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Abstract Local optimization and filtering have been widely

applied to model-based 3D human motion capture. Global

stochastic optimization has recently been proposed as

promising alternative solution for tracking and initializa-

tion. In order to benefit from optimization and filtering, we

introduce a multi-layer framework that combines stochas-

tic optimization, filtering, and local optimization. While the

first layer relies on interacting simulated annealing and some

weak prior information on physical constraints, the second

layer refines the estimates by filtering and local optimiza-

tion such that the accuracy is increased and ambiguities are

resolved over time without imposing restrictions on the dy-

namics. In our experimental evaluation, we demonstrate the

significant improvements of the multi-layer framework and

provide quantitative 3D pose tracking results for the com-

plete HumanEva-II dataset. The paper further comprises

a comparison of global stochastic optimization with particle

filtering, annealed particle filtering, and local optimization.
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1 Introduction

The 3D reconstruction of human motion from multi-view

video sequences has applications in many areas includ-

ing computer graphics, biomechanics, medicine, and sport

science, see e.g. (Rosenhahn et al. 2008). Besides robust-

ness, accuracy, and low computational cost, many applica-

tions require a general solution without imposing strong as-

sumptions on the dynamics and the appearance of the hu-

man, i.e. neither motion patterns nor clothing are known a-

priori. Nonetheless, the use of prior poses or motion pat-

terns learned from a motion database has become very

popular in order to achieve robust tracking also in dif-

ficult and ambiguous scenarios (Rosenhahn et al. 2007a;

Sidenbladh et al. 2000; Urtasun and Fua 2004). In Agarwal

and Triggs (2006) the pose is directly recovered from sil-

houettes by learning the mapping between silhouettes and

markers. Gaussian process dynamical models (Moon and

Pavlovic 2006; Urtasun et al. 2006) have been used for em-

bedding motion in a low-dimensional latent space. Although

these learning strategies allow for tracking even in monocu-

lar video sequences, they impose strong assumptions on the

tracked motion. The restriction to a small subset of human

motion patterns limits their application in practice. When,

for example, the movement of a person with an artificial hip

joint is measured using training data from persons with nat-

ural hip joints, the estimates are likely to be biased towards

the movement of a person with natural hip joints, i.e., one

eliminates exactly the information that is important for the

medical application. Hence, in the present paper, we will fo-

cus on a tracking system that allows for robust and accurate

tracking without relying on strong motion priors.

Another kind of prior knowledge frequently used in hu-

man tracking is a surface model with an underlying skeleton,

see e.g. (Hogg 1983) or the survey (Moeslund et al. 2006).
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These so-called model-based approaches estimate the posi-

tion, rotation, and joint configuration (pose) of the human

model for each frame, where the large number of degrees

of freedom (DoF) results in a high-dimensional state space.

Although the use of a model-based approach also limits the

general applicability of the tracking framework, we assume

here the existence of such a body model.

The strategies for model-based pose estimation can be

classified into global optimization, filtering, and local op-

timization. All these strategies have some drawbacks. The

main contribution of the present paper is therefore a multi-

layer framework that employs the basic ideas of all three

concepts.

1.1 Global Optimization

A stochastic global optimization approach, called interact-

ing simulated annealing (ISA) (Gall et al. 2007b), has re-

cently been proposed for human motion capture (Gall et al.

2007a). Since it searches for the globally best solution, it

is also suitable for initialization of model-based approaches

(Gall et al. 2007c). Its ability to recover from errors and

its precise estimates satisfy the requirements for the first

layer where robustness and accuracy are essential. However

when the estimates are observed over time, some jitter is

noticeable which is typical for stochastic approaches like

ISA that sample from a distribution of interest. Variations

between estimates of two frames might also occur, when the

tracker recovers from an ambiguity in the previous frame.

Moreover, while stochastic global optimization provides es-

timates close to the global optimum in reasonable time, the

ratio between accuracy and computation cost is unsatisfac-

tory when more precise estimates are required, as we will

show.

1.2 Filtering/Smoothing

Filtering approaches estimate the unknown true state xt from

some noisy observations yt , e.g. images. In general, the esti-

mation is called prediction, filtering, or smoothing if obser-

vations before frame t , including t , or also after t are taken

into account. The filtering problem is typically solved by

Kalman filtering (Kalman 1960) or particle filtering (Doucet

et al. 2001) where it is assumed that the underlying stochas-

tic processes

xt+1 = ft (xt ) + vt , (1)

yt = ht (xt ) + wt (2)

with noise vt and wt are known. Isard and Blake (1996)

applied a particle filter to 2D tracking and extended it to

a two-pass smoothing algorithm (Isard and Blake 1998).

For 3D human motion capture, particle filters were com-

bined with Markov chains, called Hybrid Monte Carlo fil-

ter (Choo and Fleet 2001), and graphical models, called

nonparametric belief propagation (Lee and Nevatia 2006;

Sigal et al. 2004). In Bregler (1997) a Kalman filter was used

to model the human dynamics by multiple abstraction lev-

els. Even though filtering approaches exploit temporal co-

herence, handle noise and are able to recover from errors,

they are usually too imprecise for motion analysis in high

dimensional spaces. Since accurate models for ft and ht are

rarely available, the model’s weakness is compensated by

overestimating the noise vectors vt and wt at the expense of

poor performance.

For this reason, some heuristics based on particle filters

were developed to combine local optimization with filtering.

Sminchisescu and Triggs (2003) propose covariance scaled

sampling to guide the particles to the local maxima of a pos-

terior distribution. To find the local maxima, the particles are

broadly spread in the search space by inflating the covari-

ance of the dynamic prior and refined by a local optimization

with respect to the likelihood. The posterior is then modeled

by a mixture of Gaussians where the means and covariance

matrices are given by the detected local maxima and their

Hessians. Smart particle filtering (Bray et al. 2007) com-

bines a particle filter with stochastic meta descent (Schrau-

dolph 1999) for local optimization. Since the optimization of

the particles changes the approximated distribution, a cor-

rection factor is used to compensate for the additional set

of particles. The correction factor, however, depends on the

unknown distribution after prediction. Hence, a regulariza-

tion (Doucet et al. 2001, Chap. 12), which introduces an

error, is performed to estimate the continuous distribution

from the finite set of particles before the optimization step.

Particularly, the low number of particles prevents an ac-

curate estimation of the correction factor. Deutscher et al.

propose an annealed particle filter (Deutscher et al. 2000;

Deutscher and Reid 2005) that follows the idea of annealing

to guide the particles to the global maximum of the likeli-

hood. To this end, the shape of the likelihood is gradually

changed and the sampling is repeated. The approach does

not perform annealing in the classical sense where the tem-

perature is monotonically decreased, but relies on the fluc-

tuating survival rate of the particles. Hence, the annealed

particle filter is not suitable for global optimization and re-

quires an additional technique for initialization like other ap-

proaches that combine local optimization with particle filter-

ing. Although it has been shown that these heuristics work

well for tracking hands or humans, there is no evidence that

they converge to the optimal solution of the filtering prob-

lem stated in (1) and (2) in contrast to Kalman or particle

filtering.
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1.3 Local Optimization

Local optimization has been widely used for 3D human mo-

tion capture (Bregler and Malik 1998; Cheung et al. 2005;

Gall et al. 2008; Gavrila and Davis 1996; Kakadiaris and

Metaxas 1996; Kehl et al. 2005; Mundermann et al. 2007).

