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Abstract

Background: Non-negative matrix factorization (NMF) is a technique widely used in various fields, including artificial

intelligence (AI), signal processing and bioinformatics. However existing algorithms and R packages cannot be applied

to large matrices due to their slow convergence or to matrices with missing entries. Besides, most NMF research

focuses only on blind decompositions: decomposition without utilizing prior knowledge. Finally, the lack of

well-validated methodology for choosing the rank hyperparameters also raises concern on derived results.

Results: We adopt the idea of sequential coordinate-wise descent to NMF to increase the convergence rate. We

demonstrate that NMF can handle missing values naturally and this property leads to a novel method to determine

the rank hyperparameter. Further, we demonstrate some novel applications of NMF and show how to use masking to

inject prior knowledge and desirable properties to achieve a more meaningful decomposition.

Conclusions: We show through complexity analysis and experiments that our implementation converges faster than

well-known methods. We also show that using NMF for tumour content deconvolution can achieve results similar to

existing methods like ISOpure. Our proposed missing value imputation is more accurate than conventional methods

like multiple imputation and comparable to missForest while achieving significantly better computational efficiency.

Finally, we argue that the suggested rank tuning method based on missing value imputation is theoretically superior

to existing methods. All algorithms are implemented in the R package NNLM, which is freely available on CRAN and

Github.
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Background

Non-negative matrix factorization (NMF or NNMF) [1]

has been widely used as a general method for dimensional

reduction and feature extraction on non-negative data.

The main difference between NMF and other factoriza-

tion methods, such as SVD, is the nonnegativity, which

allows only additive combinations of intrinsic ‘parts’, i.e.

the hidden features. This is demonstrated in [1], where

NMF learns parts of faces and a face is naturally rep-

resented as an additive linear combination of different

parts. Indeed, negative combinations are not as intuitive

or natural as positive combinations.

In bioinformatics, NMF is sometimes used to find

‘metagenes’ from expression profiles, which may be
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related to some biological pathways [2, 3]. NMF has been

used to extract trinucleotide mutational signatures from

mutations found in cancer genomic sequences and it was

suggested that the trinucleotide profile of each cancer type

is a positive linear combination of these signatures [4].

There are several different algorithms available for NMF

decomposition, including the multiplicative algorithms

proposed in [1], gradient descent and alternating non-

negative least square (ANLS). ANLS is gaining attention

due to its guarantee to converge to a stationary point and

being a faster algorithm for non-negative least squares

(NNLS).

In this paper, we first unify various regularization forms

on the result components, which encourage desired prop-

erties such as orthogonality and sparsity and show how

the conventional multiplicative algorithms [1] can be

modified to adapt to these regularizations inspired by [3].

We then adopt the ANLS approach, but incorporate a

solution to the NNLS problem using a coordinate-wise
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algorithm proposed by [5], in which each unknown vari-

able can be solved sequentially and explicitly as simple

quadratic optimization problems. We demonstrate that

this algorithm can converge much faster than traditional

multiplicative algorithms. For NMF with Kullback-Leibler

divergence loss, we extend this methodology by approach-

ing the loss with a quadratic function.

NMF is a dimension reduction method, as the resulting

decomposed matrices have a smaller number of entries

than the original matrix. This means that one does not

need all the entries of the original matrix to perform a

decomposition, thus NMF should be able to handle miss-

ing entries in the target matrix. Indeed, factorization can

be fulfilled by dropping the loss items related to the miss-

ing entries if the target loss function is a sum of per-entry

losses, e.g., mean square error (MSE) or Kullback-Leibler

(KL) divergence. Furthermore, the reconstructed matrix

has values on entries that are missing in the original

matrix. This reveals the capability of NMF for missing

value imputation. Inspired by this observation and the

popular training-validation tuning strategy in supervised

models, we introduce a novel method to optimize the only

hyper-parameter k, i.e. the rank of NMF decomposition.

