Optimization and approximation problems related to polynomial system solving

Klaus Meer
University of Southern Denmark
Odense, Denmark

CiE 2006 Swansea, July 2006

## Introduction

Many problems in mathematics, computer science, engineering closely related to
polynomial systems

Typical questions are concerned with

- solvability
- good estimates for number of solutions
- computing solutions, f.e. numerically

Important from computer science point of view
complexity of dealing with above tasks

Some issues related to polynomial systems treated here

- example from mechanism design
- (non-) existence of approximation algorithms in combinatorial optimization
- probabilistically checkable proofs PCPs

Framework:
Both classical (Turing) and real number (Blum-Shub-Smale) complexity theory

## 1. Motivating example: Motion synthesis in robotics

Many practical problems within computational geometry result in question, whether a polynomial system is solvable

Here: Design of certain mechanisms in mechanical engineering

# Example: Protection of pedestrians in traffic 

\& aube


Required motion of cooler and spoiler

Problem in kinematics: Design gearing mechanism satisfying certain demands


## Stephenson gear

Example of a required motion:
Move point P through certain positions

Typically leads to problem of solving a polynomial system with real or complex coefficients

Difficulty: Already few variables and low degrees can result in a system out of range of current solution methods!

Homotopy methods: Deform an easy to handle start system into the target system; follow numerically zeros of start system into those of target system


Deformation of g into f

Complete motion synthesis for so called Stephenson mechanisms can be performed efficiently by homotopy methods
M.\& Schmitt \& Schreiber, 2002

Efficiency of homotopy methods relies on existence and number of zeros (paths)
$\leadsto$ analysis needs more theory

## 2. Approximation algorithms

Several (deep) mathematical methods for bounding number of zeros for polynomial systems $f: \mathbb{C}^{n} \mapsto \mathbb{C}^{n}$ :

Bézout number generalizes fundamental theorem of algebra, easy to compute, too a large bound

Mixed Volumes Minkowski sum of Newton polytopes, hard to compute, (generically) correct bound
multi-homogeneous
Bézout numbers
partitioning of variables, then Bézout for each group; mainly used in practice; so far no complexity results

## Example: Eigenpairs

Find eigenpairs $(\lambda, v) \in \mathbb{C}^{n+1}$ of $M \in \mathbb{C}^{n \times n}$ :

$$
M \cdot v-\lambda \cdot v=0, v_{n}-1=0
$$

Has (generically) $n$ solutions, but Bézout number $2^{n}$.
Multi-homogeneous Bézout numbers: Group variables as

$$
M \cdot v-\lambda \cdot v=0, v_{n}-1=0
$$

and homogenize w.r.t. both groups

$$
\lambda_{0} \cdot M \cdot v-v \cdot \lambda=0, v_{n}-v_{0}=0
$$

Then the number of isolated roots in $(\mathbb{C})^{n}$ is bounded by the 2-homogeneous Bézout number, which here is $n$.

Theorem (Malajovich \& M., 2005):
a) Given a polynomial system $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ there is no efficient algorithm that computes the minimal multi-homogeneous Bézout number (unless $\mathrm{P}=\mathrm{NP}$ ).
b) The same holds with respect to efficiently approximating the minimal such number within an arbitrary constant factor.

Sketch of proof:
Relate problem to 3 -coloring problem for graphs
Establish multiplicative structure of multi-hom. Bézout numbers
In practice: Balance whether additional effort for constructing start system pays out
Remark. MHBN important in analysis of central path in interior point methods
(Shub et al.)

## 3. Complexity theory over $\mathbb{R}$

Above systems particular in that solutions generically exist
Related interesting questions:

- deciding existence of solutions for general polnomials
- exact counting of number of solutions in general

Theorem (Blum \& Shub \& Smale '89):
Deciding solvability of real polynomial systems is $N \mathrm{P}_{\mathbb{R}^{-} \text {-complete over }}$ $\mathbb{R}$; similarly for complex systems and $\mathrm{NP}_{\mathbb{C}}$.

Remark. All problems in $\mathrm{NP}_{\mathbb{R}}$ can be decided in simple exponential time in the real number model. Similarly over $\mathbb{C}$.

Corollary (Bürgisser \& Cucker '05):
Counting the number of solutions is $\# \mathrm{P}_{\mathbb{R}^{2}}$-complete and $\# \mathrm{P}_{\mathbb{C}}$-complete, respectively.

Many other recent completeness results for counting problems in algebraic geometry by Bürgisser \& Cucker \& Lotz

Clear: also the following optimization problem is hard
MAX-Quadratic Polynomial Systems MAX-QPS:
Input: $n, m \in \mathbb{N}$, real polynomials in $n$ variables
$p_{1}, \ldots, p_{m} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ of degree at most 2 ; find maximal number of $p_{i}$ 's that have a common real root

But what's about approximating this maximum?

Theorem (M., 2005): If total number of non-vanishing coefficients in system is $O\left(m^{2}\right)$ there is no $\mathrm{APX}_{\mathbb{R}}$ algorithm for MAX-QPS unless $\mathrm{P}_{\mathbb{R}}=\mathrm{NP}_{\mathbb{R}}$.