It provides very accurate results provided that the state vec-

tor is initialized near the global optimum. Since it searches

only for the locally best solution, it usually cannot recover

from errors and requires an initialization. Without additional

prior information, the tracking often fails in case of fast mo-

tions and ambiguities. The optimization for pose estimation

has recently been coupled with level-set segmentation (Brox

et al. 2005; Rosenhahn et al. 2006) and graph-cut segmen-

tation (Bray et al. 2006) where the estimated pose serves as

shape prior for segmentation. Even though the shape prior

yields better segmentation results and can be applied more

generally than background subtraction, it introduces a local

term for energy minimization that depends on the previous

estimate. Hence, these approaches are not able to recover

from errors since a wrong estimate results in a wrong shape

prior and a wrong segmentation for the next frame.

The idea of several layers has been used for tracking-by-

detection approaches (Fossati et al. 2007; Ramanan et al.

2007) which rely on a learned template model. Since the

detection is usually limited to canonical poses like lateral

walking, the human poses are only detected on a subset of

frames. A second step is therefore required to interpolate or

track between the detected frames. While the tracking is usu-

ally done offline since the detected poses are used to learn a

subject specific appearance model, our framework processes

the image data online or with a very short delay.

1.4 Overview and Contribution

In this work, we propose a model-based approach for 3D

human motion capture that meets important needs of mo-

tion analysis since it does not rely on prior knowledge of

the dynamics. In order to increase the accuracy and resolve

ambiguities over time without imposing restrictions on the

dynamics, we introduce a multi-layer framework that com-

bines global optimization, filtering, and local optimization.

While the first layer relies on global stochastic optimization,

the second layer refines the estimates by filtering and local

optimization as outlined in Fig. 1.

For the first layer, the images are processed and silhou-

ettes are extracted (Sect. 2). A recently developed stochas-

tic global optimization technique, namely interacting simu-

lated annealing, initializes the tracker and estimates the pose

for each frame by minimizing an image-based energy func-

tion, which relies on silhouettes and color, as well as some

weak prior on physical constraints (Sect. 3). Although the

first layer provides a robust and relatively accurate estimate

Fig. 1 A multi-layer framework for tracking. While the first layer

based on global stochastic optimization provides robust and relatively

accurate estimates, the second layer increases the accuracy and reduces

jitter and potential bias from the first layer with a short delay d

of the human pose in the current frame, the estimate is still

corrupted by noise due to sampling and the unsteady quality

of the image features. Besides the missing temporal consis-

tency, some bias might have been introduced by the weak

prior.

The second layer refines the estimate with a short delay

of d ≥ 0 frames, where the estimate is filtered or smoothed

(Sect. 4). Although the smoothing reduces the jitter from

the stochastic global optimization by introducing temporal

consistency, it improves only slightly the accuracy of the

estimate. The latter is achieved by local optimization and

segmentation where the smoothed estimate for frame t − d

serves as initial pose for optimization and as shape prior

for the level-set segmentation (Sect. 5). The additional lo-

cal segmentation improves the quality of the silhouettes of

the first layer, which are obtained by global segmentation

like background subtraction and often contain severe arti-

facts like shadows and holes. Since both segmentation and

local optimization are initialized by good estimates from the

first layer for each frame, an error accumulation due to the

shape prior is prevented. We show that the second layer con-

sisting of smoothing, local optimization, and local segmen-

tation not only increases the accuracy, but also reduces jitter

and potential bias from the first layer.

Indeed, our experimental evaluation in Sect. 6 demon-

strates the improvements of the multi-layer framework in

comparison to an increased number of iterations and sam-

ples for global optimization. It further comprises a quantita-

tive error analysis using the HumanEva-II dataset (Sigal

and Black 2006), where we also compare interacting simu-

lated annealing with particle filtering, annealed particle fil-

tering, and local optimization.
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2 Image Processing

In our multi-layer framework, global and local optimiza-

tion are applied to the same images, see Fig. 1. Hence, the

images need to be processed once such that they are suit-

able for the appearance model used for global optimiza-

tion (Sect. 3.3.2) and the level-set segmentation in the sec-

ond layer (Sect. 5.1). Both for segmentation and the ap-

pearance model, good results are obtained with the CIELab

color space that mimics the human perception of color dif-

ferences. In order to reduce noise without smoothing over

the edges that separate body parts and background, we apply

the edge-enhancing diffusivity function (Brox et al. 2003)

g(|∇u|2) =
1

|∇u|p + ε
(3)

with ε = 0.001 and p = 1.5, where the smoothing is effi-

ciently implemented by the AOS scheme (Weickert et al.

1998).

3 Global Optimization

The first layer of our tracking framework relies on interact-

ing simulated annealing (ISA) (Gall et al. 2007b), which is a

global stochastic optimization technique. Since we assume

that a 3D skeletal model as shown in Fig. 2a is available, the

pose can be represented by a vector x containing the posi-

tion, orientation, and joint angles, where rotations are con-

verted to the axis-angle representation. For each frame, the

pose x̂ is obtained by searching for the global minimum of

an energy function V ≥ 0, which is described in Sect. 3.3.

Fig. 2 Left: (a) The triangles of the human model encode the body

parts. Right: (b) Outline of the first layer. While the particle set (x
(i)
t )i

represents the distribution of the solution, the mean x̂t provides a single

estimate for the pose. The pose for the next frame x
pred

t+1 is predicted by

Gaussian process regression (GPR), and an additional mutation opera-

tor spreads the particles in the search space. The pose is then estimated

by stochastic optimization (ISA). The system is closed in the sense

that any uncertainty that arises from the prediction and estimation is

preserved in terms of Σ
pred

t+1 and (x
(i)
t+1)i

Instead of searching for a single estimate x̂, ISA approx-

imates a distribution ηk whose mass concentrates in the re-

gion of global minima of the energy function V as k tends to

infinity, see Fig. 3. This behavior is described by the follow-

ing convergence theorem (Moral 2004) saying that for any

ε > 0

lim
k→∞

ηk(V ≥ sup{v ≥ 0; V ≥ v a.e.} + ε) = 0. (4)

Similar to particle filters, where the posterior distribution is

approximated by so-called particles, ηk needs to be approx-

imated by n samples x
(i)
k with weights π (i) since an analyti-

cal solution is usually not available. The approximate distri-

bution

ηn
k :=

n
∑

i=1

π (i)δ
x

(i)
k

, (5)

where δ denotes the Dirac measure, converges to ηk as the

number of particles increases (Moral 2004). A single esti-

mate for the human pose from the set of particles is obtained

by the mean x̂ =
∫

ηn
k (x)dx where the mean of rotations is

computed according to (Pennec and Ayache 1998). The de-

tails of ISA are discussed in Sect. 3.2.