NMF is essentially unsupervised. It performs a blind

decomposition, which puts the meaning of the result in

question. This might limit the applications of unsuper-

vised methods in areas where strong interpretability is

critical, including most biomedical research. On the other

hand, decomposition without utilizing known discovery

(prior knowledge) may not be effective, especially with a

small sample size. To overcome these challenges, we apply

a masking technique to the NMF decomposition during

the iterating algorithms to retain certain structures or pat-

terns in one or both resulting matrices, which can be

designed according to our prior knowledge or research

interest. This technique can be used to perform a path-

way or sub-network guided decomposition or to separate

different cell types from mixed tissue samples.

All of these algorithmic innovations are implemented

in the popular R programming language. They serve as

an alternative to the widely-used NMF package [6] which

was first translated from a MATLAB package and later

optimized via C++ for some algorithms. The sparse alter-

nating NNLS (ANLS) by [3] is anticipated to be fast in

theory, but its implementation in R leads to slow per-

formance in practice. Our NNLM package combines the

efficient NNLS algorithm with the use of Rcpp, which

seamlessly integrates R and C++ [7] and is freely available

and open-source.

In summary, the main contributions of this work

include:

• unifying various type of regularizations and deriving

the correspondent multiplicative algorithms;

• developing a faster algorithm for NMF using

sequential coordinate-wise descent;
• introducing a method to handle missing entries in the

target matrix, which results in a novel method to

determine the rank k and a new application of NMF

for missing value imputation;
• introducing a masking technique to integrate prior

knowledge and desirable properties and

demonstrating how it can be used to achieve tumour

content deconvolution.

Results

Algorithms comparison

We carry out an experiment for illustration purpose using

a subset of microarray data from a group of Non-Small

Cell Lung Cancer (NSCLC) data ([8], available in package

NNLM) to compare SCD with Lee’s multiplicative algo-

rithms. Results are shown in Fig. 1 and Table 1. Here one

can see that the SCD and Lee’s algorithms have roughly

the same run time for each epoch, i.e., updating W and

H entries once. However, SCD generally converges much

faster, achieving the same accuracy in fewer epochs and a

much shorter time. Obviously, algorithms with mean KL

loss are slower than those with MSE for each epoch, but

reducing error a bit more in each epoch. The multiplica-

tive algorithm with MSE is faster when a multiple-epochs

update (Ni > 1) is performed in each outer alternating

iteration (LEE-MSE vs LEE-MSE-1).

Missing value imputation

A comparison of different imputation methods are

shown in Fig. 2 and Table 2. A subset of the NSCLC

dataset [8] is used with 30% randomly selected to be

missing. One can see that NMF is almost as good

as missForest [9] but much faster, and clearly better

than MICE [10] and simple median imputation in this

example.

Choice of k

We performed a simulation study to illustrate our pro-

posed method for selecting the rank hyperparameter k.

Entries of W ∈ R
400×3 and H ∈ R

3×50 are sam-

pled independently and uniformly from interval (0, 1) and

(0, 10) respectively. A was constructed by WH plus noise

sampled independently for each entry from the standard

normal distribution. All negative values in A are set to 0

(very unlikely). We choose MSE as loss and run the pur-

posed algorithm 5 times, each with a random 30% entries

deleted.

The result is shown in Fig. 3. As we could see, dif-

ferent runs (indicated by different colors) give consistent

results. The mean square errors (MSEs) of the reconstruc-

tion of the missing entries are minimized at k = 3 for

all runs.
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Fig. 1 Comparison of different algorithms in convergence

Tumour content devolution

Expression deconvolution is of constant interest in bioin-

formatics and clinical research [11, 12]. Some NMF

relatedmethods were proposed [13]. However, our unique

methods of using mask matrices are more flexible and

powerful, as one can almost guide the decomposition

towards any biological procedure of interest by integrat-

ing prior knowledge into the initial and mask matrices.

As compared to Bayesian methods like the ISOpure [14],

NMF based methods are much faster.

