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Abstract

We investigate the problem of how to evaluate efficiently a collection of shortest
path queries on massive graphs that are too big to fit in the main memory. To
evaluate a shortest path query efficiently, we introduce two pruning algorithms.
These algorithms differ on the extent of materialization of shortest path cost and on
how the search space is pruned. By grouping shortest path queries properly, batch
processing improves the performance of shortest path query evaluation. Extensive
study is also done on fragment sizes, cache sizes and query types that we show that
affect the performance of a disk-based shortest path algorithm. The performance
and scalability of proposed techniques are evaluated with large road systems in the
Eastern United States. To demonstrate that the proposed disk-based algorithms
are viable, we show that their search times are significant better than that of main-
memory Dijkstra’s algorithm.

1 Introduction

Consider a web-based road information system like Yahoo!Maps or a moving object
database [17] in which commuters or users issue queries to find optimal paths from
current locations to their destinations. Since road conditions could change over time,
the optimal path information needed to be updated constantly as one travels along the
route to the destination. As a result, numerous queries are likely issued in a trip by a
commuter and thus a large number of queries are expected to be evaluated in such a
system. For such a system to be valuable, it is imperative that the route queries are
answered efficiently, preferably in real-time.
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Among all route queries, shortest path (SP) queries are the most popular and have
been studied extensively in the literature. In combinatorics, the shortest path problem on
general graphs has been well-researched. For example, Dijkstra’s algorithm is widely used
and is actually very fast when using heap data structures for priority queues [5]. Even
faster algorithms are developed, for instance, for graphs that have special constraints on
their edge weights [4]. However, one assumption common to all the above algorithms
is that the whole graph is stored in the main memory. If the graph is too large, these
algorithms cannot handle it. In this paper, we investigate the problem of how to evaluate
efficiently a collection of SP queries on massive graphs that are too big to fit in the main
memory and must be stored on a disk.

Example 1.1 Suppose we have a road system, abstractly represented as a graph as
shown in Figure 1(a). Edges denote street blocks and are bi-directional. To simplify
the discussion, let us assume the weight of each street block is 1. For instance, the
weight could be interpreted as the time required to travel over a street block. Given
such a graph, optimal route queries such as finding an SP from node 0 to node 59 could
be posted to the system. Such an SP is indicated as a dotted line in the Figure 1(a).
Since a road system in general is too large to be main-memory resident, it can first be
partitioned into six subgraphs or fragments as shown in Figure 1(a). For instance, the
subgraph containing nodes 0 to 10 forms a fragment. Likewise, the subgraph for nodes
10 to 24 constitutes another fragment. Although we can apply a static SP algorithm like
Dijkstra on this partition, it may not be effective and could take a long time to process
an SP query. For instance, Dijkstra requires some auxiliary data associated with each
closed node. The amount of data retained during a search could be huge if the number of
nodes processed is large. Furthermore, fragments may be read into main memory many
times during the processing.

To facilitate the evaluation of route queries, materialization of data is required. A
way to speed up the search process is to store the shortest distance between pairs of
boundary nodes in a fragment. A node in a partition is boundary if it is shared by two or
more fragments. For instance, nodes 8, 9 and 10 are boundary nodes. A super graph for
a partition is a graph with boundary nodes as its nodes and two nodes are connected by
an edge precisely when they are in the same fragment. Edges in a super graph are called
skeleton edges. The weight of a skeleton edge is the shortest distance between two nodes
in the fragment involved. The super graph for the partition in Figure 1(a) is shown in
Figure 1(b). To evaluate an SP query, an augmented super graph is constructed. An
augmented super graph for an SP query with source s and destination d is a super graph
augmented with the source and destination fragments. Figure 1(c) is an augmented
super graph for nodes 0 and 59.

Given an augmented super graph SG for an SP query Q, we can search for an SP P
for Q by searching on SG with an algorithm like Dijkstra. The dotted line in Figure 1(c)
is an SP on the augmented super graph for node 0 to node 59. Once P is found, the
actual SP from source to destination can be found by replacing each skeleton edge in P
with the corresponding SP in the fragment involved. Such an SP from node 0 to node
59 is shown as the dotted line in Figure 1(a).
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Figure 1: An Example
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Two important properties about a super graph is that, in general, the number of
skeleton edges could be comparable to the original graph but the number of nodes is a
small fraction of that in the original graph. A super graph can be implicitly represented
by storing shortest distances between boundary nodes in a fragment with a matrix. The
collection of all matrices for fragments in a partition captures the information in a super
graph. Since algorithm like Dijkstra processes nodes locally, a matrix can be read into
main memory whenever is needed. Thus, the above method of finding an SP is scalable
to a very large graph.

The method of finding an SP illustrated in the above example is proposed in [3]. It
has been shown empirically that, with this method (which we call DiskSP), SP’s can be
found for graphs of millions of nodes and edges, and with the average evaluation time
slightly slower than that of Dijkstra [3]. However, the search has not been optimized and
many nodes in the super graph are searched needlessly. Since scalability and viability are
the major problems addressed in [3], issues of optimization and efficient batch evaluation
of SP queries are not investigated.

To evaluate an SP query efficiently, we propose and investigate two pruning tech-
niques in this work. To optimize the evaluation of a collection of SP queries, we propose
and incorporate batch processing techniques into the SP algorithm. We show that these
techniques are effective and their costs are well-justified. Factors such as fragment sizes,
cache sizes and query types have a significant influence on the performance of a disk-
based SP algorithm. With the proposed SP algorithm, we perform extensive experiments
on these factors and their optimality are determined.

In Section 2, we define some basic notation. In Section 3, we survey related work.
In Section 4, we describe the proposed algorithms and highlight our contribution. In
Section 5, experimental results are presented. Finally, a summary is given in Section 6.

2 Definition and Notation

A network such as a road system is denoted as a graph G = (V,E, W ), where V and
E are the sets of nodes and edges, respectively, and W ={w:E→R≥0 | w is a function
from the set of edges to a set of non-negative real numbers}. For the rest of this paper,
we shall use the words “network” and “graph” interchangeably.

Since a graph is too large to be main-memory resident, it is decomposed into smaller
pieces called fragments. Fragments are stored on disks and each is accessed as a unit
during query processing. A fragment is a connected sub-graph such that an edge con-
necting two nodes in a fragment precisely when the two nodes are connected by the same
edge in the original graph. A partition P of a graph G = (V , E, W ) is a collection of
fragments {F1 = (V1, E1, W1), ... , Fn = (Vn, En, Wn)} such that ∪i Vi = V , ∪i Ei =
E and ∀f ∀e∈Ef , wf (e) = w(e). Nodes in a fragment of a partition are divided into two
disjoint sets: the boundary nodes and the interior nodes. A node is a boundary node if
it belongs to more than one fragment, otherwise it is an interior node. An important
property of an interior node in a fragment F is that it is adjacent only to interior or
boundary nodes of F . It follows that a path connecting an interior node with a node in

4



another fragment must pass through one or more boundary nodes in the fragment of the
interior node. On the other hand, a boundary node in a fragment is adjacent to nodes
in two or more fragments.

Given any pair of nodes u and v, SD(u, v) is the distance of the shortest path from
u to v in G, if u and v are nodes in G and there is a path from u to v, and ∞ otherwise.
The SD function is said to be global if the shortest path is the shortest in the network,
while it is local if the shortest path is the shortest only in a sub-graph or a fragment.
Unless otherwise stated, the SD function is global.

To facilitate the query processing, some shortest path information is pre-computed.
More specifically, the local shortest distances between all pairs of boundary nodes in each
fragment are pre-determined. This information is stored in a super graph. The nodes
of the super graph are the boundary nodes in the partition. An edge denotes a (local)
shortest path between the two nodes in a fragment that contains the two boundary nodes.
An edge weight in a super graph is the length of the (local) shortest path between the
two nodes, or ∞ if no path connecting them. Note that any pair of boundary nodes
could be contained in more than one fragment. In that case, the edge weight in a super
graph is the minimum of all (local) shortest distances.

The super graph of a partition can be thought of as a graph consisting of one complete
sub-graph (a clique) for each fragment. Formally, a super graph S = (Vs, Es,Ws) of a
graph partition {F1 = (V1, E1, W1), F2, . . . , Fn} has the following properties: Vs =
{vb|∃Fi, vb is a boundary node in Fi}, Es = {〈vi, vj〉|∃Fk, vi and vj are boundary nodes
in Fk}, and Ws={ws(eij=〈vi, vj〉) |ws(eij) = min{SDk(vi, vj)| 1 ≤ k ≤ n}}, where SDk

is the local shortest distance from vi to vj in fragment Fk, min is the minimum function.

3 Related Work

3.1 Previous Work

There are many research efforts reported in the literature on finding the optimal path on
graphs that are too large to be main-memory resident. Due to the very large volume of
path data, previously suggested transitive closure or graph traversal algorithms [2, 8, 16]
are not directly applicable to this problem. Recent research on this problem focus on
new data organization techniques for structuring large topographical road data to speed
up the computation of the optimal path [1, 14, 10, 7, 3, 11].

All these approaches consist of two distinct phases: pre-processing and querying.
By the assumption that a graph is too large to be main-memory resident, all these
methods first convert a graph, by invoking some partitioning algorithm, into a collection
of fragments. Each fragment then becomes a unit of transfer between the disk and
the main memory. To speed up the search process, either some shortest paths or the
cost of some shortest paths are materialized. Each approach differs on how a graph is
partitioned into fragments, how these fragments are organized, what path information
are materialized, and what search algorithms are employed in the querying phase.
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3.1.1 An Early Graph Partitioning Method

Agrawal and Jagadish are among the first to propose the above-mentioned graph parti-
tioning method for finding paths in graphs that are too large to be main-memory resident
[1]. A graph is partitioned into fragments and some path information is materialized.
An important issue is to reduce the size of the graph needed to be searched. A pruning
technique is proposed based on the materialized shortest path cost information. The
technique tries to determine if a node needed to be open in algorithms such as A* or
Dijkstra’s. A node is not considered (open) if the distance from the source to the destina-
tion via the node is greater than an estimated distance. While speeding up computation
of a shortest path, this technique does not optimize the search process since it unnec-
essarily searches many nodes in a graph. They also investigate the appropriateness of
fragment sizes, materialization of shortest paths, and hierarchical structuring with their
method.

3.1.2 Hierarchical Graphs

Another early approach to SP query evaluation that is based on graph partitioning is
called Hierarchical Encoding Path View (HEPV) and is proposed by Jing et al. [10]. A
graph is partitioned using a method called Spatial Partitioning Cluster (SPC). Nodes
in a fragment are divided into boundary nodes and interior nodes. After partitioning a
graph, one locates the boundary nodes for each fragment and computes all-pairs shortest
paths among all nodes in a fragment, including boundary nodes. A hierarchical graph
is generated by pushing the boundary nodes up to the next higher level. In each higher
level, a super graph is constructed, and is partitioned if it is not small enough to be fitted
into the main memory or a page. Edges connect nodes precisely when the two nodes
are from the same fragment in the next lower level, and the edge weight is the shortest
distance of the two nodes in the fragment in the next lower level. It can be shown
easily that the number of levels in a hierarchical graph, if it can ever be generated, is
much bigger than 3. Since all-pairs shortest paths and their distances are materialized
for nodes in a fragment, the storage and pre-computation time are enormous for any
reasonable size graph [14].

Given the source s and destination d, the system first looks for the fragments con-
taining the two nodes, say fragments S and D, respectively. S and D are either (a)
the same fragment, or (b) they are different. In case (a), the shortest path could be
totally in the fragment, or part of it could be in other fragments, thus the path must
pass through some boundary nodes of this fragment. In the case (b), the shortest path
connecting two different fragments must pass through some boundary nodes in each
fragment. Therefore, a common operation of both cases is as follows:

1. Compute the shortest paths from s to all boundary nodes in the S (s 7→ BN(S))
and those from all boundary nodes in D to d (BN(D) 7→ d).

2. Compute all possible combinations of s 7→ BN(S) 7→ BN(D) 7→ d, and find the
minimum one.
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In the case (b), the minimum one is the final answer. However, in the case (a), a
shortest path search must be done inside the fragment S and compare the distance with
the minimum value found in step 2. The lesser is the final answer.

Figure 2: Exhaustive Comparing Algorithm

The shortest path from s to d is the concatenation of a shortest path from s to a
boundary node u in S, a shortest path from u to a boundary node v in D, and a shortest
path from v to d, i.e., SP (s, d) = minu,v{SP (s, u) + SP (u, v) + SP (v, d)}.∗ In Figure 2,
the dashed lines in S and D represent the shortest paths from s to boundary nodes in S
or from boundary nodes in D to d. The solid lines represent all possible shortest paths
from boundary nodes in S to the boundary nodes in D. The shortest paths within S
and D are easy to acquire, just applying Dijkstra’s or other similar algorithm on the
fragments. To find the shortest distance between u and v, one must recursively find
the shortest path between them one level higher in the hierarchical graph. Since the
next level records the shortest path locally, to find the global shortest path for the two
boundary nodes requires the shortest path algorithm recursively calls to upper level
super graphs. Thus finding such a path between two boundary nodes at the ground level
could require a large number of invocations of shortest path queries at the upper levels.