During tracking the solution is represented by the set of

particles (x
(i)
t )i as outlined in Fig. 2b. Since the particles ap-

proximate a distribution, uncertainties from the pose estima-

tion are propagated to the next frame making the estimation

robust to ambiguities. An additional mutation operator be-

tween two frames spreads the particles in the search space

where the predicted pose x
pred

t+1 and its confidence Σ
pred

t+1 are

taken into account, see Sect. 3.1. The initial pose is also de-

termined by ISA as described in Sect. 3.4.

3.1 Mutation

After estimating the pose x̂t , the particles x
(i)
t congregate

around the global optimum for frame t . Since this set is not

well distributed for estimating the pose in the next frame,

a mutation step spreads the particles in the search space.

For this purpose, the pose is predicted from the previous es-

timates by a 3rd order autoregression, i.e. x
pred

t+1 = f (x̂t :3)

where x̂t :3 = (x̂t , x̂t−1, x̂t−2) denotes the last three esti-

mates. The function f can be learned during tracking from

the history of estimates given by the equations

x̂t−r+1 = f (x̂t−r:3) for r = 1 . . .R. (6)

The regression is implemented by Gaussian processes (GP)

(Williams and Rasmussen 1996) where the prediction is

given by a Gaussian distribution with mean x
pred

t+1 and co-

variance matrix Σ
pred

t+1 . Since GP regression provides a pre-

dictive distribution and works well for a small set of training

data, it meets the needs for the first layer.
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Fig. 3 From left to right:

(a) Energy function V with

global minimum at zero. (b) η1.

(c) The mass of ηk concentrates

around the global minimum as k

increases. For a limited number

of iterations, ηk is multimodal

To simplify matters, we briefly summarize only the one-

dimensional prediction by Gaussian processes where the set

of training data is given by x̂R = (x̂t−1:3, . . . , x̂t−R:3)
T and

f (x̂R) = (f (x̂t−1:3), . . . , f (x̂t−R:3))
T . The predictive distri-

bution for the last three estimates x̂t :3 is obtained by the con-

ditional Gaussian distribution p(x̂t+1|x̂t :3, x̂R, f (x̂R)) with

mean and variance

x
pred

t+1 = k(x̂t :3, x̂R)T K−1f (x̂R), (7)

(σ
pred

t+1 )2 = k(x̂t :3, x̂t :3) − k(x̂t :3, x̂R)T K−1k(x̂t :3, x̂R). (8)

The covariance matrix for the training data K is modeled

by the general covariance function

k(x̂r:3, x̂s:3) = a0 exp

(

−
1

2

2
∑

j=0

aj+1(x̂r−j − x̂s−j )
2

)

+

2
∑

j=0

aj+4x̂r−j x̂s−j + σ 2
noiseδrs, (9)

where the hyperparameters aj and σ 2
noise are learned offline1

by minimizing the log likelihood as proposed in Williams

and Rasmussen (1996). Due to computational efficiency, all

parameters of the search space are assumed to be indepen-

dent yielding a one-dimensional prediction for each degree

of freedom.

Since the dynamics are learned online, the prediction

adapts to the current motion but it also might be corrupted by

tracking errors in the past. Hence, we shift only 40% of the

particles according to x
pred

t+1 , another 30% is kept as it is and

30% are mutated. The mutation is motivated by evolutionary

algorithms where a larger variety among a population helps

to recover from errors. We propose two human specific mu-

tation operators as illustrated in Fig. 4. The first swaps two

kinematic branches like the left and the right leg and helps to

recover from ambiguous silhouettes which often occur when

the legs are next to each other. The second is useful when

1The hyperparameters are learned from the sequences shown in rows

2–4 of Fig. 8 in Gall et al. (2008). The sequences differ from the test

sequences in motion, frame rate, and subject.

Fig. 4 Two mutation operators. From left to right: (a) The left branch

(red) and the right branch (blue) are swapped. (b) The left branch (red)

is reconstructed from the right branch (blue) by mirroring the first joint

only one of two legs or arms is well estimated due to occlu-

sions. In order to reconstruct its counterpart, we imitate the

behavior of humans to use their arms or legs to balance. For

this purpose, the first joint of the kinematic branch is mir-

rored while the other joint angles remain unchanged. Even

though the mutated particles will be mostly rejected after the

first iterations of the optimization, they support the tracker

in recovering from errors. Finally, all particles are propa-

gated by a zero-mean Gaussian distribution with covariance

matrix proportional to Σ
pred

t+1 .

The prediction by Gaussian process regression has two

advantages. When the movement is fast or the frame rate is

low, x
pred

t+1 guides some particles towards the next potential

pose such that less iterations are required for optimization

as illustrated in Fig. 5. More important, however, is Σ
pred

t+1

which spreads the particles in the search space before opti-

mization. Without the prediction, it would be necessary to

set Σ
pred

t+1 manually but the optimal values depend on the

motion and the frame rate. GPR provides this information

where the variance becomes larger for fast motions or a re-

duced frame rate. Note that we do not require a first order

Markov process for the transitions as it is usually assumed

for filtering approaches. In our experiments, we have ob-

served that a 3rd order autoregression performs well for hu-

man motion whereas models with higher order improve only

marginally the prediction.
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Fig. 5 Impact of learning the motion model online. From left to right:

(a) To simulate the effect of a fast movement, only every 4th frame is

used, i.e., the frame rate of the camera is reduced from 60 fps to 15 fps.

Since the dynamics are learned online, it takes some frames until good

estimates for x
pred

t+1 and Σ
pred

t+1 are obtained. When the number of it-

erations for ISA remains unchanged, the error increases for the first

frames. After the motion model is learned, the error is comparable to

the 60 Hz sequence. (b) Estimated pose for frame 3 of the 15 Hz se-

quence (frame 10). (c) After 5 frames at 15 Hz (frame 18), the motion

model is learned and the pose is well estimated

Fig. 6 The set of particles converges to the global minimum. The

weighted particles are shown for iterations k = 5, 10, 20, and 35, where

particles with higher weights are brighter

3.2 ISA

The optimization consists of a weighting, a selection, and

a mutation step that are iterated several times. For each it-

eration k, the distribution ηk is approximated by the set of

particles, see Fig. 6. The particles are initialized by the mu-

tation operator from Sect. 3.1 as illustrated in Fig. 2.