We use part of Beer’s lung adenocarcinoma data[15],

which contains 30 tumours and 10 normal samples,

with 250 transcripts, available in the Isopure R pack-

age [16]. A comparison to the result from ISOpure

using the full dataset (80 tumours and 5151 transcripts)

is shown in Fig. 4. We can see that our result based

on a small part of the dataset produces a comparable

result.

Table 1 Comparing performance of different algorithms on a

subset of a non-small cell lung cancer dataset, with k = 15

SCD-MSE LEE-MSE LEE-MSE-1 SCD-MKL LEE-MKL

MSE 0.155 0.1565 0.1557 0.1574 0.1579

MKL 0.01141 0.01149 0.01145 0.01119 0.01122

Rel. tol. 1.325e-05 0.0001381 0.000129 6.452e-08 9.739e-05

Total epochs 5000 5000 5000 5000 5000

Time (Sec.) 1.305 1.35 8.456 49.17 41.11

MSE = mean square error; MKL = mean KL divergence; Rel. tol. = relative tolerance.

Elapsed time = actual running time. SCD-MSE = SCD algorithm with MSE loss and 50

inner iterations and LEE-MSE-1 = Lee’s algorithm with MSE loss and 1 inner iteration,

i.e., the original multiplicative algorithm

Discussion

We combine common regularizations of NMF into a

general form to explore the power of mixing different

types of regularizations. The choice of weights of the

regularization should depend on the problem. For exam-

ple, independence or orthogonality (J2) may be favored

for content deconvolution, while sparsity (J3) might be

more important for metagenes or sub-networks discov-

ery. J1 can be used to reduce variance in the outcome

matrices used for downstream analysis such as prognostic

biomarker discovery. Another way to choose these hyper-

parameters is to use the same approach as introduced in

“Choice of k” section for tuning k, i.e., choose the ones

that minimize reconstruction error or variation. This can

be done together with the choice of k.

The choice of MSE or KL as the loss function depends

on the nature and the distribution of the entries. A gen-

eral principle is to use MSE when the distribution of the

entries are centered around a certain region, i.e., the mag-

nitudes are roughly the same (e.g., the simulation study

in “Choice of k” section). However, for very skewed dis-

tributions (e.g, count data) or data with outliers, the KL

loss may fit better, as if MSE is used in this case, the

large entries might dominate the loss while small entries

have little impact, resulting in a factorization with large

variance. For the latter case, one can also perform the

decomposition in the log space if all entries have values

greater than 1 or in the log(1 + A) space with MSE. How-

ever, the interpretation of the results has to be changed as

well.

Although NMF can be done with missing entries, when

the missing process is correlated with the value itself,

i.e., not missing completely at random (MCAR), the
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Fig. 2 Comparison of imputation methods. k = 2 is used for NMF

resulting reconstruction may be biased. Besides, when

there are many missings, especially when a certain row or

column is largely missing, the composition and the recon-

struction could have a large variation and thus not reliable.

The same argument also carries to the proposed method

for choosing k.

The masking technique is simple yet useful for many

applications. Here we only demonstrate its application to

tumour content deconvolution with an experiment on a

small dataset only to showcase its capability. The compa-

rable result with a common method like ISOpure encour-

ages us for more future work in this direction, such as

metagenes and sub-network related analysis, as well as

content deconvolution.

All methodologies described in this paper are imple-

mented in the R package NNLM, available on CRAN and

Github. All the code for the experiments in this paper can

be found on the vignette of the package.

