtain APX-hardness results for Geometric Set Cover on axis-
parallel rectangles and ellipses.

9.1 A ptas on Unit Squares

We consider Geometric Set Cover on unit squares and show that it has a ptas
by applying the shifting technique.

So let P be a set of points and S a set of axis-aligned unit squares. For
sake of notation, when referring to the (x, y)-coordinates of a square, we mean
the coordinates of the bottom left corner of that square. For a square s, the
x-coordinate of (the bottom left corner of) s is denoted by x(s), while the y-
coordinate is denoted by y(s). By scaling and translating (as in Chapter 4), we
can assume that no horizontal (vertical) boundary of a square is on the same
line as the horizontal (vertical) boundary of another square. Furthermore, we
can assume that all points are fully contained in the squares they are in, i.e. no
point lies on the boundary of a square. Finally, we assume that none of the
square or point coordinates are integers.

165



166 Chapter 9. Geometric Set Cover and Unit Squares

Consider the horizontal lines y = h (h ∈ Z). They partition the plane into
horizontal slabs of height 1. Any point is contained in a slab and every square
intersects precisely one line. Let k ≥ 1 be some integer we determine later.
For any k consecutive slabs, the points in these slabs must be covered by a
subset of the squares intersecting the k + 1 horizontal lines defining those k
slabs. Using the shifting technique, it suffices to prove that we can optimally
solve Geometric Set Cover on unit squares if we restrict to k consecutive slabs
and the k + 1 lines defining them.

Theorem 9.1.1 For any instance of Geometric Set Cover on a set of unit
squares S where all points of P are inside k ≥ 1 consecutive height 1 horizontal
slabs, one can find an optimal solution in O((3|S|)4k+4 |P|) time.

The next few pages are devoted to proving this theorem.
The idea will be to apply a sweep-line algorithm. This requires that we

somehow bound the number of squares of an optimal solution that intersect
the sweep-line at a given sweep-line position. To this end, consider the subset
of squares of an optimum solution intersecting a horizontal line y = h for
some h ∈ Z. Any such square must appear on the lower or upper envelope
of this subset, or all points it covers would be covered by other squares. This
is because the union of a set of connected axis-aligned squares intersecting a
common axis-parallel line cannot have any holes. Following this observation,
for each position of the sweep-line and for each of the k + 1 integer horizontal
lines, we should consider at most two squares intersecting the sweep-line: one
that will appear on the upper envelope and one that will appear on the lower
envelope of the final solution. Obviously, we could also have a single square
both on the upper and lower envelope, or, in fact, have no square at all.

Although at first glance this approach seems feasible, there is a problem
with the dynamic programming. A square might appear on the lower envelope
for some position of the sweep-line and on the upper envelope for a later
position. In fact, several other squares might appear on the lower or upper
envelope before this square appears on the upper envelope. This makes it
difficult to avoid counting certain squares twice. To circumvent this, we split
the sweep-line into k parts, one part per slab. We move these parts at different
speeds, but always in such a way that if a square appears both on the lower
and the upper envelope, then the split sweep-line is positioned such that it
intersects the square both at the point where the square appears on the lower
and on the upper envelope.

Though intuitively it seems like this would work, the split sweep-line trick
requires a rigorous proof. We do this by formalizing the sweep-line process.

Just as in any sweep-line algorithm, we maintain a data structure (the
front) containing the squares that are ‘active’ at a given position of the sweep-
lines. The difficulty in this sweep-line algorithm arises in maintaining the front
and consequently in finding squares that can be validly inserted into the front.
Therefore we start by defining the front that we use and the (four types of)
insertions that we are allowed to perform.
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Let Sl and Sr be two dummy sets of k + 1 squares each, such that the
squares in Sl (Sr) are to the left (right) of all squares in S and each integer
horizontal line intersects precisely one square of Sl and one square of Sr. Let
S = S ∪ Sl ∪ Sr. Given some set S ⊆ S, let Si denote the set of squares in S
intersecting line i. Let Ri ⊆ Si be the set containing precisely:

• the rightmost square of Si (denote it by si),

• those squares s that overlap part of the left boundary of si and whose
right boundary is not fully covered by squares of Si.

We now define a front. For a better understanding of the definition, imagine
that the squares are being inserted in order of increasing x-coordinate and that
we want to keep track of the upper and lower envelope of each line i.

Definition 9.1.2 Let S be the union of Sl and some subset of S. Then a front
F = {u1, . . . , uk+1, l1, . . . , lk+1, b1, . . . , bk+1, x1, . . . , xk} for S has the following
properties:

• ui, li ∈ Ri with ui = si or li = si,

• y(s) ≤ y(ui) for any s ∈ Si to the right of ui (i.e. with x(s) > x(ui)),

• y(s) ≥ y(li) for any s ∈ Si to the right of li (i.e. with x(s) > x(li)),

• bi is equal to:

– the lowest square of Si to the right of li if x(ui) > x(li),

– the highest square of Si to the right of ui if x(li) > x(ui),

– si if x(ui) = x(li) (i.e. if ui = li),

• xi is equal to the larger of the x-coordinate from which li+1 starts ap-
pearing on the lower envelope of Si+1 and the x-coordinate from which
ui starts appearing on the upper envelope of Si.

An example is depicted in Figure 9.1.
Fronts are the representative of the current state of the sweep-line algo-

rithm. The squares ui and li track the current square on respectively the
upper and the lower envelope of line i. The value of xi is the x-coordinate of
the part of the sweep-line between lines i and i + 1. The square bi is used in
checking if a certain square may be inserted or not.

We can make two observations about a front. First, y(ui) ≥ y(li) and, since
ui, li ∈ Ri, |x(ui)−x(li)| < 1 for any i = 1, . . . , k+1. Secondly, if x(ui) ≥ x(li),
then y(ui) ≤ y(bi) ≤ y(li). If x(ui) ≤ x(li), then y(li) ≤ y(bi) ≤ y(ui).

For a given front, we distinguish four types of insertions that are possible.
An upper-insertion for squares that will appear only on the upper envelope for
some line, a lower-insertion for squares appearing only on the lower envelope,
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ui bi

li = si

ui
ui

li = si = bi

ui
li

ui = si = bi

Figure 9.1: The left figure shows a set Si. The dashed square is not
in Ri and thus not in a front for Si. The four solid squares are in Ri.
From Definition 9.1.2, the labeling in the figure is correct. The middle
figure shows the same set Ri, but with a different (and still correct)
labeling. The labeling in the right figure however is incorrect.

and a middle-insertion or a skip-insertion for squares appearing on both en-
velopes. We define these four insertions, describe when they may be applied,
and prove that any geometric set cover can be obtained using these insertions.

From now on, S will denote the union of Sl and some subset of S.

Definition 9.1.3 Let F be a front for some S and let s 6∈ S be a square
intersecting line i ∈ {1, . . . , k}. We say that s is upper-insertable into F if all
of the following hold:

1. y(s) > y(li) and if x(li) > x(ui), then y(s) > y(bi),

2. x(s) ∈ (x(li), x(li) + 1] and x(s) ∈ (x(ui), x(ui) + 1],

3. x′
i > xi,

4. any point of P in [xi, x
′
i] × [i, i + 1] is covered by ui or li+1,

where x′
i is the x-coordinate from which s is on the upper envelope of (S∪{s})i.

Condition 1 ensures that s lies above li and all squares between ui and li (rep-
resented by bi), Condition 2 ensures that s appears on the upper envelope of
(S ∪{s})i, Condition 3 ensures that this appearance happens after ui appears
on the upper envelope, and Condition 4 ensures that we cover all points be-
tween two consecutive sweep-line positions. An example of upper-insertable
squares and squares that are not upper-insertable is given in Figure 9.2.

Proposition 9.1.4 Let F be a front for some S and let s 6∈ S be a square
intersecting line i ∈ {1, . . . , k}. If Condition 2 of Definition 9.1.3 holds for F
and s, then s appears on the upper envelope of (S ∪ {s})i to the right of ui.

Proof: By Condition 2, x(s) > max{x(ui), x(li)} = x(si), and thus s appears
on the upper envelope of (S ∪ {s})i to the right of ui.
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ui

bi

li = si

si = ui = bi

bi

li

ui

bi

li = si

Figure 9.2: The left figure shows two (dashed) squares that are upper-
insertable into the front of Figure 9.1. The middle figure shows the
resulting front after upper-inserting the rightmost of these squares. The
right figure shows two (dashed) squares that are not upper-insertable.

As a consequence of this proposition, the x-coordinate x′
i of Definition 9.1.3

does indeed exist (if Condition 2 holds).

Lemma 9.1.5 Let F be a front for some S and let s 6∈ S be a square inter-
secting line i ∈ {1, . . . , k} that is upper-insertable into F . Then between the
appearance of ui and the appearance of s on the upper envelope of (S ∪ {s})i

no other squares appear on the upper envelope of (S ∪ {s})i.

Proof: If ui = si, this follows from x(s) > x(ui) = x(si) and x′
i > xi. So

assume that ui 6= si. Then li = si and x(li) > x(ui). Recall the definition of a
front and observe that bi is the highest square of Si to the right of ui. As x(li)−
x(ui) < 1 and y(bi) < y(ui), it suffices for s to lie above bi (i.e. y(s) > y(bi))
and for s to cover the x-range [x(ui)+1, x(li)+1] (i.e. x(li) < x(s) < x(ui)+1).
This holds from the definition of upper-insertable.

Lemma 9.1.6 Let F be a front for some S and let s 6∈ S be a square inter-
secting line i ∈ {1, . . . , k} that is upper-insertable into F . Then S ∪ {s} has
a front F ′ equal to F , except ui is replaced by s, xi is set to x′

i, where x′
i is

equal to x(s) if y(s) > y(ui) and to x(ui) + 1 otherwise, and if x(ui) ≤ x(li)
or y(s) ≤ y(bi), bi is set to s.

Proof: Since x(s) > max{x(ui), x(li)} = x(si) by Condition 2 of Defini-
tion 9.1.3, we can replace ui by s. Note that li can remain the same by
Condition 1 and 2. By Lemma 9.1.5, x′

i is indeed the x-coordinate from which
s appears on the upper envelope of (S ∪ {s})i. From Condition 3, xi should
be set to x′

i. If x(ui) ≤ x(li), then as x(s) > x(li), bi should be set to
s. If x(ui) > x(li), then bi should only be changed if s lies below bi, i.e. if
y(s) ≤ y(bi). Then the front F ′ is indeed a front for S ∪ {s}.

Constructing the front F ′ from F as prescribed in the lemma statement is
called the upper-insertion of s into F .



170 Chapter 9. Geometric Set Cover and Unit Squares

Definition 9.1.7 Let F be a front for some S and let s 6∈ S be a square
intersecting line i ∈ {2, . . . , k + 1}. We say that s is lower-insertable into F if
all of the following hold:

1. y(s) < y(ui) and if x(ui) > x(li), then y(s) < y(bi),

2. x(s) ∈ (x(li), x(li) + 1] and x(s) ∈ (x(ui), x(ui) + 1],

3. x′
i−1 > xi−1,

4. any point of P in [xi−1, x
′
i−1] × [i − 1, i] is covered by ui−1 or li.

Here x′
i−1 is the x-coordinate by which s is on the lower envelope of (S ∪ {s})i.

Lemma 9.1.8 Let F be a front for some S and let s 6∈ S be a square inter-
secting line i ∈ {2, . . . , k+1} that is lower-insertable into F . Then S∪{s} has
a front F ′ equal to F , except li is replaced by s, xi−1 is set to x′

i−1, where x′
i−1

is equal to x(s) if y(s) < y(li) and to x(li) + 1 otherwise, and if x(li) ≤ x(ui)
or y(s) ≥ y(bi), bi is set to s. Furthermore, between the appearance of li and
the appearance of s on the lower envelope of (S∪{s})i no other squares appear
on the lower envelope of (S ∪ {s})i.

Constructing the front F ′ from F as prescribed in the lemma statement is
called the lower-insertion of s into F .

We define middle-insertable, which combines upper- and lower-insertable,
except that we drop the constraints that y(s) > y(li) and y(s) < y(ui).

Definition 9.1.9 Let F be a front for some S and let s 6∈ S be a square
intersecting line i ∈ {1, . . . , k + 1}. We say that s is middle-insertable into F
if all of the following hold:

1. if x(li) > x(ui), then y(s) > y(bi), and if x(ui) > x(li), then y(s) < y(bi),

2. x(s) ∈ (x(li), x(li) + 1] and x(s) ∈ (x(ui), x(ui) + 1],

3. x′
i > xi (if i 6= k + 1) and x′

i−1 > xi−1 (if i 6= 1),

4. any point of P in [xi, x
′
i]× [i, i+1] (if i 6= k+1) or [xi−1, x

′
i−1]× [i−1, i]

(if i 6= 1) is covered by ui−1, li, ui, or li+1,

where x′
i (x′

i−1) is the x-coordinate from which s appears on the upper (lower)
envelope of (S ∪ {s})i.

Lemma 9.1.10 Let F be a front for some S and let s 6∈ S be a square inter-
secting line i ∈ {1, . . . , k + 1} that is middle-insertable into F . Then S ∪ {s}
has a front F ′ equal to F , except ui, li, and bi are replaced by s, xi is set to
x′

i (if i 6= k + 1), where x′
i is equal to x(s) if y(s) > y(ui) and to x(ui) + 1

otherwise, and xi−1 is set to x′
i−1 (if i 6= 1), where x′

i−1 is equal to x(s) if
y(s) < y(li) and to x(li) + 1 otherwise. Furthermore, between the appearance
of ui (li) and the appearance of s on the upper (lower) envelope of (S ∪ {s})i

no other squares appear on the upper (lower) envelope of (S ∪ {s})i.
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Constructing the front F ′ from F as prescribed in the lemma statement is
called the middle-insertion of s into F .

Definition 9.1.11 Let F be a front for some S and let s 6∈ S be a square
intersecting line i ∈ {1, . . . , k + 1}. We say that s is skip-insertable into F if
all of the following hold:

1. ui = li,

2. x(s) > 1 + max{x(ui), x(li)},

3. (if i 6= k + 1) x(s) > xi and (if i 6= 1) x(s) > xi−1

4. any point of P in [xi, x(s)] × [i, i + 1] (if i 6= k + 1) or in [xi−1, x(s)] ×
[i − 1, i] (if i 6= 1) is covered by ui−1, li, ui, or li+1.

Lemma 9.1.12 Let F be a front for some S and let s 6∈ S be a square inter-
secting line i ∈ {1, . . . , k + 1} that is skip-insertable into F . Then S ∪ {s} has
a front F ′ equal to F , except ui, li, and bi are replaced by s, xi is set to x(s)
(if i 6= k + 1), and xi−1 is set to x(s) (if i 6= 1). Furthermore, between the
appearance of ui (li) and the appearance of s on the upper (lower) envelope of
(S ∪{s})i no other squares appear on the upper (lower) envelope of (S ∪{s})i.