Weighting Assuming that a set of particles (x
(i)
k )i=1...n ex-

ists, each particle is weighted by the Boltzmann-Gibbs mea-

sure

π (i) = exp(−βkV (x
(i)
k )), (10)

where βk = (k + 1)b with b = 0.7 is an annealing scheme

that increases monotonically. After normalizing the weights

such that
∑

i π
(i) = 1, the weight indicates the probability

that a particle is selected for the next step.

Selection In a first stage, particles are accepted with proba-

bility π (i)/maxl π
(l), i.e. the particle with the highest weight

is always accepted. Since after this first stage only m parti-

cles are selected, additional n − m particles are drawn in a

second stage, replacing those from the old set. This is effi-

ciently done by stratified resampling (Douc et al. 2005) us-

ing the normalized weights π (i). Due to the selection oper-

ation, similar particles with high weights are contained sev-

eral times in the new set whereas particles with low weights

might disappear completely.

Mutation In order to explore the search space, the particles

are spread out according to a Gaussian Kk whose covariance

matrix is the sampling covariance matrix

Σk =
αΣ

n − 1

(

ρI +

n
∑

i=1

(x
(i)
k − μk)(x

(i)
k − μk)

T

)

(11)

scaled by αΣ = 0.4, where μk is the average, I the iden-

tity matrix, and ρ a small positive constant that ensures that

the covariance does not become singular. The computational

cost is reduced by using a sparse matrix that takes only cor-

relations of joints into account that belong to the same skele-

ton branch. In general, the Gaussian distribution can be re-

placed by any distribution that satisfies the mixing condition

to ensure the convergence on a bounded search space; see

(Gall et al. 2007b) or (Moral 2004).

For a comparison of different annealing schemes and pa-

rameter settings for ISA, we refer to Gall et al. (2007b). The

optimal number of iterations and particles is a trade-off be-

tween accuracy and computation cost, which is discussed in

Sect. 6.

3.3 Energy

As energy function for global optimization, we use

V (x) = νVsilh(x) + τVapp(x) + υVphys(x), (12)

where the parameters ν, τ , and υ control the influence of

the three terms, namely silhouettes, appearance, and physi-

cal constraints that are explained in Sects. 3.3.1, 3.3.2, and

3.3.3, respectively. The impact of the appearance term has

been evaluated in Gall et al. (2007a). Throughout this pa-

per, we use the recommended parameters ν = 2, τ = 40,

and υ = 2.

3.3.1 Silhouettes

In order to model an error function between a particle x

and a silhouette image Iv extracted by background subtrac-

tion, a template image Tv(x) is generated by projecting the
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Fig. 7 From left to right: (a) Template image Tv(x). (b) Silhouette

image Iv . (c) Smoothed a-channel. (d) Smoothed b-channel

surface of the human model that is translated, rotated, and

deformed according to the particle as shown in Fig. 7a. The

inconsistent areas between the silhouette and the template

are then measured for each view v by

Vv(x) =
1

2|T 0
v (x)|

∑

p∈T 0
v (x)

|Tv(x,p) − Iv(p)|

+
1

2|I 0
v |

∑

p∈I 0
v

|Iv(p) − Tv(x,p)|, (13)

where Iv(p) and Tv(x,p) are the pixel values for a pixel p

and the sets of pixels inside the silhouettes are denoted by

I 0
v and T 0

v (x). Since pixels that are far away from the sil-

houette should be penalized more severely, a Chamfer dis-

tance transform (Borgefors 1986) is previously applied to Iv

as shown in Fig. 7b. In the optimal case, the Chamfer dis-

tance transform is also applied to the template Tv(x), but

this would be very expansive since the transform needs to

be computed for each particle. Hence, we use only a con-

stant value where pixels inside the silhouette are set to 0, as

it is the case for the distance transform, and pixels outside

the silhouette have a constant ‘distance’ to compensate for

the differences between the error of the first and the second

term of (13). In our experiments, we have found that a value

of 8 is a proper compensation factor. The energy term Vsilh

is finally defined as the average error of all views.

3.3.2 Appearance

To obtain an appearance model that is robust to 3D rota-

tions, we combine the pixel information from all views to

model the statistics of different body parts rather than their

separate projections to the images. Since the L-channel of

the CIELab color space is very sensitive to illumination

changes, we use only the a- and b-channel, see Fig. 7. Fur-

thermore, we assume the image channels uc to be uncor-

related for efficiency reasons. Hence, the joint probability

density function for a body part s can be written as

ps(u) =
∏

c

ps,c(uc). (14)

Instead of assuming a certain family of distribution func-

tions, we approximate the probabilities ps,c in a more gen-

eral manner by normalized histograms H (s,c) where we

fixed the number of bins to K = 64.

In order to measure deviations of the appearance of a par-

ticle x from the appearance model given by H (s,c), the par-

ticle’s appearance H̃ (s,c)(x) is estimated by sampling from

all views. For this purpose, the triangles of the human model

are used to encode the body parts of the projected surface as

shown in Fig. 2a. Hence, a pixel p that belongs to a body part

s contributes for each channel uc to the histogram H̃ (s,c)(x).

For histogram comparison, we choose the Bhattacharya dis-

tance since it is also stable for empty bins in contrast to

χ2-statistics or Kullback–Leibler divergence (Puzicha et al.

1999). The total deviation is then measured according to

(14) by

Vapp(x) =
∑

s

ws

C

C
∑

c=1

(

1 −

K
∑

k=1

√

h
(s,c)
k h̃

(s,c)
k (x)

)

, (15)

where the weights ws reflect the size of the body parts and

are determined during initialization, see Sect. 3.4. In gen-

eral, the appearance model needs to be updated during track-

ing. However when the lighting conditions are controlled as

it is the case for the HumanEva-II dataset, an update is

not necessary.

3.3.3 Physical Constraints

Since human motion is subject to physical restrictions like

anatomical constraints and self-intersections, the search can

be focused on poses with higher probabilities by adding a

soft constraint to the energy function. For this purpose, the

probability of a skeleton configuration ppose is estimated

from a set of training samples yl taken from the CMU mo-

tion database (CMU 2007). Since self-intersections between

the head, the upper body, and the lower body rarely occur,

the sample size L can be reduced by regarding the proba-

bilities for the three body parts, denoted by phead
pose , p

upper
pose ,

and plower
pose , as uncorrelated. The probability for a body part

is approximated by a Parzen-Rosenblatt estimator with a

Gaussian kernel K :

ppose(x) =
1

Lhd

∑

l

K

(

x − yl

h

)

, (16)

where the d-dimensional vectors x and yl contain only the

joint angles for the body part. The bandwidth h is given
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Fig. 8 Initialization. From left to right: (a) The search space is

bounded by a cube. (b) The initial set of particles is randomly distrib-

uted around the center of the cube. (c) The pose is correctly initialized

after 35 iterations. Intermediate steps are shown in Fig. 6

by the maximum second nearest neighbor distance between

all training samples. Finally, we used less than 200 samples

from different motions for modeling the physical constraints

by

Vphys(x) = −
1

3
ln(phead

pose (x)pupper
pose (x)plower

pose (x)). (17)

Although the term Vphys is only a weak prior, it might still

introduce some bias that is reduced by the second layer.