Table 2 A comparison of different imputation methods

Baseline Medians MICE MissForest NMF

MSE 4.4272 0.5229 0.9950 0.4175 0.4191

MKL 0.3166 0.0389 0.0688 0.0298 0.0301

Time (Sec.) 0.0000 0.0000 90.2670 42.4010 0.1400

Imputations on a subset of NSCLC microarray data, which composes 200 genes and

100 samples. 30% of the entries are randomly deleted, i.e., missed. MSE = mean

square error, MKL = Mean KL-divergence distance and Time = user time

Conclusion

In this work, we generalize the regularization terms in

NMF and extend the multiplicative algorithm to the gen-

eral case. We develop a new solver based on sequential

coordinate-wise descent for both KL and MSE losses and

demonstrate its efficiency through complexity analysis

Fig. 3 Determine optimal rank k in NMF using imputation
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Fig. 4 Comparing NMF to ISOpure [16] for tumour content

deconvolution

and numerical experiments. Our method and implemen-

tation can also naturally handle missing entries and be

used to impute missing values through reconstruction.

We show that the NMF imputation method is more effi-

cient and accurate than popular methods. Motivated by

the missing value imputation, we introduce a simple and

intuitive method to determine the rank of NMF. Finally,

by introducing the masking technique, we show that NMF

can be applied to tumour content deconvolution and can

achieve similar results as compared to existing methods

like ISOpure with better computational efficiency.

Methods

In this section, we generalize the multiplicative algo-

rithms [1] to incorporate regularizations in (3) and briefly

argue how they can be derived. We then introduce a

new and faster algorithm for NMF with mean square loss

(“Alternating non-negative least square (ANLS)” section)

and KL-divergence distance loss (“Sequential quadratic

approximation for Kullback-Leibler divergence loss”

section) with regularizations, based on the alternating

scheme. In “Missing entries” section, we address in all

algorithms a common problem that some entries of the

target matrix may be unreliable or not observed. The

method we introduced naturally leads to an intuitive and

logically robust method to determine the unknown rank

parameter k (“Choice of k” section) and a novel approach

for missing value imputation for array data (“Missing

value imputation” section). We then re-examine NMF in

“Masking, content deconvolution and designable facto-

rization” section and develop a method to integrate prior

knowledge into NMF and guide the decomposition in a

more biologically meaningful way, which can be powerful

in applications.

Overview

NMF decomposes a matrix A into two matrices with non-

negative entries with smaller ranks, A ≈ WH , where A ∈

R
n×m, W ∈ R

n×k , H ∈ R
k×m. Without loss of generaliza-

tion, rows ofA represent features (e.g. genes, user profiles,

etc) and columns of A represent samples. Depending on

context,W can be interpreted as a feature mapping. Rows

ofW represent disease profiles ormetagenes [2]. Columns

H are compact representations of samples, i.e., sample

profiles.

Mathematically, NMF can be formulated as an opti-

mization problem as,

min
W≥0,H≥0

L(A,WH) + JW (W ) + JH(H). (1)

L(x, y) is a loss function, which is mostly chosen to

be square error 1
2 (x − y)2, or KL divergence distance

x log(x/y) − x + y. The latter can be interpreted as the

deviance from a Poisson model.

JW (W ) and JH(H) are regularizations on the W and H

respectively to encourage the desired properties, such as

high sparsity, smaller magnitude or better orthogonality.

Various regularization forms are introduced [3, 11], but

mostly can be unified as the following form,

JW (W ) = α1J1(W ) + α2J2(W ) + α3J3(W ),

JH(H) = β1J1(H
T ) + β2J2(H

T ) + β3J3(H
T ).

(2)

where

J1(X) :=
1

2
||X||2F =

1

2
tr

(

XXT
)

J2(X) :=
∑

i<j

(X·i)
TX·j =

1

2
tr

(

X(E − I)XT
)

J3(X) :=
∑

i,j

|xij| = tr(XE).

(3)

I is an identity matrix, E is a matrix of proper dimension

with all entries equal to 1, X·i and Xi· are the ith column

and row respectively.

J1 is a ridge penalty to control the magnitudes and

smoothness. J1 also helps stabilize numerical algorithms.