Constructing the front F ′ from F as prescribed in the lemma statement is
called the skip-insertion of s into F .

In general, we call an upper-/lower-/middle-/skip-insertion an insertion
and we say s is insertable if it is upper-/lower-/middle-/skip-insertable. A
valid insertion is the upper- (respectively lower-/middle-/skip-) insertion of a
square that is upper- (respectively lower-/middle-/skip-) insertable.

We now prove that any set cover can be obtained using a sequence of valid
insertions. Denote by F l and F r the fronts for Sl and S.

Lemma 9.1.13 Assume P = ∅. Let S be some set such that S = Sl ∪Si ∪Sr

for some i ∈ {1, . . . , k + 1} and any square in Si appears on the lower or the
upper envelope of Si. Then there is a sequence of |Si| + k − 1 valid insertions
starting from F l, leading to fronts F l = F0, F1, . . . , F|Si|+k−1 = F r such that
for any square s ∈ Si, there is a front Fj containing s.

Proof: We assume that if i = 1, then no squares of Si appear only on the
lower envelope of Si. Similarly, if i = k + 1, assume that no squares of Si

appear only on the upper envelope of Si. Order the squares in Si\Sl by
increasing x-coordinate, i.e. s1, . . . , s|Si|−1. Note that the squares appearing
on the upper envelope form an increasing subsequence of Si. Similarly, the
squares appearing on the lower envelope form an increasing subsequence. We
claim that one can obtain the requested sequence of valid insertions by inserting
sj into Fj−1 for all j = 1, . . . , |Si| − 1 as follows: if sj appears
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• only on the upper envelope of Si, then sj is upper-insertable and will be
upper-inserted;

• only on the lower envelope of Si, then sj is lower-insertable and will be
lower-inserted;

• on the upper and lower envelope of Si and a square of Si covers part of its
left boundary, then sj is middle-insertable and will be middle-inserted;

• on the upper and lower envelope of Si and no square of Si covers part of
its left boundary, then sj is skip-insertable and will be skip-inserted.

We prove this by induction on the number j of inserted squares.

Suppose that j = 0. Since s1 is the leftmost square of Si\Sl, it appears on
both envelopes of Si and no square of Si covers part of its left boundary. By
the definition of F l = F0, s1 is skip-insertable into F0 and can be skip-inserted.

Assume that j > 0 and consider the current front Fj . If sj+1 appears
on both envelopes of Si and no square of Si covers part of its left boundary,
then x(sj+1) > 1 + x(sj′) for any j′ < j + 1. As squares are inserted in
order of increasing x-coordinate, in Fj , x(sj+1) > 1+max{x(ui), x(li)}. Since
S = Sl ∪ Si ∪ Sr, this implies that (if i 6= k + 1) x(sj+1) > xi and (if i 6= 1)
x(sj+1) > xi−1. Finally, observe that sj must appear on both envelopes of
Si and thus must have been middle- or skip-inserted. But then ui = li = sj .
Hence sj+1 is skip-insertable into Fj .

If sj+1 appears only on the upper envelope of Si, then there must be squares
appearing on the lower envelope of Si covering the bottom left corner of sj+1.
By induction, the rightmost such square must be li. Hence y(sj+1) > y(li) and
x(sj+1) ∈ (x(li), 1 + x(li)]. But then there are squares covering (part of) the
left boundary of sj+1 appearing on the upper envelope of Si. By induction,
the right-most such square must be ui and thus x(sj+1) ∈ (x(ui), 1 + x(ui)].
As squares are inserted in order of increasing x-coordinate, sj+1 appears on
the upper envelope of Si after ui. Then x′

i > xi. Finally, suppose that x(li) >
x(ui). By induction, any square s ∈ Si with x(ui) < x(s) ≤ x(li), and
in particular bi, does not appear on the upper envelope of Si. Therefore
y(sj+1) > y(bi). Hence sj+1 is upper-insertable into Fj .

The cases when sj+1 appears only on the lower envelope of Si or when sj+1

appears on both envelopes of Si and (part of) its left boundary is covered are
similar. Finally, apply skip-insertions to insert the squares of Sr.

Lemma 9.1.14 Assume P = ∅. Let S be some subset of S containing Sl∪Sr,
such that for the set Si of squares in S intersecting line i for i ∈ {1, . . . , k+1},
any square in Si appears on the upper or lower envelope of Si. Then there is
a sequence of |S| − k − 1 valid insertions starting from F0 = F l, leading to
F1, . . . , F|S|−k−1 = F r such that for any square s ∈ S, there is a front Fj

containing s.
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Proof: Following the proof of the previous lemma, we can insert the squares
intersecting each horizontal line in order of increasing x-coordinate. However,
we should interleave the sequences of the different lines. For any i = 1, . . . , k,
consider the squares appearing on the upper envelope of Si and the lower
envelope of Si+1. Order these squares according to the x-coordinate from
which they appear on the upper envelope of Si or on the lower envelope of
Si+1 respectively. Combining these two orders, we can extend this to an order
by which to insert the squares of S. We claim that the j-th square sj according
to this order is insertable into Fj−1 and that after inserting sj , all squares sj′

with j′ > j are still insertable.
We prove this by induction on the number j of inserted squares. Trivially,

all squares are insertable into F0. Now consider any j ≥ 0. By induction, sj+1

is insertable into Fj . Let Fj+1 be the front arising from the insertion of sj+1

into Fj . Suppose that sj+1 ∈ Si for some i. As squares of Si are inserted in
order of increasing x-coordinate, it follows from Lemma 9.1.13 that all sj′ ∈ Si

with j′ > j + 1 are still insertable into Fj+1.
To see that remaining squares in Si′ for i′ 6= i are still insertable, it suffices

to see that from the perspective of such a square s′, only a change to xi′

(if i′ 6= k + 1) or xi′−1 (if i′ 6= 1) can affect its insertability. We may thus
assume that s′ appears on the lower envelope of Si+1 (if i 6= k + 1) or the
upper envelope of Si−1 (if i 6= 1). Assume without loss of generality that
i 6= k + 1, s′ appears on the lower envelope of Si+1, and sj+1 appears on the
upper envelope of Si. Keeping in mind the definition of xi (Definition 9.1.2),
as all noninserted squares on the lower envelope of Si+1 start appearing on
this envelope at a larger x-coordinate than the x-coordinate from which sj+1

appears on the upper envelope of Si, the condition that x′
i > xi will still hold

for s′ in Fj+1.
The other case, when i 6= 1, s′ appears on the lower envelope of Si−1, and

sj+1 appears on the lower envelope of Si, is similar. We thus found a sequence
of valid insertions as in the lemma statement.

Lemma 9.1.15 Let S be any smallest subset of S containing Sl ∪ Sr and
covering all points in P. Then there is a sequence of |S|−k−1 valid insertions
starting from F l, leading to F1, . . . , F|S|−k−1 = F r such that for any square
s ∈ S, there is a front Fj containing s.

Proof: This follows from the preceding lemma. Note that in the definitions of
insertable, the coverage constraints are satisfied by S.

The converse of this lemma is also true.

Lemma 9.1.16 Let l ≥ 0. Then any sequence of l + k + 1 valid insertions
starting from F l and resulting in F r corresponds to a set S ⊆ S of cardinality
l covering all points in P.

Proof: Take S to be the set of inserted squares, except those in Sr. Because
we only performed valid insertions, the set S covers all points in P.
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Proof of Theorem 9.1.1: Construct a directed graph G with V (G) equal
to the set of all fronts and a directed edge from front F to F ′ if F ′ can be
obtained from F by a single valid insertion. From the definition of a front,
|V (G)| = O(|S|4k+3). As each front allows for at most 4|S| valid insertions,
|E(G)| = O(|S|4k+4). Because the validity of an insertion can be checked in
O(|P|) time, G can be constructed in O(|S|4k+4|P|) time.

From Lemma 9.1.15 and 9.1.16, a shortest path in G from F l to F r corre-
sponds to a minimum subset of S covering all points in P. Using breadth-first
search, a shortest path can be found in O(|E(G)|) = O(|S|4k+4) time. Ob-
serve that |S| = |S| + |Sl| + |Sr| ≤ 3|S|, because if no square intersects a
certain line, we may ignore this line. Then the running time of the algorithm
is O((3|S|)4k+4|P|).

Combining Theorem 9.1.1 with the shifting technique, we obtain a ptas for
Geometric Set Cover on unit squares. For each integer 0 ≤ a ≤ k − 1, let
La denote the set of squares intersecting a line y ≡ a (mod k). Moreover,
for each b ∈ Z, let Pb

a denote the set of points between lines y = bk + a and
y = (b + 1)k + a. Apply the algorithm of Theorem 9.1.1 to each such set Pb

a

and denote the returned set of squares by Cb
a. Then let Ca =

⋃
b∈Z

Cb
a and let

Cmin denote a smallest such set. Trivially, each Ca is a geometric set cover for
P, as

⋃
b∈Z

Pb
a = P for any value of a.

Lemma 9.1.17 |Cmin| ≤ (1 + 1/k) · |OPT |, where OPT is a minimum geo-
metric set cover.

Proof: Let Sb
a denote the set of all squares in S covering at least one point in

Pb
a for some a, b. We may assume that Cb

a ⊆ Sb
a. Now observe that OPT ∩ Sb

a

is a cover for Pb
a. Hence |Cb

a| ≤ |OPT ∩ Sb
a| and

|Ca| ≤
∑

b∈Z

|OPT ∩ Sb
a| ≤ |OPT | + |OPT ∩ La|

for any 0 ≤ a ≤ k − 1. A square is in La for precisely one value of a. Then

k · |Cmin| ≤
k−1∑

a=0

|Ca| ≤
k−1∑

a=0

(
|OPT | + |OPT ∩ La|

)
= (k + 1) · |OPT |.

Therefore |Cmin| ≤ (1 + 1/k) · |OPT |.

Theorem 9.1.18 There is a ptas for Geometric Set Cover on unit squares.

Proof: Consider some ǫ > 0 and let k = max{1, ⌈1/ǫ⌉}. Following Theo-
rem 9.1.1, we can compute Cmin in O(k|P| · (3|S|)4k+4|P|) time. From the
choice of k and Lemma 9.1.17, this is a (1 + ǫ)-approximation. The theorem
follows immediately.
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9.1.1 Geometric Budgeted Maximum Coverage

The above ptas easily extends to the weighted case of Geometric Set Cover,
by weighting the graph constructed in the proof of Theorem 9.1.1. We can
however extend to the more general budgeted case as well.

Let S be a set of unit squares, P a set of points, c a cost function over S,
p a nonnegative profit function over P, and B a budget. Let pmax denote the
maximum profit of any single point. We define the function cov(s) as the set
of points in P covered by a square s ∈ S. This notation extends to cov(S) for
a set S ⊆ S. Abusing notation, we will use p(S) to denote p(cov(S)).

Let k ≥ 2 be an integer we determine later. Use slabs as before.

Theorem 9.1.19 For any instance of Geometric Budgeted Maximum Cover-
age on a set of unit squares S where all points are inside k − 1 consecutive
height 1 horizontal slabs and all profits are positive integers, one can find for
all 0 ≤ r ≤ |P| · pmax a cheapest set of profit at least r (if one exists) in
O((3|S|)4k (|P| · pmax)

2) time.

Proof: We modify the algorithm described above. Assume the cost of squares
in Sl∪Sr to be zero. Remove the coverage constraints from the four definitions
of insertable. Then, as in the proof of Theorem 9.1.1, we construct a directed
graph G with V (G) equal to the set of all fronts and an edge from F to F ′ if
F ′ can be obtained from F by a single valid insertion.

Alter this graph G as follows. For any edge in E(G) from some front F to
a front F ′, we replace the edge by a path. The number of edges of the path is
equal to the total profit of the points covered by the insertion. For example,
for an upper insertion of a square s intersecting line i, this is the total profit
of the points covered by ui or li+1 in [xi, x

′
i] × [i, i + 1]. The cost of inserting

s is modeled by assigning a weight of c(s) to the first edge of the path and
assigning weight 0 to all other edges.

Now the number of edges on a F l–F r path minus k+1 is equal to the profit
of the solution corresponding to this path. Its cost is equal to the weight of
the path. Hence we aim to find for any 0 ≤ r ≤ |P| · pmax a lightest path of
length at least r. A straightforward dynamic programming algorithm for this
problem takes O(|E(G)| · |P| · pmax) = O((3|S|)4k(|P| · pmax)

2) time.

By slightly changing the dynamic programming algorithm of Theorem 9.1.19,
we can also deal with points of zero profit.

We now apply the shifting technique and scaling to obtain a ptas. Start by
assuming integer profits. For each integer 0 ≤ a ≤ k− 1, let Na denote the set
of points between lines y = bk +a and y = bk +a+1 for any b ∈ Z. Moreover,
for any b ∈ Z, let Pb

a be the set of points between lines y = bk + a + 1 and
y = (b + 1)k + a.

For any 0 ≤ r ≤ |P| · pmax, let Cb
a(r) denote the set returned by the

algorithm of Theorem 9.1.19, applied on S and Pb
a, attaining profit at least r.

We assume that c(Cb
a(r)) = ∞ if Cb

a(r) profit at least r cannot be attained.
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Let the nonempty sets Pb
a are numbered arbitrarily P0

a , . . . ,P la
a , and let

C0
a , . . . , Cla

a be the corresponding solutions. Define

sa(0, r) = c(C0
a(r))

sa(b, r) = min
0≤r′≤r

{c(Cb
a(r′)) + sa(b − 1, r − r′)}

for 1 ≤ b ≤ la and 0 ≤ r ≤ |P| · pmax. Observe that computing sa takes
O(|P| · (|P| · pmax)

2) time.
Let Ca denote a set attaining max0≤r≤|P|·pmax

{r | sa(la, r) ≤ B} and let
Cmax denote a most profitable such set. By definition, c(Cmax) ≤ B.

Lemma 9.1.20 p(Cmax) ≥ (1 − 1/k) · p(OPT ), where OPT is an optimal
solution.

Proof: Let Sb
a denote the set of squares in S covering at least one point in Pb

a.
Then it can be easily seen that

c
(
Cb

a

(
p
(
cov

(
OPT ∩ Sb

a

)
∩ Pb

a

)))
≤ c(OPT ∩ Sb

a)

for any 0 ≤ a ≤ k − 1 and 0 ≤ b ≤ la. Because for fixed a the sets Sb
a are

pairwise disjoint,
∑la

b=0 c(OPT ∩ Sb
a) ≤ B. Then it follows from the definition

of s and by induction that

p(Ca) ≥
la∑

b=0

p(cov(OPT ∩ Sb
a) ∩ Pb

a).