Close relation also over the reals to PCPs
Example. $\mathrm{NP}_{\mathbb{R}}$ verification for solvability of system

$$
p_{1}(x)=0, \ldots, p_{m}(x)=0
$$

guesses solution $x^{*} \in \mathbb{R}^{n}$ and plugs it into all $p_{i}$ 's ; obviously all components of $x^{*}$ have to be seen

Question. Can we rewrite $\mathrm{NP}_{\mathbb{R}^{-}}$-verification proofs in such a way that seeing only constantly many positions of the proof suffices to detect faults with high probability?

Formalization using verifiers gives family of complexity classes

$$
\mathrm{PCP}_{\mathbb{R}}(r, q)
$$

Theorem (M., 2005)
$\mathrm{NP}_{\mathbb{R}}$ has long, transparent proofs:

$$
\mathrm{NP}_{\mathbb{R}} \subseteq \mathrm{PCP}_{\mathbb{R}}(\text { poly }, \text { const })
$$

Example: Each faulty proof claiming that a polynomial system is solvable can be rewritten such that a fault occurs with high probability in each part of the proof having constant length

Proof: New techniques for self-testing and self-correction of functions on real domains

Main challenge: Are there as well short transparent proofs, i.e. is

$$
\mathrm{NP}_{\mathbb{R}} \subseteq \mathrm{PCP}_{\mathbb{R}}(\log , \text { const }) ?
$$

Close relation to approximation algorithms for real number optimization problems; a positive answer would yield

Theorem (M., 2006)
If $\mathrm{NP}_{\mathbb{R}}$ has short transparent proofs there is no $\mathrm{FPTAS}_{\mathbb{R}}$ approximation scheme for instances of MAX-QPS with $O(n)$ many non-zero coefficients.

Another open question: Are there any fixed-constant approximation algorithms at all for MAX-QPS?
(Flarup \& M. '06)

## Summary

Analysis of polynomial systems results in interesting problems in many different areas including

- robotics
- combinatorial optimization
- classical and real number complexity theory


## References

- Meer, K., Schmitt, B., Schreiber, H.: Dimensional Synthesis of Planar StephensonMechanisms for Motion Generation by Circlepoint Search and Homotopy Methods. Mechanism and Machine Theory, Vol. 37, Nr. 7, 2002, 717-737.
- Malajovich, G., Meer, K.: Computing Multi-Homogeneous Bézout Numbers is Hard. To appear in: Theory of Computing Systems. Extended Abstract in: Proc. STACS 2005, LNCS 3404, 244-255.
- Meer, K.: Transparent long proofs: A first PCP theorem for $\mathrm{NP}_{\mathbb{R}}$. Foundations of Computational Mathematics, Springer, Vol. 5, Nr. 3, 2005, 231-255.
Extended Abstract in: Proc. 31st ICALP 2004, LNCS 3142, 959-970.
- Meer, K.: On some relations between approximation and PCPs over the real numbers. To appear in: Theory of Computing Systems.
Extended Abstract in: Proc. CiE 2005, LNCS 3526, 322-331.
- Flarup, U., Meer, K.: Two logical hierarchies of optimization problems over the real numbers.
Mathematical Logic Quaterly, Vol. 52, Nr. 1, 2006, 37-50.

2. Definition of multi-hom. Bézout number

Consider $n \in \mathbb{N}$, a finite $A \subset \mathbb{N}^{n}$ and a polynomial system

$$
\left\{\begin{aligned}
f_{1}(z) & =\sum_{\boldsymbol{\alpha} \in A} f_{1 \boldsymbol{\alpha}} z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}} \cdots z_{n}^{\alpha_{n}} \\
& \vdots \\
f_{n}(z) & =\sum_{\boldsymbol{\alpha} \in A} f_{n \boldsymbol{\alpha}} z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}} \cdots z_{n}^{\alpha_{n}}
\end{aligned}\right.
$$

where the $f_{i \alpha}$ are non-zero complex coefficients.
Thus, all $f_{i}$ have the same support $A$
A multi-homogeneous structure: partition of $\{1, \ldots, n\}$ into $k$ subsets

$$
\left(I_{1}, \ldots, I_{k}\right), I_{j} \subseteq\{1, \ldots, n\}
$$

Define for each partition $\left(I_{1}, \ldots, I_{k}\right)$ :

- block of variables related to $I_{j}: Z_{j}=\left\{z_{i} \mid i \in I_{j}\right\}$
- corresponding degree of $f_{i}$ with respect to $\mathbb{Z}_{j}: d_{j}:=\sum_{l \in I_{j}} \alpha_{l}$ (the same for all polynomials $f_{i}$ because of same support)
Definition: a) The multi-hom. Bézout number w.r.t. partition $\left(I_{1}, \ldots, I_{k}\right)$ is the coefficient of $\prod_{j=1}^{k} \zeta_{j}^{\left|I_{k}\right|}$ in the formal polynomial $\left(\zeta_{1}+\cdots+\zeta_{k}\right)^{n}$ (if each group not yet homogeneous)

$$
\operatorname{Béz}\left(A, I_{1}, \ldots, I_{k}\right)=\binom{n}{\left|I_{1}\right|\left|I_{2}\right| \cdots\left|I_{k}\right|} \prod_{j=1}^{k} d_{j}^{\left|I_{j}\right|}
$$

b) Minimal multi-hom. Bézout number:

$$
\min _{\text {I partition }} \operatorname{Béz}(A, \mathbf{I})
$$

