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Abstract: Additional degrees of freedom in a fractional-order control strategy for power electronic
converters are well received despite the lack of reliable tuning methods. Despite artificial/swarm
intelligence techniques have been used to adjust controller parameters to improve more than one
characteristic/property at the same time, smart tuning not always leads to realizable structures or
reachable parameter values. Thus, adjustment boundaries to ensure controller viability are needed.
In this manuscript the fractional-order approach is described in terms of El-Khazali biquadratic
module, which produces the lowest order approximation, instead of using a definition. A two-modes
controller structure is synthesize depending on uncontrolled plant needs and parameters are adjusted
through particle swarm and genetic optimization algorithms for comparison. Two error-based
minimization criteria are used to consider output performance into the process. Two restrictions
complement the optimization scheme, one seeks to ensure desired robustness while the other prevents
from synthesizing a high-gain controller. Optimization results showed similarity between minima
obtained and significant difference between parameters of those controller optimized without the
proposed constraints was determined. Numerical and experimental results are provide to validate
proposed approach effectiveness. Effective regulation, good tracking characteristic and robustness in
the presence of load variations are the main results.

Keywords: fractional control; DC-DC converters; optimization algorithms; particle swarm algorithm;
fractional-order implementation

1. Introduction

Power electronic converters (PECs) main purpose is to modify power signal charac-
teristics to those required by a specific machine or device. Direct current to direct current
(DC-DC) conversion is one of the most relevant functionalities of PECs, since they are not
only used in low/high power industrial and household applications, but also employed in
biomedical devices for health care through diagnosis, treatment and rehabilitation.

DC-DC buck converter plays a key role in biomedical devices, whose power sub-
systems have to perform energy harvesting, storage, and management tasks efficiently
within a limited space, commonly at micro/nano scale. Pacemakers, defibrillators, cochlear
processors, retinal stimulators, neural recording and body-area monitoring are on-chip
devices with highly limited energy sources, which are deeply benefited by the improve-
ment of existing techniques and alternative proposal for controlling PECs [1–4]. Some
other application of DC-DC buck converter include battery charging [5], renewable energy
conversion systems [6], microgrids [7], regulated power sources [8], LED lightning [9] and
DC motor drives [10].

In the last decade, a popular line of action to achieve voltage regulation on PECs is to
consider a known control strategy that is adapted to integrate fractional calculus to its de-
scription in combination with techniques such as Artificial Neural Networks (ANN), Fuzzy
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Logic (FL) or Deep Learning (DL) from artificial intelligence or optimization algorithms
(OA) to be used as tuning method. This approach seeks to improve controller performance
through the appropriate choice of its parameters. Bio-inspired optimization algorithms
such as Particle Swarm (PSOA), Whale (WOA), Bat (BOA), Black Widow (BWOA), Evolu-
tionary (EOA) or Genetic (GOA) are the most commonly used due to their simplicity and
physical interpretation.

Fractional calculus integration into control of dynamic systems has been well received
due to the theoretical development that made its interpretation, approximation and re-
alization possible. The PECs field has benefited from the fractional-order control (FOC)
development, which derived in more accurate and flexible/robust strategies [11,12] or
more precise controllers [13,14].

Some resent and relevant results on FOC applied to PECs can be summarized as
follows: highly sophisticated proposals that included either fuzzy- or MPPT-based PID
controllers were suggested in [15,16] to deal with disturbances and uncertainties when
regulating output voltage in a buck converter. In addition, controller parameters tuning
was performed through optimization algorithms. The combination resulted in effective reg-
ulation and suppression of instability effects caused by a constant power load of microgrids.
In [17] an anti windup controller based on the fractional PI structure was investigated.
The approach was proposed to control a motor through a buck converter for low speed
applications. Benefits of the proposal were a softer switching pulse, superior tracking speed,
steady-state reduction and wind up phenomena removal. In [18], a fractional PI controller
was proposed to regulate output voltage in a buck converter. The non-integer structure
was used to eliminate steady-state error and oscillations. Response rate convergence was
enhanced by cascading the fractional PI with a compensator of fuzzy-logic nature. A PSOA
was used to determine parameters of the combined control strategy. Minimum error and
improved disturbance-rejection capability were the main results.

In [19], artificial ecosystem optimization algorithm and Nelder-Mead simplex method
were combined to optimize parameter values of a fractional-order PID structure to regulate
output voltage in a buck converter. Error-based minimization criteria were proposed to
ensure output performance. Transient and frequency response enhancement were the
main benefits from the approach. In [20], the improved hunger games search optimization
algorithm was used to determine fractional PID parameters to achieve voltage regulation in
a buck converter. Oustaloup recursive approximation was suggested to achieve controller
implementation. Enhanced transient, robustness against load variations, uncertainties and
noise were the most relevant results produced by the proposal. In [21], a general structure of
fractional-order PID controller was suggested to regulate output voltage in a buck converter.
Controller parameters were chosen in an optimization scheme that included disturbance
rejection and robustness criteria that were maximized by combining Lévy flight distribution
and simulated annealing algorithms. Short transient, good disturbance rejection and a
better closed-loop response were the improvements.

A fractional sliding and fractional-terminal sliding mode controllers with back-stepping
and reset control for regulating voltage in a buck converter were proposed in [22,23]. De-
signed controllers considered uncertainties rejection, non-linear loads and non-modeled
dynamics. Steady-state error reduction, perturbation rejection enhancement and L2-stability
in Lyapunov sense were the main results. A backstepping-based control, in combination
with the ANN technique to estimate controller parameters, was investigated in [24]. Con-
stant and stable voltage supply and good disturbance rejection were the improvements.