3.4 Initialization

For finding the initial pose, ISA searches for the global min-

imum of the energy function defined in (12) where only the

terms Vsilh and Vphys are used since the appearance of the

model is unknown a priori. To this end, the search space

is bounded by a cube that is determined by the silhouettes,

where the intersections of the projection rays of the silhou-

ettes’ bounding boxes are the corners of the cube (Gall et al.

2007c). The particles are then randomly distributed around

the center of the cube and optimized by ISA, see Fig. 8. Fi-

nally, the pose is refined by local optimization as discussed

in Sect. 5.2. After the pose x̂0 is estimated for the first frame,

the histograms H (s,c) are generated by sampling from the

images as described in Sect. 3.3.2. During sampling, the

range of each feature channel is also determined and divided

into uniform bins. Furthermore, the weights ws in (15) are

given by the sample size for each body part s after normal-

izing such that
∑

s ws = 1.

4 Smoothing

Using the noisy mean estimates x̂t from global optimiza-

tion as observations instead of images, the filtering problem

specified by (1) and (2) is simplified such that ht becomes

the identity map. In addition, for considering the solutions

of many frames for smoothing and not only a single one, we

formulate the filtering as a regression problem.

As outlined in Fig. 1, the second layer refines the es-

timates x̂t from global optimization with a short delay of

d ≥ 0 frames by means of local optimization, as described

later in Sect. 5. This yields more precise estimates xt . We

propose to couple regression and local optimization. Having

R estimates

xt−R, . . . , xt−d−1, x̂t−d , . . . , x̂t , (18)

we seek the function f that provides a smoothed version for

frame t −d , i.e. xsmooth
t−d = f (t − d). Since the refined values

xt should have more impact in the regression than the values

x̂t , we add a binary indicator variable it as additional dimen-

sion to the input space. it = 1 indicates that the estimate has

been already refined. The regressor f (t, it ) is then learned

from the data

xt−r = f (t − r,1) for r = R . . . d − 1, (19)

x̂t−r = f (t − r,0) for r = d . . .0. (20)

Similar to the prediction in Sect. 3.1, we apply Gaussian

process regression. Let t := (t, it ) and tR := (t−R, . . . , t)T .

The smoothed estimate is then given by the mean

xsmooth
t−d = k((t − d,1), tR)T K−1f (tR), (21)

where the covariance matrix K is modeled by

k(t − r, t − s)

= a0 exp

(

−
1

2
(a1(r − s)2 + a2(it−r − it−s)

2)

)

+ σ 2
noiseδrs . (22)

The hyperparameters are learned offline as explained in

Sect. 3.1. Since the correlation depends only on the tem-

poral distance but not on the current value of t , K−1 needs

to be calculated only once for a fixed number of training

data R. Basically the regression comes down to linear fil-

tering with an asymmetric filter mask and the weights being

learned from training data. Figure 9 shows the impact of d

where we use R = 10 + d .

In general, a Kalman or particle filter could also be used

for smoothing. However, the parameters need to be learned

as well and we have not observed a significant improvement

when the smoothing is performed with only a short delay.

5 Local Optimization

After smoothing, the accuracy of the estimated pose is in-

creased by local optimization. Since the silhouettes from

background subtraction often contain severe artifacts like

shadows and holes, we improve the quality of the silhou-

ettes by local segmentation before optimizing the pose, see
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Fig. 9 Impact of smoothing.

From left to right: (a) The

smoothing reduces the jitter

from global stochastic

optimization. (b) The absolute

tracking error of the second

layer with respect to the

introduced delay d (Frames

2–821 of sequence S4). The best

result is achieved with a delay

of only 5 frames. This

corresponds to a delay of 83 ms

for a sequence with 60 fps. For

d = 0, the estimates are filtered

without delay

Fig. 10 From left to right: (a) Silhouette from background subtraction.

(b) Estimate from global optimization. (c) Silhouette from level-set

segmentation. (d) Improved estimate by local optimization. The right

and left arms are better estimated

Fig. 10. The smoothed pose xsmooth
t−d serves both as shape

prior for the segmentation and as initial estimate for local

optimization.

5.1 Local Segmentation

The silhouette of the human is extracted by a level-set seg-

mentation that divides the image into fore- and background

where the contour is given by the zero-line of a level-set

function Φ . As proposed in Rosenhahn et al. (2007b), the

level-set function Φ is the minimum of the energy functional

E(Φ) = −

∫

�

H(Φ) lnp1 + (1 − H(Φ)) lnp2dx

+ ϑ

∫

�

|∇H(Φ)|dx + λ

∫

�

(Φ − Φ0))
2dx, (23)

where H is a regularized version of the Heaviside step func-

tion. The probability densities of the fore- and background,

p1 and p2, are modeled by local Gaussian densities using

the color channels L, a, and b that are assumed to be in-

dependent as in (14). While the first term maximizes the

likelihood, the second term, weighted by the fixed parame-

ter ϑ = 2, regulates the smoothness of the contour. The last

term penalizes deviations from the projected surface of the

smoothed pose xsmooth
t−d given as level-set function Φ0, where

the influence of the shape prior is controlled by the para-

meter λ = 0.08. For minimizing (23), local optimization is

performed with gradient

∂kΦ = H ′(Φ)

(

log
p1

p2
+ ϑ div

(

∇Φ

|∇Φ|

))

+ 2λ(Φ0 − Φ) (24)

and Φ0 as initial estimate.

5.2 Pose Estimation

The pose xsmooth
t−d is finally refined by an iterated closest point

(ICP) approach. To this end, 2D-2D correspondences be-

tween the zero-level of Φ and Φ0(x
smooth
t−d ) are established

by a closest point algorithm (Zhang 1994). Since the points

on the contour of the projected surface of xsmooth
t−d relate to

3D vertices of the mesh, 3D-2D correspondences between

the model and the image can be derived. According to ICP,

the pose estimation is performed iteratively where the set of

correspondences is updated after each optimization until the

pose converges to a local minimum.