Since

la∑

b=0

p(cov(OPT ∩ Sb
a) ∩ Pb

a) = p(OPT ) − p(cov(OPT ) ∩ Na)

and any point is in Na for precisely one value of a,

k · p(Cmax) ≥
k−1∑

a=0

p(Ca)

≥
k−1∑

a=0

(
p(OPT ) − p(cov(OPT ) ∩ Na)

)

= (k − 1) · p(OPT ).

Hence p(Cmax) ≥ (1 − 1/k) · p(OPT ).

Theorem 9.1.21 There is a ptas for Geometric Budgeted Maximum Coverage
on unit squares.
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Proof: Consider some ǫ > 0 and let k = max{2, ⌈1/ǫ⌉}. To deal with non-
integer profits and to achieve polynomial running time, we first scale the

profits. Define the integer profit function p′ by p′(u) =
⌊
|P|·p(u)
ǫ·pmax

⌋
for any

u ∈ P. Now apply the above algorithm with p′ and compute Cmax. Following
Lemma 9.1.20, p′(Cmax) ≥ (1 − 1/k) · p′(OPT ), where OPT is an optimal
solution with profit function p. Hence, as p(OPT ) ≥ pmax,

p(Cmax) ≥ ǫ · pmax

|P| · p′(Cmax)

≥ (1 − 1/k) · ǫ · pmax

|P| · p′(OPT )

≥ (1 − 1/k) ·
(

p(OPT ) − |P| · ǫ · pmax

|P|

)

≥ (1 − 1/k) · (1 − ǫ) · p(OPT )

≥ (1 − ǫ)2 · p(OPT ).

The running time is

O(k|P| · (3|S|)4k |P|4/ǫ2 + k|P| · |P|4/ǫ2) = O(k|P| · (3|S|)4k |P|4/ǫ2),

because p′max ≤ |P|/ǫ. This gives the ptas.

9.1.2 Optimality and Relation to Domination

Geometric Set Cover and the geometric version of Minimum Dominating Set
are closely related. We exploit this relation here to give a ptas for Minimum-
Weight Dominating Set on unit square graphs and to show that the algorithms
for (the budgeted version of) Geometric Set Cover developed above are essen-
tially optimal.

Observe that two squares of side length 1 centered on points p and p′

intersect if and only if p is contained in the square of side length 2 centered on
p′ and p′ is contained in the square of side length 2 centered on p. Hence given
a collection of unit squares S, the minimum dominating set problem on G[S] is
equivalent to the Geometric Set Cover problem on S ′ and the centers of S ′ as
point set, where S ′ is obtained from S using the preceding observation (see also
Mihalák [209]). Then the following result is immediate from Theorem 9.1.21.

Theorem 9.1.22 There is a ptas for Minimum-Weight Dominating Set on
unit square graphs.

Recall from the discussion of Section 6.3.5 that the techniques developed earlier
were not sufficient to give a ptas for the weighted case of Minimum Dominating
Set. Theorem 9.1.22 therefore is the first ptas for Minimum-Weight Dominat-
ing Set on intersection graphs of two-dimensional objects.
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Another consequence of the above reduction from Minimum Dominating
Set on unit square graphs to Geometric Set Cover on unit squares is the fol-
lowing. Recall from Section 6.4 that the exponential time hypothesis states
that n-variable 3SAT cannot be decided in 2o(n) time.

Theorem 9.1.23 If there exist constants δ ≥ 1, 0 < β < 1 such that Geo-
metric Set Cover or Geometric Budgeted Maximum Coverage on unit squares

of density d have a ptas with running time 2O(1/ǫ)δ

dO(1/ǫ)1−β

nO(1), then the
exponential time hypothesis is false.

This is immediate from Theorem 6.4.4. Note that the algorithms of The-
orem 9.1.18 and 9.1.21 are optimal for dense instances, but might still be
slightly improved for nondense instances. It seems though that the analysis
of the above algorithms does not improve when assuming bounded density.
We believe however that some small changes to the algorithm are sufficient to
make it optimal in this sense.

Similarly, we can show from Theorem 6.4.9 that Geometric Set Cover and
Geometric Budgeted Maximum Coverage on unit squares have no eptas.

Theorem 9.1.24 Geometric Set Cover and Geometric Budgeted Maximum
Coverage on n unit squares of density d = d(n) = Ω(nα) for some constant
0 < α ≤ 1 cannot have an eptas, unless FPT=W[1].

This again gives an indication that there is little chance to improve on the ptas
of Theorem 9.1.22.

Finally, we note that Theorem 9.1.23 and Theorem 9.1.24 also hold (mutatis
mutandis) on unit disks.

9.2 Hardness of Approximation

Not much is clear yet about the approximability of Geometric Set Cover. The
approximation scheme of the previous section all but settled its approximability
on unit squares. This gives hope for the existence of a ptas on unit disks. For
more general objects however, we know almost nothing. In this section, we
give several hardness results, showing that Geometric Set Cover is as hard as
Minimum Set Cover in some cases and APX-hard in others.

Theorem 9.2.1 Geometric Set Cover is not approximable within (1 − ǫ) lnn
for any ǫ > 0, unless NP ⊂ DTIME(nO(log log n)), on the following objects:

• convex polygons,

• translated copies of a single polygon,

• rotated copies of a single convex polygon,

• α-fat objects for any α > 1.
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Geometric Set Cover is APX-hard on the following objects:

• convex polygons with r corners, where r ≥ 4,

• α-fat objects of constant description complexity for any α > 1,

• rectangles,

• ellipses.

Proof: The reductions are essentially the same as those in Section 8.5. The
gadgets proposed there need only be slightly modified. In short, each object
that we used to model an element u ∈ U for the universe U of the minimum
set cover instance that we are reducing from, will be a point instead. For
rectangles and ellipses, we use the gadget of the proof of Theorem 8.5.8, but
any small plate or Si,j will be a point instead of a rectangle.

The lnn-hardness on rotated copies of a single polygon follows by apply-
ing the same ideas as in Theorem 8.5.3, but on slices of a single large disk.
Rotations of the disks then allow for the same kind of construction.

The lnn-hardness on translated copies of a single polygon seems somewhat at
odds with Laue’s [188] constant-factor approximation algorithm on translated
copies of a fixed three-dimensional polytope. However, the complexity of the
polygon used in the hardness result depends on the number of polygons (i.e. on
the number of sets in the minimum set cover instance). Hence the polygon
may not been assumed to be fixed. When looking closely at Laue’s result, one
can observe that the approximation ratio of his algorithm actually depends
(linearly) on the complexity of the polytope if it is nonconvex.

Using an idea by Khuller, Moss, and Naor [165] to reduce from Minimum
Set Cover to Budgeted Maximum Coverage, we can also prove hardness results
for Geometric Budgeted Maximum Coverage.

Theorem 9.2.2 Geometric Budgeted Maximum Coverage is not approximable
within ratio better than (1 − 1/e), unless NP ⊂ DTIME(nO(log log n)), on the
following objects:

• convex polygons,

• translated copies of a single polygon,

• rotated copies of a single convex polygon,

• α-fat objects for any α > 1.

Note that the APX-hardness results of Theorem 9.2.1 cannot be transferred
to Geometric Budgeted Geometric Coverage using this trick. The underlying
reductions are not from Minimum Set Cover, but from Minimum k-Set Cover
and Minimum Vertex Cover, for which the idea of Khuller, Moss, and Naor
does not appear to work.





Chapter 10

Geometric Unique and
Membership Coverage Problems

We present the first study on the approximability of geometric versions of the
unique coverage problem and the minimum membership set cover problem.
We prove that Unique Coverage (and thus Budgeted Low-Coverage as well)
remains NP-hard on unit disks and give constant-factor approximation algo-
rithms for both problems on unit disks. The results extend to unit squares. We
then show that Budgeted Low-Coverage has an eptas on fat objects of bounded
ply, but prove that without the bounded ply assumption, the problem is as
hard to approximate as in its general setting.

We then consider the geometric version of Minimum Membership Set Cover.
We prove that approximating the problem within ratio less than 2 is NP-hard
on unit disks and unit squares, and give a 5-approximation algorithm on unit
squares that runs in polynomial time if the optimal objective value is bounded
by a constant.

10.1 Unique Coverage

We consider the complexity and approximability of Unique Coverage on unit
disks and on unit squares. We first introduce some notation. Suppose that we
are given a set S of geometric objects in the plane and a set of points P ⊆ R2.
Then for any X ⊆ S, cov(X) respectively uc(X) denotes the set of points in
P covered respectively covered uniquely by X. If S is a square in the plane,
ucS(X) is defined as the set of points of P that lie inside S and are uniquely
covered by X.

Theorem 10.1.1 Unique Coverage on unit disks and unit squares is NP-hard.

Proof: We reduce from Independent Set on planar graphs of maximum degree
3, which is known to be NP-hard [114]. The starting point of the construction
is similar to one used to prove NP-hardness of Independent Set on unit disk
graphs [67]. For a planar graph G of degree 3, create a rectilinear embedding
of G. This is an embedding of G onto a unit grid, such that each vertex is
mapped to a unique corner of the grid and each edge is mapped to a path
in the grid, where all such paths are disjoint, except possibly at their ends.

181
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vu

Figure 10.1: The edge gadget for some (u, v) ∈ E(G), shown together
with the vertex disks for u and v. If the path in the rectilinear em-
bedding corresponding to (u, v) consists of more than one straight line
segment, we can easily adapt the gadget.

Valiant [255, Theorem 2] has shown that such an embedding exists having area
O(|V (G)|2). Now replace each vertex by a disk with a point in its center and
each edge by a gadget, shown in Figure 10.1.

The set of (solid) disks connecting u and v for any edge (u, v) ∈ E(G)
must have even cardinality and is denoted by D(u,v). A single (dashed) disk
contains the middle black blob. The small gray points correspond to a single
point. All disks of the construction, except the middle disk of each edge gadget
(drawn dashed in Figure 10.1), contain a unique gray point. Each big black
blob corresponds to a collection of t = |V (G)| +∑(u,v)∈E(G) |D(u,v)| points.

We claim that in the constructed instance of Unique Coverage, a set of unit
disks can uniquely cover at least

k′ := k +
∑

(u,v)∈E(G)

(
1
2 |D(u,v)| + t ·

(
|D(u,v)| + 1

))

points if and only if G has an independent set of cardinality at least k. For the
‘only if’ part, note that any set of disks uniquely covering at least k′ points
must uniquely cover all black blobs. This can only be done using exactly
1
2 |D(u,v)| disks of each edge gadget (which uniquely cover 1

2

∑
(u,v)∈E(G) |D(u,v)|

gray points in total) and at least k vertex disks. By the construction of the
edge gadgets, these vertex disks form an independent set, which indeed has
cardinality at least k. We can now easily verify the ‘if’ part of the claim.

A similar argument can be given to demonstrate NP-hardness on unit
squares. Moreover, the ply of the above construction is 3 and thus the NP-
hardness extends to this case.

10.1.1 Approximation Algorithm on Unit Disks

Let D be a set of equally sized disks and P a set of points, both in R2. By
scaling, we may assume that all disks in D have radius 1/2. We aim to find a
set C ⊆ D maximizing the number of uniquely covered points of P. We apply
the shifting technique (see Chapter 6) in a novel way.
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Lemma 10.1.2 Suppose for points in a square of size δ × δ (0 < δ ≤ 1), the
unique coverage problem on unit disks has a polynomial time 1/c-approximation
algorithm. Then there is a polynomial time (1/c) · δ2/(1 + δ)2-approximation
algorithm for the general unique coverage problem on unit disks.

Proof: Let OPT be an optimal solution to the unique coverage problem
on unit disks for some set of disks D and set of points P. Pick two num-
bers a, b uniformly at random from [0, 1 + δ). Consider the set of squares
S = {[a + h + hδ, a + h + (h + 1)δ) × [b + v + vδ, b + v + (v + 1)δ) | h, v ∈ Z}.
Each square has size δ × δ. As the squares in S have pairwise distance greater
than 1, no unit disk can cover a point in more than one square of this set.
Hence we may consider these squares to be ‘independent’.

The probability that a point of P is in a square of S is δ2/(1 + δ)2. Hence

E
[∑

S∈S |ucS(OPT )|
]

= |uc(OPT )| · δ2/(1 + δ)2.

By assumption, we can find a 1/c-approximation of the unique coverage prob-
lem on unit disks for each of the squares in S in polynomial time. Let size(S)
denote the number of points uniquely covered by the solution of the algorithm
for a particular square S ∈ S. Then size(S) ≥ 1/c · |ucS(OPT )|. As we can as-
sume that the solutions produced by the 1/c-approximation algorithm contain
only disks intersecting the square it was invoked on, it follows that

E
[∑

S∈S size(S)
]

≥ (1/c) · E
[∑

S∈S |ucS(OPT )|
]

= (1/c) · |uc(OPT )| · δ2/(1 + δ)2.

This approach can be derandomized. Choices of a, b for which the same
set of points is in the squares of S give an approximation of the same quality.
Hence it suffices to look at the O(|P|2) values of a, b for which a square bound-
ary hits a point of P and thus we can consider all relevant values in polynomial
time. The solution with the highest

∑
S∈S size(S) is a (1/c) · δ2/(1 + δ)2-

approximation of the optimum.

The proof of the next theorem uses some ideas from Ambühl et al. [13].

Theorem 10.1.3 Unique Coverage on unit disks has a 1/18-approximation

algorithm running in O(|P|3 |D|8) time.

Proof: We prove that there is a polynomial-time 1/2-approximation algorithm
for Unique Coverage on unit disks for size 1/2 × 1/2 squares. Together with
Lemma 10.1.2, this proves the theorem.

Consider a size 1/2 × 1/2 square S containing a set of points PS and
intersected by a set of disks DS of radius 1/2. We may assume that no disk
covers all points of PS , for such a disk would constitute an optimal solution.
Construct a mapping of disks in DS to one of the four boundaries of S. The
mapping assigns a disk to the boundary of S it overlaps most, breaking ties
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arbitrarily. If we can solve the unique coverage problem on unit disks optimally
for both pairs of opposing boundaries of S, the best solution gives a 1/2-
approximation of the optimum for Unique Coverage on unit disks for S.

Let OPTS be an optimal solution to the unique coverage problem on DS

and PS . Consider two opposing boundaries b, b′ of S (say b is the top bound-
ary, b′ the bottom boundary) and the sets of disks Db,Db′ assigned to them.
Observe that for any disk d ∈ Db the projection of d∩S onto b is equal to d∩b,
or d would overlap another boundary of S more and the mapping would assign
it to this boundary. Hence any disk in Db ∩ OPTS meets the lower envelope
of Db ∩ OPTS (for a set of disks, we say that a disk d from the set meets or
is on the lower envelope of the set if part of that envelope is formed by the
boundary of d), or any point of PS it covers would already be covered by a
disk on the lower envelope. Furthermore, for any disk d2 on the lower envelope
of Db ∩ OPTS , all points of PS uniquely covered by d2 are in d2 − d1 − d3,
where d1 (d3) is the disk lying directly to the left (right) of d2 on the lower
envelope of Db ∩ OPTS . The same properties hold for disks in Db′ and the
upper envelope of Db′ ∩ OPTS .