In [25], the common fractional-order pole/zero placement through k-factor-based
approach was investigated to control the buck converter output. By using a classical
structure of compensator to represent the controller, stability region can be extended or
simply guaranteed by establishing phase margin. The main improvement was robustness
against load variations and parametric uncertainties.

In a different approach but considering the fractional representation of the system
to be controlled, Refs. [26–28] proposed the Caputo or Grünwald-Letnikov fractional
definitions to integrate the non-integer representation of a system into the control scheme.
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As was expected, the controller design, which was called the constrained approach, have to
considered additional restrictions to ensure basic properties such as stability in the sense of
Lyapunov and controllability. By defining either a state feedback or a predictive control
scheme effective convergence to the desired value and stability were corroborated.

Two paths can be distinguished from the way in which the above described works
addressed the non-integer order approach. On one hand, by using a fractional-order defi-
nitions to describe derivatives/integrals, among which one can find Riemann-Liouville,
Caputo, Grünwald-Letnikov, Liouville, Weyl, Marchaud, Hadamard, Chen and Atangana-
Baleanu [29], to mention the most relevant, being Riemann-Liouville, Caputo and Grünwald-
Letnikov the most employed. On the other hand, an alternative way is to approximate the
Laplacian operator through integer-order transfer functions. Some of the most used approx-
imation techniques are Carlson [30], Oustaloup [31], refined Oustaloup [32], Charef [33]
and El-Khazali [34,35], among others. Industry and applied researchers main concern
is the way fractional-order models are implemented. Non-integer order approximation
through high order transfer function might represent a viable option that would lead to
realizable models.

Physical implementation of fractional-order PI/PD/PID controllers can be achieved
by approximating its structure through rational functions of polynomials, whose partial
fraction expansion can be generated with a three- to five-term electrical arrangement by
using RC networks and operational amplifiers.

In this manuscript optimization impact over the implementation viability of a fractional-
order approximation of two-modes controller is analyzed. Bio-inspired optimization al-
gorithms will be used to determine controller parameters. Two different error-based
minimization criteria are used to consider performance of system’s output into the process.
To complete the optimization scheme, robustness and controller implementation viability
were integrated through two relevant optimization restrictions, which consider acceptable
closed-loop phase margin and limits the controller phase contribution to what is necessary
to reach it, thus avoiding the synthesis of high-gain controllers. Controller structure will be
chosen according to system’s needs by combining proportional mode with either derivative
or integral one to achieve voltage regulation at the plant’s output. Effectiveness of resulting
controller is validated numerically and experimentally.

The manuscript is organized as follows: in Section 2 necessary preliminaries on the
three topics that are included in this work are described. Brief review on DC-DC buck
converter operation and its model are provided in this section. The biquadratic module
to approximate the controller fractional order and the optimization scheme are explained
in this section as well. Results of the optimization process and numerical simulation of
the electrical behavior predicting its impact on the controller realization are explained in
Section 3. Experimental validation corroborating effectiveness of the proposed approach
is provided also in this section. Some discussion on the relevance and effectiveness of
obtained results are provided in Section 4. Lastly, conclusion on the results presented and
some future directions of this work are provided in Section 5

2. Materials and Methods

In this manuscript three major topics are combined. Firstly, DC-DC converters from
which the buck configuration is chosen as the dynamical system to be controlled. Studying
this conversion topology is important due to its vast range of applications, which includes
industrial, household and biomedical ones.

Secondly, fractional-order control has become relevant since the appearance of meth-
ods for solving fractional-order equations. In the last 30 years many control strategies
have been proposed or modified to integrate the fractional-order approach resulting in
significant performance improvement.

Lastly, optimization represents the main resource to achieve control objectives effi-
ciently by setting the appropriate controller parameter values. Fractional-order control
has mainly resorted to meta-heuristic optimization algorithms to searching and testing
potential solutions as alternative to improve controller performance.
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In the following, a brief review on these topics is provided for a better understanding
of the manuscript.

2.1. DC-DC Buck Converter

Buck converter is one of the most used configuration from DC-DC conversion. It
is characterized by the ability of stepping down its source of power, this means that at
the output a controlled level of lower voltage is provided to the load R. Stepping down
converter’s power supply Vi can be achieved by using a capacitor C, an inductor L, a diode
D and a MOSFET Q connected as shown in Figure 1, which shows the electrical diagram of
buck converter and its physical implementation. Parameter specifications and generals for
components and elements of buck converter shown in Figure 1 are listed in Table 1.

L

C R

Q

DVi

+

-

v
o

I
i

I
R

+

-

Input port Output port

(a) (b)

Figure 1. Buck converter. (a) Electrical diagram. (b) Electrical implementation.

Table 1. Parameter values for the implementation of buck converter in Figure 1.

Component/Element Notation Value Generals

Capacitor C 7 µF C4AQCBU4700A1YJ, 650 V, ±5%
Inductor L 2.7 mH 1140-272K-RC, 555 mΩ, 2.2/3.9 A, ±10%

Resistance R 10 Ω CB25JB10R0, 25 W, ±5%
Power supply Vi 25 V Programmable BK Precision 9129B

MOSFET Q PSMN022-30PL, N-Ch, 30 V , 22 mΩ, 30 A
Diode D MUR840, 50–600 V, 8 A, 1 V

MOSFET driver Optocoupler TLP250
Switching frequency fsw 20 kHz

By turning on and off, the MOSFET Q can be operated along with the diode D as
complementary switches, which allows us to transfer the supply power Vi to the load
R through the inductor L when the MOSFET Q is on. On the contrary, during the off
state, the load R receives the energy stored in the inductor L. This operation is repeated
periodically to achieve at the converter’s output port a regulated voltage which is lower
that the one supplied at the input port. The averaged mathematical model describing the
above described operation assuming continuous conduction mode and ideal components
will be described as follows [36],