Assume that there are k levels in the hierarchy. Then for every query of SP (u, v), we
have to go to the top level (level k). Assume that the number of boundary nodes in each
fragment is the same, say b. In the ground level (level 1), we need to submit b2 shortest
distance queries to level 2. For every such query, level 2 also needs to submit b2 shortest
distance queries to level 3, and so on, until the top level is reached. Therefore, there
are totally (b2)k−1 routing table lookups at the top level. Suppose b = O(

√
n), then the

complexity of exhaustive comparing algorithm on multilevel hierarchical architecture
is O(nk−1). When k is larger than or equal to 3, the asymptotic complexity of the
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exhaustive comparing algorithm is worse than Dijkstra’s algorithm or DiskSP.1 However,
if b = O(n), then this method may not be effective.

Shekhar et al. [14] observe that materialization of data is needed to speed up the
search process when evaluating an SP query. They investigate the tradeoffs between the
storage and computation time, based on a hierarchical structure, with various degrees
of materialization. They conclude that materializing the shortest-path-cost view for
boundary nodes in fragments provides the best saving in computation time for a given
amount of storage. Although the structure assumed is not identical, a similar result is
also obtained in [1]. They show that the cost of materializing all shortest paths within
a fragment does not justify its benefit in speeding up the search process [1].

Another hierarchical graph model called HiTi is proposed in [11]. In HiTi, a graph
is partitioned into fragments as before, except that given any pair of disjoint fragments,
the corresponding sets of nodes are disjoint. Boundary nodes are those that connect two
fragments. Then a hierarchical graph is generated as in HEPV by pushing the boundary
nodes up to the next higher level. In each higher level, two nodes are connected by an
edge precisely when they are from the same fragment in the lower level, and the edge
weight is the shortest distance of the two nodes in the fragment in the lower level. Since
only shortest distances are materialized, the storage cost is much lower than in HEPV.
Using an artificially generated grid data set, they show that HiTi outperforms HEPV
in terms of update cost and storage overhead. However, in terms of computation cost,
HEPV is better.

We implemented the partitioning SPC and querying algorithms in HEPV [10], and
tested them on road system graphs from Waterloo region. The HEPV method has some
termination and performance problems. Firstly, given a graph that is partitioned with
the SPC partitioning algorithm, the number of edges in the next higher level in the
hierarchical graph may not decrease. Thus, the partitioning process may not terminate
and the hierarchical graph cannot be generated. Even if the process terminates, by
force or otherwise, the number of levels in a hierarchical graph could be numerous and
is likely greater than 3. Secondly, even if the partitioning process terminates, the pre-
processing time is long and the storage cost is high. Materializing all-pairs shortest pairs
in a fragment is an expensive proposition [14]. Lastly, even for those networks whose
hierarchical graphs can be generated, the time to find the next hop from a source to a
destination with their algorithm is very long. Our experiment shows that, for a graph
of several thousand nodes and edges (that is forced to terminate with three levels), the
time for finding the next hop in a shortest path ranges from 80 to 3000 times that of
Dijkstra’s algorithm. Exhaustive search method in a hierarchical graph is not an effective
alternative, especially if the graph has more than 2 levels. From these tests, it is clear
to us that it is impossible to compare HEPV in our experiment. That is the reason why
we did not include it in our comparison in Section 5.

1The time complexity of both Dijkstra’s and DiskSP is O(n log n + m).

8



3.1.3 Rooted Tree Method

The partitioning algorithm of this approach [7, 18] is an external-memory extension of
the Lipton and Tarjan’s planar separator algorithm [12]. Therefore, it can only partition
planar graphs. Also, the disk-based data structure selected for storing pre-computation
information requires a lot of space, thus it may not be suitable for large graphs.

Pre-processing Phase: Constructing Rooted Tree
The rooted tree data structure is a d-nary disk-based tree structure. Each node of

the tree corresponds to a fragment and stores its planar graph separator. The children of
a node are the connected components separated by its separator, i.e., let G be a parent,
S be the separator of G, and G1, G2, . . . , Gk be the resulting partitions of G. If a Gi is
not small enough, it is recursively divided and should have its own separator Si.

Figure 3: A Rooted Tree (dotted lines are separators)

Let us look at an example. In Figure 3, the parent graph G is first divided into
two connected components, then the two components are divided further into four con-
nected components. These four components (G1, G2, G3, G4) form the next level of
(G,S) in the rooted tree. The parent node contains nodes of the separator S for the
four connected components. If a Gi is not small enough, it is divided further recursively.
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Note that the children of a graph G do not include nodes of the separator S. Therefore,
this guarantees that every node in a graph appears in exactly one node in the rooted tree.

Querying Phase
Given a node v, one can find exactly one node (Gk, Sk) in the rooted tree such that

v is in Sk (i.e. v is a boundary node of Gk), and v is an interior node of its ancestors
Gi, (i < k). Given two nodes u and v, we can find their lowest level common ancestor
(Gl, Sl). Define B(u, v) to be the union of the all boundary nodes in their common
ancestors, i.e. B(u, v) =

⋃
Si, (i ≤ l). It can be proved that the shortest path between

u and v must pass through at least one node in B(u, v).
With this observation, the shortest distance from s to d can be written as : dist(s, d) =

minb∈B(s,d){dist(s, b) + dist(b, d)}, where dist is the local shortest distance between two
nodes. The shortest distance query then can be implemented by an exhaustive compar-
ative algorithm. If the shortest distance from any interior node to any boundary node
is already known for each node in the rooted tree, the shortest distance query problem
is boiled down to how to efficiently retrieve the shortest distance from one interior node
to a boundary node. The thesis [18] discussed the external memory data structure for
storing the rooted tree for efficient I/O.

The problem in the above method is that it requires a lot of disk space for storing
the shortest distance for the rooted tree and a lot of pre-computation for the shortest
distances. Assume that the ground level graph has n nodes. Therefore, there are O(

√
n)

boundary nodes on the root if using the Lipton and Tarjan’s planar graph separator
algorithm. For each interior node, there should be a shortest distance to every boundary
node stored in the rooted tree data structure. That is there are Θ(n3/2) shortest distance
computations for the pre-computation and Θ(n3/2) shortest distances stored in the tree.
For example, in East5 road system used in our experiment, there are about 2.5 millions
nodes. Then there will be about 4 billions shortest path computations and about 4
billions shortest distances stored just for the boundary nodes in the root of the tree.2

Thus to materialize every shortest path from an interior node to a boundary node requires
a lot of computations and storage.

3.2 A Disk-based Shortest Path Algorithm

A disk-based SP algorithm called DiskSP is proposed by us in [3]. With the Tiger/Line
file data sets, it has been showed empirically that the algorithm is scalable and its
average performance is slightly slower than that of Dijkstra’s. The test data sets used
represent road networks that contain up to millions of nodes and edges. Since the
proposed algorithms in this work are based on algorithm DiskSP, we briefly describe the
algorithm in this subsection.

2With DiskSP and with East5 road system, there are about 3 millions shortest path computations
and about 3 millions shortest distances stored on a disk.
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3.2.1 Pre-Processing Phase

The road systems or graphs used in this work are extracted from the Tiger/Line files
[15]. The road network data in a Tiger/Line file cannot be processed efficiently by a
route query evaluation algorithm. The following is a description of how we transform
the Tiger/Line file data into data that will serve as input in the querying phase.

In a road system in a Tiger/Line file, a node is the intersection of two or more streets
while a street block is a part of a street between two adjacent intersections. A set of
street blocks are extracted from a road system in a Tiger/Line file. This data is first
stored as tables in a relational database. A street block is a polyline denoting the shape
of a street block. To facilitate the manipulation of road networks as graphs, street blocks,
which are represented as tables in a relational database, are converted into edge objects,
which are in fact polylines. Edge objects are stored in a file on a disk. An edge object
contains two endpoints, as well as all the interior points in the polyline. Other data
associated with a street block (such as its name and weight) are also attached to an edge
object. The (default) weight of an edge is the sum of the length of each segment in the
polyline. A set of edges together form a very large graph.

The graph in general is too large to be main-memory resident. It is partitioned into
a collection of fragments and these fragments are stored in a fragment database. The
partitioning algorithm, as proposed in [3], is invoked to generate the fragments. To
facilitate the search process, the partitioning algorithm requires the input edge set to be
stored in an R-tree or its variant. Thus, a Hilbert R-tree is built on the edges in a graph.
After the partitioning, an arbitrary large road network can be partitioned and stored as
a collection of fragments in a fragment database. In a Tiger/Line file, some part in a
road system is completely disconnected from the rest. With the partitioning algorithm,
each of these isolated parts will form a fragment by itself. These isolated fragments
will not be used in the experiment. A main-memory version of the whole graph can be
generated by reading in each fragment and merging them together. However, this can
be done only if the graph is small enough to be main-memory resident.

Conceptually, once a graph has been partitioned, one can apply Dijkstra’s algorithm
to it, by reading in fragments and their auxiliary data structures from the disk whenever
they are needed, and swapping them out when their usefulness expires. However, to
minimize computation, memory usage, and I/O accesses, local shortest distances between
boundary nodes within fragments are pre-computed. For each fragment in a partition,
a distance matrix is created to record the distance of a local shortest path from one
boundary node to the other. Each matrix is a data structure residing on the disk and
they collectively are called a distance database. Thus in this method, there are two levels
- the base graph and the super graph. A super graph is implicitly represented with a
distance database.

3.2.2 Querying Phase: A Disk-based Dijkstra’s Algorithm

Once the pre-processing phase is complete, path queries can be posted and evaluated by
algorithm DiskSP. The algorithm DiskSP takes six inputs: the source and destination

11



nodes s and d, two fragments S and D in which s and d are contained respectively, the
fragment database frags, and the distance database distDB. The fragments S and D
are called source and destination fragments, respectively. As with Dijkstra’s algorithm,
we keep track of information for each node, which includes the shortest distance from
source so far, the parent node in the shortest path, and whether it is closed or not. We
call these auxiliary data. In Dijkstra’s algorithm, auxiliary data of nodes are stored in a
priority queue ordered by their distances from source.

In our implementation, auxiliary data of nodes in S and D are put in a main-memory
priority queue called SDQueue. However, the minimum value in this queue alone does
not determine the next closed node. Rather the minimum value should be compared
with the minimum distance value of all boundary nodes, and the smaller of these two
indicates the next closed node. The auxiliary data of boundary nodes are maintained
in different priority queues. Since the number of boundary nodes could be huge, their
associated auxiliary data must be stored on a disk. To minimize I/O accesses, auxiliary
data of boundary nodes are partitioned according to the boundary set in which they
belong.

A boundary set is the set of boundary nodes shared by two adjacent fragments in a
partition. The auxiliary data of nodes in a boundary set are stored in a data structure
called distance vector. The boundary nodes in a distance vector are organized as a heap
and are ordered by their distances from the source. All the distance vectors together form
a distance vector database. A main-memory heap, called BNQueue, contains exactly one
entry for each distance vector in the distance vector database. Each entry in BNQueue
is the minimum-key entry in the corresponding distance vector in the distance vector
database. Thus the minimum-key entry in BNQueue is the global minimum-key entry
for all (open) boundary nodes in the super graph. Unlike a fragment database and a
distance database, a distance vector database is a temporary data structure pertaining
to a particular query only, and is deleted once the query evaluation is complete. The
organization of these heaps is illustrated in Figure 4.

In our implementation, the fragment database, the distance database, and the tem-
porary distance vector database are each stored in a structure called virtual hashtable.
A virtual hashtable is a hashtable except that elements in it are stored on a disk and
at most certain number (cache size) of elements are allowed in the main memory. Ele-
ments of a fragment database (a distance database and a distance vector database) are
fragments (distance matrices and distance vectors, respectively). Elements in a virtual
hashtable are swapped in and out of the main memory when the specified cache size
is reached. The replacement policy used in a virtual hashtable is the well-known LRU
algorithm.

Let us call the graph obtained by merging S, D, and the super graph an augmented
super graph. Conceptually, Dijkstra’s algorithm is applied to an augmented super graph
to find the shortest path from the source to the destination. However, since the super
graph could be huge, the augmented graph is not constructed explicitly. Instead, only
the merged graph of S and D is main-memory resident. During the execution, whenever
some part of the super graph is processed, the corresponding distance matrices and
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Figure 4: Heap Structures For DiskSP
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distance vectors are read into the main memory. The shortest path obtained from this
augmented graph is not the actual path from the source to the destination, because this
path may contain edges in the super graph. An edge 〈u, v〉 in a super graph represents
a local shortest path from u to v in a fragment in which the edge is defined. The last
step is to fill-in these edges with the local shortest paths to obtain the complete shortest
path from the source to the destination.