J2(X) is used to minimize correlations among columns,

i.e., to maximize independence or the angle between X·i,

X·j [11]. J3 is a LASSO-like penalty that controls matrix-

wise sparsity. [3] introduced a different type of regular-

ization to favour sparsity in a column-wise manner as the

following,

J̄(X) =
1

2

∑

k̄

||Xk̄·||
2
1 =

1

2
tr

(

XEXT
)

. (4)

Obviously, J̄ = J1 + J2, a special case of (2).
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Conventionally, (1) is solved by an alternating algorithm,

which solves W and H alternately and iteratively. Thanks

to the non-negative constraint, the penalties do not bring

additional complexity.

Adding regularization to Lee’s multiplicative algorithm

Two multiplicative updating algorithms are proposed in

[1] for square loss and KL divergence loss. They are

adapted by [11] to cases with sparsity regularization. Here

we modify these algorithms to integrate all the above

regularizations as the following.

With square loss

hk̄j ← hk̄j

(WTA)k̄j
([

WTW + β1I + β2(E − I)
]

H + β3E
)

k̄j

.

(5)

With Kullback-Leibler divergence distance,

hk̄j ← hk̄j

∑

l

(

wlk̄alj/
∑

q wlqhqj

)

(

∑

l wlk̄ + (β1 − β2)hk̄j + β2
∑

l hlj + β3

) .

(6)

When βi = 0, i = 1, 2, 3, these are the original multi-

plicative algorithms in [1]. If β1 = 0, these updates reduce

to equations (10) and (23) in [11]. The proof when β1 �= 0

can be done similarly as in [11]. The updating rules forW

are similar to (5) and (6).

These multiplicative algorithms are straightforward to

implement, but they have the drawback that when an

entry ofW orH is initialized as zero or positive, it remains

zero or positive throughout the iterations. Therefore, all

entries should be initialized to be positive. As a conse-

quence, true sparsity cannot be achieved in general, unless

a hard-thresholding is imposed, as many of the entries

would be small enough to be thresholded to zero.

Alternating non-negative least square (ANLS)

When L is a square loss, the following sequential

coordinate-wise descent (SCD) algorithm proposed by [5]

is used to solve a penalized NNLS for H whileW is fixed.

1

2
||A − WH||2F + JH(H)

= tr

{

1

2
HT

[

WTW + β1I + β2(E − I)
]

H

−HT
[

WTA − β3E
]}

+ const.

(7)

Let

V =WTW + β1I + β2(E − I),

U = − WTA + β3E.
(8)

(7) becomes

tr

{

1

2
HTVH + HTU

}

+ const.

=
∑

k̄,j

⎛

⎝vk̄k̄h
2
k̄j

+

⎛

⎝

∑

l �=k̄

vk̄lhlj + uk̄j

⎞

⎠ hk̄j

⎞

⎠

(9)

Since E − I is semi-negative definite, to ensure the

uniqueness and the convergence of the algorithm, we

impose the constraint that β1 > β2, in which case vk̄k̄ > 0

for all k̄.

If all elements of H are fixed except for hk̄j, then the

above is a quadratic function of hk̄j with a non-negative

constraint, which can be explicitly optimized by

h∗
k̄j

=max

(

0,−

∑

l �=k̄ vk̄lhlj + uk̄j

vk̄k̄

)

=max

(

0, hk̄j −

∑

l vk̄lhlj + uk̄j

vk̄k̄

)

.

(10)

Obviously, j = 1, . . . ,m can be updated independently

and in parallel. We then have the following SCD algorithm

for solving H whenW is fixed.

1. Initialization. Set

H(0) = 0, U(0) = −WTA + β3E. (11)

2. Repeat until convergence: for k̄ = 1 to k, update

simultaneously and in parallel for j = 1, . . .m,

h
(t+1)

k̄j
=max

⎛

⎝0, h
(t)

k̄j
−

u
(t)

k̄j

vk̄k̄

⎞

⎠ and h
(t+1)
ij = h

(t)
ij ∀i �= k̄

U
(t+1)
·j =

⎧

⎨

⎩

U
(t)
·j −

(

h
(t+1)

k̄j
− h

(t)

k̄j

)

V·k̄ , if h
(t+1)

k̄j
�= h

(t)

k̄j

U
(t)
·j , o.w.