L diL
dt = d̄Vi − vC,

C dvC
dt = iL − 1

R vC,
(1)

where iL, vC and d̄ ∈ (0, 1) represent inductor current, capacitor voltage and average of
duty cycle d, respectively. By considering the classical control diagram in Figure 2 and
determining that vC = vo, the transfer function from the control law U(s) to the output Y(s),
which correspond to the duty cycle d and capacitor voltage vC, severally, is the converter
transfer function that is described as follows,

Y(s)
U(s)

= Gp(s) =

(
Vi
CL

)
s2 +

(
1

RC

)
s +

(
1

CL

) . (2)
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G  (s) G  (s)c p Y(s)R(s)
E(s) U(s)

+

-

Figure 2. Classical control diagram to regulate voltage in the buck converter of Figure 1.

By analyzing buck converter transfer function (2) one can determine that the system is
of minimum phase since it does not presents right-half plane zeros or poles. The latter can
be corroborate through the frequency response of buck converter shown in Figure 3, where
no additional phase contribution from zeros or poles can be corroborated and a plant phase
φp = −157.3◦ in open loop with no control effort is determined.
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Figure 3. Frequency response of buck converter from Figure 1 and parameter values of Table 1.

In the next section, the method to approximate the non-integer order of Laplacian
operator through biquadratic modules is described. Some detailed information necessary
to fully understand the relevance and advantages of the technique are also provided.

2.2. Biquadratic Modules to Fractionally Approximate Laplacian Operator

The approximation proposed in [34,35] employs a quotient of quadratic polynomial
to approximate the Laplacian operator sα frequency response, where α ∈ (0, 1), within ωl
and ωh, which represents the approximation validity frequency band.

The transfer function of fractional-order approximation used is described as follows,

sα ≈ T(s) =
(a0)s2 + (a1ωc)s + (a2ω2

c )

(a2)s2 + (a1ωc)s + (a0ω2
c )

, (3)

which represents a single biquadratic module capable of generating a flattened phase
response, where alpha-dependent real constants a0, a1, a2 are given as follows,

a0 = αα + 3α + 2,
a2 = αα − 3α + 2,
a1 = 6α tan (2−α)π

4 ,
(4)

and ωc is the frequency around which the approximation’s magnitude and phase curves
are centered.

By substituting s = jω into (3) the phase contribution of the approximation can be
determined as follows,

sα ≈ T(jω, α) =
(a2 − a0) + ja1

−(a2 − a0) + ja1
=
−1 + j tan (2−α)π

4

1 + j tan (2−α)π
4

(5)
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thus, the phase contribution of (3) will be given by,

arg{T(jω, α)} = − arctan
(

tan
(2− α)π

4

)
− arctan

(
tan

(2− α)π

4

)
, (6)

which alternates sign as follows,

arg{1/T(jω, α)} = arctan
(

tan
(2− α)π

4

)
+ arctan

(
tan

(2− α)π

4

)
. (7)

if the inverse of (3) is used. Thus, one can conclude that the phase contribution of fractional-
order approximation will be given by,

arg{s±α} = ±α
π

2
, (8)

which depends on the value of α. Therefore, the phase contribution of a single biquadratic
module can be modulated from −90◦ to 90◦ depending on the desired effect, which can be
derivative or integral. Figure 4 shows the frequency response of approximation (3) for both
derivative and integral effects when α = 0.6, which correspond to a phase contribution of
±54◦.
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Figure 4. Frequency response of fractional-order approximation (3) for s±0.6 where dashed lines
represent the theoretical response and solid lines the approximation. (a) Derivative effect. (b) Inte-
gral effect.

Note that the Laplacian operator approximation will be performed over the controller
structure as will be shown and explained in the following section. Thus, in this manuscript
integer and fractional approaches are combined as shown in Figure 5, which is one of the
four possible scenarios that can be explored when introducing Fractional Calculus into
Control Theory.
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Figure 5. Possible combinations for integer-order (IO) and fractional-order (FO) approaches for the
system-controller duo when introducing Fractional Calculus into Control Theory.
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In the following section, two nature-inspired optimization algorithms are briefly
reviewed. Basics on these methods such as physical interpretation, parameters and opera-
tion conditions are described. Lastly, importance of minimization criterion and variables
restrictions are also mentioned.

2.3. Definition of Minimization Criteria: An Error-Based Approach

From an engineering point of view, a very basic and general idea of optimization
can be given as the process of finding the conditions for a system to operate as efficiently
and smoothly as possible. Such conditions are known as the best solution to the problem
and imply the evaluation of at least a minimization/maximization criterion and a set of
constraints related.

Bio-inspired optimization algorithms are some of the most used techniques to effec-
tively perform this searching in engineering-related problems. From the computational
intelligence field, swarm-based and evolutionary algorithms are the preferred ones to
achieve optimal solutions [37]. Particle swarm and genetic algorithms are the most ac-
cepted and widely used as optimization methods in engineering problems. Physical
interpretation, easy coding, preserving search information over iterations, not gradient
data required, fast convergence and bypassing local optima are some of their most notable
characteristics [37,38].

Finding the appropriate balance between the optimization algorithm’s main capa-
bilities/operators, i.e., exploration and exploitation for the particle swarm optimization
algorithm or crossover and mutation from genetic one, along with the definition of a suit-
able minimization criterion and the pertinent set of constrains represent critical aspects
to guarantee fast convergence and global minimum. The most used parameter to define
minimization criteria in control problems is the error e(t), which has been minimized by
integrating either the error itself, its square value, its absolute value or its square absolute
value [19].