Initially, only S and D are in main memory. All nodes (except s) in S, D and all
boundary nodes have their distances from s set to ∞. The distance of s is 0. Dijkstra’s
algorithm is applied to the augmented super graph. In each iteration, an open node with
the minimum shortest distance is closed. The closed node could have non-closed interior
(in S or D) or boundary nodes as its neighbors. The edge of an adjacent node could be
an edge in S, D, or the super graph. During the relaxation process, a non-closed adjacent
node is handled in the normal manner. That is, its distance from source is updated and
is enqueued into the corresponding priority queue. However, for a non-closed adjacent
node which is in the super graph, the corresponding edge weight is stored in a matrix
in the distance database. Thus, this process may incur I/O operations if the distance
matrix and the corresponding distance vector are not in the cache yet. The relaxation
and closing processes keep going until the destination node is closed. After that we get
a skeleton shortest path. A skeleton shortest path, or simply a skeleton path, consists of
a sequence of edges in S, D, and the super graph. That is, a skeleton path is a path
in the augmented super graph. A skeleton path from node 0 to node 59 is denoted as
a dotted line in Figure 1(c). An edge in a super graph is a skeleton edge. A skeleton
edge represents a shortest path from a boundary node to another boundary node in a
fragment to which they belong. The last step of this algorithm is to “fill-in” the skeleton
edges. During the“fill-in” step, for each skeleton edge, we apply Dijkstra’s algorithm
to the corresponding fragment to find the actual path. The path obtained by replacing
each skeleton edge with the corresponding actual path is returned as the answer to the
query. Details of the algorithm can be found in [3].

4 Our Contribution

Algorithm DiskSP, like Dijkstra’s algorithm, suffers from the problem that many nodes
are needlessly searched and their shortest distances are computed in finding a skeleton
path. To reduce the search space, pruning algorithms are introduced in this section.
Pruning reduces the super graph needed to be searched, and thus minimizes the number
of boundary nodes that are processed. This, as we shall show experimentally, improves
the evaluation significantly, by reduction of both I/O and computation.

Algorithm DiskSP is designed to process SP queries one by one. It is not intended
for an environment in which many queries are executed simultaneously. In such an
environment, its performance can further be improved by proper grouping of queries, in
both finding the skeleton paths and filling-in the skeleton edges. In the proposed batch
processing algorithm, given a set of SP queries, the evaluation is divided into two distinct
phases: skeleton path finding and skeleton edge filling. In the skeleton path finding phase,
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the queries are first ordered. Then a skeleton path is found, one by one, for each query.
A pruning technique could be applied in finding a skeleton path. Once all skeleton paths
are computed, the skeleton edge filling phase begins. The skeleton edges in skeleton
paths are grouped according to the fragment to which they belong. The actual paths
in the same fragment are then found by reading in the corresponding fragment and the
shortest paths are computed.

There are factors that could influence the performance of a disk-based SP algorithm.
However, these factors are not fully investigated in our work in [3] since optimization is
not the focus. The fragment size is important because it affects the search performance
as well as the cost of materialized data. In our approach in evaluating an SP query, we
first build two shortest path trees, one in the source and one in the destination fragment,
before searching is done on the (pruned) super graph. The larger a fragment, the longer
it takes to build a shortest path tree. On the other hand, the larger the fragment, the
fewer the number of fragments in a partition, and thus the lesser number of boundary
sets. Since the performance of a pruning strategy proposed in the work is dependent
on the number of boundary sets, the fewer the number of boundary sets, the faster our
pruning and thus the faster the search of a skeleton path. In summary, the fragment
size cannot be too “large” nor can it be too “small” to obtain an optimized search
performance. Furthermore, the fragment size has implication on the cost of materialized
data such as a distance database.

In this work, we perform extensive experiments on fragment sizes, cache sizes, and
query types that could affect the performance of a disk-based SP algorithm. We show
that with proper choices of fragment size and cache sizes, the query evaluation time of
these disk-based SP algorithms can be optimized.

A path query is denoted by a tuple 〈src, dst, srcFragId, dstFragId〉, where src and
dst are the source and destination nodes of an SP query, and srcFragId and dstFragId
are the ids for the fragments containing the source and destination nodes, respectively.
The answer to a path query is a (possibly empty) shortest path in the network from src
to dst. In an environment in which many queries could be posted to a system, there is
a queue of size k which denotes k path queries that are batched and executed by the
system.

In Section 4.1, pruning algorithms are introduced. In Section 4.2, batch processing
of SP queries is discussed. Performance analysis presupposes that data processing has
been performed - e.g., see Section 3.2.

4.1 Pruning A Sketch Graph

The pruning algorithms described in this subsection reduce the number of boundary
nodes needed to be examined in finding a skeleton path by confirming the search to a
sub-graph of the original super graph. We now introduce a concept called sketch graph.

A sketch graph captures the connectivity of boundary sets in a partition. The nodes
in a sketch graph are boundary sets of the partition, and an edge connects two boundary
sets precisely when the two sets are in the same fragment. Formally, a sketch graph S

15



= (Vs, Es, Ws) of a graph partition {F1, F2, , . . . , , Fn} has the following properties:
Vs = {vs | vs corresponds to some boundary set in Fi, where 1 ≤ i ≤ n}. That is, a
bijection f : Vs →

⋃
i BSi, where BSi is the set of boundary sets in the ith fragment. Es

= {〈vi, vj〉 | ∃Fk, f(vi) and f(vj) are in BSk, where f is the bijection defined on Vs}.
The weights of edges in a sketch graph will be defined wherever they are needed.

Given a path query q, the main idea of a pruning algorithm is as follows:

• An upper bound U(q) on the shortest distance from the source to the destination
is computed.

• For each boundary set X in the sketch graph, we compute a lower bound L(q, X)
on the length of any path from the source to the destination that passes through a
node in X. If L(q, X) > U(q), then it is not possible to have a shortest path from
the source to the destination via a node in X. Thus, the boundary set X can be
pruned.

• The pruned sketch graph, which denotes a sub-graph to be searched, is used to
find the skeleton path for q.

The effectiveness of a pruning algorithm depends on how well the upper and lower
bounds are computed. To reduce the computation required at query evaluation time,
pre-computation and materialization are required. We introduce two pruning algorithms
in this section. These two algorithms differ on the accuracy of finding the approximation
of the upper and lower bounds, and they also differ on the amount of pre-computation
and materialization.

Given two sets of nodes A and B, we define the minimum (maximum) distance from
A to B as the minimum (maximum) of the shortest distances from a node s∈A to a
node t∈B in the given network. For the rest of the discussion, the minimum (maximum)
distance from A to B are denoted as minDist(A,B) and maxDist(A,B), respectively.
The function minDistlocal(maxDistlocal) is the same as minDist (maxDist) except that
the paths involved are local in a fragment containing both A and B.

4.1.1 Boundary Set Distance Matrix

In this method, to compute U(q) and to determine if a boundary set can be pruned,
an additional information on boundary sets is needed. For any pair of boundary sets
A and B, we compute the minimum and maximum distances from A to B and from B
to A. The minimum and maximum distances for all boundary sets in a partition are
stored in a virtual hashtable called BSDM (Boundary Set Distance Matrix). Elements in
BSDM are matrices, one for each boundary set. Given two boundary sets A and B, there
is a method called getMin(A, B)(getMax(A,B)) in BSDM which returns the minimum
(maximum) distance from A to B. BSDM is constructed from the super graph during
the pre-processing phase.

An Upper Bound U(q)
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An upper bound on the shortest distance from a source to a destination is computed
with the following formula UB1: min {maxDistlocal({s}, BSi) + BSDM.getMin(BSi,
BSj) + maxDistlocal(BSj , {d}) | BSi and BSj are boundary sets in the source and
destination fragments, respectively}. Likewise, an upper bound can be computed with
the following formula UB2: min {minDistlocal({s}, BSi) + BSDM.getMax(BSi, BSj) +
minDistlocal(BSj , {d}) | BSi and BSj are boundary sets in the source and destination
fragments, respectively}. We choose the minimum of two values computed by the above
two formulae as the upper bound U(q). That is, U(q)=min{UB1, UB2}. U(q) denotes
the distance of a path passing some nodes in boundary sets BSi and BSj . The number of
combinations for each case is 2 ×m×n, where m and n are the numbers of the boundary
sets in the source and destination fragments, respectively.

We shall prove that U(q) computed is at least equal to, or more than the actual
shortest distance from the source to the destination.

Lemma 4.1 There is a path from the source to the destination whose distance is less
than or equal to U(q) computed above.

Proof It suffices to prove that given any boundary sets BSi and BSj from the source
and the destination fragments, respectively, the value computed in the formula U(q) is
the distance of a path from the source to the destination via nodes in the two boundary
sets. Let us focus on the first case UB1 of the two cases above. The other case can be
proven with a similar argument.

Let the upper bound be computed by maxDistlocal({s}, BSi) + BSDM.getMin(BSi,
BSj) + maxDistlocal(BSj , {d}). Let vs and vd be the nodes in BSi and BSj , respectively,
such that the distance from vs to vd is BSDM.getMin(BSi, BSj). Consider a shortest
path in the source fragment from s to vs, a shortest path from vs to vd, and a shortest
path in the destination fragment from vd to d. The concatenation of these paths is a
path from the source to the destination. By definition, maxSDlocal({s}, BSi)≥SD(s, vs),
where SD is local to the source fragment. Likewise, maxSDlocal(BSj , {d})≥SD(vd, d).
Thus, the distance of this path from s to vs to vd to d is less than or equal to UB1.

To prove the second case, let the upper bound be computed by minDistlocal({s}, BSi)
+ BSDM.getMax(BSi, BSj) + minDistlocal(BSj , {d}). Then let vs and vd be the nodes
in BSi and BSj , respectively, such that the distance from s to vs is minDistlocal({s},
BSi) and the distance vd to d is minDistlocal(BSj , {d}). In that case, the proof follows
in a similar argument as in above.

Pruning a Boundary Set
Suppose X, Y and Z are boundary sets and let s and d be two nodes. Assume further
that the pair s and X are in the same fragment, and so are d and Z. Define minDist(s,
X, Y , Z, d) as minDistlocal({s}, X) + BSDM.getMin(X, Y ) + BSDM.getMin(Y , Z) +
minDistlocal(Z, {d}). Informally, minDist(s, X, Y , Z, d) denotes a lower bound on the
distance of a path from node s to d via boundary sets X, Y and Z.
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Figure 5: A Path via Boundary Sets X, Y and Z

Lemma 4.2 Let Y be a boundary set, and let X and Z be boundary sets in source
and destination fragments, respectively. Consider a path p from the source src to the
destination dst via a boundary node in Y such that the first boundary node and the last
boundary node in p are in boundary sets X and Z, respectively. Then the length of p is
greater than or equal to minDist(src, X, Y , Z, dst).

Proof Consider a shortest path from src to dst passing through some nodes in the
boundary sets X, then Y and then Z. As is illustrated in Figure 5, the path p begins at
the source src, then it passes the first boundary node bvs in p, then passes boundary node
bv in Y , to the last boundary bvd in p, and then to the destination dst. The boundary
nodes bvs and bvd are in X and Z, respectively.

The distance from src to bvs is greater than or equal to minDistlocal({src}, X).
Similarly, the distance from bvd to dst is greater than or equal to minDistlocal (Z, {dst}).
By definition of BSDM, the distance SD(bvs, bv) ≥ BSDM.getMin(X, Y ) and SD (bv,
bvd) ≥ BSDM.getMin(Y , Z). Thus, the length of the path p is greater than or equal to
minDist(src, X, Y , Z, dst).

To determine if a boundary set can be pruned in finding a shortest path, we need
to consider every path from the source to the destination via this boundary set. By
considering all possible combinations of boundary sets in the source and destination
fragments, a boundary set can be determined if it is needed in finding a shortest path.

Lemma 4.3 Consider a path query q= 〈s, d, sourceFrag, destFrag〉. Let Y be a
boundary set. Define L(q,Y ) as the minimum of {minDist(s, X, Y , Z, d) | X and Z
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are boundary sets from sourceFrag and destFrag, respectively}. If L(q, Y ) > U(q),
then there is no shortest path from s to d via nodes in Y .

Proof By Lemma 4.2, any path from s to d via some node in Y must have length greater
than U(q). This implies every such path cannot be a shortest path from s to d.

4.1.2 X-Hop Sketch Graphs

Pruning based on BSDM takes the advantages of the pre-computed shortest distance
information for all-pairs boundary sets. As will be shown later, the pruning algorithm
works very well. There are, however, several problems when one applies this algorithm.