We now design a sweep-line algorithm with a vertical sweep-line, moving
from left to right and stopping at each point of PS . Index the points of PS in
order of nondecreasing x-coordinate, with u1 being the leftmost and um the
rightmost point. By the above arguments, it suffices to consider three disks
of both boundaries at each position of the sweep-line. Therefore when the
sweep-line is at ui, we say that a triple d = (d1, d2, d3) of disks in Db ∪ {b} is
proper if

• if di = dj for some 1 ≤ i < j ≤ 3, then di = dj = b;

• d1, d2, and d3 appear in this order on the lower envelope of d1 ∪ d2 ∪ d3;

• the intersection point of the sweep-line and d2 lies on this envelope.

We use the ‘disk’ b to model the boundary, i.e. the situation when no disk
intersects the sweep-line. If d is proper, then a proper triple d′ is a predecessor
of d if d = d′ or d = (d′2, d

′
3, d

′
4) for some d′4 ∈ Db ∪ {b}. These notions can be

defined analogously for triples e = (e1, e2, e3) with respect to b′.
Now define for any point ui and any pair of proper triples d and e a function

h such that

hi(d, e) =

{
ιi(d, e) if i = 1;
ιi(d, e) + max hi−1(d

′, e′) if i > 1,

where ιi(d, e) is 1 if ui is in d2 − d1 − d3 or in e2 − e1 − e3 but not in both,
and 0 otherwise. The maximum is over all proper triples d′ and e′ that are
predecessors of d and e respectively.

The maximum value of hm over all proper triples for um is the optimal
solution for this pair of opposing boundaries of S. Because h can be computed
in O(|P| |D|8) time, the theorem follows from Lemma 10.1.2.



10.1. Unique Coverage 185

10.1.2 Budgets and Satisfactions

The above algorithm extends easily to the case where points have associated
profits and we aim to maximize the total profit of uniquely covered points.
However for Budgeted Low-Coverage on unit disks, we need to change the
approach. In the following, let pmax and cmax denote the maximum profit and
the maximum cost respectively. We may assume that the budget is at least the
maximum cost and that an optimal solution attains profit at least s1 · pmax.

Theorem 10.1.4 If sz > 0 and sz+1 = 0 for some fixed z and the profits
and satisfactions are integers, then Budgeted Low-Coverage on unit disks has
a 1/18-approximation algorithm running in O(|P|3 · (s1 ·pmax)

2 · |D|4z+4
) time.

Proof: Recall the proof of Lemma 10.1.2. Let S be the set of squares under
consideration. We use similar ideas as in Theorem 10.1.3 to compute for both
pairs of opposing boundaries of each square S ∈ S and for each r = 0, . . . , |P| ·
s1 · pmax a set of disks such that the total satisfaction-modulated profit of
covered points is at least r and the total cost is minimized.

Instead of triples, we consider tuples of 2z + 1 disks. Similar to Theo-
rem 10.1.3, we can define the notions of proper and predecessor tuples. We
then define for any r = 0, . . . , |P| · s1 · pmax, any point ui, and any pair of
proper tuples d = (d1, . . . , d2z+1), e = (e1, . . . , e2z+1) a function h such that
hi(d, e, r) equals




min
{

ϑ(dz+1, d
′
z+1) · c(dz+1)

+ϑ(ez+1, e
′
z+1) · c(ez+1)

+hi−1

(
d′, e′, r − sγi(d,e) · p(ui)

)}
if i > 1;

z+1∑

i=1

(c(di) + c(ei)) if i = 1 and sγi(d,e) · p(ui) ≥ r;

∞ otherwise.

The minimum is over all proper triples d′ and e′ that are predecessors of d

and e respectively. The value of γi(d, e) is equal to the number of disks in
{d1, . . . , d2z+1, e1, . . . , e2z+1} containing ui. The indicator function ϑ(·, ·) is 1
if its parameters are distinct and 0 otherwise.

We are then interested in hm for all r = 0, . . . , |P| · s1 · pmax. These values

can clearly be computed in O(|P|2 · s1 · pmax · |D|4z+4
) time.

For fixed S and r, let cost(S, r) denote the minimum cost over both pairs
of opposing boundaries. Then max{∑S∈S rS |∑S∈S cost(S, rS) ≤ B} gives a
1/2-approximation of

∑
S∈S spS(OPT ), where spS(OPT ) is the satisfaction-

modulated profit accrued by OPT in square S. This maximum is just an
instance of Multiple-Choice Knapsack [60, 120], which we have to solve in a
way that avoids having B in the running time. We first compute for each
r = 0, . . . , |P| · s1 · pmax a function

g(r) = min
{∑

S∈S cost(S, rS) |∑S∈S rS = r
}
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and then choose the largest r such that g(r) ≤ B. Using dynamic program-

ming, this can be done in O(|P|3 ·(s1 ·pmax)
2) time, as the number of nonempty

squares of S is at most |P|. Applying the shifting technique as in Lemma 10.1.2

yields a 1/18-approximation in O(|P|3 · (s1 · pmax)
2 · |D|4z+4

) time.

Theorem 10.1.5 If sz > 0 and sz+1 = 0 for some fixed z, then for any
ǫ > 0, there is a O(|P|7 · |D|4z+4

/ǫ4) time (1− ǫ)/18-approximation algorithm
for Budgeted Low-Coverage on unit disks.

Proof: We extend the algorithm of Theorem 10.1.4 to deal with noninteger
profits and satisfactions and to achieve polynomial running-time by applying

scaling. Scale the profits by |P|
ǫ·pmax

, i.e. define p′(u) =
⌊
|P|·p(u)
ǫ·pmax

⌋
, and scale

the satisfactions by |P|
ǫ·s1

, i.e. define s′i =
⌊
|P|·si

ǫ·s1

⌋
. We first give an auxiliary

inequality. For any u ∈ P and any i,

si · p(u) −
(

ǫ · s1

|P| · ǫ · pmax

|P|

)
· s′i · p′(u)

= si · p(u) − ǫ · s1

|P| ·
⌊ |P| · si

ǫ · s1

⌋
· ǫ · pmax

|P| ·
⌊ |P| · p(u)

ǫ · pmax

⌋

≤ si · p(u) − ǫ · s1

|P| ·
( |P| · si

ǫ · s1
− 1

)
· ǫ · pmax

|P| ·
( |P| · p(u)

ǫ · pmax
− 1

)

= si · p(u) −
(

si −
ǫ · s1

|P|

)
·
(

p(u) − ǫ · pmax

|P|

)

≤ 2 · ǫ · s1 · pmax

|P| .

Now for a set of disks D′, let sp(D′) denote the satisfaction-modulated profit
achieved by D′ under the original profits and satisfaction and let s ′p′(D′) be
the satisfaction-modulated profit achieved by D′ under the scaled profits and
scaled satisfactions.

Apply the algorithm of Theorem 10.1.4 to obtain a set of disks C that is a
1/18-approximation of the optimum under the scaled profits and satisfactions.
Let OPT denote a set of disks giving an optimum satisfaction-modulated profit
under the budget and the original profits and satisfactions. Then

sp(C) ≥ ǫ · s1

|P| · ǫ · pmax

|P| · s ′p′(C)

≥ ǫ · s1

|P| · ǫ · pmax

|P| · 1
18 · s ′p′(OPT )

≥ 1
18 ·

(
sp(OPT ) − 2 · ǫ · s1 · pmax

|P| · |P|
)

≥ 1
18 · (sp(OPT ) − 2 · ǫ · sp(OPT )) .

Note that s′1, p
′
max ≤ |P|/ǫ. The theorem follows from Theorem 10.1.4.
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If the satisfactions are different for each point, but all still nonincreasing, a
similar algorithm may be used. It remains an interesting open problem if
Budgeted Low-Coverage on unit disks is approximable for arbitrary z and/or
satisfactions that are not nonincreasing.

10.1.3 Approximation Algorithm on Unit Squares

As with the geometric set cover problem, it seems that Unique Coverage is
easier to approximate on unit squares than on unit disks. On unit disks, we
had to consider instances on size 1/2 × 1/2 squares to be able to restrict the
attention to the upper and lower envelopes. On unit squares however, this is
no longer necessary. We use some ideas from Mihalák [209].

Theorem 10.1.6 If sz > 0 and sz+1 = 0 for some fixed z, then for any
ǫ > 0, there is a O(|P|7 · |D|4z+4

/ǫ4)-time (1 − ǫ)/2-approximation algorithm
for Budgeted Low-Coverage on unit squares.

Proof: First assume that the profits and satisfactions are integer. Partition the
plane into horizontal slabs of height 1. This induces a partition of the points
of P as well. We claim that for any slab S and for each r = 0, . . . , |P| ·s1 ·pmax,
we can find a set of squares such that the total satisfaction-modulated profit
of covered points in S is at least r and the total cost is minimized.

To see this, consider a slab S and the set of points PS contained in it.
Any square covering a point of PS must intersect either the top or the bottom
boundary of S. Let Dt denote the set of squares intersecting the top boundary
of S and Db the set of squares intersecting the bottom boundary. Observe that
in any optimal solution OPT , any square in OPT ∩Dt must intersect the lower
envelope of OPT ∩ Dt. Moreover, all points yielding a profit that are covered
by a square dz+1 ∈ OPT∩Dt are in

⋃
i∈{2,...,2z} di−d1−d2z+1, where d1, . . . , dz

and dz+2, . . . , d2z+1 are the squares respectively to the left and to the right of
dz+1 on the lower envelope of OPT ∩ Dt. Similar observations can be made
about C ∩ Db and its upper envelope. Then we can just apply the algorithm
of Theorem 10.1.3 and Theorem 10.1.4. This takes O(|P|2 · s1 · pmax · |D|4z+4

)
time.

Now let S1 denote the set of slabs whose bottom boundary is y = i for
some even integer i and let S2 denote the set of remaining slabs. Use the
Multiple-Choice Knapsack algorithm of Theorem 10.1.4 to compute for both
S1 and S2 a set of squares such that the total satisfaction-modulated profit of
covered points is maximal and the total cost is at most B. The most profitable
of these two solutions then gives a 1/2-approximation algorithm. This takes

O(|P|3 · (s1 · pmax)
2) time, as the number of nonempty slabs is at most |P|.

Finally, we apply scaling as in Theorem 10.1.5 to deal with noninteger
profits and satisfactions and to obtain a polynomial running time.
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10.2 Unique Coverage on Disks of Bounded Ply

If the disks have arbitrary size, but have bounded ply, we can improve on the
algorithm of the previous section and give an eptas for Unique Coverage on
disks. Recall that the ply of a set of disks is the maximum over all points
in the plane of the number of disks strictly containing this point. To obtain
the eptas, we apply the shifting technique, which we used before in the case of
disks of bounded ply (see Chapter 7). However, the complexity of the budgeted
unique coverage problem on disks forces major changes in this approach. In
particular, it is nontrivial to enforce the global budget constraint; we handle
this by creating dynamic programming tables that are additionally indexed by
profit values and contain the cheapest cost for achieving a certain profit in a
given square. The best choice of profit values for disjoint squares can then
be addressed as a multiple-choice knapsack problem. Furthermore, relating
the profit of the algorithm’s solution to that of a modified optimal solution
(Lemma 10.2.5) is significantly more difficult than for the problems studied in
Chapter 7. In the proofs below we focus on those aspects that are different
from the approach in Chapter 7.

The setup of the algorithm is as follows. Let D be a set of disks and P a set
of points. By scaling, we may assume that all disks have radius at least 1/2.
Partition the disks into levels, where a disk with radius r has level j ∈ Z≥0 if
2j−1 ≤ r < 2j . Then we can define D=j as the set of disks having level exactly
j, D≥j as the set of disks having level at least j, etc. We use l to denote the
level of the largest disk.

For each level j, partition the plane using a grid induced by horizontal
lines y = hk2j and vertical lines x = vk2j (h, v ∈ Z), where k ≥ 5 is an
odd integer determined later. The squares of this partition for level j are
called j-squares. Any j-square is contained in precisely one j + 1-square,
while each j+1-square contains exactly four j-squares, denoted S1, . . . , S4 and
called siblings. For a j-square S, let DS denote the set of disks intersecting
S and let Db(S) denote the set of disks intersecting the boundary of S. As a
shorthand, let Di(S) = DS −Db(S) be the set of disks fully contained inside S
and D+(S) =

⋃4
i=1 Db(Si)−Db(S) be the set of disks intersecting the boundary

of some Si, but not the boundary of S. Combinations such as Db(S)
>j are self-

explanatory. Let PS denote the set of points contained in a j-square S and let
j(S) denote the level of a square S.

We prove the following auxiliary result.

Theorem 10.2.1 Let D be a set of disks of ply γ, k ≥ 5 an odd integer, and
OPT a subset of D such that p(uc(OPT )) is maximum under c(OPT ) ≤ B.
Then in time O((k2|D| + |P|) · k |D| · 232kγ/π(|P| · pmax)

2), we can find a set

D′ ⊆ D such that c(D′) ≤ B and p(uc(D′)) ≥ p(uc(
⋃

S OPT
i(S)
=j(S))).

To prove this theorem, we apply dynamic programming on the squares. Define

for each j-square S, each set W ⊆ Db(S)
>j , and each r ∈ {0, . . . , |P| · pmax} the
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function cost(S, W, r) as

cost(S, W, r) =





min
{

c(T )
∣∣ p(ucS(T ∪ W )) ≥ r; T ⊆ Di(S)

≥j

}
if j = 0;

min
{

c(U) +
∑4

i=1 cost
(
Si, (U ∪ W )b(Si), ri

) ∣∣∣
∑4

i=1 ri = r; U ⊆ D+(S)
>j−1

}
if j > 0.

Here the minimum over an empty set is ∞. Let sol(S, W, r) denote the subset
of D attaining cost(S, W, r) if cost(S, W, r) 6= ∞, or ∅ otherwise. Note that we
would actually only need to define cost(S, W, r) and sol(S, W, r) for subsets W

of Db(S)
>j ∩⋃S′⊃S Di(S′)

=j(S′). This will turn up in the analysis of the approximation

ratio of the algorithm, but it is not very important in the analysis of the (worst-
case) running time.

10.2.1 Properties of the cost- and sol-Functions

We start by proving the function cost is indeed close to the optimum. Define

up(S) =
⋃

S′⊃S OPT
i(S′)
=j(S′) and down(S) =

⋃
S′⊆S OPT

i(S′)
=j(S′).

We give some properties of up and down that will be auxiliary to later lemmas.

Proposition 10.2.2 For any j-square S and any child square Si of S,

(
OPT

+(S)
>j−1 ∪ (up(S))b(S)

)b(Si)

= (up(Si))
b(Si).