For this case, the following two error-based criteria will be used to tune controller
parameters,

J1 :=
∫ t

t0

|e(τ)|dτ, (9)

and
J2 := lim

s→0

1
1 + Go(s, α)

, (10)

both restricted to
φd = π/3,
α = (−π + φd + φp)/π/2,

(11)

where Go(s, α) is the open-loop transfer function of control diagram from Figure 2 and
φd is the system’s desired closed-loop phase margin. Note that J2 is the simplified form
of closed-loop steady-state error expression for the input R(s) a step. Criteria J1 and J2
quantify the error from different perspectives and allow us to determine best possible
controller parameters based on which provides the smaller value.

Note that constraints (11) seek to ensure robustness of closed-loop system without
compromising viability of controller’s implementation. First constraint is intended to
guarantee robustness by setting the desired phase margin to the upper limit of the ac-
ceptable range commonly considered within [π/6, π/3] [39]. Second restriction prevents
optimization algorithms from consider α values that produce high-gain controllers, which
in turn would require non-commercial/high-value/expensive components that derive in
saturated control laws.

Global minimum for the optimization problem is guaranteed as long as J1, J2 and
constraint (11) are linear [40] (Chaps. 10, 11). J1 is defined in terms of an integral, which is
a linear operator. The error is given by e(τ) = r(τ)− y(τ), whose solution curve can be
determined through its s-domain representation E(s) = 1

1+Go(s, α)
R(s). J2 is based on the
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steady-state error, thus it is linear also. Linearity of constraints is determined directly by
analyzing their structure.

Particle swarm and genetic optimization algorithms will be used to minimize cri-
teria (9) and (10) with constraints (11). A comparison from the obtained results will be
performed to determine those that produce the most effective plant response.

In the following section, the fractional approximation of controller structure as well as
numerical and implementation results are provided and described.

3. Results

In this section some mathematical considerations and derivations to determine con-
troller structure are described. Numerical simulations and results of experimental valida-
tion are provided to corroborate the proposed controller effectiveness.

3.1. Two-Modes Controller Structure

The general expression of a two-modes controller structure is either a Proportional-
Integral (PI) described by Gc(s) = kp

(
1 + 1

Tis

)
or a Proportional-Derivative (PD) given

by Gc(s) = kp(1 + Tds), that can be modified to integrate the fractional-order approach
as follows,

Gc(s, α) = kp(1 + Tdsα), (12)

for the PD controller and

Gc(s, α) = kp

(
1 +

1
Tisα

)
, (13)

for the PI structure, from which the fractional-order Laplacian operator sα can be identified
and kp, Td, Ti are proportional gain, derivative and integral time constants, respectively.

To determine if a PD or PI controller is required for the plant under consideration, it is
necessary to analyze frequency information previously provided as follows,

1. The uncontrolled plant phase is φp = −157.33◦ (Figure 3). From φp = −π + φm it is
deduced that phase margin is φm = 22.67◦ (Figure 3).

2. If desired phase margin is φd = π/3 = 60◦, from φc + φp = −π + φd it is deduced
that controller phase contribution has to be φc = 37.33◦.

3. Due to φc > 0, the fractional-order Laplacian operator has to be approximated to
behave as shown in Figure 4a. Therefore, the controller structure must be a PD as
in (12).

By substituting (3) into (12), the approximation of two-modes controller structure will
be given as follows,

Gc(s, α) =
kp(D(s, α) + TdN(s, α))

D(s, α)
, (14)

where N(s, α) and D(s, α) are numerator and denominator of fractional-order approxima-
tion of Laplacian operator (3).

The parameters of PD controller (14) will be tuned through swarm and genetic opti-
mization algorithms by minimizing criteria (9) and (10) with constraints (11). It is worth
noting up to this point that once both controller and plant transfer functions are know,
criterion J2 can be simplified by computing open-loop transfer function Go(s, α) of control
diagram from Figure 2 as follows,

Go(s, α) =

(
Vi
CL

)
Nc(s, α)(

s2 +
(

1
RC

)
s +

(
1

CL

))
Dc(s, α)

, (15)

where Nc(s, α) and Dc(s, α) are numerator and denominator of PD controller (14), severally.
If the error is defined as E(s, α) = R(s)−Y(s, α) and the closed-loop transfer function is
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given by Y(s, α)
R(s) = G(s, α) = Go(s, α)/(1 + Go(s, α)), the mathematical model of closed-

loop error will be described as follows,

E(s, α) =
1

1 + Go(s, α)
R(s), (16)

thus, the closed-loop steady-state error can be computed as,

ess = lim
s→0

sE(s, α), (17)

which can be simplified to

J2 ≡ ess =
αα + 3α + 2

(b1 + b2)αα + 3(b1 − b2)α + 2(b1 + b2)
, (18)

where b1 = (1 + kpVi) and b2 = kpTdVi.
In the following section, numerical results from optimization and voltage regulation of

buck converter are described. Experimental validation to corroborate viability of proposed
approach is provided as well.

3.2. Numerical Results

Once optimization algorithms have been applied to minimize criteria (9) and (10) with
constraints (11), the PD controller (14) will be given by the following transfer function,

Gc(s) = kc
s2 + β1s + β2

s2 + β3s + β4
, (19)

with its partial fraction expansion given by,

Gc(s) =
(

R3/R
R1C1s + 1

)
+

(
R4/R

R2C2s + 1

)
+

R5

R
, (20)

due to the roots of denominator polynomial will always be real because a2
1 > 4a2a0 holds

∀ α ∈ (0, 1). Implementation of (20) would require two RC circuits and operational
amplifiers connected as shown in Figure 6.