The first problem is the calculation time for BSDM. To build one entry in a BSDM,
we have to calculate all shortest paths from nodes in one set to the other. If the graph
is huge and each boundary set has a relatively large number of boundary nodes, the
calculation time will grow significantly. For example, if each boundary set holds an
average of n boundary nodes and the total number of the boundary sets is t, then we
need to calculate n × t × t shortest path trees (SPTs) to fill out all the entries. The
other problem is storage space. Since the BSDM stores every possible pair of boundary
sets, there are t2 number of entries. Another problem is that edges and their weights in
a graph could be updated. Even with a small change in the graph, we must re-build the
whole BSDM.

An x-hop sketch graph is an alternative solution to BSDM that could alleviate the
storage and pre-computation problem, but not the dynamic update problem. Unlike
that BSDM has the shortest distance information on all-pairs boundary sets in a sketch
graph, an x-hop sketch graph has the shortest distance information from one boundary
set to a limited number of boundary sets, limited by the number x of hops. Therefore, by
controlling x, we can adjust the calculation time and storage space for the materialized
data.

Given a graph G, the shortest hop from node vi to node vj , denoted as SHG(vi, vj),
is the distance of the shortest path from vi to vj in G, provided that the weights of all
the edges in the graph are set to one. Therefore, if SHG(vi, vj)=h, then there is a path
of h edges from vi to vj . Moreover, there is no other path with fewer edges. We said vj

is h-hops away from vi

Given a sketch graph G=(V ,E, W ), an x-hop sketch graph SGx = (Vx, Ex, Wx) of
G, for some positive integer x, has the following properties: Vx=V ; Ex ={eij= 〈vi, vj〉 |
SHG(vi, vj)=x}; Wx={wx:Ex →(R≥0, R≥0) | wx is a function from the set of edges to a
set of 2-tuples (α, β), where α and β are called α-value and β-value from the boundary
set in the head of an edge to the boundary set in the tail}. The α- (β-) value of set A to
set B is the minDist(A, B) (maxDist(A,B), respectively). The α-( β-) value is said to
be local if the corresponding minDist(A,B) (maxDist(A,B)) is local. An x-hop sketch
graph can be computed in the pre-processing phase. Informally, nodes in an x-hop sketch
graph are boundary sets, and an edge from a node u to v if v is x-hops away from u in
the sketch graph.
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An x-hop sketch graph naturally has more edges than the original sketch graph does,
since the number of adjacent nodes of a node grows as x grows. However, with the
proper setting of x, the amount of materialized data of an x-hop sketch graph is less
than that of BSDM. The number of entries of an x-hop sketch graph is k × t, while the
one of BSDM is always t2, where t is the number of nodes (boundary sets) and k is the
average number of adjacent nodes of a node in an x-hop sketch graph. Since, in general,
a node in an x-hop sketch graph does not reach all other nodes, we cannot use it to prune
the super graph in the same way as we do in BSDM. Instead, we need a more complex
scheme to calculate the upper and lower bounds. As we will show later, the effectiveness
of this pruning algorithm depends on the choice of x.

Augmented x-Hop Sketch Graphs

To find the bounds, especially the lower bound, on a shortest path from a node to
another, it is imperative to consider all possible paths between them. An x-hop sketch
graph will not allow us to find such bounds correctly. However, augmented x-hop sketch
graphs are sufficient to ensure valid bounds. Therefore one can apply Dijkstra’s algorithm
to these graphs to compute the bounds.

Given a source s and a destination d in fragments S and D, respectively. We construct
a graph called a source-augmented x-hop sketch graph. Nodes in a source-augmented x-
hop sketch graph are boundary sets in the sketch graph augmented with the source and
the destination. The set of edges are those in the x-hop sketch graph augmented with
the union of the following sets of edges: the set of edges from the source to each source
boundary set, the set of edges from each boundary set in the destination fragment to
the destination, and the set of edges from a source boundary set to every boundary set
in the sketch graph that is less than x-hops away.

Formally, given a positive integer x, a source-augmented x-hop sketch graph ASG =
(Va, Ea, Wa) is obtained from the x-hop sketch graph SGx = (Vx, Ex, Wx) of a sketch
graph G as follows: Va= Vx∪{s, d}; Ea = Ex ∪EsB∪EBd∪EsX , where EsB = {eij =
〈s, vi〉 | vi corresponds to some boundary set in fragment S}, EBd= {eij = 〈vi, d〉 | vi

corresponds to some boundary set in fragment D} and EsX = {eij= 〈vi, vj〉 | vi 6= vj

and vi corresponds to some boundary set in S and SHG(vi, vj)<x}. EsB is the set of
edges from the source s to boundary sets in the source fragment. Likewise, EBd is the
set of edges from boundary sets in the destination fragment to the destination. Lastly,
EsX is the set of edges from a boundary set in the source fragment to a boundary set
that is less than x-hops away in the sketch graph. Wa={wa:Ea→(R≥0, R≥0) | wa is a
function from the set of edges to a set of 2-tuples (α, β), where α and β are the α-value
and β-value of the set of nodes at the head of an edge to the set at the tail}. The source
and destination nodes in ASG denote singleton sets containing the corresponding nodes
in computing the α- and β-values. Moreover, the α- and beta-values computed for edges
involving the source and destination nodes are local.

Example 4.1 Let us consider the example in Figure 6. To simplify our discussion,
we only show the boundary sets involved, but without the source and the destination
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Figure 6: An Example of A Partial Source-Augmented x-Hop Sketch Graph.
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nodes. Figure 6(a) shows the sketch graph for the set of boundary sets. Figure 6(b)
depicts a 3-hop sketch graph SG3. Suppose that node0 is the only boundary set in
the source fragment, Figure 6(c) is a partial source-augmented x-hop sketch graph (but
without the source and the destination). The two newly added edges corresponding to
the set EsX in the source-augmented x-hop sketch graph. The reason that x-hop sketch
graphs are not sufficient in finding valid bounds is because nodes may not be connected.
For instance, node0 and node5 are not connected in Figure 6(b). On the other hand,
they are connected in an augmented sketch graph, as shown in Figure 6(c).

A destination-augmented x-hop sketch graph is the same as a source-augmented x-hop
sketch graph except the set of edges is Ea = Ex ∪EsB∪EBd∪EXd, where EXd = {eij=
〈vi, vj〉 | vi 6= vj and vj corresponds to some boundary set in D and SHG(vi, vj)<x}. An
edge from u to v is in EXd if v is a boundary set in the destination fragment and v is
less than x-hops away from the boundary set u. Except edges in EsB and in EBd, the
α- and β-values for edges are global. For edges in EsB and EBd, the α- and β-values are
computed locally with respect to (wrt) the source and destination fragments.

An augmented x-hop α- (β-)sketch graph is an augmented x-hop sketch graph with
the α-(β-)value as the weight of an edge. An augmented x-hop dual-weighted sketch
graph is an augmented x-hop sketch graph with the weight of each edge consists of both
the α- and β-values.

Properties of an augmented x-Hop Sketch Graph

In this subsection, unless otherwise stated, paths in a graph are paths with both
source and destination are boundary nodes in the graph. Given a path or a skeleton
path p, which contains edges in both the base graph and the super graph. Let z =
bnj→...→bnk be a sub-path of p such that only the first and last nodes of z are boundary
nodes. The sub-path z denotes a path in some fragment Fi in the base graph. Let Fi be
z′s corresponding fragment. For each such sub-path z in p, we replace z with bnj

Fi→bnk,

where Fi is its corresponding fragment. Let the resulting path be w = bn0
Fi1→bn1

Fi2→bn2

...
Fil→bnk. Given any boundary node bnj in w, 1≤j≤k-1, bnj is a boundary node in the

boundary set of fragments Fij and Fij+1 . Let bn0 and bnk be in some boundary sets
BS0 and BSk, respectively. Thus each boundary node in w is mapped to precisely one
boundary set. The resulting path obtained by replacing each node in w with its unique
boundary set is a boundary set skeleton path (BSSP) of p, denoted as BSSP (p).

By definition, a BSSP is a path with boundary sets as its nodes. A path in the base
graph or a skeleton path can be abstractly denoted by a BSSP. Every edge in a BSSP
denotes a sub-path in a skeleton path or a sub-path of a path in the graph.

In a BSSP, some nodes may appear more than once. They are called repeating nodes.
For example, consider a skeleton path p: bn0 →bn1 →bn2 →... →bnn, where bn0 and bn2

are in the same boundary set BS0. Then, BSSP(p) is BS0 →BS1 →BS0 →... →BSn.
The node BS0 is repeating. A BSSP is said to be simple if it has no repeating nodes. A
non-simple BSSP can always be converted into a simple BSSP with an order preserving
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property.
A BSSP q is order preserving wrt a BSSP path p, if for any successive boundary

sets BSi→BSj in q, then there is at least one occurrence of BSi in p, and there is an
occurrence of BSj appears after the last occurrence of BSi in p.

Lemma 4.4 Let p: BS0 →BS1 →BS2 →... →BSn be a BSSP of a path in the base
graph or of a skeleton path. Then, p can be converted into a simple BSSP q:BS0 →...
→BSn such that q is order preserving wrt p.

Proof The sequence BS0 →BS1 →BS2 →... →BSn is a path in the sketch graph. Let
rename this path to t. Repeat the following until there is no repeating boundary set in
t: scan t from left to right to find the first occurrence of the first repeating boundary set
BSk; replace the sub-path between the first occurrence and last occurrence of BSk with
BSk. That is, if BSi→BSk and BSk→BSj are the first and last occurrence of BSk in
t, respectively, then the resulting t after the replacement is ....BSi→BSk→BSj ... Note
that if k= 0 or k=n, BSi or BSj may not exist. It is also worth mentioning that after
the replacement, there is no repeating boundary set in the sub-path of t that is up to
and including the just-replaced BSk. We repeat the process of eliminating repeating
boundary set until t is simple.

Let the resulting path be q. The path q can easily be proven to be simple in the sketch
graph with the first and last boundary nodes BS0 and BSn, respectively. A property of
q is that, if BSi →BSj is in q, then BSi and BSj must also be in p. Moreover, in p, the
successor of the last occurrence of BSi is BSj . That is, BSi →BSj is the last occurrence
of the boundary set BSi in p. The order preserving property thus trivially follows from
the transformation.

Algorithm BSSP2XHopSource(p, sg): Transform a simple BSSP p to an order pre-
serving simple path in a source-augmented x-hop sketch graph sg.

Input: A simple BSSP p:BS0 →BS1 →BS2 →... →BSn, where BS0 is a boundary
set in the source fragment. A source-augmented x-hop sketch graph sg, for some
positive integer x.

Output: An order preserving simple path q wrt p in the source-augmented x-hop sketch
graph.

Method:

(1) Let q be p and let LBS be the last boundary set BSn in q;
(2) Scan q backward, starting from LBS in q, to locate the last

boundary set BS such that LBS is x-hops away from BS in sg;
(3) if BS exists then
(4) replace the sub-path BS to LBS in q with an (x-hop) edge BS→LBS;
(5) Set LBS in q to BS, and go to (2);
(6) else /*BS does not exist.*/
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(7) If LBS 6= BS0 then
(8) replace the sub-path BS0 to LBS in q with an edge BS0→LBS;
(9) end;
(10) end; /*else*/
(11) return q;

Example 4.2 Let the input to Algorithm BSSP2XHopSource be the simple BSSP
p and the sketch graph sg in Figure 6(a) and in Figure 6(c), respectively. Then tracing
through the algorithm, the first sub-path in p that is replaced by an edge from sg
in step (4) is the path node2→node3→node4→node5. The replacing edge in this case
is node2→node5. In the second iteration, LBS is node2 while BS in step (2) does not
exist. Therefore in step (8), the sub-path node0→node1→node2 is replaced with the edge
node0→node2. Thus the path q returned by the algorithm is node0→node2→node5.

Lemma 4.5 Given a simple BSSP p: BS0 →BS1 →BS2 →... →BSn, where BS0 is a
boundary set in the source fragment. The path p can be mapped into a simple path q in
a source-augmented x-hop sketch graph, for any positive integer x, such that q is order
preserving wrt p.

Proof Algorithm BSSP2XHopSource consists of two main phases: Steps (2)-(5) and
steps (7)-(9). The first phase is an iteration and can be easily verified that it converts a
sub-path in p to a path in the source-augmented x-hop sketch graph.

What remains to be shown is that in the second phase, the last sub-path in q that is
replaced by an edge in step (8) is valid. Let q′ be BS0→..→LBS: the sub-path to the
left of LBS in q in the last iteration of the first phase. If, at step (8), BS0 = LBS, then
by the assumption in the first phase, the simple path q returned is a simple path in a
source-augmented x-hop sketch graph. If BS0 6=LBS, then by condition in step (2), all
boundary sets Y in q′ are not x-hops away from LBS. Since every successive boundary
set BSi→BSj in q′, BSj is exactly 1-hops away from BSi, for all boundary sets Y in
q′, LBS must be h-hops away from Y , where h<x. Since BS0 is a boundary set in the
source fragment, there is an edge in EsX from BS0 to LBS in a source-augmented x-hop
sketch graph. It follows that the simple path q returned by the algorithm is a simple
path in a source-augmented x-hop sketch graph, for any positive integer x. The path q
is order preserving wrt p follows trivially from the execution of the algorithm.