Proof: Observe that

(
OPT

+(S)
>j−1 ∪ (up(S))b(S)

)b(Si)

=

(
OPT

+(S)
>j−1 ∪

(⋃
S′⊃SOPT

i(S′)
=j(S′)

)b(S)
)b(Si)

=

(
OPT

+(S)
=j ∪⋃S′⊃SOPT

i(S′)
=j(S′)

)b(Si)

=

(⋃
S′

i
⊃Si

OPT
i(S′

i)

=j(S′
i
)

)b(Si)

= (up(Si))
b(Si).

The proposition follows.

Corollary 10.2.3 It holds that
⋃4

i=1(up(Si))
b(Si) = (up(S))b(S) ∪ OPT

+(S)
>j−1

for any j-square S.
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Proposition 10.2.4 For any j-square S,

OPT
+(S)
>j−1 ∪

⋃4
i=1

(
OPT

i(Si)
>j−1 ∪ down(Si)

)
= OPT

i(S)
>j ∪ down(S).

Proof: Observe that

OPT
+(S)
>j−1 ∪

⋃4
i=1

(
OPT

i(Si)
>j−1 ∪ down(Si)

)

=
(
OPT

+(S)
>j ∪⋃4

i=1OPT
i(Si)
>j

)
∪⋃4

i=1down(Si)

∪
(
OPT

+(S)
=j ∪⋃4

i=1OPT
i(Si)
=j

)

= OPT
i(S)
>j ∪⋃4

i=1down(Si) ∪ OPT
i(S)
=j

= OPT
i(S)
>j ∪ down(S).

The proposition follows.

We are now ready to prove that cost is close to optimal.

Lemma 10.2.5 It holds that

max





∑

S; j(S)=l

rS

∣∣∣∣∣
∑

S; j(S)=l

cost(S, ∅, rS) ≤ B



 ≥ p

(
uc
(⋃

SOPT
i(S)
=j(S)

))
.

Proof: To prove the lemma, we claim that for any j-square S

cost
(
S, (up(S))b(S), p

(
ucS

(
(up(S))b(S) ∪ OPT

i(S)
>j ∪ down(S)

)))

≤ c
(
OPT

i(S)
>j

)
+
∑

S′⊆S c
(
OPT

i(S′)
=j(S′)

)
.

The intuition behind this formula is that if we consider the set W the opti-
mum uses and the profit r attained by the optimum for S, the cost attained by
cost(S, W, r) is at most the cost needed by the optimum. We prove it induc-
tively on j. For j = 0, it is easily verified. Consider some j > 0 and assume
inductively that the above statement holds for any j′ < j. Observe that

⋃4
i=1ucSi

(
(up(Si))

b(Si)
)

= ucS

(⋃4
i=1(up(Si))

b(Si)
)

.

As PS1
, . . . ,PS4

are pairwise disjoint sets, it follows from Corollary 10.2.3 and
Proposition 10.2.4 that

∑4
i=1 p

(
ucSi

(
(up(Si))

b(Si) ∪ OPT
i(Si)
>j−1 ∪ down(Si)

))

= p
(
ucS

(⋃4
i=1

(
(up(Si))

b(Si) ∪ OPT
i(Si)
>j−1 ∪ down(Si)

)))

= p
(
ucS

(
(up(S))b(S) ∪ OPT

+(S)
>j−1 ∪

⋃4
i=1

(
OPT

i(Si)
>j−1 ∪ down(Si)

)))

= p
(
ucS

(
(up(S))b(S) ∪ OPT

i(S)
>j ∪ down(S)

))
.
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Then by induction, the definition of cost, and Proposition 10.2.2,

cost
(
S, (up(S))b(S), p

(
ucS

(
(up(S))b(S) ∪ OPT

i(S)
>j ∪ down(S)

)))

≤ c
(
OPT

+(S)
>j−1

)

+

4∑

i=1

cost

(
Si,
(
OPT

+(S)
>j−1 ∪ (up(S))b(S)

)b(Si)

,

p
(
ucSi

(
(up(Si))

b(Si) ∪ OPT
i(Si)
>j−1 ∪ down(Si)

)))

= c
(
OPT

+(S)
>j−1

)

+

4∑

i=1

cost

(
Si, (up(Si))

b(Si),

p
(
ucSi

(
(up(Si))

b(Si) ∪ OPT
i(Si)
>j−1 ∪ down(Si)

)))

≤ c
(
OPT

+(S)
>j−1

)
+

4∑

i=1

(
c
(
OPT

i(Si)
>j−1

)
+
∑

S′
i
⊆Si

c
(
OPT

i(S′
i)

=j(S′
i
)

))

= c
(
OPT

i(S)
>j

)
+
∑

S′⊆S

c
(
OPT

i(S′)
=j(S′)

)
,

proving the claim. Because l is the level of the largest disk, up(S) = ∅ and

OPT
i(S)
>l = ∅ for any l-square S. Hence
∑

S; j(S)=l

cost (S, ∅, p (ucS (down(S)))) ≤
∑

S; j(S)=l

∑

S′⊆S

c
(
OPT

i(S′)
=j(S′)

)

≤ c(OPT )

≤ B

and thus

max

{
∑

S; j(S)=l

rS

∣∣∣∣
∑

S; j(S)=l

cost(S, ∅, rS) ≤ B

}

≥
∑

S; j(S)=l

p (ucS (down(S)))

= p
(
uc
(⋃

SOPT
i(S)
=j(S)

))
.

This proves the lemma.

It follows immediately that for any {rS}S; j(S)=l attaining the maximum of
Lemma 10.2.5,

⋃
S; j(S)=l sol(S, ∅, rS) is a set of disks of cost at most B for

which the total profit of the points uniquely covered by this set is at least

p
(
uc
(⋃

SOPT
i(S)
=j(S)

))
, as requested.
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10.2.2 Computing the cost- and sol-Functions

We say that a j-square S is nonempty if it contains a level j disk and empty
otherwise. A j-square S is said to be relevant if one of its three siblings is
nonempty, there is a nonempty S′ ⊇ S of level at most j + ⌈log k⌉, or j = 0
and S contains at least one point of P. This implies that any nonempty square
is relevant and that there are at most O(k2 |D| + |P|) relevant squares. Note
that the definition of relevant used here is slightly different from the definition
used in Chapter 7.

A relevant square S is a relevant child of another relevant square S′ if
S ⊂ S′ and there is no relevant square S′′ with S ⊂ S′′ ⊂ S′. If S is a relevant
child of S′, S′ is a relevant parent of S. We show that to compute cost it is
sufficient to consider only relevant squares.

Lemma 10.2.6 For each relevant level 0 square S, all cost- and sol-values
can be computed in time O(k|DS | |P|2 pmax 232kγ/π).

Proof: Since |Db(S)
>0 | ≤ 16kγ/π by Lemma 7.1.1, enumerating all W ⊆ Db(S)

>0

takes O(216kγ/π) time.

We show how to compute min{c(T )
∣∣ p(ucS(T ∪ W )) ≥ r; T ⊆ Di(S)

≥0 } for

a particular set W ⊆ Db(S)
>0 and each r = 0, . . . , |P| · pmax. Partition S into k

vertical slabs of width exactly one and assign a point of P to a slab if the point
is contained in the slab (w.l.o.g. no point lies on a slab boundary). Observe

that any disk of Di(S)
≥0 covering a point in a certain slab must intersect the

left or the right boundary of this slab. Now order the slabs from left to right.
Define for each slab i = 1, . . . , k, each subset X of the set of disks intersecting
the right boundary of slab i, and each r = 0, . . . , |P| ·pmax a function a(i, X, r)
as

min
{

c(X) + a(i − 1, Y, r − p(uci(X ∪ Y ∪ W )))
∣∣

Y ⊆ disks intersecting left boundary of i, r ≥ p(uci(X ∪ Y ∪ W ))
}
.

Here uci(X∪Y ∪W ) is the set of points in slab i uniquely covered by X∪Y ∪W .
We set a(0, ∅, 0) = 0 and a(0, ∅, r) = ∞ for each r 6= 0 (as we only consider disks
in Di(S), no disk intersects the left boundary of the first slab). Observe that
the minima we are looking for are in a(k, ∅, r). Furthermore, we can compute

them in O(k|DS | |P|2 pmax 216kγ/π) time, as computing p(uci(X ∪ Y ∪ W ))
takes O((|X|+ |Y |+ |W |) · |P|) time and a vertical line in S intersects at most
8kγ/π disks of Di(S) (see Lemma 7.1.1).

To compute cost and sol for j-squares with j > 0, we require the following
auxiliary proposition. The problem described in the proposition statement is
an instance of Multiple-Choice Knapsack and may be solved using a similar
method as the one in Theorem 10.1.4.
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Proposition 10.2.7 For any j-square S, given W ⊆ Db(S)
>j and U ⊆ D+(S)

>j−1,
we can compute

min
{∑4

i=1cost(Si, (U ∪ W )b(Si), ri) |
∑4

i=1ri = r
}

for all r = 0, . . . , |P| · pmax in O((|P| · pmax)
2) time.

Proof: We compute for all r′ = 0, .., |P | · pmax the values of

g(1, r′) = cost(S1, (U ∪ W )b(S1), r′)

and, for all i = 2, 3, 4, the values of

g(i, r′) = min{g(i − 1, r′ − r′′) + cost(Si, (U ∪ W )b(Si), r′′) | r′′ = 0, . . . , r′}.
This takes time O((|P | · pmax)

2). The values we need are the values g(4, r) for
r = 0, . . . , |P| · pmax.

Lemma 10.2.8 For each relevant j-square S (j > 0) which has relevant
(j − 1)-square children, all cost- and sol-values for S can be computed in time
O(232kγ/π(|P| · pmax)

2).

Proof: This follows from |Db(S)
>j |, |D+(S)

>j−1| ≤ 16kγ/π (see Lemma 7.1.1) and
Proposition 10.2.7.

Lemma 10.2.9 For each relevant j-square S (j > 0) with no relevant level
j−1 children, in O((|D|+ |P|) ·232γ/π(|P|·pmax)

2) time all cost- and sol-values
can be computed.

Proof: It is easy to show from Lemma 7.2.6 that

cost(S, W, r) =

min





∑

relevant child S′ of S

cost(S′, W b(S′), rS′)

∣∣∣∣∣
∑

relevant child S′ of S

rS′ = r





for any W ⊆ Db(S)
>j and any r = 0, . . . , |P| · pmax. Furthermore, Db(S)

>j =

Db(S)
≥j+⌈log k⌉ and thus

∣∣∣Db(S)
>j

∣∣∣ =
∣∣∣Db(S)

≥j+⌈log k⌉

∣∣∣ ≤ 32γ/π. For a fixed W ⊆ Db(S)
>j ,

we follow the approach of Proposition 10.2.7 and extend it to deal with all
relevant children of S. The increase in time complexity is linear in the number
of relevant children of S. As a relevant square has O(|D|+|P|) relevant children,
the time bound follows.

Proof of Theorem 10.2.1: Combining Lemmas 10.2.6, 10.2.8, and 10.2.9, we
can compute the cost- and sol-values for all relevant squares in O((k2|D|+|P|)·
k |D| · 232kγ/π(|P| · pmax)

2) time. By using an extension to Proposition 10.2.7
as in Lemma 10.2.9, max

{∑
S; j(S)=l rS

∣∣ ∑
S; j(S)=l cost(S, ∅, rS) ≤ B

}
can

be computed in O((|D| + |P|) · (|P| · pmax)
2) time. The theorem then follows

from Lemma 10.2.5.
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10.2.3 The Approximation Algorithm

Given the above algorithm, the shifting technique is applied as follows. Given
an integer a (0 ≤ a ≤ k − 1), a line of level j is active if it is of the form
y = (hk + a2l−j)2j or x = (vk + a2l−j)2j for h, k ∈ Z. Active lines partition
the plane into j-squares as before, shifted with respect to a. Hence we can still
apply Theorem 10.2.1. Let Ca denote the set of disks output by the algorithm
for the j-squares induced by a and let Cmax be the set among such sets with
the maximum profit of uniquely covered points of P.

Lemma 10.2.10 p(uc(Cmax)) ≥ (1 − 4/k) · p(uc(OPT )), where OPT is a
solution for which p(uc(OPT )) is maximum under c(OPT ) ≤ B.

Proof: Let Db
a =

⋃
S Db(S)

=j(S) be the set of disks intersecting the boundary of a

j-square S induced by a at their level. Observe that for a fixed value of a the
points uniquely covered by OPT by disks in OPT ∩Db

a are precisely the points
uniquely covered by OPT ∩ Db

a not covered by disks in OPT − Db
a. Then it

follows from Theorem 10.2.1 that

p(uc(Ca)) ≥ p
(
uc
(⋃

S OPT
i(S)
=j(S)

))

= p
(
uc
(
OPT − (OPT ∩ Db

a)
))

≥ p (uc(OPT )) − p
(
(uc(OPT ∩ Db

a) − cov(OPT −Db
a)
)
.

Following the proof of Lemma 7.2.8, a disk is in Db
a for at most 4 values of a.

Hence

∑k−1
a=0 p

(
uc(OPT ∩ Db

a) − cov(OPT −Db
a)
)
≤ 4 · p(uc(OPT )).

Then

k · p(uc(Cmax))

≥ ∑k−1
a=0 p(uc(Ca))

≥ ∑k−1
a=0

(
p(uc(OPT )) − p

(
uc(OPT ∩ Db

a) − cov(OPT −Db
a)
))

≥ k · p(uc(OPT )) − 4 · p(uc(OPT )).

Therefore p(uc(Cmax)) ≥ (1 − 4/k) · p(uc(OPT )).

In the following, we denote by x the given instance of Budgeted Unique Cov-
erage and by |x| the length of some natural encoding of x. We can clearly
assume that |x| ≥ |D|+ |P|, where D and P denote the given sets of disks and
points, respectively.

Theorem 10.2.11 There is an eptas for Budgeted Unique Coverage on disks
of bounded ply, i.e. of ply γ = γ(|x|) = o(log |x|).
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Proof: Consider any ǫ > 0. Choose k as the largest odd integer such that
32kγ/π ≤ log |x|. If k < 5, output ∅ (or any other arbitrary solution of
cost at most B). Otherwise, scale the profits by ǫ·pmax

|P| , similar to Theo-

rem 9.1.21. Following the analysis of this theorem and applying Theorem 10.2.1
and Lemma 10.2.10, we obtain a (1− 4/k) · (1− ǫ)-approximation of the opti-
mum in

O(k2(k2 |D| + |P|) · |D| · 232kγ/π(|P|2/ǫ)2)

time. By the choice of k, this is bounded by

O(log2 |x| · (|D| log2 |x| + |P|) · |D| · |x| · (|P|2/ǫ)2).