R

R

R

R

R

R
R

R
1

R2

C
1

C2

R
3

R
4

R5

Input

e (t) Output

u (t)

Figure 6. Representation of electrical circuit to implement partial fraction expansion (20) of PD
controller (19).

Operation conditions for both algorithms were set as follows:

1. Particle swarm optimization algorithm (PS)

• Iterations: 600
• Population: 90
• Inertia coefficient w: 1
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• Cognition constant c1: 2
• Social constant c2: 2

2. Genetic optimization algorithm (GA)

• Iterations: 600
• Population: 90
• Mutation rate: 0.25
• Random recombination.
• Scale population coefficient: 1

Numerical results obtained from optimization process are shown in Table 2 for both
minimization criteria (9) and (10) with constraints (11). Data summarized in Table 2 were
obtained from 150 runs performed with each optimization algorithm for each minimization
criterion J1 and J2.

Form Table 2 we can observe more than one solution when minimizing J1, however
one can note that every solution converge essentially to the same minimum for both
optimization algorithms, since kp and Td vary only in the order of thousandths. On the
other hand, when minimizing J2 a non-negligible difference between possible solutions
obtained from both optimization algorithms is determined. Note that minima are essentially
the same for either algorithm but different between them. As will be shown later on, this
small difference results in smaller control laws.

Table 2. Optimization results from applying particle swarm and genetic algorithms to minimization
criteria (9) and (10) with constraints (11).

J1 J2

α kp Td α kp Td

GA 0.4148 1.2839 4.9995 0.4148 1.9331 2.5497
0.4148 1.2847 4.9995 0.4148 1.9225 2.5553
0.4148 1.2842 4.9995 0.4148 1.7595 3.0316
0.4148 1.2851 4.9994
0.4148 1.2856 4.9927
0.4148 1.2844 4.9989

PS 0.4148 1.2851 5 0.4148 1.8759 2.7445
0.4148 1.2852 5 0.4148 1.8773 2.7404
0.4148 1.2854 5 0.4148 1.8733 2.7522

By substituting [α, kp, Td] from Table 2 into the controller structure (14), parameters
of transfer function (19) and component values for its partial fraction expansion (20) are
provided in Table 3 and 4, respectively.

Table 3. Computed values for coefficients of controller’s transfer function (19).

J1 J2

β1
1/β2

2 β3
3/ β4

4 kc β1
1/β2

2 β3
3/β4

4 kc

GA 7.461/6.739 1.813/3.46 18.7218 8.121/8.461 1.813/3.46 15.3230
7.461/6.739 1.813/3.46 18.7334 8.118/8.454 1.813/3.46 15.2683
7.461/6.739 1.813/3.46 18.7261 7.916/7.926 1.813/3.46 16.2504
7.461/6.739 1.813/3.46 18.7389
7.462/6.741 1.813/3.46 18.7228
7.461/6.739 1.813/3.46 18.7270

PS 7.461/6.739 1.813/3.46 18.7410 8.03/8.225 1.813/3.46 15.8624
7.461/6.739 1.813/3.46 18.7425 8.032/8.229 1.813/3.46 15.8533
7.461/6.739 1.813/3.46 18.7454 8.027/8.216 1.813/3.46 15.8796

1 ×104. 2 ×108. 3 ×105. 4 ×109.
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Table 4. Computed values for components of controller’s partial fraction expansion (20) and corre-
sponding electrical circuit of Figure 6, where C1 = C2 = 2.2 µF and R = 1 kΩ. Units for R1 and R2

are given in Ω. Units for R3, R4 and R5 are given in kΩ.

J1 J2

R1 / R2 R3/R4/R5 R1 / R2 R3/R4/R5

GA 13.78/101.54 12.11/2.96/18.72 13.78/101.54 9.30/2.28/15.32
13.78/101.54 12.12/2.97/18.73 13.78/101.54 9.27/2.27/15.27
13.78/101.54 12.12/2.96/18.73 13.78/101.54 10.07/2.46/16.25
13.78/101.54 12.12/2.97/18.74
13.78/101.54 12.11/2.96/18.72
13.78/101.54 12.12/2.96/18.73

PS 13.78/101.54 12.13/2.97/18.74 13.78/101.54 9.72/2.38/15.86
13.78/101.54 12.13/2.97/18.74 13.78/101.54 9.71/2.38/15.85
13.78/101.54 12.13/2.97/18.75 13.78/101.54 9.7/2.38/15.87

From Table 3 one can see that optimization results for both algorithms when minimiz-
ing criterion J1 are essentially the same with small variations in the controller’s gain kc. In
Figure 7a the closed-loop step response of buck converter transfer function (2) with con-
troller (19) is shown. Effectiveness of proposed structure regulating output voltage in buck
converter can be corroborated. Response velocity can be characterized by its time-related
performance parameters rise time tr = 8.72 µs, peak time tp = 22.33 µs and settling time
ts = 76.66 µs. Figure 7b depicts closed-loop system’s frequency response where desired
phase margin φd ≈ 60◦ can be corroborated.
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Figure 7. (a) Closed-loop step response of plant’s transfer function (2) with fractional-order approxi-
mation (19). (b) Frequency response corroborating closed-loop phase margin φd ≈ 60◦.

Numerical simulations from PSIM 9.0 software allow us to corroborate proposed
approach effectiveness from the electrical perspective. In Figure 8 buck converter output
voltage vo(t), inductor current iL(t) and control law d̄(t) are shown. In Figure 8a voltage
regulation with a smooth convergence to the reference value as well as continuous conduc-
tion mode can be confirmed. On the other side, Figure 8b depicts the control law where its
convergence to d̄ = 0.6 and the corresponding effect on the pulse width modulation (PWM)
signal can be corroborated.
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Figure 8. (a) Buck converter output voltage vo(t) (black) and inductor current iL(t) (green) to
corroborate regulation and continuous conduction mode operation. (b) Control law d̄(t) = 0.6 and
its effect on the PWM signal.