Let p be a BSSP, p′ be the simple BSSP obtained in Lemma 4.4 q be the path
returned by algorithm BSSP2XHopSource with p′ as input. Then, q is said to be the
corresponding simple path (on the source-augmented x-hop sketch path) of p.

Lemma 4.6 Let p be a BSSP and let q be its corresponding simple path. Then q is order
preserving wrt p.

Proof Let p′ be the simple BSSP obtained in Lemma 4.4. The path p′ is order preserving
wrt p. Let BSi→BSj be an edge in q. We want to show that there is an occurrence of
boundary set BSj after the last occurrence of BSi in p. First, we observe that there are
occurrences of BSi and BSj in all p, p′ and q. Since q is order preserving wrt p′, there is
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a sub-path BSi→..→BSj in p′. Since p′ is order preserving wrt p, there is an occurrence
of BSj after the last occurrence of BSi in p. Thus, q is order preserving wrt p.

Lemma 4.7 Let p be a skeleton path with source s and destination t, where s and t are
boundary nodes in boundary sets S and T , respectively, and S 6= T . Let BSSP(p) be a
BSSP of p. Let q:N0→N1→... →Nk be the corresponding simple path of BSSP(p) on
a source-augmented x-hop sketch graph, where k ≥ 1. Then p can be partitioned into k
sub-paths SP1:s=bn0→... →bn1, SP2: bn1 →... →bn2,...,SPk:bnk−1→...→bnk=t such
that bni and bni+1 are boundary nodes in boundary sets Ni and Ni+1, respectively, for
all 0≤i≤k-1.

Proof To generate the k sub-paths from p, we do the following. For each i =1 to k do:
scan p from the beginning until the last occurrence of boundary node bn that belongs
to boundary set Ni. Such boundary node bn guarantees to exist since, by Lemma 4.6, q
is order preserving wrt BSSP(p). Let the sub-path be SPi. The first and last nodes of
SPi are boundary nodes in boundary sets Ni−1 and Ni, respectively. SPi is the sub-path
corresponding to edge Ni−1→Ni. Let lbn be the last (boundary) node in SPi. Remove
SPi from p and insert lbn to the beginning of the updated path p. Go to for loop.

Because of the order preserving property and because q is simple, these k sub-paths
guarantee to exist and are non-empty. These k sub-paths form a partition of p. Moreover,
for each edge Ni→Ni+1, the first and last nodes of the corresponding sub-path are
boundary nodes in boundary sets Ni and Ni+1, respectively, for all 0≤i≤k-1.

Lemma 4.7 shows that, given any skeleton path p such that the first and last nodes
are boundary nodes in different boundary sets, then p can be mapped to a simple k-
edges simple path in a source-augmented x-hop sketch graph. An analogous result can
be obtained for a skeleton path from a boundary node to another boundary node in the
destination fragment. Let p be a BSSP from a boundary node to a boundary node in
the destination fragment. Then p can be mapped to a simple path in a destination-
augmented x-hop sketch graph as before, except that the following algorithm is applied
to transform a simple BSSP to a simple path in the destination-augmented x-hop sketch
graph.

Algorithm BSSP2XHopDest(p, sg): Transforms a simple BSSP to an order pre-
serving simple path in a destination-augmented x-hop sketch graph.

Input: A simple BSSP p:BS0 →BS1 →BS2 →... →BSn, where BSn is a boundary set
in the destination fragment. A destination-augmented x-hop sketch graph sg, for
some positive integer x.

Output: An order preserving simple path q wrt p in the destination-augmented x-hop
sketch graph.

Method:

(1) Let q be p and let LBS be the first node BS0 in q;
(2) Scan q forward, starting from LBS in q, to locate the last
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boundary set BS such that BS is x-hops away from LBS in sg;
(3) If BS exists then
(4) replace the sub-path LBS to BS in q with an (x-hop) edge LBS→BS;
(5) Set LBS in q to BS, and go to (2);
(6) else /*BS does not exist.*/
(7) If LBS 6= BSn then
(8) replace the sub-path LBS to BSn in q with an edge LBS→BSn;
(9) end;
(10) end; /*else*/
(11) return q;

Corollary 4.8 Let p be a skeleton path with source s and destination t, where s and t are
boundary nodes in boundary sets S and T , respectively, and S 6= T . Let q:N0→N1→...
→Nk be the corresponding simple path on a destination-augmented x-hop sketch graph,
where k ≥ 1. Then p can be partitioned into k sub-paths SP1:s=bn0→... →bn1, SP2:
bn1 →... →bn2,...,SPk:bnk−1→...→bnk=t such that bni and bni+1 are boundary nodes
in boundary sets Ni and Ni+1, respectively, for all 0≤i≤k-1.

Proof It can be proven with a similar argument as in Lemma 4.7.

An Upper Bound U(q)

An upper bound on the shortest path from the source to the destination can be
obtained by applying Dijkstra’s algorithm to a source-augmented x-hop β-sketch graph.
However, the bound is sometimes too loose and may not be useful in the pruning process.
A better way is applying Dijkstra’s algorithm on the same graph with both α- and β-
valued edges.

The objective in using the dual-weighted graph is to make the approximation tighter.
To accomplish that, we add one more step to the process of Dijkstra’s algorithm. In the
usual process, we open adjacent nodes of the node which we are going to close. Since
each edge of those adjacent nodes has only one value, the distance of each of those open
nodes will be c + o, where c is the distance of the closed node and o is the weight of the
edge from the closed node to the adjacent non-closed node.

Since we use a source-augmented dual-weighted x-hop sketch graph, we have to choose
either α- or β-value for each open node to add to the approximation of the closed node.
If the approximation of the closed node n is determined by pc + c, where pc is the
approximation of the predecessor of n, and c, say, is the α-value of the edge from the
predecessor to n, then we will choose β-value for the newly open nodes adjacent to n
to calculate their approximations. Therefore, we use α- and β-values alternatingly when
we relax adjacent non-closed nodes, depending on which value the currently closed node
uses.

Figure 7 illustrates the process. We determine the distance of Node2 by using the
β-value (β02). To determine the distances of its adjacent nodes Node5 and Node6, the α-
values (α25 or α14, and α26, respectively) are used to calculate their distances. Between
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α25 or α14, we choose the minimum of (β02+ α25) and (β01+ α14). The bottom line for
the algorithm is to choose the minimum of the two approximations: one starting with
α-value for the edges of the source node and the other starting with β-value for the edges
of the source node.

Figure 7: Dijkstra’s Algorithm on a Dual-Weighted Graph

Lemma 4.9 The bound obtained with Dijkstra’s algorithm on a source-augmented x-hop
dual-weighted sketch graph is an upper bound on the shortest distance from the source to
the destination.

Proof Let the path returned be src→BS1→...→BSn→dst, where n ≥ 1. Suppose the
first edge weight is a β-value. Then the bound is computed by formula f : maxDistlocal

({src},BS1)+minDist(BS1, BS2)+maxDist(BS2, BS3) +...+ minDistlocal (or maxDistlocal)
(BSn, {dst}). For each minDist(BSi, BSi+1), there are two boundary nodes bsi and
bsi+1 such that they are in two boundary sets, respectively, and minDist(BSi, BSi+1)
= minDist({bsi}, {bsi+1}). Since minDist appears alternatingly in f , by replacing each
occurrence of BSi by {bsi} in f , we obtain g: maxDistlocal({src},{bs1})+minDist({bs1},
{bs2})+maxDist({bs2}, {bs3})+...+minDistlocal(or maxDistlocal)({bsn}, {dst}). Clearly
the bound computed by g is less than or equal to that computed by f . Moreover, src→bs1

→...→bsn →dst is a skeleton path of a path in the graph. Thus the bound returned is
an upper bound on the shortest distance from the source to the destination. Likewise, a
similar proof can be constructed if the first edge weight is an α-value.

Pruning Boundary Sets

To find a lower bound from the source to a boundary set Z, we compute an SPT
rooted at the source based on a source-augmented x-hop α-sketch graph. The distance
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of a boundary set Z in the tree denotes the distance of shortest path from the source to
any node in Z.

Lemma 4.10 Let Z be a boundary set. Then the distance computed for node Z by
applying Dijkstra’s algorithm, starting from the source src, to a source-augmented x-hop
α-sketch graph, is less than or equal to the length of any path from src to z, where z is
a boundary node in Z.

Proof It suffices to show that, given a path p in the base graph from src to z, there
is a path q from src to Z in the source-augmented x-hop α-sketch graph such that the
length of p is greater than or equal to the length of q.

There are two cases to be considered.
Case 1: There is no boundary node in p except src and z. The path p is a local path

in the source fragment and Z is a boundary set in the source fragment. Since the α-value
from src to Z in a source-augmented sketch graph denotes the shortest local distance
from src to any node in Z, the Lemma holds.

Case 2: There is at least one boundary node in p such that the node is neither src
nor z. Let p: src→ ... →z be a path in the base graph from src to z. Let bn0 be the
first boundary node in p that is neither src nor z. The boundary node bn0 must be in
a boundary set BS0 in the source fragment. Thus p is src→..→bn0→...→z, where the
sub-path l: src→..→bn0 is a local path in the source fragment. The length of l is greater
than or equal to the α-value from src to BS0 in the augmented sketch graph. Let t be
the sub-path bn0→...→z. If z is in the boundary set BS0, then clearly the length of
path p is greater than or equal to the α-value from src to BS0 in the augmented sketch
graph. If z is not in BS0, by Lemma 4.7, there exists a k-edge simple path w on the
source-augmented x-hop sketch graph such that t can be partitioned into k sub-paths,
one for each edge in w. Let a sub-path spi:bsm→..→bsn in q corresponds to an edge
BSi→BSj in w. By Lemma 4.7, the boundary nodes bsm and bsn are in the boundary
set BSi and BSj , respectively. By definition of an α-sketch graph, the length of spi

is greater than or equal to the α-value of the edge BSi→BSj in the source-augmented
sketch graph. Thus the length of t is greater than or equal to the length of w. It follows
that the length of p is greater than or equal to the length of a simple path from src to
Z in the source-augmented x-hop α-sketch graph.

Similarly, given the shortest distance of a boundary set Z to the destination, an SPT
rooted at destination can be constructed.

Lemma 4.11 Let Z be a boundary set. Then the distance obtained for destination by
applying Dijkstra’s algorithm, starting from Z, to the destination-augmented x-hop α-
sketch graph, is less than or equal to any path from z to destination, where z is a boundary
node in Z.

Proof It can be proven with Corollary 4.8, and with a similar argument as in Lemma 4.10.

Given a boundary set Z, define L(s,Z) (L(Z,d)) as the shortest distance from the
source s to Z (from Z to destination d, respectively) in a source-augmented x-hop α-
sketch graph (in a destination-augmented x-hop α-sketch graph, respectively).
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Lemma 4.12 Consider a path query q= 〈s, d, sourceFrag, destFrag〉. Let Y be a
boundary set. Define L(q,Y ) as L(s, Y )+L(Y , d). Let U(q) be the upper bound computed
in Lemma 4.9. If L(q, Y ) > U(q), then there is no shortest path from s to d via boundary
nodes in Y .

Proof Suppose there is a shortest path p from s to d via a boundary node y in Y .
Let the path be the concatenation of the two sub-paths f :s→...→y and l:y→...→d. By
Lemma 4.10, the length of f is greater than or equal to L(s, Y ). By Lemma 4.11, the
length of l is greater than or equal to L(Y , d). Thus the length of the shortest path p is
greater than or equal to L(q,Y ), which implies the length of p is greater than U(q). A
contradiction to Lemma 4.9. Thus there is no shortest path from s to d via a node in
Y .

In using an x-hop sketch graph, the larger x is, the more accurate approximations
we can get. However, the larger x is, the more storage and more pre-computation are
required. Moreover, the bounds computed may not be as good as in DSDM. We will
compare the effectiveness of these two approaches in Section 5.

4.1.3 Pruned Sketch Graph

Let us call all those boundary sets Y satisfying the condition in Lemma 4.3 or Lemma 4.12
pruned boundary sets. Let us call the super graph, obtained by removing all nodes
denoting pruned boundary sets and their incoming and outgoing edges, a pruned super
graph.

Theorem 4.13 Given a query q = 〈s, d, sourceFrag, destFrag〉. Let Gpruned be a
pruned augmented super graph obtained for q from the augmented super graph G. A
shortest path p for q in G iff p is a shortest path in Gpruned for q.

Proof “Only if” A shortest path p from G for q consists of interior nodes in the source
and destination fragments and boundary nodes. By Lemmas 4.3 and 4.12, all boundary
nodes must be from non-pruned boundary sets. Thus p is a shortest path in Gpruned for
q.