Hence in time polynomial in the size of the input and 1/ǫ, a feasible solution
is computed. Furthermore, there is a cǫ such that k ≥ 4/ǫ and k ≥ 5 for
all |x| ≥ cǫ. Therefore if |x| ≥ cǫ, we obtain a (1 − ǫ)2-approximation of the
optimum. The theorem then follows from Theorem 2.2.4.

This theorem can be easily extended to Budgeted Low-Coverage on fat objects
of bounded ply. We simply adjust the algorithm of Lemma 10.2.6 to modulate
the profits by the satisfactions and apply scaling as in Theorem 10.1.5.

Theorem 10.2.12 There is an eptas for Budgeted Low-Coverage on fat ob-
jects of bounded ply, i.e. of ply γ = γ(|x|) = o(log |x|).

If the objects are arbitrary unit disks, but the density of the set of points
(i.e. the maximum number of points of P in any 1 × 1 box) is bounded, then
we can reduce the set of unit disks to a set of unit disks of bounded ply.

Lemma 10.2.13 For any instance of Budgeted Low-Coverage on a set D of
unit disks and a set P of points for which the density is bounded by some
constant d > 0, there is an equivalent instance on a set D′ of unit disks of ply
at most 324d2 and the same set P of points.

Proof: Remove all disks from D that do not cover any point of P. Then
iteratively remove disks d from D for which there is a disk d′ ∈ D such that
d∩P = d′∩P and c(d) ≥ c(d′). Let D′ be the resulting set of disks. Clearly, the
instance of Budgeted Low-Coverage on D′ and P is equivalent to the instance
on the original sets D and P. Moreover, we claim that the ply of this set D′

is at most 324d2.
To see this, we apply an argument reminiscent of one by Hochbaum and

Maass [150]. Let δ > 0 denote the smallest distance over all disks d ∈ D′ of

d and a point of P − d. For any disk d ∈ D′, let d̂ denote the disk of radius
1/2 + min{δ, 1/4} centered at the same point as d. We may assume that for
any disk d ∈ D′ there are two points u, u′ ∈ P such that u and u′ lie on the
boundary of d or d̂. Otherwise we can move d to such a position while keeping
d∩P the same. By the construction of D′, this implies that any pair of points
u, u′ ∈ P can ‘induce’ at most 8 disks of D′.
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Now consider some point p ∈ R2. By the preceding arguments, any disk
of D′ overlapping p is induced by points that are within distance 3/2 of p.
Because the density is d, there are at most 9d such points. Including disks
that cover a single point of P, the number of disks of D′ overlapping p is at
most 8

(
9d
2

)
+ 9d ≤ 324d2.

The lemma clearly extends to unit-size fat objects.
Now use Lemma 10.2.13 in conjunction with Theorem 10.2.12 to improve

on the results of Section 10.1 if the point set has bounded density.

Theorem 10.2.14 There is an eptas for Budgeted Low-Coverage on unit fat
objects and a set of points of bounded density, i.e. of density d = d(|x|) =
o(
√

log |x|).

Finally, observe that the algorithms of Theorem 10.2.12 and Theorem 10.2.14
extend to Geometric Budgeted Maximum Coverage, which was already dis-
cussed in Chapter 9. To approximate this problem, adjust the algorithm of
Lemma 10.2.6 to include the profit of all covered points, not only of uniquely
covered points.

Theorem 10.2.15 There exists an eptas for Geometric Budgeted Maximum
Coverage on fat objects of bounded ply, i.e. of ply γ = γ(|x|) = o(log |x|),
and on unit fat objects and a point set of bounded density, i.e. of density
d = d(|x|) = o(

√
log |x|). Here |x| is the size of the input.

10.3 Geometric Membership Set Cover

We study the geometric version of Minimum Membership Set Cover. We give
an approximation algorithm for Geometric Membership Set Cover on unit
squares (squares with side length 1), achieving a constant approximation ratio.
Its running time is polynomial only if the optimum objective value is bounded
by a constant.

Consider an instance of Minimum Membership Set Cover on a set S of unit
squares and a set P of points. We partition the plane into horizontal slabs of
height 1 and compute a separate solution for each such slab. The solution
for a slab must cover all points in the slab while ensuring that the maximum
membership of points inside and outside the slab is bounded. In the end, the
output is the union of the solutions for the different slabs.

To solve the problem for a slab M , we observe that the unit squares of any
minimal solution consist of squares intersecting the top boundary of M , all of
which are on the lower envelope of their union, and of squares intersecting the
bottom boundary of M , all of which are on the upper envelope of their union.
This enables a sweep-line approach in which we maintain 2ℓ+1 squares around
the current position on each of the two envelopes, where ℓ is a given bound on
the maximum membership. The details are presented in the following lemma.
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Lemma 10.3.1 Let P be a set of points and S be a set of unit squares. Let
M denote the slab contained between the lines y = 0 (inclusive) and y = 1
(exclusive). Let PM = P ∩ M and PM = P − PM . For any constant ℓ, there
is a polynomial-time algorithm that either asserts that there is no C ⊆ S that
covers P with memC(P) ≤ ℓ, or computes a set C ⊆ S that covers all points
in PM and satisfies memC(PM ) ≤ ℓ (points inside M are covered at most ℓ
times) and memC(PM ) ≤ 2ℓ (points outside M are covered at most 2ℓ times).

Proof: Let St (Sb) be the set of squares in S that intersect the top (bot-
tom) boundary of M . We may assume that no square intersects both bound-
aries. Then all squares that intersect M are in either St or Sb. We use a
vertical sweep-line that moves from left to right and stops at all points in
PM . Let PM = {u1, . . . , uk}, with points indexed in order of nondecreas-
ing x-coordinate. For a given position of the sweep-line, a (2ℓ + 1)-tuple
st = (s1, . . . , s2ℓ+1) of distinct squares from St is a proper tuple if all squares
are on the lower envelope of their union (in the order s1, s2, . . . , s2ℓ+1) and the
intersection of the sweep-line and this envelope is with sℓ+1. We allow any
prefix and/or suffix of a proper tuple to consist of dummy objects that do not
contain any points in order to represent the case that fewer than ℓ squares
appear before or after the current position on the lower envelope. We ignore
this technicality below. Proper tuples sb from Sb are defined analogously.

If the sweep-line is at the point ui, then a pair (st, sb) of proper tuples is
called admissible if

• the point ui is covered by the union of the squares in st and sb, and

• the maximum membership of the union of the squares in st and sb (taking
into account all points of P, also the ones outside M) is at most ℓ.

For each point ui ∈ PM , we consider the set Ai of all admissible pairs (st, sb).
We say that (st, sb) ∈ Ai and (s′t, s

′
b) ∈ Ai+1 are compatible if

• st = s′t or s′t = (s2, . . . , s2ℓ+1, s2ℓ+2) for some new square s2ℓ+2, and

• the analogous condition holds for sb and s′b.

Then we check if a sequence of compatible tuples exists from some (st, sb) ∈ A1

to some (s′t, s
′
b) ∈ Ak. If there is such a sequence π, the union of the squares

from all tuples of the sequence is the solution C. Otherwise, the algorithm
outputs that there is no solution with maximum membership at most ℓ.

We see that the algorithm is correct as follows. If the algorithm outputs a
solution C, it is clear that C covers PM . To bound the maximum membership,
note that the solution consists of a set Ct of squares from St that all meet the
lower envelope of their union, and a set Cb of squares from Sb that all meet
the upper envelope of their union. Observe that C = Ct ∪Cb. We imagine the
squares in Ct to be ordered from left to right as they appear on their lower
envelope, and similarly for Cb. Terms such as ‘before,’ ‘after,’ and ‘between’



198 Chapter 10. Geometric Unique and Membership Coverage Problems

refer to this order. We now argue separately about the maximum membership
for points in PM and in PM and show that the membership for points in PM

is at most ℓ and that for points in PM it is at most 2ℓ.
For a point ui in PM , note that the squares in Ct that contain ui are

consecutive on the lower envelope of Ct. If there were two squares containing
ui and another square in between that does not contain ui, then the latter
square would not be on the lower envelope. Furthermore, if Ct contains any
square covering ui, then also the square that is on the envelope at the x-
coordinate of ui must contain ui. Hence, if g squares from Ct contain ui,
then the proper tuple st of the admissible pair (st, sb) that was chosen for the
sweep-line at ui must contain at least min{g, ℓ+1} squares containing ui. The
analogous statement holds for Cb and sb. Therefore, if more than ℓ squares
from Ct ∪ Cb were to contain ui, then at least ℓ + 1 of the squares in the pair
(st, sb) would contain ui, and thus the pair would not be admissible. Hence
points in PM are covered at most ℓ times, i.e. memC(PM ) ≤ ℓ.

Now consider a point u in PM that lies below M (the reasoning for points
above M is analogous). The point u cannot be contained in any square in
Ct. Consider the set Cu of squares in Cb that contain u. We claim that Cu

consists of at most two subsets of consecutive (i.e. consecutive on the upper
envelope of Cb) squares in Cb. This can be seen as follows. Consider the first
(i.e. leftmost) square x in Cb that contains u. Let y be the first square after
x in Cb that does not contain u. If y is entirely to the right of u, then no
further square in Cb can contain u, and thus Cu is one consecutive subset of
Cb (starting with x and ending with the square just before y).

So assume that there is a square after y in Cb that contains u. Then y must
be entirely above u. Let z be the first square after y that contains u. Clearly,
z must be to the lower right of y (i.e. z can be obtained from y by shifting
y right and down). All further squares (after z) whose x-range contains the
x-coordinate of u must be to the lower right of z and hence contain u. For if
one of them, say w, was to the upper right of z, then z could not be on the
upper envelope of Cb, as z would be below the upper envelope of {y, w}. By
repeating this argument for squares to the right of z, we can show that Cu

consists of at most two consecutive subsets of Cb.
By construction, the number of consecutive squares from Cb containing u is

bounded by ℓ. Otherwise, the sequence π would include a pair of tuples having
ℓ+1 consecutive squares containing u, but such a pair would not be admissible.
As there are at most two consecutive subsets of Cb containing u, we have that
u is contained in at most 2ℓ squares from Cb. Hence memC(PM ) ≤ 2ℓ.

We have shown that if the algorithm outputs a solution C, then C covers all
points in PM and satisfies memC(PM ) ≤ ℓ and memC(PM ) ≤ 2ℓ. On the other
hand, if there is a solution that covers PM and has maximum membership at
most ℓ, then the (2ℓ + 1)-tuples of consecutive squares on the two envelopes
allow to construct a valid candidate sequence for the algorithm, and thus the
algorithm will indeed output a solution. This implies that if the algorithm
does not output a solution, then there is no solution that covers PM and
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has membership at most ℓ (and thus also no solution that covers P and has
membership at most ℓ).

For the running time, note that each Ai contains O(|S|4ℓ+2) pairs of tuples.
Moreover, for each admissible pair in Ai, there are O(|S|2) compatible pairs
in Ai+1. It follows that we can check for the existence of a sequence π of
compatible pairs in O(|P| · |S|4ℓ+4) time.

Theorem 10.3.2 There is a polynomial-time 5-approximation algorithm for
instances of Geometric Membership Set Cover on unit squares if the optimal
objective value is bounded by an arbitrary constant L.

Proof: For a given constant ℓ, the following procedure either computes a
solution with maximum membership at most 5ℓ or asserts that no solution with
maximum membership at most ℓ exists. Partition the plane into horizontal
slabs of unit height. For each slab M that contains at least one point from
P, run the algorithm of Lemma 10.3.1 to compute a cover CM ⊆ S for the
points inside M with maximum membership at most ℓ for points in M and
at most 2ℓ for points outside M . If for one of the slabs the algorithm of
Lemma 10.3.1 outputs that there is no cover with maximum membership at
most ℓ, return that the whole instance has no solution with objective value
at most ℓ. Otherwise, return the union of the solutions CM computed for all
slabs M . Note that the squares in the solution computed for a slab M can only
cover points in M and in the slabs directly above and below M . A point in M
is covered at most ℓ times by squares in the solution computed for M , at most
2ℓ times by squares in the solution computed for the slab directly above M ,
and at most 2ℓ times by squares in the solution computed for the slab directly
below M . This shows that every point in P is covered at most 5ℓ times.

Now run the above procedure for ℓ = 1, 2, . . . , L. The first time the pro-
cedure returns a cover, we output that cover and terminate. If the procedure
does not return a cover for any of the calls, we output that the instance does
not have a solution with maximum membership at most L.

The approximation algorithm does not seem to extend to unit disks directly.
One problem is that a point outside a slab could be contained in several unit
disks that are not consecutive on the envelope of the selected unit disks. Hence
even if the maximum membership of consecutive unit disks on an envelope is
bounded by ℓ, the maximum membership of the overall solution could be large.

10.4 Hardness of Approximation

We give several hardness results for both Geometric Unique Coverage and
Geometric Membership Set Cover.

We first consider Geometric Unique Coverage. Recall that the approx-
imability of Unique Coverage has not been fully settled yet [83]. We can show
however that in some cases the approximability of Geometric Unique Coverage
is equal to approximability of general Unique Coverage.
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Theorem 10.4.1 There is a gap-preserving reduction from Unique Coverage
to Geometric Unique Coverage on the following objects:

• convex polygons,

• translated copies of a single polygon,

• rotated copies of a single convex polygon,

• α-fat objects for any α > 1.

Proof: We use similar reductions as in Section 8.5 in the way outlined in the
proof of Theorem 9.2.1.

This theorem implies for instance that for any ǫ > 0, it is hard to approx-
imate Geometric Unique Coverage on the above object types within ratio
Ω(1/ logσ(ǫ) n), assuming that NP 6⊆ BPTIME(2nǫ

), where σ(ǫ) is some con-
stant dependent on ǫ.

For Minimum Membership Set Cover, we can give more results. Recall that
Minimum Membership Set Cover is not approximable within (1−ǫ) lnn for any
ǫ > 0, unless NP ⊂ DTIME(nO(log log n)) [186]. In a more restricted setting,
the problem remains APX-hard. Let Minimum Membership k-Set Cover be
the variant of Minimum Membership Set Cover where each set has cardinality
at most k.

Theorem 10.4.2 Minimum Membership k-Set Cover is APX-hard for k ≥ 4.

Proof: Recall that Minimum k-Set Cover is APX-hard for any k ≥ 3 (by
reduction from Minimum Vertex Cover on graphs of degree at most 3 [9]).
Kuhn et al. [186] give a gap-preserving reduction from Minimum Set Cover to
Minimum Membership Set Cover. Here one element is added to the universe
and to each set. Hence a minimum set cover corresponds to a set cover of
minimum membership in the new set system and vice versa. The theorem
follows immediately.

Using these results, we can prove the following theorem in the same spirit as
Theorem 9.2.1.

Theorem 10.4.3 Geometric Membership Set Cover is not approximable to
(1 − ǫ) lnn for any ǫ > 0, unless NP ⊂ DTIME(nO(log log n)), on the following
objects:

• convex polygons,

• translated copies of a single polygon,

• rotated copies of a single convex polygon,

• α-fat objects for any α > 1.
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Geometric Membership Set Cover is APX-hard on the following objects:

• convex polygons with r corners, where r ≥ 4,

• α-fat objects of constant description complexity for any α > 1.