On the other side, when optimizing through the minimization of criterion J2, values of
resistances R3, R4 and R5 vary from the previous case, thus it is necessary to validate they
are appropriate. In Figure 9a the output of buck converter regulated with fractional-order
PD controller approximation (19) is shown. System’s frequency response is shown in
Figure 9b to corroborate desired phase margin φd ≈ 60◦. Note that despite small variations
of the values, output behavior and frequency responses are very similar.
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Figure 9. (a) Closed -loop step response of plant’s transfer function (2) with fractional-order approxi-
mation (19). (b) Frequency response corroborating closed-loop phase margin φd ≈ 60◦.

Electrical simulations allow us to determine effectiveness of the results obtained from
second minimization criterion J2. Figure 10 shows converter output voltage vo(t), inductor
current iL(t) and control law d̄(t) as in the previous case. Smooth convergence of converter
output voltage and inductor current that corroborates continuous conduction mode are
shown in Figure 10a. Evolution of control law to its average value and the corresponding
effect on the PWM signal are shown in Figure 10b.
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Figure 10. (a) Buck output voltage vo(t) (black) and inductor current iL(t) (green) to determine
effective regulation and converter continuous conduction mode operation. (b) Control law d̄(t) = 0.6
and its effect on the PWM signal.

A comparison between control laws obtained from minimization of criteria J1 and J2
are shown in Figure 11. Note that despite behavior of output voltage shown in
Figures 8a and 10a are very similar, control law produced by minimization of the sec-
ond criterion J2 was smaller. This is attributed to the values of resistance R3 and R5, which
are smaller for both optimization algorithm when minimizing J2, which is the reason to
choose these component values to be implemented.
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Figure 11. Control laws comparison for both optimization algorithms when minimizing criteria J1

and J2.

In order to make evident the relevance, importance and impact of considering con-
troller implementation viability in the optimization process, minimization of criteria J1
and J2 was performed without considering second constraint over α from (11). In Table 5
optimized parameters, controller coefficients and component value for (12), (19) and (20)
are summarized, severally.

As in the previous results, similarity between obtained parameter values is determined
when comparing optimization algorithms for a particular minimization criterion. On
the other hand, significant difference can be observed when comparing results between
minimization criteria, particularly in derivative time constant Td. Another singularity of
these results is the obtained value for α, which resulted more than double the previous
one. Recalling from Section 2.2 that controller contribution can be within ±90◦, α ≈ 1
would imply that almost all the phase contribution of the biquadratic module is required,
which would be imprecise if an uncontrolled plant such as (2) with φp = −157.3◦ is
under consideration.
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Table 5. Optimized parameters, controller coefficients and component values from minimizing
criteria (9) and (10) without constraint over α. Units for R1, R2 are in Ω, R3, R5 in MΩ and R4 in kΩ.

J1 J2

Optimization results

α kp Td α kp Td

GA 0.9936 29.728 29.8142 0.975 29.9437 7.8793
0.9936 29.9927 29.9945 0.9396 29.9912 3.2028
0.9937 29.9999 29.9975 0.846 29.9346 1.2147
0.9937 29.9931 29.9971 0.8917 29.9948 1.7824
0.9936 30 29.9904 0.9762 29.9868 8.4766
0.9936 29.9959 29.9357 0.9489 29.978 3.9742

PS 0.9937 30 30 0.8847 30 1.7319
0.8843 30 1.7255
0.8786 30 1.607
0.8889 30 1.8075

Controller coefficients

β1
1/β2

2 β3
2/β4

3 kc
1 β1

1/β2
2 β3

4/β4
5 kc

6

GA 3.717/4.545 1.674/5.925 41.241 4.142/17.24 42.9/14.85 27.534
3.717/4.519 1.674/5.925 41.859 5.005/42.22 17.79/5.901 4.4812
3.716/4.514 1.7/6.02 42.543 7.426/107.2 7.007/2.086 0.6255
3.716/4.514 1.7/6.02 42.533 6.197/74.93 9.946/3.119 1.3394
3.717/4.52 1.674/5.925 41.864 4.104/16.05 45.05/15.62 31.198
3.717/4.527 1.674/5.925 41.782 4.731/34.19 21.02/7.049 6.6248

PS 3.716/4.514 1.7/6.02 42.547 6.298/77.16 9.345/2.907 1.2161
6.309/77.43 9.313/2.896 1.2071
6.5/82.77 8.878/2.742 1.0682

6.184/74.08 9.697/3.031 1.3206

Controller component values

R1/R2 R3/R4/R5 R1/R2 R3/R4/R5

GA 0.13/62.01 412.364/10.19/412.405 0.52/63.05 27.491/10.38/27.534
0.13/62.01 418.551/10.34/418.594 1.26/65.07 4.439/9.81/4.481

0.13/62 425.389/10.18/425.432 3.29/70.62 0.585/8.52/0.626
0.13/62 425.287/10.18/425.329 2.29/67.87 1.298/9.28/1.339

0.13/62.01 418.596/10.34/418.638 0.49/62.98 31.156/10.66/31.198
0.13/62.01 417.775/10.32/417.818 1.06/64.54 6.582/10.41/6.625

PS 0.13/62 425.426/10.18/425.468 2.44/68.29 1.174/9.53/1.216
2.45/68.31 1.165/9.52/1.207
2.57/68.65 1.027/9.24/1.068
2.35/68.04 1.279/9.63/1.321

1 ×104. 2 ×107. 3 ×1011. 4 ×105. 5 ×1010. 6 ×103.