“If” Let p be a shortest path in Gpruned for q. Clearly p is a path in G for q. If p is
not the shortest, then there is another path p′ in G that is shorter than p. Then in p′,
there are some node and edge that are not in Gpruned. A contradiction to Lemmas 4.3
and 4.12.

4.2 Batch Processing of SP Queries

In an environment in which more than one query is evaluated, the performance of a disk-
based SP algorithm can further be improved. The techniques discussed in this subsection
primarily reduce the access to the fragment database. For the rest of this paper, a batch
SP algorithm is an algorithm incorporating the techniques described in this subsection.

29



4.2.1 Query Graph

In finding the skeleton path for a path query, only the source and the destination frag-
ments are read into main memory before the skeleton path is found. Thus, the cache
size of the fragment database is set to two during the skeleton path finding phase. It
is highly desirable to find a sequence of query evaluation so as to minimize accesses to
the fragment database. Unfortunately, it has been shown that, given a cache size of
two, determining if there is a sequence that results in no fragment is being accessed
more than once is an NP -complete problem [13]. Since obtaining an optimal solution is
computationally expensive, a heuristic is proposed instead. The algorithm proposed is
very simple and fast and its performance is good. The test result of the algorithm will
be given in Section 5.

Two queries are said to be in the same equivalent class (EC) if the set of source and
destination fragments are the same. An EC is denoted by {s, t}, the set of fragments
involved. Informally, if two queries are in the same EC, they are executed consecutively
so that the utilization of the fragments involved is being maximized. The query graph for
a set P of path queries is an undirected graph G=〈N, E〉, where N is the set of fragment
id’s in P and E is the set of edges for EC’s on P . That is, an edge e=〈a, b〉∈E iff {a,b}
is an EC on P .

Algorithm QueryGraph implements a heuristic that tries to maximize the usage of
fragments in the cache. It is assumed in the algorithm that the cache size of fragment
database is two, even though it can be generalized to an arbitrary positive integer c. We
first define several terms used in the algorithm. A node is isolated if it is not connected
to any edge in a graph. The node u is called a terminal node if the degree of u is one. An
edge e=〈n, u〉 is said to be a dangling edge incident to n if u is terminal. Processing an
edge is defined as outputting the edge then removing the edge and removing any isolated
nodes from the graph. The edges (EC’s) output is the sequence of execution for queries
in P .

Algorithm QueryGraph: Find a sequence of EC’s based on the graph G= 〈E, V 〉.
Input: A query graph G.

Output: A sequence of edges or EC’s, representing the sequence to be executed.

Method:

(1) cn = null; /*cn is the current node.*/
(2) while (G is non-empty) do
(3) if (cn == null) then
(4) if (there is an edge e = 〈u, v〉 such that

v is terminal and the degree of u is either one or two) then cn = v;
(5) else cn = w, where w is any node in G;
(6) end; /* if */
(7) if (there are dangling edges incident to cn) then process them one by one;
(8) if (cn exists) then
(9) let e=〈cn, v〉 be an edge incident to cn;
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(10) process e;
(11) cn = v, if v exists and null otherwise;
(12) else cn= null;
(13) end; /*while*/

At any point of time, cn points to the current node being processed. Dangling edges
associated with cn are all processed consecutively so as to maximize the usage of node
pointed at by cn. Once the dangling edges are processed, a non-dangling edge is selected
to be traversed and processed. The current node is then updated. Every time the while
loop is executed, an edge is removed. The processing time in the loop is of O(|V |). Thus,
the time complexity of the algorithm is O(|E| ∗ |V |).

Example 4.3 Let us consider the query graph in Figure 8. Initially, the current node
cn is set to node 5 since node 5 is the only node satisfying the condition in statement
(4). The edge 〈5, 0〉 is processed and is removed. Then the cn is set to node 0. Edges
〈0, 1〉 and 〈1, 2〉 are then processed. After that the current node cn is node 2. There
are two edges incident to node 2. Arbitrarily select one, say edge 〈2, 3〉, and process
it. After it is processed, cn is set to node 3. This process continues until all edges
are finished. The following is a possible sequence output by the algorithm QueryGraph:
〈5, 0〉,〈0, 1〉,〈1, 2〉,〈2, 3〉,〈3, 8〉,〈8, 9〉,〈8, 6〉,〈6, 7〉,〈6, 4〉,〈4, 2〉. This sequence represents the
execution sequence of equivalent classes. If this sequence was executed, only one fragment
(fragment 2) is read in from the disk twice. All other fragments are accessed only once.

Figure 8: A Query Graph

4.2.2 Skeleton Path Filling

A skeleton edge in a skeleton path represents a shortest path in the fragment to which
the skeleton edge belongs. Given a set of skeleton paths, the skeleton edges are grouped
according to the fragment they are in. Then in this phase, for each fragment required,
it is read into the main memory. The shortest paths are then located for all those
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skeleton edges defined on the fragment. The actual paths for the skeleton paths are then
reconstructed and returned as the answers to the queries.

5 Performance Evaluation

In this section, the performances of proposed algorithms are evaluated. In Section 5.1,
statistics are stated on data sets and on the environment in which the tests are con-
ducted. In Section 5.2, the batch algorithm is evaluated. In Section 5.3, the optimality
of fragment sizes, cache sizes as well as the optimality of parameters of pruning algo-
rithms are determined. In Section 5.4, results on comparing the proposed algorithms
with Dijkstra’s and with DiskSP are presented.

5.1 Data and Environment

The road system of Connecticut from Tiger/Line file is chosen as our first test case,
since the whole system is small enough to be loaded into the main memory and yet
large enough to test the proposed disk-based algorithms. The Connecticut road system,
when represented as a text file, is about 20MB. It grows to 60MB when it is loaded as
a graph into the main memory. It consists of around 190,000 edges and 160,000 nodes.
To demonstrate the scalability of the proposed disk-based algorithms, the road system
of eastern five states, which is denoted as East5, is used as the second test data set. The
East5 is again extracted from Tiger/Line file and is composed of the road systems of
Connecticut, Massachusetts, New Jersey, New York, and Pennsylvania. Its consists of
more than three million edges and two and half million nodes. The text file occupies
about 310MB of storage. This graph cannot be used for Dijkstra’s algorithm since it is too
big to be main-memory resident, and it is used primarily to test disk-based algorithms.
The partitioning algorithm in [3] is used to create a fragment database. Since fragment
sizes greatly influence the performance of a disk-based algorithm, databases of different
fragment sizes, ranging from 100 nodes to 20,000 nodes per fragment, are used in the
experiment.

The system for testing is a Pentium IV 2.56GHz with 1GB of main memory. The
hard disk of the system is Ultra ATA-100, with a 7,200 rpm spinning rate. Java is the
primary language, and the version is 1.3.1. For Dijkstra’s algorithm, we need at least
60MB main memory to load the whole graph of Connecticut. To make a homogeneous
environment, for Connecticut and East5 test cases, we set the Java Virtual Machine
(JVM) to 128MB and 512MB, respectively.

The statistics of fragment databases are summarized in Table 1 and Table 2. The
fragment and distance databases are needed by all disk-based algorithms. In addition,
the pruning algorithm in Section 4.1.1 requires the boundary set distance matrix (BSDM)
as well. For East5, the pruning algorithm with BSDM is not evaluated since it takes too
much time to generate the BSDM.

Table 3 and Table 4 show the file sizes of the x-hop sketch graphs for 1000-node
fragment Connecticut and 2500-node fragment East5 databases. As will be shown later,
the optimal fragment sizes for Connecticut and East5 data sets are around 1000 and
2500 nodes, respectively. For Connecticut data set, the file size of the graphs tops at the
5-hop sketch graph in the 1000-node fragment, because some of the nodes in the sketch

32



Frag.
Size

Avg
Frag.
Size
(KB)

No. of
Frag.

No. of
Bound-
ary
Sets

No. of
Bound-
ary
Nodes

Frag.
DB
Size
(MB)

Distance
DB
Size
(MB)

BSDM
Size
(MB)

100 14 1693 3430 12251 23.4 2.76 185.22
1000 145 138 347 3998 20 2.2 2.02
5000 693 28 66 1649 19.4 1.72 0.09
10000 1379 14 29 1182 19.3 1.72 0.02
15000 1390 10 21 1120 19.3 2.04 0.013

Table 1: Statistics of Fragment Databases for Connecticut Road System

Frag.
Size

Avg
Frag.
Size
(KB)

No. of
Frag.

No. of
Bound-
ary
Sets

No. of
Bound-
ary
Nodes

Frag.
DB
Size
(MB)

Distance
DB
Size
(MB)

1000 148 2163 5141 66479 320 41.5
2500 272 1159 3066 48023 315 40.7
5000 720 432 1148 31311 311 42.3
10000 1330 233 603 22448 310 40.8
20000 2255 137 343 17407 309 40.4

Table 2: Statistics of Fragment Databases for East5 Road System

Frag.
Size

x=1 x=2 x=3 x=4 x=5 x=6 x=7 x=8 x=9 x=10

1000 0.395 0.562 0.676 0.745 0.772 0.768 0.735 0.664 0.589 0.519

Table 3: Size (MB) of x-Hop Sketch Graphs for Connecticut Road System

Frag.
Size

x=1 x=2 x=3 x=4 x=5 x=6 x=7 x=8 x=9 x=10

2500 4.292 6.079 7.74 9.3 10.75 12.04 13.27 14.38 15.3 16.05

Table 4: Size (MB) of x-Hop Sketch Graphs for East5 Road System

Queue
Size (k)

1 10 20 50 100 1000

Cache Uti-
lization

0.0144 0.047 0.12 0.223 0.343 0.471

Table 5: Cache Utilization Comparison with and without QueryGraph
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graph do not have 6-hops away nodes; therefore, the file size actually decreases when
x ≥ 6.

The time to build a BSDM for a 1000-node fragment Connecticut database is about
8,000 seconds using the system, and its storage cost is about 10% of text data file’s
size. Generating all x-hop sketch graphs, where 1 ≤ x ≤ 10, for a 1000-node fragment,
takes about 6,600 seconds and requires total storage of about 30% of the text data file’s
size. For East5, generating all x-hop sketch graphs, where 1 ≤ x ≤ 10, requires about
430,000 seconds. The storage cost of x-hop sketch graphs is again about 30% of the text
data file’s size.

To investigate whether a query type has any influence on the performance of a disk-
based algorithm, we divide queries into three types of ranges: long, medium, and short.
Long-range queries are more than 66% of the longest possible distance in the graph,
medium-range queries are less than 66% and more than 33%, and short-range queries
are less than 33%. We will carry out all the tests according to the differently sized sets
of queries. For each query type, 100 queries are randomly generated. Therefore, there
are 300 queries in total in a test. Unless otherwise stated, this set of random queries is
used in all experiments.

5.2 DiskSP vs Batch DiskSP

In Section 4.2, two batch processing techniques are proposed. These techniques are
intended to minimize accesses to the fragment database. In this subsection, we show
experimentally that these techniques are effective in reducing the I/O accesses. The
improvement on processing time will be demonstrated in Section 5.4.

5.2.1 Query Graph

The fragment database is needed in both finding the skeleton path finding phase and the
skeleton path fill-in phase. The usefulness of algorithm QueryGraph is for the stage of
finding skeleton paths. It attempts to reduce the access to fragment database by re-using
the fragments in cache as much as possible. Since at most two fragments are needed in
finding a skeleton path, the cache size is set to two. With only two cache entries, the
optimal schedule will utilize a maximum of 50% of the cache, if the query graph of the
EC’s is connected. The reason is that in the optimal schedule, there will be one cache
entry for the next query to use. The worst case is 0% of cache utilization.

To evaluate the effectiveness of algorithm QueryGraph, 10,000 queries are generated
randomly for the 1000-node fragment Connecticut database and are partitioned into
groups according to a specific number k. The result of the test is obtained by executing
only QueryGraph with the pre-sorted EC’s of the queries. Therefore, the test is inde-
pendent of any other phases such as calculating skeleton paths of the queries, or filling
the skeleton paths.

Table 5 shows how much the algorithm improves the cache utilization wrt the size
of the queries in the queue. The cache utilization is calculated by p/q, where p is the
number of cache-hits and q the number of total requests for the fragment database.

The case of queue size of one corresponds to the case in which no scheduling is done
by algorithm QueryGraph. It is clear that more queries in the Queue implies a greater
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possibility of sharing fragments, and thus a better cache utilization. Even the case of
10 queries in the Queue performs more than three times better than the non-scheduled
case. The case of 1,000 queries in the Queue almost reaches the optimal utilization level,
which is 50% utilization, whereas the time to schedule is negligible. It takes less than
0.1 seconds for the queue size of 1,000.

5.2.2 Batch Processing Evaluation

Figure 9: I/O Accesses Comparison with Batch Processing Techniques

The difference between the algorithm DiskSP and the batch version lies in how to
process multiple queries. The algorithm DiskSP executes multiple queries one by one,
which means that there is no interruption between queries. Since the batch processing
techniques do not have an influence on the performance of access to the distance database,
in this subsection, we evaluate the I/O accesses, wrt the fragment database, with queue
sizes of 1 and 10. More specifically, in the case of queue size 10, algorithm QueryGraph
is used to schedule the computation of the 10 skeleton paths.