We strengthen these APX-hardness results by showing a lower bound on the
approximation ratio that any polynomial-time approximation algorithm for
Geometric Membership Set Cover can attain on unit disks and on unit squares.

Theorem 10.4.4 There is no polynomial-time approximation algorithm at-
taining an approximation ratio smaller than 2 for Minimum Membership Set
Cover on unit disks or unit squares, unless P=NP.

Proof: We claim that for Geometric Membership Set Cover on unit disks or on
unit squares, it is NP-hard to decide if a solution with maximum membership 1
exists or not. It is clear that the theorem statement follows from this claim.

We give a reduction from the NP-complete problem of checking whether a
planar graph G of maximum degree 4 is 3-colorable [116]. We create an instance
of Minimum Membership Set Cover on unit disks as follows (the construction
on unit squares is very similar). First, we compute a rectilinear embedding
of G in the plane [255], which determines the layout of the components of
the construction. For each vertex v, we construct a vertex gadget as shown
in Figure 10.2. In order to cover the point pv once, a solution must choose
exactly one of the three disks containing pv, and this corresponds to assigning
a color to v. Depending on the choice, either 0, 1, or 2 points among the triple
of points on the right are already covered.

The next gadget is a transport gadget, which allows transporting a chosen
color along a chain of disks. The gadget for transporting information from left
to right is shown in Figure 10.3.

Depending on which of the three disks on the left is in the solution, the
triple of points uniquely determines which one of the next three disks needs to
be chosen to achieve maximum membership equal to 1, and so on.

pv

Figure 10.2: The vertex gadget.
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Figure 10.3: The transport gadget.

Figure 10.4: The copy gadget.
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It is also easy to duplicate information. The copy gadget shown in Fig-
ure 10.4 demonstrates how this is accomplished.

Finally, we need a checking gadget to check whether two vertices u and v
that are adjacent in G have indeed been assigned different colors. The gadget
is shown in Figure 10.5, assuming that a chain transporting the color of u
arrives from the left and a chain transporting the color of v arrives from the
right. The triple of points on the left (of which 0, 1, or 2 are already covered
by the chain transporting u’s color) forces a unique choice of exactly one of
the three solid disks on the left to be included in the solution, and similarly for
the triple of points on the right. The solid disk dℓ chosen on the left contains
exactly one of a, b, and c, and the same holds for the solid disk dr chosen on
the right. If u and v have received the same color, then dℓ and dr cover the
same point among a, b and c, a contradiction to the maximum membership
being 1. If u and v have different colors, then dℓ and dr cover two different
points among a, b, and c, and the third point can be covered by one of the
three dashed disks.

In summary, we have that the constructed instance of Minimum Member-
ship Set Cover on unit disks has a solution with maximum membership 1 if
and only if the given planar graph is 3-colorable.

A similar construction is possible for unit squares, only the checking gadget
is slightly more complicated (see Figure 10.6). Each of the three points in the
middle needs to be covered by a dashed square, but each of the dashed squares
contains also the point to its left or to its right (or both). If both vertices have
received the same color, the row for that color will have the point to the left
and to the right of the middle point already covered, and it is impossible to
cover only the point in the middle with a dashed square.
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Figure 10.5: The checking gadget.
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Figure 10.6: The checking gadget for unit squares.





Chapter 11

Conclusion

In this thesis, we studied the approximability of hard combinatorial optimiza-
tion problems on (intersection graphs of) systems of geometric objects. We
gave both positive results, in the form of approximation algorithms, and neg-
ative results, in the form of hardness of approximation statements. Here we
look back at these results and provide directions for further research.

First, it is clear that having (the intersection graph of) a system of geo-
metric objects as the underlying structure of an optimization problem helps to
approximate it better than would be possible in the general case. We provided
new, improved approximation schemes for Maximum Independent Set and
Minimum Vertex Cover on intersection graphs of fat objects in any constant
dimension and in the weighted case. We presented the first approximation
algorithms for Minimum (Connected) Dominating Set on intersection graphs
of objects of arbitrary size and improved approximation schemes on unit fat
objects. We gave the first approximation scheme for Geometric Set Cover
on unit squares and the first approximation algorithms for Geometric Unique
Coverage on unit disks and on unit squares.

Secondly, we demonstrated that the type of the objects in the system of ge-
ometric objects has a significant impact on the approximability of optimization
problems on such systems. Maximum Independent Set and Minimum Vertex
Cover on intersection graphs of three-dimensional convex polygons of ply 1 and
Minimum Dominating Set, Geometric Set Cover, Geometric Unique Coverage,
and Geometric Membership Set Cover on planar fat objects are as hard on
systems of these objects as on general set systems. Minimum Dominating Set
and Geometric Set Cover are APX-hard on arbitrary rectangles. This is in
sharp contrast to the positive results of the previous paragraph.

The influence of the object type is nowhere more visible than with Mini-
mum Dominating Set on intersection graphs of objects of arbitrary size. The
immediate open question there is whether Minimum Dominating Set admits
a constant-factor approximation algorithm or even a ptas on disk graphs of
arbitrary ply. The hardness results of Section 8.5 show that on objects whose
boundaries can intersect an arbitrary number of times, Minimum Dominat-
ing Set is very hard to approximate. On the contrary, if object boundaries
intersect at most twice (i.e. the objects are pseudo-disks), a linear-size ǫ-net
exists and at least for cases such as r-polygons with constant r or rectangles

207
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with bounded aspect-ratio, we get constant-factor approximation algorithms.
An intriguing question is whether Minimum Dominating Set on disk graphs
is harder to approximate than on other intersection graph classes such as in-
tersection graphs of squares, or whether the algorithmic ideas of Chapter 8
can be extended to disks or maybe even to arbitrary pseudo-disks (the linear
bound on the size of an ǫ-net starts to fail ‘naturally’ beyond pseudo-disks).

Similarly, in Section 8.4 we used the shifting technique in a (3+ǫ)-approxi-
mation algorithm for Minimum Dominating Set on disk graphs of bounded
ply. However, we do not know if the shifting technique can be used to give a
constant-factor approximation algorithm (or even a ptas) for Minimum Dom-
inating Set on disk graphs of arbitrary ply. We can point to two reasons for
this. First, there is no upper bound on the number of ‘large’ disks inter-
secting a j-square that are in the dominating set. Secondly, we cannot track
which j-square is ‘responsible’ for dominating a disk intersecting more than
one j-square at its level. The algorithms in Section 8.4 got around the first
problem by assuming that the ply is bounded and around the second problem
by considering �Leb -dominating sets (Theorem 8.4.19), or by disregarding the
domination of disks intersecting a boundary on their level and combining three
result sets (Theorem 8.4.29).

The weighted case of Minimum Dominating Set also poses interesting new
questions. We presented the first ptas for this problem on intersection graphs of
two-dimensional geometric objects, namely on unit square graphs. On unit disk
graphs however, the best result so far is a (5+ǫ)-approximation algorithm [74].
Can one improve to a ptas in this case?

Another problem where we do not yet have a clear picture of its approx-
imability is Geometric Set Cover and its variants. For Geometric Set Cover
on unit squares we discovered a ptas, the first approximation scheme for this
problem. The scheme even extends to the weighted case. Recently, a ptas for
Geometric Set Cover on arbitrary disks was announced [217], but it does not
extend to the weighted case. Does the weighted case have a ptas? Hopefully
the ideas behind the scheme on unit squares can be used for a ptas on systems
of unit disks or other objects.

With respect to variants of Geometric Set Cover, we considered Geometric
Unique Coverage and gave constant-factor approximation algorithms on unit
disks and unit squares. There is as yet however no reason to suspect that the
attained constants are optimal. In particular, one wonders whether the ptas
for Geometric Set Cover on unit squares can be adapted to this problem. The
geometric version of Minimum Membership Set Cover presents even bigger
challenges. We proposed a constant-factor approximation algorithm that runs
in polynomial time if the optimum is constant. Can this restriction be lifted?

In summary, this thesis answered many question surrounding the approx-
imability of optimization problems on systems of geometric objects. These
answers in turn lead to new questions, that will be challenging to answer. . .
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etry: International Conference held by the János Bolyai Mathematical
Society, Szeged, Hungary, September 2-7, 1991, Colloquia Mathemat-
ica Societatis János Bolyai 63, János Bolyai Mathematical Society, Bu-
dapest, 1994, pp. 109–117. Cited on p. 27, 28

[80] de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P., “On Triangle Contact
Graphs”, Combinatorics, Probability and Computing 3:2 (June 1994),
pp. 233–246. Cited on p. 17, 21, 28



Bibliography 217
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ETH Zürich, Zürich, Switzerland, 1990. Cited on p. 106

[82] de Morais Cordeiro, C., Agrawal, D.P., Ad Hoc & Sensor Networks:
Theory And Applications, World Scientific Publishing Company, 2006.
Cited on p. 3

[83] Demaine, E.D., Feige, U., Hajiaghayi, M., Salavatipour, M.R., “Com-
bination Can Be Hard: Approximability of the Unique Coverage Prob-
lem”, SIAM Journal on Computing 38:4 (2008), pp. 1464–1483. Cited

on p. 159, 160, 162, 199

[84] Demaine, E.D., Hajiaghayi, M.T., “Bidimensionality: new connections
between FPT algorithms and PTASs” in Proceedings of the Sixteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005,
Vancouver, British Columbia, Canada, January 23-25, 2005, Association
for Computing Machinery, 2005, pp. 590–601. Cited on p. 50, 63, 88

[85] Demaine, E.D., Hajiaghayi, M., “Equivalence of Local Treewidth and
Linear Local Treewidth and its Algorithmic Applications” in Proceedings
of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’04), Association for Computing Machinery, 2004, pp. 840–849.
Cited on p. 88, 89

[86] DeWitt, H.K., Krieger, M.M., “Expected Structure of Euclidean
Graphs” in Traub, J.F. (ed.) Proceedings of a Symposium on New Di-
rections and Recent Results in Algorithms and Complexity, held by the
Computer Science Department Carnegie-Mellon University, April 7-9,
1976, Academic Press, New York, 1976, p. 451. Cited on p. 22

[87] Dinur, I., Safra, S., “The importance of being biased” in Proceedings of
the Thirty-Fourth Annual ACM Symposium on Theory of Computing,
May 19 - 21, 2002, Montreal, Quebec, Canada, Association for Comput-
ing Machinery, 2002, pp. 33–42. Cited on p. 46
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[129] Gräf, A., Stumpf, M., Weißenfels, G., On Coloring Unit Disk Graphs,
Technical Report Musikinformatik & Medientechnik 17/94, Johannes
Gutenberg-Universität Mainz, Mainz, Germany, 1994. Cited on p. 24
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j-square, 93, 130, 188

k-admissible region, 23
k-center, 163
k-clustering, 163
k-DIR graph, 19

recognition, 19
k-segment intersection graph, 19, 27

recognition, 19

level density, 99
local algorithm, 47

max-density, 68
max-thickness, 53
max-tolerance graph, 19, 122

as triangle intersection graph, 21
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recognition, 23
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NP-hard, 1
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polynomial-time solvable, 1

outerplanar embedding, 25
outerplanar graph, 25

partition, 61
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27
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primal-dual representation, 27
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PO, 12, 13
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recognition, 20
representation, 30
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q-, 34
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q-separated, 35
rational, 33

robust algorithm, 45

satisfaction, 160
satisfaction-modulated profit, 160
scalable object, 30
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representation, 29–40
scaling an object, 30
scaling around a point, 30
scaling of the space, 30
Scheinerman’s conjecture, 27
sensor network, 3
separation, 73

double, 78
quadruple, 79

set cover, 159
minimum, 159,

see also Minimum Set Cover
shifting parameter, 73
shifting technique, 45, 71, 92
size of an object, 33
size points, 33
slab decomposition, 53

thickness, 53
sphericity, 22

recognition, 22
square graph, 20, 122

recognition, 20
representation, 29–40
unit, see unit square graph

string graph, 20, 27
recognition, 20

strip decomposition, 71
strong path decomposition, 52
strong pathwidth, 52

strong tree decomposition, 52, 54–62
bag, 52
width, 52

strong treewidth, 52
strongly star-shaped object, 30

thickness, 53, 62–66, 68–69, 71
tolerance graph, 19

max-, see max-tolerance graph
tree decomposition, 50, 54–62
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relaxed, see relaxed tree decom-

position
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sition
width, 50

treewidth, 50
relaxed, see relaxed treewidth
strong, see strong treewidth

triangle intersection graph, 21, 48,
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Unique Coverage, 160, 162, 200,
see also Geometric Unique
Coverage

budgeted, see Budgeted Unique
Coverage

Unique Hitting Set, 162
uniquely covered, 160
unit ball contact graph, 22

recognition, 23
unit ball graph, 21, 47

contact, see unit ball contact graph
recognition, 22
touching, see unit ball touching

graph
unit ball touching graph, 22
unit circular-arc graph, 19

characterization, 19
recognition, 19

unit disk graph, 2, 3, 21, 44–48, 53–
54, 62–88

density, see density
λ-precision, 45, 68, 70, 74, 76,
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recognition, 22
relaxed pathwidth, 54, 70
representation, 29–40
strong pathwidth, 54, 69
thickness, see thickness

unit interval graph, 18
representation, 30

unit square graph, 20, 177
recognition, 20
representation, 29–40

vertex cover, 43
minimum, 43,

see also Minimum Vertex Cover

wireless network, 2, 43
802.11, 3
ad hoc, 3
cellular, 3
GSM, 3
mobile ad hoc, 3
planning, 3
sensor, 3
wi-fi, 3



Samenvatting

Praktische problemen in bijvoorbeeld draadloze netwerken, computationele
biologie of cartografie kunnen vaak gemodelleerd worden door een optimalise-
ringsprobleem op een systeem van geometrische objecten te definiëren. Veel
optimaliseringsproblemen zijn NP-moeilijk om exact op te lossen en soms ook
bewijsbaar moeilijk te benaderen. Echter, als de onderliggende structuur van
het optimaliseringsprobleem een systeem van geometrische objecten is, dan
blijkt het probleem meestal makkelijk exact op te lossen of goed te benaderen.
Dit proefschrift onderzoekt de benaderbaarheid van moeilijke optimaliserings-
problemen op systemen van geometrische objecten. In het bijzonder bekijkt
het wat de invloed van de vorm van de objecten op de benaderheid is.