Note that optimized parameter values for α, kp and Td resulted in a considerable
increase for controller coefficients of structure (19). It is worth noting the obtained values
for controller gain kc, which confirms that optimizing without restriction over the approxi-
mation order undoubtedly leads to the synthesis of a high-gain controller as previously
stated. Remarkable differences can be observed in component values for partial fraction
expansion (20) and its corresponding implementation circuit from Figure 6, where gains to
generate first and third terms are considerably big, resulting in resistance values of MΩ.

Lastly, a comparison of the proposed approach with its integer-order counterpart
allows us to determine that the fractional-order controller approximation represents an
alternative to achieve voltage regulation in a buck converter. By using minimization criteria
J1, J2 and only the constraint on phase margin φd from (11), parameters of a classical PD
controller were optimized with both algorithms. Optimization results are summarized in
Table 6 for kp, Td and the corresponding parameter values required to implement the PD
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controller, where Ri/R f are input and feedback resistances of the operational amplifier
generating the proportional model and Ci/R f are input capacitor and feedback resistance
for operational amplifier generating the derivative mode.

Table 6. Optimized parameters and component values from minimizing criteria (9), (10) and phase
margin φd when a classical PD controller is being used.

J1 J2

Optimization results

kp Td kp Td

GA 9.9988 2.98×10−6 9.9993 2.85×10−6

9.9983 2.98×10−6 9.999 2.95×10−6

PS 10 2.99×10−6 10 2.95×10−6

10 2.98×10−6 10 2.97×10−6

Controller component values

Ri/R f Ci/R f Ri/R f Ci/R f

GA 1 kΩ/9.9 kΩ 1 µF/2.98 Ω 1 kΩ/9.9 kΩ 1 µF/2.85 Ω
1 kΩ/9.9 kΩ 1 µF/2.98 Ω 1 kΩ/9.9 kΩ 1 µF/2.95 Ω

PS 1 kΩ/10 kΩ 1 µF/2.99 Ω 1 kΩ/10 kΩ 1 µF/2.95 Ω
1 kΩ/10 kΩ 1 µF/2.98 Ω 1 kΩ/10 kΩ 1 µF/2.97 Ω

In Figure 12a the closed-loop step response of buck converter transfer function (2) with
a classical PD controller Gc(s) = kp(1 + Tds) is shown. Figure 12b depicts closed-loop sys-
tem’s frequency response where desired phase margin φd ≈ 60◦ can be corroborated. Thus
a comparison through performance parameters of both responses from Figures 7a and 12a
is valid and allows us to determine advantages of proposed approach. Table 7 summarizes
step response performance parameters for both control schemes, from which superiority of
fractional-order PD controller approximation can be determined.
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Figure 12. (a) Closed-loop step response of plant’s transfer function (2) with classical PD controller
Gc(s) = kp(1 + Tds). (b) Frequency response corroborating closed-loop phase margin φd ≈ 60◦.

Table 7. Performance parameters for both step responses from Figures 7a and 12a, where FOPD is
the fractional-order PD controller.

Parameter Symbol FOPD PD

Rise time tr 8.72 µs 9.83 µs
Settling time ts 76.66 µs 144.01 µs
Peak time tp 22.33 µs 24.78 µs
Overshoot % Mp 39.6 % 51.7 %
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In the following section, experimental validation is provided as evidence of proposed
approach effectiveness. As will be seen, behavior of output voltage vo(t) and control law
d̄(t) from Figures 8 and 10 will be corroborated.

3.3. Experimental Results

In this section, experimental results from the implementation of closed-loop control
diagram shown in Figure 2 will be provided, where the plant to be controlled is the buck
converter of Figure 1, whose input-to-output relation is given by (2), and transfer function
of controller fractional approximation given by (19), whose electrical circuit is depicted in
Figure 6.

The electrical arrangement representing the physical implementation of the control
diagram is depicted in Figure 13. The plant to be controlled is the buck converter, imple-
mented as previously described, shown in the blue square. Fractional-order approximation
of PD controller is shown in the green square with its corresponding interconnections. The
diagram’s comparison block is shown in the yellow square. Comparator was implemented
through a voltage divider, where r1 = 24 kΩ, r2 = 1 kΩ to produce a gain of kd = 1/25, and
an operational amplifier in difference configuration with resistance values Ri = R f = r = 1
kΩ to generate e = Vr − kdvo signal, where Vr = 0.6 V. A pulse-width-modulator control
circuit TL494 was used for the PWM signal and a 4 MHz operational amplifiers LF347N for
comparator and controller.

Voltage measurements were made with a four-channel Tektronix TDS 2024C oscil-
loscope. Current measurements were made with a Tektronix—A622 AC/DC 100 mV/A
current probe.
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Figure 13. Electrical arrangement for implementation of control diagram from Figure 2 where plant,
controller, comparator and PWM blocks can be identified.

Voltage regulation was the first test performed over the circuit of experiment from
Figure 13. As previously stated, reference voltage was set to Vr = 0.6 V, which is expected
to produce a voltage of vo(t) = 15 V in the converter. In Figure 14a output voltage vo(t),
output current Io(t), input current Ii(t) and PWM signal d(t) are shown. As one can see,
the controller fractional approximation (19) effectively achieved buck converter output
to reach the specified value. In Figure 14b an alternative view of measurements made
from data exported is shown. Scales for vo(t), Io(t), Ii(t) and d(t) were preserved for
comparative purposes.
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Figure 14. (a) Oscilloscope view for measurements of output voltage vo(t) (yellow), output current
Io(t) (green), input current Ii(t) (purple) and PWM signal d(t) (cyan). (b) Alternative view of
exported experimental data preserving scale of 5 V/unit for vo(t), 100 mV/unit for Io(t) and Ii(t).