(12)

where V·j,U
(t)
·j denote the j-th column of matrix V

and U(t) =
{

u
(t)
ij

}

.

From (10), one can see that each iteration is non-

increasing and therefore the algorithm converges to some

fixed point. Any entry of a fixed point should be either on

the boundary with its gradient pointing out of the feasible

region (H ≤ 0) or at a stationary point. A formal proof of

convergence can be found in [5].

The alternating algorithm fixes W and solves for H

using NNLS, and then fixes H and solves for W using

the same algorithm. This procedure is repeated until the

change of A − WH is sufficiently small. Each update is

non-increasing, thus the alternating algorithm converges.

Instead of initializing H(0) = 0 for every iteration, we

use a warm-start, i.e., initializing H(0) as the result from

the previous iteration.
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Sequential quadratic approximation for Kullback-Leibler

divergence loss

When L is a KL divergence distance, we use a similar SCD

algorithm, by approximating KL(A|WH) with a quadratic

function.

AssumeW is known and H is to be solved. Let

b :=
∂KL

∂hk̄j

(

H(t)
)

=
∑

l

⎛

⎝wlk̄ −
aljwlk̄

∑

q wlqh
(t)
qj

⎞

⎠

a :=
∂2KL

∂h2
k̄j

(

H(t)
)

=
∑

l

alj

⎛

⎝

wlk̄
∑

q wiqh
(t)
qj

⎞

⎠

2 (13)

where H(t) is the current value of H in the iterative

procedure.

When fixing all other entries, the Taylor expansion of

the penalized KL divergence up to the 2nd order at h
(t)

k̄j

w.r.t. hk̄j is

b
(

hk̄j − h
(t)

k̄j

)

+
a

2

(

hk̄j − h
(t)

k̄j

)2
+

β1

2
h2
k̄j

+ β2

⎛

⎝

∑

l �=k̄

hlj

⎞

⎠ hk̄j + β3hk̄j + const

=
a + β1

2
h2
k̄j

−

⎛

⎝ah
(t)

k̄j
− b − β2

∑

l �=k̄

hlj − β3

⎞

⎠ hk̄j + const.

This can be solved explicitly by

h
(t+1)

k̄j
= max

⎛

⎝0,
ah

(t)

k̄j
− b − β2

∑

l �=k̄ h
(t)
lj − β3

a + β1

⎞

⎠ .

(14)

A similar formula for updatingWik̄ can be derived. Note

that when an entry of Â = WH is 0, the KL divergence

is infinity. To avoid this, we add a small number to the

denominators in both (13) and (14).

Complexity and convergence speed

The first step of SCD (Eq. 11) has complexity of kmn due

to WTA. The second step (Eq. 12) costs km × k × Ni,

where the second k is due to the update of U
(t+1)
·j and Ni

is the number of inner iterations to solve the non-negative

linear model. In total, kmn + k2mNi multiplications are

needed for solving H given W fixed. Accounting the sim-

ilar computation for W, the total complexity of SCD is

O
((

(m + n)k2Ni + 2nmk
)

No

)

, where No is the number

of outer iterations to alternateW and H . NiNo is the total

number of epochs, i.e., one complete scan over all entries

ofW and H . For Lee’s multiplicative algorithm with MSE,

when W is fixed, the complexity of solving H is knm for

WTA on the numerator, k2n for WTW on the denomi-

nator and k2mxNi for multiple H at the denominator for

Ni times, which add up to knm + k2n + k2mNi. Account-

ing for W and the alternatings, Lee’s algorithm with MSE

loss has the same complexity as SCD. The same analysis

can be done with their KL counterparts, for which both

algorithms have the same complexity ofO
(

nmk2NiNo

)

.