For estimating the pose, we seek for the relative trans-

formation that minimizes the error of given 3D-2D corre-

spondences denoted by pairs (Xi, xi) of homogeneous coor-

dinates. A suitable representation for local optimization are

twists θ ξ̂ (Bregler et al. 2004) that express 3D rigid motions

as M = exp(θ ξ̂ ). A joint j is modeled as zero-pitch screw

around a given axis, i.e., the joint motion depends only on

the rotation angle θj . Hence, a transformation of a point Xi

on the limb ki influenced by nki
joints is given by

X′
i = M(θξ̂)M(θιki (1)) . . .M(θιki (nki

))Xi, (25)

where the mapping ιki
represents the order of the joints in

the kinematic chain. Since each 2D point xi defines a projec-

tion ray that can be represented as Plücker line Li = (ni,mi)
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(Stolfi 1991), the error of a pair (X′
i, xi) is given by the

norm of the perpendicular vector between the line Li and

the point X′
i

‖Π(X′
i) × ni − mi‖2, (26)

where Π denotes the projection from homogeneous coordi-

nates to non-homogeneous coordinates. Using the Taylor ap-

proximation exp(θ ξ̂ ) ≈ I + θ ξ̂ , where I denotes the identity

matrix, (25) can be linearized. Hence, the sought transfor-

mation is obtained by solving the linear least squares prob-

lem

1

2

∑

i

∥

∥

∥

∥

∥

Π

((

I + θ ξ̂ +

ni
∑

j

θιki (j)ξ̂j

)

Xi

)

× ni − mi

∥

∥

∥

∥

∥

2

2

, (27)

i.e. by solving a system of linear equations.

In order to penalize strong deviations from xsmooth
t−d and

to avoid an underdetermined system, we extend the linear

system by an additional equation

αθj = α(θ smooth
j − θ̃j ) (28)

for each joint j , where θ̃j is the previously estimated ab-

solute joint angle. The parameter α is set relative to the num-

ber of correspondences to achieve a constant weighting for

each frame. In practice, we use α = 0.2 · |{(Xi, xi)i}|. Since

the local optimization provides only a relative transforma-

tion, the refined pose xt−d is obtained by applying the rel-

ative transformation to the previously estimated pose. We

remark that the particular choice of the parameters for local

segmentation and optimization influences only marginally

the results of the second layer. The values therefore remain

fixed in our experiments.

6 Experiments

For an experimental evaluation of the proposed multi-layer

framework, we use the HumanEva-II dataset (Sigal and

Black 2006) that contains two sequences that were captured

by 4 calibrated cameras with resolution of 656 × 490 pixels

and 60 fps. The ground truth has been obtained by a marker-

based motion capture system that was synchronized with the

cameras. The sequences show two different subjects S2 and

S4 performing the motions walking, jogging, and balancing.

We use the 3D surface mesh model that is available for sub-

ject S4 and does not contain the clothing. Both sequences S2

and S4 are tracked with this model although the mesh model

does not fit subject S2 as shown in Fig. 19. Furthermore, we

reduced the number of triangles to 5000 and added a skele-

ton with 28 degrees of freedom to the mesh. Since not all 20

points of the 3D pose from the marker-based system relate to

joints of our mesh, we have used the first frame of each se-

quence to register the 3D markers of the ground-truth to our

mesh. In Fig. 12, the registered markers are shown by red

dots and the joint locations by blue dots. For computing the

2D and 3D error, we take the joint locations of the model, if

they are available. Otherwise we use the registered markers.

Since the joint locations of subject S4 do not fit subject S2,

we have used only the registered markers for S2. In order

to register the 3D markers as accurately as possible to the

model, we have manually segmented the first frame and es-

timated the initial pose as described in Sect. 3.4. We remark

that not only the tracking and initialization contribute to the

overall error, but also the registration and the marker-based

system introduce some errors. Hence, the reported errors

should be regarded only as upper bounds that allow compar-

ison of different approaches. The experiments are split into

two sections. While Sect. 6.1 compares filtering approaches

to optimization approaches, Sect. 6.2 demonstrates the per-

formance of the proposed multi-layer framework.

6.1 Optimization vs. Filtering

We have compared interacting simulated annealing (ISA)

to local optimization (ICP), a standard particle filter (PF)

(Doucet et al. 2001), a variant of the smart particle filter

(PFICP) (Bray et al. 2007), and the annealed particle fil-

ter (APF) (Deutscher and Reid 2005). The comparison is

performed on the first 820 frames of sequence S4 using the

absolute 3D error as measurement (Sigal and Black 2006).

Since the ground truth is corrupted for the frames 298–335,

these frames are neglected in the error analysis. For local

optimization, we apply the iterative closest point approach

described in Sect. 5.2 to the silhouettes obtained by back-

ground subtraction, where the prior on physical constraints

(16) is integrated according to Brox et al. (2006). ISA, PF,

and APF use the same energy model defined in Sect. 3.3.

For the particle filter, we employ the weighting function (10)

with βt = 1. This is similar to the assumption that the like-

lihood is proportional to a product of normal densities. The

particles are predicted as described in Sect. 3.1 without us-

ing the mutation operator since it is not supported by a fil-

tering framework, i.e., 50% of the particles are shifted ac-

cording to the predicted mean and the remaining 50% are

directly selected. While ISA and APF are executed with 250

particles and 15 iterations, which are called layers for APF,

we set the number of particles to 3750 for the particle fil-

ter to obtain the same computational cost. Though the smart

particle filter as proposed in Bray et al. (2007) uses sto-

chastic meta descent (SMD) (Schraudolph 1999) for local

optimization, any local optimization like ICP can be used

in principle. Since our ICP implementation is slower than

SMD, we use 16 particles for PFICP to achieve the same

computation time as PF according to Bray et al. (2007).
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Fig. 11 Comparison between filtering and optimization approaches.

Global stochastic optimization (ISA) provides the best estimates

whereas the standard particle filter (PF) and local optimization (ICP)

perform poorly. The annealed particle filter (APF) performs better than

a combination of particle filtering with local optimization (PFICP) pro-

vided that the parameter for adaptive diffusion is well chosen. Other-

wise, the error for APF becomes very large. The detailed errors with

standard deviations are listed in Table 1

Since neither PF, APF, PFICP, nor ICP are suitable for ini-

tialization, the initial pose is provided by ISA.

The errors are plotted in Figs. 11 and 12. It shows that

the global stochastic optimization approach clearly outper-

forms the local optimization and the particle filter. While

ICP gets stuck in local minima, the estimates of PF are im-

precise. The annealed particle filter performs better than the

standard particle filter but it still produces two severe errors.

This is reflected in the standard deviation for APF given in

Table 1, which is large in comparison to ISA that performs

very well for the entire sequence. The result that APF per-

forms better than PF seems to contradict the comparison in

Balan et al. (2005) where only slightly better results were

obtained by APF. The outcome of APF, however, depends

strongly on the parameter for adaptive diffusion (Deutscher

and Reid 2005) which was not implemented in the previous

comparison. The errors for two different settings, namely

0.4 (APF*) and 0.2 (APF), are plotted in Fig. 11. PFICP

does not necessary improve ICP where the best result has

been achieved with a very large window size for estimat-

ing the correction factor. Approaches like PFICP are in gen-

eral relatively inefficient since the additional optimization

step limits the number of particles such that a good approx-

imation of a distribution is infeasible. Furthermore, a lot of

computation time is wasted when the particles migrate to the

same local minimum.