First, we calculate 300 queries sequentially using algorithm DiskSP, and then count
the number of requests to the fragment database. We then calculate 300 queries with
queue size 10. Since the batch processing techniques introduced are independent of how
a skeleton path is computed, the pruning algorithms are not used in this test. The
cache sizes for the distance database and for the distance vector database are set to the
maximum so that the algorithms are not affected by their cache sizes. The cache size
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of the fragment database is set to two. We denote these settings, from now on, the full
cache.

According to Figure 9, the batch version of algorithm DiskSP, when compared to
algorithm DiskSP, reduces accesses to the fragment database by about 20% to 40%.
This shows that the ordering by algorithm QueryGraph and the batch processing of
skeleton path filling contribute to the reduction of I/O accesses towards the fragment
database. As will be shown later, fewer fragment accesses during calculations improves
the computation time as well.

Figure 10: Average Query Evaluation Time for Different Fragment Databases

5.3 Parameter Settings

There are a number of factors that influence the performance of a disk-based SP algo-
rithm. In this section, these factors are investigated and their optimality are determined
experimentally.

5.3.1 DiskSP

Since the proposed algorithms are based on algorithm DiskSP, we first examine factors
that influence its performance. Accesses to the distance vector database, the distance
database and the fragment database dominate the I/O cost during an execution of DiskSP.

The fragment size has a significant influence on the performance of a disk-based SP
algorithm. For both Connecticut and East5 data sets, we test five different fragment
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sizes. For Connecticut, the sizes are 100, 1000, 5000, 10000, and 15000, whereas for
East5, they are 1000, 2500, 5000, 10000, and 20000.

Figure 11: Average Calculation Time for Different Cache Sizes of Connecticut Distance
Database

Figure 10 shows the performance differences of algorithm DiskSP according to the
different fragment sizes for the graphs of Connecticut and East5. For each query type,
we process 100 queries, and the time shown in the graph is an average query evaluation
time. The cache sizes for the fragment database, for the distance vector database, and
for the distance database are set to the full cache. In other words, in determining the
optimal fragment size, the I/O activity is isolated.

As shown in the figures, the optimal fragment sizes for Connecticut and East5 data
sets are 1000-node and 2500-node fragment databases, respectively. When the fragment
size is too small, a super graph is relatively large. Consequently, most of the execution
time is spent on searching for the skeleton path in a large augmented super graph. On
the other hand, if the fragment size is too “large”, building the SPTs in both source and
destination fragments takes up most of the execution time.

Having determined the optimal fragment size, we test different cache sizes of distance
database. For the 1000-node fragment Connecticut graph and for the 2500-node East5
graph, we test five different cache sizes: 10%, 25%, 50%, 75%, and 100%.

Figure 11 and Figure 12 show the performance differences according to the different
cache sizes of distance database. In this experiment, algorithm DiskSP is used to find,
for each query, the shortest path. The cache sizes of the fragment database and the
distance vector database are set to the full cache. For 1000-node fragment Connecticut
data set, the optimal value is around 25%. Likewise, the optimal cache size of distance
database for the 2500-node fragment East5 data set is around 10%-25%. This shows
that as the network grows larger, the optimal cache size for the distance database does
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Figure 12: Average Calculation Time for Different Cache Sizes of East5 Distance
Database

not increase. For the rest of the experiments, the cache sizes of the distance database
for these data sets are set to 25% of their total number of elements.

Finally, the cache size of the distance vector database has a significant impact on the
evaluation time. More specifically, if affects the time to find a skeleton path. The cache
size for the distance vector database cannot be too low without significantly increasing
the skeleton path finding time. For instance, the skeleton path finding time for 1000-
node fragment Connecticut database with cache size 1% is about 12 times that of when
the cache size is set to 25%. The average calculation time and average I/O accesses on
the distance vector database for finding a skeleton path with different cache sizes are
shown in Figures 13 and 14, respectively. These results are based on full cache for both
fragment and distance databases. It is clear that the larger the cache size gets, the better
the performance is. This is particularly true for long and medium queries. Since the
distance vector database for a query on the 1000-node fragment Connecticut database
and 2500-node fragment East5 are relatively small (around 1.5MB for Connecticut and
25MB for East5), it is worthwhile to set the cache size of distance vector database to
the maximum. As we will show later, with pruning, not only the search performance on
skeleton paths can be improved significantly, but also its elasticity wrt the cache size of
distance vector database is also greatly enhanced.

For the rest of this paper, unless otherwise stated, the two tested databases have
the cache sizes of the fragment database, the distance vector database, and the distance
database set to their optimal values as determined in this subsection.
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Figure 13: Average Calculation Time Per Query for Different Cache Sizes for Distance
Vector Database
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Figure 14: Average I/O Per Query on Distance Vector Database for Different Cache
Sizes
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5.3.2 Pruning Algorithm with BSDM

The advantage of pruning is to eliminate a number of boundary sets in a sketch graph
so that the search space to find a skeleton path is reduced. In a disk-based SP algo-
rithm, there are numerous I/O activities and calculations when the algorithm processes
boundary nodes, which makes it important to prune search spaces.

We modified DiskSP by incorporating BSDM pruning. This algorithm is denoted as
DiskSPBSDM . Algorithm DiskSPBSDM requires an additional data structure BSDM.3
An element in BSDM is a matrix which records the minimum and maximum shortest
distances from a boundary set to all other boundary sets. Since the size of a matrix is
small (less than 1K in the 1000-node fragment Connecticut database), the cache size of
BSDM is set to ten. This cache size is large enough to guarantee that each element is
accessed at most once during a query evaluation. In other words, the I/O activity of
BSDM is negligible and will not be considered further for the rest of this paper.

An important metric for measuring the effectiveness of the pruning algorithm is the
number of boundary nodes closed during the calculation of skeleton paths. If a node in a
sketch graph is pruned, then, from a disk-based SP algorithm’s veiwpoint, the boundary
set which the node denotes is non-existent. In closing a boundary node, the algorithm
has to open and update the distances of adjacent boundary nodes, and the number of
the adjacent boundary nodes could be huge.

In the case of the 1000-node fragment Connecticut database, each fragment on av-
erage has about 57 boundary nodes, which means every boundary node has on average
56 adjacent nodes. Therefore, in order to close one boundary node, the algorithm has
to process a large number of adjacent boundary nodes. Since a boundary set contains
a number of boundary nodes, the more nodes (boundary sets) the pruning algorithm
eliminates in the sketch graph, the fewer boundary nodes a disk-based SP algorithm
accesses during the calculation.

To investigate the effectiveness of pruning based on boundary sets, experiments are
conducted on all five Connecticut databases. Figure 15 records how many boundary
nodes, on average, are closed in finding a skeleton path of a query. It shows how many
boundary nodes we can save from pruning with BSDM. For example, the algorithm
needs to close about 2100 boundary nodes to calculate a skeleton path of a medium
query without pruning in the 1000-node fragment database. On the other hand, the
algorithm closes just under 1000 boundary nodes with pruning.

The effectiveness of pruning boundary sets decreases as the fragment size increases.
Figure 15 also shows that a pruning algorithm does not work well with larger fragment-
sized databases. The reason is that we have a smaller number of boundary sets as we
increase the size of each fragment. The difference between the approximations and the
actual shortest distance becomes larger as the size of each fragment increases. Therefore,
we lose the accuracy of approximations in larger fragment-sized databases. On the other
hand, if the fragment size is too “small”, say when the fragment size is 100, the number of
boundary sets is huge. The benefit of a smaller pruned super graph will be out-weighted
by the cost of pruning the boundary sets.

As pointed out in Section 5.3.1, for algorithm DiskSP, the cache size of distance
vector database is set to full to have the optimal performance. For large networks, it

3East5 data set is not used in the test in this subsection since it takes too long to generate the BSDM.
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Figure 15: Average Number of Boundary Nodes Closed Per Query With and Without
Pruning on Different Fragment-Sized Connecticut Databases
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may not be possible or desirable to have a full cache. However, with pruning, the cache
size can be reduced significantly and yet still has a better performance than DiskSP
with full cache. Figures 16 and 17 show the result, by comparing algorithms DiskSP
and DiskSPBSDM , on skeleton path finding time and on the distance vector database
access. These results are on 1000-node fragment Connecticut database and based on full
cache for both fragment and distance databases. From Figure 16, the average skeleton
path finding time per query, regardless of query types, with algorithm DiskSPBSDM and
a cache size of 25%, is significantly shorter than that of DiskSP with full cache. For
instance, for long-range queries, the skeleton path finding time for DiskSPBSDM with
cache size 25% and for DiskSP with 100% cache are about 1.3 seconds and 1.7 seconds,
respectively. Moreover, the influence of the cache size on DiskSPBSDM is less significant
than that on DiskSP. This shows the benefit of pruning on a disk-based SP algorithm.

Figure 16: Comparison of Average Calculation Time for Finding a Skeleton Path with
Different Cache Sizes of Distance Vector Database

5.3.3 X-Hop Sketch Graphs

Different from DiskSPBSDM , the disk-based pruning algorithm with an x-hop sketch
graph, denoted as DiskSPXHOP , requires more computation. Given a path query, it
needs to compute the upper and lower bounds from the source to all other boundary
sets, and from other boundary sets to destination. To find the lower bound from the
source to a boundary set, Dijkstra’s algorithm is applied to a source-augmented x-hop
α-sketch graph. Similarly, we build the SPT rooted at destination with a destination-
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Figure 17: Comparison of Average I/O on the Distance Vector Database Per Query with
Different Cache Sizes

44



augmented x-hop α-sketch graph. Therefore, the pruning procedure takes longer time
when compared to DiskSPBSDM .

In order to compare the approximations on bounds computed by DiskSPXHOP and by
DiskSPBSDM , we calculate the α- and β-values of all the boundary set pairs in the sketch
graph in 1000-node fragment Connecticut database. Recall that the α- and β-value from
set A to set B are the minDist(A,B) and maxDist(A,B), respectively.

There are 347 boundary sets in the sketch graph, so we have 3472 cases. We categorize
each case by the length computed and divide them into long, medium and short queries.

x 1 3 5 7 9
Long 1.36 1.07 1.035 1.02 1.01
Medium 1.35 1.063 1.026 1.007 1.0006
Short 1.27 1.028 1.0017 1 1

Table 6: Comparison of the β-values

x 1 3 5 7 9
Long 0.24 0.743 0.873 0.93 0.95
Medium 0.265 0.77 0.907 0.96 0.99
Short 0.3 0.862 0.979 0.999 1

Table 7: Comparison of the α-values

For the x-hop sketch graph, we only test the cases of x, where x = 1, 3, 5, 7, and
9. Table 6 shows the comparison for the β-values between the x-hop sketch graph and
BSDM. The numbers in the table show the average ratio of the β-value computed with
the x-hop sketch graph to that computed with BSDM. It clearly shows that the values
with the x-hop sketch graph become closer to that of BSDM as x increases. Even in
the case of long query and x = 3, the average value with the x-hop sketch graph is only
7% longer than the one with BSDM .

Table 7 shows the comparison for the α-values. The figures in the table also represent
the average ratio of the α-value computed with the x-hop sketch graph to that of BSDM.
Unlike the β-values, the changes become more radical as x increases. In the case of long
query and x = 3, the average α-value with the x-hop sketch graph is only about 74%
of the one with BSDM. If we compare the difference of the ratio between the α- and
β-values in the same case, we can easily conclude that the pruning algorithm with x-hop
sketch graph calculates the β-values better than it calculates the α-values.

To see how the pruning algorithm with an x-hop sketch graph works according to
x, we run through ten different x-hop sketch graphs, where 1 ≤ x ≤ 10. Figure 18
shows, for all three query types, the average number of closed boundary nodes during
the calculations of skeleton paths using these three disk-based SP algorithms. Clearly,
DiskSP has the largest number of closed boundary nodes while DiskSPBSDM has the
least. They represent the two extremes in the graph. The test result shows that the
x-hop method converges to BSDM as x increases. However, the rate of convergence
varies with query types.
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Figure 18: Average Number of Boundary Nodes Closed Comparison on 1000-node frag-
ment Connecticut Database for DiskSP, DiskSPXHOP and DiskSPBSDM

Finally, to determine the optimal x for pruning with an x-hop graph, the average
query evaluation time by algorithm DiskSPXHOP for different query types is computed.
Figures 19 and 20 summarize the result on 1000-node fragment Connecticut and 2500-
node fragment East5 databases, respectively. From the figures, we observe how the
pruning algorithm works with different x’s in x-hop sketch graphs. For all three query
types, the optimal x’s can be found but they are varying from one type of query to
another. Therefore, we should choose different x-hop sketch graphs according to the
query types. In the subsequent tests, the x-values for Connecticut database are set to
4, 5 and 9 for short, medium and long query types, whereas for East5 the corresponding
values are 5, 6 and 8. Although the East5 graph is much larger than the Connecticut
graph, their optimal x-values do not differ much. Since the pre-processing and storage
cost of algorithm DiskSPXHOP are directly proportional to x, this demonstrates that
the algorithm works well even for very large graphs.