De belangrijkste structuur over systemen van geometrische objecten die
we tijdens dit onderzoek beschouwen is de intersectiegraaf van de gegeven
objecten, een geometrische intersectiegraaf genoemd. Iedere knoop in deze
graaf correspondeert met een object en er is een kant tussen twee knopen
dan en slechts dan als de corresponderende objecten een niet-lege doorsnede
hebben. Het bekendste voorbeeld hiervan zijn schijfintersectiegrafen (disk
graphs), die vaak als model voor draadloze netwerken worden gebruikt. Ver-
scheidene klassieke optimaliseringsproblemen, zoals Maximum Independent
Set, Minimum Vertex Cover, and Minimum (Connected) Dominating Set, zijn
relevant in deze context. Wat betreft de benaderbaarheid van deze problemen
op geometrische intersectiegrafen concluderen we het volgende.

Als een verzameling van n schijven van gelijke grootte (eenheidsschijven)
gegeven is, waarvan de dichtheid (density) d is, dan kan voor ieder van de
bestudeerde problemen in dO(1/ǫ)nO(1) tijd een (1 + ǫ)-benadering van het op-
timum gevonden worden. Dit resulteert in een eptas als d = d(n) = no(1) en
een ptas in het algemeen. Voor Minimum Vertex Cover kunnen we het algo-
ritme zelfs versterken tot een eptas in het algemene geval. Deze schema’s zijn
uitbreidbaar tot intersectiegrafen van gelijke grote dikke objecten in constante
dimensie. Voorts kan worden aangetoond dat er, op constantes na, geen sneller
algoritme is om een (1+ǫ)-benadering te vinden, tenzij de exponential time hy-
pothesis onwaar is. Behalve voor Minimum Vertex Cover is er ook geen eptas
voor de problemen als d = d(n) = nα voor een willekeurige constante α > 0,
tenzij FPT = W[1]. Dit is een sterke indicatie dat de ontworpen schema’s
optimaal zijn.

De benaderingsschema’s zijn voor Maximum Independent Set and Mini-
mum Vertex Cover uit te breiden tot intersectiegrafen van willekeurig grote
schijven. We krijgen een eptas als de level density d = d(n) = no(1) is, een
ptas in het algemeen en voor Minimum Vertex Cover zelfs een eptas in het al-
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gemene geval. De schema’s werken ook op intersectiegrafen van dikke objecten
in constante dimensie. We kunnen net als voor eenheidsschijfintersectiegrafen
aantonen dat deze schema’s optimaal zijn op constantes na.

Bekijken we echter Minimum (Connected) Dominating Set, dan blijkt dit
probleem een stuk lastiger te worden op intersectiegrafen van objecten van
willekeurige grootte. Zijn de objecten willekeurig geschaalde en getransleerde
kopieën van een convexe veelhoek, dan is er een constante-factor-benaderings-
algoritme, het eerste benaderingsalgoritme voor dit probleem dat beter is dan
de lnn-benadering van het greedy algoritme. Uitbreiding naar schijfintersec-
tiegrafen is niet direct mogelijk, omdat de constante in de benaderingsfactor
van het algoritme afhangt van de complexiteit van de veelhoek. Wordt ieder
punt van het vlak echter maar door een begrensd aantal schijven overlapt, dan
kan in polynomiale tijd een (3 + ǫ)-benadering gevonden worden (voor vaste
ǫ > 0). Dit werkt ook voor intersectiegrafen van dikke objecten in constante
dimensie. Is het aantal objecten dat een bepaald punt overlapt niet begrensd
en wijkt de vorm van de objecten maar iets af van de vorm van een schijf (maar
is nog steeds dik), dan kan aangetoond worden dat het probleem niet beter
dan een lnn-benaderingsalgoritme heeft, tenzij NP ⊂ DTIME(nO(log log n)).

Een ander belangrijk probleem om te beschouwen is de geometrische versie
van het bekende minimum set cover probleem en enkele van z’n varianten. Zij
gegeven een verzameling geometrische objecten en een verzameling punten in
het vlak, dan dient bij dit probleem een zo klein mogelijke deelverzameling van
de objecten gevonden te worden die alle punten overdekken. Zijn de objecten
vierkanten van gelijke grootte, dan geven wij een ptas voor dit probleem, een
van de eerste ptas-en voor dit probleem in twee dimensies en de eerste die ook
in het gewogen geval werkt.

Als we een deelverzameling van de objecten willen waarbij zoveel mogelijk
gegeven punten door precies één object overdekt wordt, dan hebben we een
algoritme dat een 1/18-benadering geeft als de objecten eenheidsschijven zijn
en een 1/2-benadering als de objecten eenheidsvierkanten zijn. Als de objecten
verschillende grootte hebben en dik zijn, dan hebben is er een eptas als ieder
punt in het vlak maar door een begrensd aantal objecten overlapt wordt. Is
dit aantal niet begrensd, dan is het wederom zo dat het probleem niet beter
dan een lnn-benaderingsalgoritme heeft.

Alle drie de bovenstaande algoritmen zijn uitbreidbaar is tot het geval
waarbij ieder object een prijs heeft, ieder punt een opbrengst en we de totale
opbrengst van (enkelvoudig) overdekte punten willen maximaliseren zodanig
dat de totale kosten binnen een bepaald budget vallen.

De voornaamste conclusie van het onderzoek is dat bekende optimaliser-
ingsproblemen op systemen van geometrische objecten vaak beter benaderbaar
zijn dan op algemene systemen. We hebben echter laten zien dat het type van
de objecten van grote invloed is op de benaderbaarheid. In het bijzonder lijken
problemen als Minimum Dominating Set, Minimum Set Cover en enkele van
z’n varianten lastiger op een systeem van schijven dan op een systeem van (zeg)
vierkanten. Verder onderzoek naar dit fenomeen vormt een nieuwe uitdaging.



Summary

Practical problems in for example wireless networks, computational biology, or
cartography can often be modeled by defining an optimization problem on a
system of geometric objects. Many optimization problems are NP-hard to solve
and sometimes even provably hard to approximate. However, if the underlying
structure of the optimization problem is a system of geometric objects, then the
problem is usually easy to solve or can be approximated well. This PhD thesis
investigates the approximability of hard optimization problems on systems of
geometric objects. In particular it considers how the object type influences
the approximability of these problems.

The most important structure on systems of geometric objects that we con-
sider during this investigation is the intersection graph of the given objects,
called a geometric intersection graph. Every vertex of this graph corresponds
to an object and there is an edge between two vertices if and only if the corre-
sponding objects intersect. A famous example of this is the disk graph, which
is frequently used to model wireless networks. Several classic optimization
problems, such as Maximum Independent Set, Minimum Vertex Cover, and
Minimum (Connected) Dominating Set, are relevant in this context. With
respect to the approximability of these problems, we conclude the following.

If a collection of n disks of equal size (unit disks) is given of which the
density is d, then we can give a (1 + ǫ)-approximation for each of the studied
problems in dO(1/ǫ)nO(1) time. This yields an eptas if d = d(n) = no(1) and
a ptas in general. For Minimum Vertex Cover we can even strengthen the
algorithm to an eptas in the general case. These schemes can be extended
to intersection graphs of unit fat objects in constant dimension. Moreover we
can show that, up to constants, there is no faster algorithm to find a (1 + ǫ)-
approximation for these problems, unless the exponential time hypothesis fails.
Except for Minimum Vertex Cover, we also prove that there is no eptas for
the studied problems if d = d(n) = nα for any constant α > 0, unless FPT =
W[1]. This gives a strong indication that the given schemes are optimal.

The approximation schemes for Maximum Independent Set and Minimum
Vertex Cover can be extended to intersection graphs of arbitrarily sized disks.
We obtain an eptas if the level density is d = d(n) = no(1), a ptas in general,
and for Minimum Vertex Cover we even obtain an eptas in the general case.
The schemes also apply to intersection graphs of fat objects in constant di-
mension. As in the case of unit disk graphs, we can show that these schemes
are optimal, up to constants.

If however we consider Minimum (Connected) Dominating Set, then it
turns out that this problem becomes a lot harder on intersection graphs of ob-
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jects of arbitrary size. If the objects are arbitrarily scaled and translated copies
of a convex polygon, then there is a constant-factor approximation algorithm.
This is the first approximation algorithm for this problem that beats the lnn-
approximation given by the greedy algorithm. Extending to disk graphs is not
directly possible, because the constant in the approximation factor depends on
the complexity of the polygon. If however each point of the plane is overlapped
by a bounded number of disks, then a (3 + ǫ)-approximation can be found in
polynomial time (for fixed ǫ > 0). This also applies to intersection graphs of
fat objects in constant dimension. If the number of objects overlapping some
point is not bounded and the shape of the objects is only slightly different
from the shape of a disk (but still is fat), then we can show that the lnn-
approximation algorithm gives the best possible approximation factor, unless
NP ⊂ DTIME(nO(log log n)).

Another important problem to study is the geometric version of the well-
known minimum set cover problem and several of its variants. Given a set of
geometric objects and a set of points in the plane, one needs to find a smallest
subset of the objects that cover all points. If the objects are squares of equal
size, then we give a ptas for this problem, one of the first approximation
schemes for this problem in two dimensions and the first that also applies to
the weighted case.

If we want to find a subset of the objects such that a maximum number
of the given points is overlapped by precisely one object, then we give a 1/18-
approximation algorithm if the objects are unit disks and a 1/2-approximation
algorithm if the objects are unit squares. If the objects have arbitrary size and
are fat, then we give an eptas if each point in the plane is overlapped by a
bounded number of objects. If this number is not bounded however, then we
can again prove that the lnn-approximation algorithm gives the best possible
approximation factor.

The above three algorithms can be extended to the case where each object
has a cost, each point has a profit, and we aim to maximize the total profit of
(uniquely) covered points such that the total cost is within a given budget.

The foremost conclusion of this thesis is that well-known optimization prob-
lems are often better approximable on systems of geometric objects than on
general systems. We have shown however that the object type has strong in-
fluence on the approximability of these problems. In particular, problems such
as Minimum Dominating Set, Minimum Set Cover, and several of its variants
seem more difficult on a system of disks than on a system of (say) squares.
Further investigation of this phenomenon poses a new challenge.
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Monique Laurant, Neboǰsa Gvozdenović, Nicole Immorlica, Peter Korteweg,
Steven Kelk, and Vangelis Markakis.

Time at CWI would certainly have gone a lot slower had it not been for
my roommates over the years: Willem-Jan van Hoeve, Dion Gijswijt, Jules
van Kempen, and during the last three years, Frank Vallentin and Fernando
de Oliveira Filho. I want to thank them for their support, feedback, and
friendship. In particular, I would like to thank Fernando, especially for the
talks we had about movies and for the trip to Milan.

Navigating CWI would have been a lot less easy without the support staff.
I want to thank Susanne van Dam and Nada Mitrovic in particular for helping
me find my way. The library staff was also more than helpful and always
managed to find that elusive book or paper.

My favorite hypothesis is that the less you think about a problem, the more
ideas you have on solving it. A good way of achieving this is to do sports, in
my case volleyball. My thanks for this useful distraction go to the people I
met on Thursday’s at training and on Tuesday’s at Van Slag, especially to
the members of the two volleyball teams I played in: Los! and Doorgewinterd.

253



254 Acknowledgments

Last year, some Van Slaggers banded together to form a team to play in the
regular volleyball competition. Playing with Tovo Heren 4 has been a blast
and becoming champions in our league was a wonderful experience.

At volleyball I met many people and made a lot of friends. Thank you
all for making volleyball my favorite pastime! I want to thank Erik Brave,
Gijs Scheenstra, Ivo Becker, Walter Bruins, and in particular Mark Bouts for
many memorable evenings, talking about the meaningful (and sometimes the
less meaningful) things in life.

Last, but certainly not least, I want to thank my parents. It is a wonderful
feeling to have such unwavering support to help me achieve my dreams.


	Introduction
	Optimization Problems and Systems of Geometric Objects
	Application Areas
	Wireless Networks
	Wireless Network Planning
	Computational Biology
	Map Labeling
	Further Applications

	Thesis Overview
	Published Papers


	I Foundations
	Primer on Optimization and Approximation
	Classic Notions
	Asymptotic Approximation Schemes

	Guide to Geometric Intersection Graphs
	Intersection Graphs
	Interval Graphs and Generalizations
	Intersection Graphs of Higher Dimensional Objects

	Disk Graphs and Ball Graphs
	Models for Wireless Networks

	Relation to Other Graph Classes
	Relation to Planar Graphs


	Geometric Intersection Graphs and Their Representation
	Scalable and epsilon-Separated Objects
	Finite Representation
	Polynomial Representation and Separation
	From Representation to Separation
	From Separation to Representation



	II Approximation on Geometric Intersection Graphs
	Overview
	Problems
	Previous Work


	Algorithms on Unit Disk Graph Decompositions
	Graph Decompositions
	Thickness
	Algorithms on Strong, Relaxed Tree Decompositions
	Maximum Independent Set and Minimum Vertex Cover
	Minimum Dominating Set
	Minimum Connected Dominating Set

	Unit Disk Graphs of Bounded Thickness

	Density and Unit Disk Graphs
	The Density of Unit Disk Graphs
	Relation to Thickness
	Approximation Schemes
	Maximum Independent Set
	Minimum Vertex Cover
	Minimum Dominating Set
	Minimum Connected Dominating Set
	Generalizations

	Optimality
	Connected Dominating Set on Graphs Excluding a Minor

	Better Approximation Schemes on Disk Graphs
	The Ply of Disk Graphs
	Approximating Minimum Vertex Cover
	A Close to Optimal Vertex Cover
	Properties of the size and sol-Functions
	Computing the size- and sol-Functions
	An eptas for Minimum Vertex Cover

	Approximating Maximum Independent Set
	Further Improvements
	Maximum Nr. of Disjoint Unit Disks Intersecting a Unit Square

	Domination on Geometric Intersection Graphs
	Small epsilon-Nets
	Generic Domination
	Dominating Set on Geometric Intersection Graphs
	Homothetic Convex Polygons
	Regular Polygons
	More General Objects

	Disk Graphs of Bounded Ply
	Ply-Dependent Approximation Ratio
	A Constant Approximation Ratio
	A Better Constant

	Hardness of Approximation
	Intersection Graphs of Polygons
	Intersection Graphs of Fat Objects
	Intersection Graphs of Rectangles



	III Approximating Geometric Coverage Problems
	Overview
	Problems
	Previous Work


	Geometric Set Cover and Unit Squares
	A ptas on Unit Squares
	Geometric Budgeted Maximum Coverage
	Optimality and Relation to Domination

	Hardness of Approximation

	Geometric Unique and Membership Coverage Problems
	Unique Coverage
	Approximation Algorithm on Unit Disks
	Budgets and Satisfactions
	Approximation Algorithm on Unit Squares

	Unique Coverage on Disks of Bounded Ply
	Properties of the cost- and sol-Functions
	Computing the cost- and sol-Functions
	The Approximation Algorithm

	Geometric Membership Set Cover
	Hardness of Approximation


	Conclusion
	Bibliography
	Author Index
	Index
	Samenvatting
	Summary
	Acknowledgments