The performance of APF and ISA on a very fast sequence

has been evaluated by reducing the frame rate from 60 fps

to 15 fps. For the comparison shown in Fig. 13, the parame-

ters for both algorithms are unchanged. While ISA performs

Fig. 12 Top: Absolute 3D errors for frames 2–821 of sequence S4.

While the estimates of the particle filter (PF) are imprecise, local opti-

mization (ICP) gets stuck in local minima. The annealed particle filter

(APF) contains two severe errors (>100 mm) around frames 440 and

590 yielding a large standard deviation, see Table 1. Global stochastic

optimization (ISA) performs very well for the entire sequence. Bottom:

Estimates for frame 580 by PF, ICP, APF, and ISA (from left to right).

ICP fails to track the right arm and the legs are disarranged by the APF

Table 1 Averages and standard deviations of the absolute tracking er-

ror for frames 2–821 of sequence S4. ISA shows clearly the best results

where the standard deviation is significantly lower than for APF

Error (mm) PF ICP PFICP APF ISA

avg 104.61 63.86 69.70 44.15 38.58

std dev 40.77 27.07 24.75 15.39 6.54

very well for 60 Hz and 15 Hz, the error for APF increases

by more than 30% when the speed is quadrupled. It might

be that the result of APF can be improved by optimizing the

parameter for adaptive diffusion on 15 Hz but it is clear that

the faster the motion is the more important global optimiza-

tion becomes.

Although the optimal numbers of particles and iterations

for ISA are trade-offs between accuracy and computation
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cost, Fig. 14 shows that large numbers of iterations and par-

ticles improve the estimates only marginally. Indeed, the er-

ror drops until 200 particles and 15 iterations, however after

30 iterations the absolute error is still 36.75 mm. For com-

parison, an error of 38.58 mm is obtained by 15 iterations.

This indicates that ISA provides estimates near the global

optimum in reasonable time, but when more precise esti-

mates are required the ratio between accuracy and computa-

tion cost is unsatisfactory.

6.2 Multi-layer

For evaluating the performance of the proposed multi-layer

framework, the absolute 3D tracking errors are measured for

the entire sequence S4 that consists of 1257 frames. Fig-

ure 15 shows that the second layer increases the accuracy

of the estimates from the first layer, where 250 particles and

15 iterations are used for ISA and the second layer refines

Fig. 13 The effect of a very fast movement is simulated by using only

every 4th frame of sequence S4 (frames 2–821). This corresponds to

a walking and running sequence recorded with 15 fps. While the error

increases slightly by 4.68% to 40.39 mm for ISA, the error for APF

rises to 57.63 mm by 30.5%

the estimates with a delay of 5 frames. In particular, the

largest error around frame 380 is significantly reduced by

the second layer. This is reflected by the results given in Ta-

ble 2, where the average error is reduced by 15.9% and the

standard deviation by 22.4%. The second layer clearly pro-

vides more precise estimates, which cannot be achieved by

an increased number of particles and iterations in reason-

able time; see Fig. 14. Our current implementation requires

76 seconds per frame for the first layer and 48 seconds per

frame for the second layer on a standard computer whereas

ISA with 30 iterations would require 152 seconds per frame.

The errors and quantiles for individual joints are provided

in Fig. 17. The quantiles show that most joints, particularly

the knees, are very well estimated. It also reveals that the

limb extremities, namely wrists and ankles, are more diffi-

cult to track since hands and feet are relatively small body

parts. The lower quantiles indicate the registration errors of

the joint positions, particularly of the ankles. Since the dis-

tances between the upper and lower quantiles for the wrists

and ankles are similar, the larger error of the ankles might

be explained by the registration error.

We have also evaluated the impact of coupling local op-

timization and smoothing for the second layer, which per-

forms better than each of these steps alone. This is shown

in Fig. 16. Tables 2 and 3 reveal that the accuracy is pri-

marily increased by local optimization whereas smoothing

reduces the jitter, as indicated by the decreased standard de-

viation. The best results for the second layer were achieved

with a short delay of 5 frames as plotted in Fig. 9. Even

Table 2 Averages and standard deviations of the absolute tracking er-

ror for the complete sequence S4 (frames 2–1258). The error of the

first layer using only global optimization is significantly reduced by

the second layer. Clearly, a coupling of smoothing and local optimiza-

tion provides more precise results than each of them alone

Error (mm) Layer1 L1 + Smooth L1 + LocOpt L1 + Layer2

avg 38.07 35.58 33.23 32.01

std dev 5.84 5.09 5.08 4.53

Fig. 14 Absolute tracking error

of global optimization for

frames 2–821 of sequence S4.

Large numbers of iterations and

particles improve the estimates

only marginally. From left to

right: (a) Error with respect to

the number of particles using 15

iterations. (b) Error with respect

to the number of iterations using

250 particles
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Table 3 Averages and standard deviations of the absolute tracking er-

ror for the complete sequence S2 (frames 1–1202)

Error (mm) Layer1 L1 + Smooth L1 + LocOpt L1 + Layer2

avg 43.82 41.44 39.20 37.53

std dev 10.65 9.67 10.05 9.00

Fig. 15 Absolute tracking error for the sequence S4 (frames 2–1258).

The second layer reduces jitter and increases the accuracy of the esti-

mates from the first layer. In particular, the largest error around frame

380 is significantly reduced by the second layer

Fig. 16 A comparison of the average errors for the complete se-

quences S2 and S4 shows the improvements of our multi-layer frame-

work. The detailed errors with standard deviations are given in Tables 2

and 3

without delay, the error is slightly reduced compared to ap-

plying only local optimization. The computation times are

listed in Table 4. For convenience, we also provide the error

of the second layer in Table 5 when a particle filter approach

is used as first layer.

Table 4 Overall computation time on a standard PC for a frame with

4 images

Layer1 L1 + Smooth L1 + LocOpt L1 + Layer2

sec/frame 76 76 124 124

Table 5 Averages and standard deviations of the absolute tracking er-

ror for frames 2–821 of sequence S4. The second layer (L2) improves

the results for all sampling approaches. The results without the second

layer are given in Table 1

Error (mm) PF + L2 PFICP + L2 APF + L2 ISA + L2

avg 82.70 58.38 37.26 32.49

std dev 43.77 25.32 14.67 5.21

Fig. 17 Average errors and 0.025-quantiles for individual joints ob-

tained by the multi-layer framework on the entire sequence S4. While

the knees are very well estimated, the error bars for the limb extremities

such as wrists and ankles are larger than for other joints. The quantiles

of the ankles indicate that the ankle joints are not well registered

We further applied the multi-layer framework to se-

quence S2 that consists of 1202 frames. Since we use the

3D surface mesh model of subject S4, the model does not

fit subject S2, see Fig. 19. Nevertheless, competitive results

are obtained even though the error is larger by 6 mm than

for sequence S4, see Tables 2 and 3. The increase of the er-

ror seems to be mainly caused by the wrong model since the

camera setting and movement are very similar to S4. Particu-

larly, the elbow joints of the model are at the wrong position

which causes problems when the elbows are angled. This

indicates that our approach would also work with a generic

surface model like the SCAPE model (Anguelov et al. 2005;

Balan et al. 2007). However, it also reveals that the quality

of the surface mesh has a significant impact on the accuracy

of the estimates.