5.4 Algorithms Evaluation

In this section, we compare algorithms Dijkstra’s, DiskSP, DiskSPBSDM , batch DiskSPBSDM

of 10 queries, DiskSPXHOP , and batch DiskSPXHOP of 10 queries. The batch algorithms
accept a queue of k queries. In this test, k is set to 10. During the skeleton path finding
phase, k queries are ordered by algorithm QueryGraph. The skeleton path for each query
is found one by one as in algorithm DiskSP but with the corresponding pruning tech-
nique incorporated. In the skeleton edge filling phase, skeleton edges for k queries are
grouped according to the fragments they reside in. Each relevant fragment is read into
the main memory exactly once and the actual paths are computed for the corresponding
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Figure 19: Average Query Evaluation Time on Connecticut Database with DiskSPXHOP

47



Figure 20: Average Query Evaluation Time on East5 Database with DiskSPXHOP
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skeleton edges. The databases tested are the 1000-node fragment Connecticut database
and the 2500-node fragment East5 database. The cache size of the fragment database,
the distance database, and the distance vector database are set to values as shown in
Table 8. The x-values of x-hop sketch graphs for long, medium and short queries are set
to values as determined in Section 5.3.3.

Connecticut East5
Distance
Vector DB

Distance
DB

Fragment
DB

Distance
Vector DB

Distance
DB

Fragment
DB

Cache
Size

100% 25% 2 100% 25% 2

Table 8: Cache Sizes For Various Databases

To compare these algorithms, we investigate two metrics: the calculation time and
I/O activity. The calculation time is, of course, the most important metric, because the
whole point of the work is to reduce calculation time. The predominant I/O are on the
fragment and distance databases. Since the cache size of the distance vector database is
set to full, as is argued in Section 5.3.1, distance vector database accesses are not counted
in the overall I/O accesses. Fragment database accesses are essential, since it stores the
base graph information. The I/O activity of the distance database is important because
distance matrices are the most-used data in calculating a skeleton path. The amount of
distance matrix data accessed indicates how well a disk-based SP algorithm performs in
evaluating an SP query. For the I/O activity, we do not include the main memory version
of Dijkstra’s algorithm, because it does not have any I/O activity during calculation.

5.4.1 Execution Time

The first experiment is to evaluate these algorithms’ computation time. The computation
time is measured as the duration from the beginning of evaluation to the time the answer
is returned. The answer to a path query is an actual path on the road system. For each
query type, 100 queries are evaluated and their average is determined. The experimental
results are summarized in Figures 21 and 23. To compare the query evaluation times
between two algorithms A and B, we define time ratio of A to B as the query evaluation
time by A to that by B. Thus if the ratio is less than one, algorithm A has a better
evaluation time.

Figure 21 shows the calculation time for different types of queries on 1000-node frag-
ment Connecticut database. It clearly shows that the main-memory Dijkstra’s algorithm
performs the worst, and that pruning algorithms in fact reduce the calculation time re-
gardless of query types. The time ratio of a disk-based SP algorithm to Dijkstra’s ranges
from 30% to 70%. This shows that the proposed disk-based algorithms outperform
Dijkstra’s significantly.

According to Figure 21, the time ratio of DiskSPBSDM to DiskSP is about 60% to
70% on the Connecticut database. From Figures 21 and 23, the time ratio of DiskSP
to DiskSPXHOP is about 70% to 80% on the Connecticut database and is about 65% to
80% in East5 database. This shows that the pruning techniques are effective.
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Between the two pruning techniques, algorithm DiskSPBSDM has 15% to 20% ad-
vantage over DiskSPXHOP on the Connecticut database. The batch algorithms, when
compared with the non-batch version, have an improvement of 3% to 17% on the Con-
necticut database and an improvement of 0% to 8% on the East5 database. The improve-
ment is the most noticeable when the queries are long. The reason that grouping does
not improve much on East5, compared with Connecticut, is due to the larger number of
fragments in East5. The number of fragments in 2500-node fragment East5 and 1000-
node fragment Connecticut are 1159 and 138, respectively. Given 10 random queries,
the chance of having a common fragment between queries in the set is much higher in
Connecticut than in East5. Nevertheless, these results show that batch techniques con-
tribute to the improvement in the query evaluation time, independent of the size of the
database.

5.4.2 I/O

The results on I/O activities among all DiskSP algorithms on the Connecticut database
and on East5 are shown in Figure 22 and Figure 23, respectively. Figure 22 illustrates,
on average per query, the performance in terms of accessing the distance database and
the fragment database. The patterns are the same regardless of the query types. For
non-batch version, the accesses to the fragment database are all the same, since for each
query, the same skeleton path is returned and thus the fragment database accesses are
the same. For the batch algorithms, the same comment holds since the batch processing
of k queries returns the same set of skeleton paths, regardless of the pruning algorithms
used. Since the same fill-in is performed on the k queries, the accesses to fragment
database are the same. However, batch processing reduces the access to the fragment
database both in skeleton path finding and in fill-in. With the Connecticut database, the
amount of accesses to the fragment database required by batch algorithms is only about
50% of that required by non-batch version in long queries, and 85% in short queries.
With the East5 database, the corresponding ratios are 66% in long queries and 95% in
short queries.

Between the two pruning algorithms, DiskSPBSDM does a better job in pruning
the sketch graph and thus requires fewer accesses to the distance database. With the
Connecticut database, DiskSPXHOP requires 10% to 30% more accesses to the distance
database than DiskSPBSDM does.

With the Connecticut database, the amount of accesses to the distance database
required by DiskSP incorporating with pruning techniques is only 25% of that required
by DiskSP without pruning in short queries, and 65% that in long queries. With the
East5 database, the corresponding ratios are 30% in short queries and 55% in long
queries. Therefore, the pruning algorithms indeed improve the I/O performance by
reducing accesses to the distance database.

Overall, as demonstrated with real-life test data sets, the pruning algorithms and
the batch processing techniques proposed reduce the calculation time as well as the I/O
activity. We also show that the disk-based algorithms scale well with the increase in the
size of a graph.
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6 Conclusion and Future Work

We studied the problem of path finding on a massive graph that is too large to be main-
memory resident. We proposed several disk-based SP algorithms, and we investigated
how a disk-based SP algorithm can be optimized. The performance of these algorithms
is heavily influenced by fragment size, cache size of the distance database, and cache
size of the distance vector database. We showed experimentally that with proper choices
of fragment size and cache size, the performance of a disk-based SP algorithm can be
improved noticeably. For 160000-node Connecticut graph, the optimal fragment size is
1000, whereas for 2500000-node East5, the optimal fragment size is 2500. The most
important disk-based data structure in the proposed disk-based SP algorithms is the
distance database. We showed that for 1000-node fragment Connecticut graph, the
optimal cache for distance database is 25%, and for 2500-node fragment East5 graph,
the optimal cache is around 10% to 25%. The distance vector database is relatively
small, and it is set to full cache in our experiment.

These disk-based SP algorithms are based on the algorithm DiskSP [3]. With proper
choices of cache sizes and fragment size, we showed that algorithm DiskSP outperforms
Dijkstra’s algorithm by a wide margin. More importantly, it scales well with the increase
in the size of the input graph. The performance of DiskSP can further be improved.
Algorithm DiskSP is designed to evaluate an SP query one at a time. Batch processing
techniques are incorporated into algorithm DiskSP by dividing the evaluation into two
steps. The first step is grouping and skeleton path finding, and the second step is skeleton
edge filling. In the first step, we sorted the queries so that during the skeleton finding,
the fragment database access is minimized. For skeleton path finding, we suggested two
pruning algorithms, each of which requires pre-computation to generate materialized
data. However, they differ on the effectiveness and the cost of pre-computation. The
pruning algorithms return a smaller graph needed to be searched. Consequently, accesses
to distance database and distance vector database, as well as the computation time are
minimized. In the second step, we grouped a number of skeleton paths computed in the
first step and process them together. This results in, at any time, exactly one fragment
is processed in the main memory. At the same time, this minimizes the access to the
fragment database.

The pruning algorithms significantly contribute to the reduction of calculation time
and I/O activities. Even if these techniques need pre-computation and storage, the
benefits from the pruning algorithms make them worthwhile. If we deal with a huge
graph, such as the East5 road system, we should choose the pruning algorithm using x-
hop sketch graphs, because it takes less time and space to build the materialized data. If
a graph is small enough, we should choose the pruning algorithm using BSDM, because
it is more effective and the benefit can be maximized. The cost of batch processing
techniques is negligible and these techniques shorten the evaluation time. Therefore,
they should be used as long as queries can be processed as a batch. The improvement is
most noticeable when a group of queries concentrate on a certain region in the graph.

To demonstrate that the proposed algorithms are viable path finding algorithms,
their performance are compared with Dijkstra’s. We showed that a disk-based SP algo-
rithm could significantly outperform Dijkstra’s algorithm. More specifically, the query
evaluation time by a disk-based algorithm could be reduced to as low as 30% of the
time required by Dijkstra’s. We also showed that the pre-processing and extra storage
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requirement to achieve such a performance are well-justified.
In summary, we have demonstrated that, with proper choice of fragment size and

cache sizes, algorithm DiskSP and its variants are effective and scalable for massive
graphs. The difference among these algorithms is the cost of generating and maintain-
ing the materialized data. The basic DiskSP requires the least cost while algorithm
DiskSPBSDM is the most expensive. Algorithm DiskSPXHOP , on the other hand, is a
compromise between the two extremes.

Pruning with the BSDM and with an x-hop sketch graph constitute a trade-off be-
tween the efficiency and the cost of the pruning algorithms. Even if we can control the
calculation time of x-hop sketch graphs by choosing a proper x, it still takes a long
time to build the materialized data if a graph is huge. Another problem with algo-
rithm DiskSPXHOP is that the α-approximations computed is not tight. Further work
is needed to improve the approximations.

Throughout the discussion, we assume a graph is static. If the graph is subject to
updates, all, or part of the materialized data, such as BSDM and x-hop sketch graphs,
have to be updated as well, which requires a large amount of processing time. We are
currently looking into techniques to effectively maintain materialized data.

We have showed that pruning is essential to the efficient evaluation of an SP query.
Thus, having a sketch graph pruning phase before the skeleton path finding phase is
desirable in route query evaluation. However, the approach we took in sketch graph
pruning is to inspect every node in the sketch graph. Since the running time of the
pruning phase is proportional to the number of nodes examined, this method may not
be optimized. A more intelligent way of searching nodes in a sketch graph for pruning
is needed.

Even after a sketch graph is pruned, the search space can still be reduced further in
the skeleton path finding phase. In our proposed algorithm, some boundary nodes in a
boundary set in a pruned super graph may still be closed and relaxed even there is no
shortest paths from source to destination that can pass through these nodes. A possible
direction is to see if pruning of boundary nodes can be carried out dynamically as we
search for the skeleton path in the skeleton path finding phase.

In our experiment, we tested the algorithms against Connecticut and East5 data sets.
These data sets were chosen because they are real-life road systems. Connecticut is small
enough to be main-memory resident, thus it can be used to compare a main-memory
and a disk-based SP algorithms. To show the scalability and viability of a disk-based SP
algorithm, East5 is selected. East5 road system is too large to be loaded into the main
memory of the PC used in the experiment, and, to our best knowledge, is the largest
graph that ever tested by a disk-based SP algorithm. However, additional experiments
would be needed. Although preliminary tests showed that, once the virtual memory
exceeds certain threshold, the performance of DiskSP is not affected significantly by the
virtual memory size, a more extensive experiment is called for to see if and how the
virtual memory affects all data structures and the cache used in the algorithm. The
type of graphs may also have influence on the performance of a disk-based SP algorithm.
Although road systems we used are real-life data sets, there are other real-life data sets
such as graphs representing routing of data in the Internet. It would be interesting to
know if and how the performance of the proposed disk-based SP algorithms are affected
by other types of graphs.
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In our implementation, objects such as fragments and distance matrices are serialized
individually to and from the disk. This makes the implementation simply but data are
not stored as pages on disk. Consequently, a drawback of our work is that the buffer
or cache pool is not page-based, and the I/O performance measure we used is to the
number of bytes, not number of pages, read from the disk. A page-based implementation
of objects and cache would have been a more realistic choice.
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Figure 21: Average Calculation Time per Query on Connecticut Database for Different
Algorithms
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Figure 22: Average I/O per Query on Connecticut Database for Different Algorithms
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Figure 23: Average Calculation Time and I/O per Query on East5 Database for Different
Algorithms
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