Obviously, algorithms with square error loss are faster

than the KL based ones (by a factor of k) in terms of com-

plexity, and can benefit from multiple inner iterations Ni

(reducing the expensive computation of WTA and AHT )

as typically k ≪ m, n, which generally should reduce No.

In contrast, algorithms with KL loss cannot benefit from

inner iterations due to the re-calculation of WH on each

inner iteration. Though the SCD and Lee’s algorithm are

similar in terms of complexity, one can expect a much

faster convergence in SCD. This is because Lee’s algo-

rithm is essentially a gradient descent with a special step

size [1] which is a first order method, while SCD is a

Newton-Raphson like second order approach.

Missing entries

Due to various reasons, not all entries of A will always

present. In some cases, even if an entry is observed, it may

not be reliable. In this case, it may be better to treat them

as missing entries. Since matrix A is mostly assumed to

have a low-rank k, the information in A is redundant for

such a decomposition. Hence factorization can be done

with the presence of missing entries in A, using only the

observed ones.

In fact, as the loss function is usually the sum of losses

of all elements, it is natural to simply drop losses related to

the missing entries. For any j, let Ij = {i : aij not missing}

and Īj = {i : aij is missing}. When updating the j-th col-

umn ofH, all Īj rows ofW should be removed, i.e.,U ,V in

(8) are modified as

V = WT
Ij·
WIj· + β1I + β2 (E − I).

U = − WT
Ij·
AIj· + β3E,

(15)

where WIj· and AIj· denote the submatrices of W and A

with row indices in Ij. Unlike the non-missing case, V

depends on j.

Similar modification can be applied to the KL coun-

terpart (14) and Lee’s multiplicative algorithms (5, 6) by

replacing WTW and WTA in the same way as in (15).

Note that the re-calculation of V only increases the com-

plexity of MSE based method but not KL based, in which

case it has to be re-computed nevertheless. The ability to

handle missing values is crucial in applications, and turns

out to induce a novel missing value imputation method

(described in “Missing value imputation” section and a

novel method for choosing k (described in “Choice of k”

section).
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Missing value imputation

As discussed in “Missing entries” section, the informa-

tion in A is mostly redundant for factorization purposes.

Hence reasonable results can still be achieved with miss-

ing entries present in matrix A. The reconstructions Â =

WH on missing entries are reasonable predictions for the

missing values.

The advantage of NMF imputation is that it takes

into account all the complete entries when imput-

ing a single missing entry, which implies that NMF

can capture complex dependency among entries, while

a conventional statistical missing value imputation

algorithm, e.g., missForest [9] and MICE [10], usu-

ally models missing entries in a feature-by-feature

(column-by-column or row-by-row) manner and iter-

ates over all features multiple times to capture complex

dependency.

Choice of k

The selection of hyper-parameters is a typical challenge

for all unsupervised learning algorithms. The rank k is the

only but critical parameter, which is a priori unknown.

Brunet et al. [2] suggests to try multiple runs of each k and

uses a consensusmatrix to determine k. This idea assumes

that cluster assignment is stable from run to run if a clus-

tering into k classes is strong. However, the assumption

needs to be verified and the purpose of NMF is not always

for clustering. Besides, the idea of consensus is to choose

k with lower variation in clustering, which is not neces-

sarily the right measure for choosing k. We argue that a

reasonable k should be able to remove noise and recover

the signal. One idea, brought from the denoising auto-

encoder [17], is to add noise to the matrix A, factorize

the noisy version and compare the reconstructed matrix

to the original A. One can expect that the “correct" k

should give the smallest error rate. This could be a gen-

eral approach for many unsupervised learning algorithms.

However, when it comes to NMF, the choice of noise is

not obvious as the noisy version of A has to be non-

negative as well, which suggests that injected noise may

also introduce bias. In addition, the choice of the noise

distribution is yet another hyperparameter not obvious

to pick.