The influence of a strong prior is demonstrated in Fig. 18.

To this end, we learned the physical constraints of the head

movement only by joint samples around zero. While the es-

timates from the first layer are biased towards the training

data and do not fit the image data, the second layer reduces

the bias since it does not rely on the prior. We emphasize that
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Table 6 3D and 2D errors for subject S2. Accurate results are obtained by our multi-layer framework although the sequence has been tracked

with a wrong surface mesh model, see Fig. 19

♯Layers Dataset 3D (mm) 2D/C1 (pix) 2D/C2 (pix)

Absolute Relative Absolute Relative Absolute Relative

1 Set1 (1–350) 41.50 ± 7.98 45.78 ± 9.00 5.45 ± 1.49 5.85 ± 1.74 5.54 ± 1.78 5.66 ± 1.84

2 Set1 (1–350) 32.23 ± 5.71 33.49 ± 6.03 4.10 ± 1.11 4.24 ± 1.25 4.38 ± 1.36 4.28 ± 1.33

1 Set2 (1–700) 45.04 ± 12.85 48.36 ± 13.68 5.79 ± 1.89 6.04 ± 2.04 6.07 ± 2.35 6.22 ± 2.41

2 Set2 (1–700) 35.86 ± 10.73 37.62 ± 11.42 4.49 ± 1.44 4.65 ± 1.55 4.85 ± 1.86 4.92 ± 2.01

1 Set3 (1–1202) 43.82 ± 10.65 46.57 ± 11.44 5.61 ± 1.57 5.89 ± 1.71 5.95 ± 1.91 6.14 ± 1.96

2 Set3 (1–1202) 37.53 ± 9.00 39.36 ± 9.70 4.77 ± 1.25 4.99 ± 1.34 5.13 ± 1.55 5.25 ± 1.69

Table 7 3D and 2D errors for subject S4. The frames 298–335 are neglected since the ground truth is corrupted for these frames

♯Layers Dataset (Frames) 3D (mm) 2D/C1 (pix) 2D/C2 (pix)

Absolute Relative Absolute Relative Absolute Relative

1 Set1 (2–350) 34.59 ± 4.63 43.93 ± 8.24 4.48 ± 1.00 5.66 ± 1.69 4.17 ± 0.72 4.93 ± 1.17

2 Set1 (2–350) 27.65 ± 2.96 33.91 ± 4.97 3.58 ± 0.74 4.40 ± 1.03 3.35 ± 0.51 3.91 ± 0.86

1 Set2 (2–700) 38.53 ± 6.90 47.00 ± 10.60 5.14 ± 1.30 6.22 ± 1.90 5.01 ± 1.38 5.70 ± 1.76

2 Set2 (2–700) 32.14 ± 5.42 37.31 ± 6.55 4.34 ± 1.05 5.04 ± 1.21 4.24 ± 1.14 4.72 ± 1.35

1 Set3 (2–1258) 38.07 ± 5.84 45.25 ± 9.13 5.25 ± 1.17 6.12 ± 1.62 5.00 ± 1.12 5.71 ± 1.53

2 Set3 (2–1258) 32.01 ± 4.53 36.01 ± 5.79 4.42 ± 0.92 4.99 ± 1.04 4.30 ± 0.93 4.71 ± 1.10

Fig. 18 Biased estimates. Top: When the physical constraints are mod-

eled by a strong prior, the estimates are biased towards the training

data. For this example, only joint samples around zero have been used.

Since the second layer does not make use of the prior, the bias is re-

duced. Bottom: Biased estimate of the head by the first layer (left). The

estimate of the second layer better fits the image data (right)

the bias is not completely removed, since the second layer is

initialized by the estimates of the first layer, but the example

shows that the estimates of our multi-layer framework better

fit the image data.

In order to allow comparison to other approaches that

have not been mentioned in this section, we provide vari-

ous error metrics for the sequences S2 and S4 in Tables 6

and 7. Each sequence is split into three sets, where the first

set contains only the walking motion, the second the walk-

ing and jogging motion and the third set the entire sequence

consisting of walking, jogging, and balancing. The average

errors and standard deviations are given for global stochas-

tic optimization (one layer) and the multi-layer framework

(two layers). The 2D errors are computed for cameras C1

and C2. The relative error is computed with respect to the

pelvis joint. For a detailed description on the error metrics,

we refer to Sigal and Black (2006). We remark that the rel-

ative error is higher than the absolute error. This indicates

that the marker for the pelvis joint has not been accurately

registered to the surface mesh model. In addition, some es-

timated human body poses of the multi-layer framework are

shown in Figs. 19 and 20.

7 Discussion

In this work, we have compared optimization and filtering

approaches for model-based human motion capture that do
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Fig. 19 Estimates for subject S2. Note that the arms of the surface

mesh model are too short, since the model of subject S4 has been used

for tracking (top left). From top left to bottom right: The meshes of the

estimates are projected on the images of camera C1 for frames 100,

200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, and 1200

not rely on prior knowledge on the dynamics. A quantitative

error analysis has revealed that a recently proposed stochas-

tic optimization technique (ISA) provides significantly bet-

ter estimates than an iterative closest point approach, a stan-

dard particle filter, a variant of the smart particle filter, or the

annealed particle filter. While ISA provides robust and rela-

tively accurate estimates of the human pose, an even higher

precision is only achieved at the expense of high compu-

tational cost. To address this problem, we have introduced

a multi-layer framework that combines the advantages of

global stochastic optimization, local optimization, and fil-

tering. While the first layer relies on ISA, the second layer

refines the estimates where filtering and local optimization

are coupled. The second layer not only increases the accu-

racy, but also reduces jitter and potential bias from the first

layer. The latter is an important issue particularly in medical

applications. In practice, the two layers can be run in par-

allel such that the processing time is not increased. So far

real-time performance cannot be achieved, but we intend to

reduce the computation time further by exploiting the paral-

lel structure of ISA and graphics hardware.

Since the described approach is based on a fixed sur-

face model, its general applicability is still limited. Although

good results are obtained even with a wrong surface model,
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Fig. 20 Estimates for subject S4. From top left to bottom right: The meshes of the estimates are projected on the images of camera C2 for frames

100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, and 1200

we have demonstrated that the quality of the surface mesh

has an impact on the accuracy of the estimates. A solution

to be investigated in future works might be to adapt a generic

human model to the image data. The framework could also

be combined with motion priors which might be useful in

monocular scenarios. The multi-layer framework is appeal-

ing in this case, since the motion priors would reduce the

search space for ISA and the second layer would be neces-

sary to reduce the bias introduced by the priors.
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