Given the ability to handle missing entries in NMF

described in the above section and the powerful

missing value imputation of NMF demonstrated in

“Missing value imputation” section, we come up with

a novel approach, akin to the well-known the training-

validation split approach in supervised learning.

1. Some portion (e.g., 30%) of entries are randomly

deleted (selected to be missing) from A.

2. The deleted entries are imputed by NMF with a set

of different k’s.

3. The imputed entries are compared to their observed

values, and the k that gives the smallest error is

selected.

The above approach can be argued by the assumption

that only the correct k, if exists, has the right decom-

position that can recover the missing entries. In con-

trast to the training-validation split in supervised learn-

ing, due to the typically big number of entries in A,

we generally have a very large ‘sample size’. One can

also easily adapt the idea of cross-validation to this

approach. This idea should apply to any unsupervised

learning method that handles missing values. Note that

bootstrapping and cross-validation can also be easily

incorporated here.

Masking, content deconvolution and designable

factorization

Microarrays are popular techniques for measuring

mRNA expression. Strictly speaking, an mRNA pro-

file of a certain tumour sample is typically a mixture

of cancerous and healthy profiles as the collected tis-

sues are ‘contaminated’ by healthy cells. A pure can-

cer profile is usually more suitable for downstream

analysis [14].

One can utilize NMF for such a purpose by formatting

it as

A ≈ WH + W0H1, (16)

where matrixW is an unknown cancer profile, and matrix

W0 is a known healthy profile. Rows ofA represent probes

or genes while columns represent patients or samples. The

task here is to solve W , H and H1 given A and W0, which

can be thought of as a ‘guided’ NMF. In this decomposi-

tion, the number of columns of W can be interpreted as

the number of unknown cancerous profiles or cell types.

The corresponding tumour percentage of sample j can be

estimated as

r̂j =

∑

iWi,·H·,j
∑

i

(

Wi·H·j + W0,i·H1,·j

) . (17)

A more general implementation is to use mask matri-

ces for W and H , where the masked entries are fixed

to their initial values or 0 if not initialized. Indeed, one

can treat this as a form of hard regularization. It can

be seen immediately that the above deconvolution is a

special case of this masking technique, in which the

masked entries are initialized to the known profile and

fixed. This technique is designed to integrate domain

knowledge, such as gene sub-networks, pathways, etc, to

guide the NMF towards a more biologically meaningful

decomposition.

For example, assume S = {S1, ..., SL}, where each Sl, l =

1, ..., L is a set of genes in certain sub-network or pathway
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l. One can design W as a matrix of K columns (K ≥ L),

with wil = 0 when i �∈ Sl. NMF factorization will learn the

weight or contribution wil of real gene i in sub-network or

pathway l from data. One can also interpret hlj
(
∑

i wil

)

as

an expression level of sub-network or pathway l in patient

j. Besides, W·j’s for j = L + 1, . . . ,K are unknown sub-

networks or pathways. Note that K is unknown before-

hand, but can be determined by the method introduced in

“Choice of k” section.

Similarly, if Sl is a set of marker genes (those that are

known to be expressed only in a specific cell type / tissue),

for tissue l, by letting wil = 0, i ∈
⋃

q �=l

Sq, one can find

the relative abundance of each tissue type in a sample. A

similar formula to Eq. (17) can be used to compute the

proportions of known (j = 1, . . . , L) and unknown (j =

L + 1, . . . ,K) cell types / tissues.

Another possible application of masking is meta-

analysis of different cancer types which finds metagenes

that are shared among cancers. For instance, assume

A1,A2 are expressions of lung cancer and prostate can-

cer microarrays. By setting certain parts of the coefficient

matrix H to 0, for example,

(A1 A2) = (W0W1W2)

⎛

⎝

H01 H02

H1 0

0 H2

⎞

⎠ , (18)

we can expect that W1 and W2 are lung and prostate

cancer specific profiles, whileW0 is a shared profile.
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