Second test performed over the implemented circuit was output regulation in the
presence of load variation, for which the value of resistance was changed from Ro = 10 Ω
to R1 = 45 Ω. The objective is to determine controller approximation’s effectiveness of
keeping the voltage level at the reference value. Figure 15 shows the evolution of output
voltage vo(t) and load current Io(t) in the presence of load variation. Efficiency of proposed
approach to return the output voltage to reference level was corroborated, since it took the
controller about 1 ms to restore the voltage level.
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Figure 15. (a) Oscilloscope view for measurement of output voltage vo(t) and load current Io(t) in
the presence of load variation. (b) Alternative view of output voltage vo(t) and load current Io(t)
from exported data.

Lastly, the reference tracking characteristic of the system was tested to corroborate
behavior described by numerical data provided in Figures 8a and 10a. As was predicted
by the results of electrical simulations, it is expected the output voltage vo(t) to evolve
smoothly. In Figure 16 the reference tracking characteristic of output voltage vo(t) can be
confirmed through experimental measurements. Stable regulation and smooth convergence
to the reference value can be observed.
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Figure 16. (a) Oscilloscope view for measurement of reference tracking characteristic from output
voltage vo(t) and the corresponding evolution of load current Io(t). (b) Alternative view of output
voltage vo(t) and load current Io(t) from exported data, preserving scale of 5 v/unit for vo(t).

Relevant results from the section can be summarized as follows: firstly, the proposal of
J2 as minimization criterion, which focuses on the difference between reference and output
in steady state rather than its accumulated value. Note that it is entirely defined as function
of controller and plant parameters which makes it easier to compute. Tightly related are
the proposed constraints, which seek to guarantee closed-loop system’s robustness through
φd, but limiting it in such a way that viability of controller’s implementation is not com-
promised, thus preventing from synthesizing high-gain controllers that produce saturated
control laws. Note that constraint imposed over α is intended to ensure that controller
phase contribution is limited only to what it is necessary to achieve φd. As was demon-
strated through numerical simulation and experimental validation, the combination of both
constraints derived in the synthesis of an implementable fractional-order PD controller
approximation, which effectively regulated output voltage vo(t) of a buck converter.

Secondly, from Table 2 one can conclude that combination of two optimization algo-
rithms with two different minimization criteria allows us to corroborate that both methods
converge to a neighborhood of the point in search space that produces the minimum value
for the criteria, since kp and Td are very similar between algorithms. On the other hand, a
small differences can be observed in kp and Td when comparing between J1 and J2.

Thirdly, from Table 3 coefficient values of controller transfer function (19) for denomi-
nator are equal regardless the optimization algorithm or minimization criteria. Numerator
coefficients of (19) vary slightly between J1 and J2 but are very similar when comparing op-
timization algorithms. Note that biggest difference is in controller’s gain kc, being proposed
criterion J2 the one that leads to the smallest value.

These similarities resulted in controller component values of Table 4, from which can
be seen that RC networks can be generated with the same resistance values R1 and R2
regardless optimization algorithm or minimization criterion. On the other side, resistance
values R3, R4 and R5 are very similar between algorithms and with small variations
when comparing minimization criteria. By analyzing controller structure of Figure 6
and component values from Table 4 one can determine that required derivative effect is
generated by R3 and R4 while proportional effect by R5, whose value is directly related
with controller’s gain kc.

In the following sections some discussion on the presented results and conclusions
are provided.

4. Discussion

In the present work, viability of a two-modes controller fractional-order approximation
to regulate output voltage of a buck converter was investigated. Bio-inspired optimization
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algorithms along with two error-based minimization criteria (9) and (10) were used to
determine controller parameters. Optimization constraints (11) were intended to incorpo-
rate controller’s implementation viability, thus avoiding synthesis of high-gain ones that
produce saturated control laws.

Proposal of minimization criterion J2 represents an alternative that has not been
explored since, as early mentioned, integral of error itself, its absolute/square absolute or
different versions of its weighted absolute values are the preferred ones. For the purpose of
this study, proposed minimization criterion resulted in the synthesis of controller structures
with lower gains, which in turn generated smaller control laws.

The idea of incorporating constraints that impact implementation represents a novelty
due to it is common to let the algorithm to determine from the search space those values
that minimize criteria without considering the impact on controller implementation. This
fact takes special relevance when controlling power converters. Due to the PWM signal
d(t) is generated by comparing controller’s output d̄(t) and a sawtooth signal whose value
oscillates between 0.5–3.5V, it is inconvenient and not very useful generating a control
effort of tens of volts, which commonly characterizes a high-gain controller’s control law, to
achieve the modulation that can be done with a smaller signal. In addition, bigger control
laws d̄(t) increase time the MOSFET is in the ON state during the transient response,
which represents a serious problem when implementing converters such as boost or buck-
boost due to inductor is directly connected with the power supply during the ON state.
Thus, generating and using the smallest control law d̄(t) possible considerably improves
implementation stage.

5. Conclusions

A PD controller fractional-order approximation was synthesized and tuned through
bio-inspired optimization algorithms to achieve output regulation in a buck converter. The
optimization procedure included the proposal of an alternative error-based minimization
criterion J2 in combination with two constraints that were intended to ensure system’s
robustness while preserving controller’s implementation viability.

Particle swarm and genetic optimization algorithms were used to determined con-
troller parameters. The integral of absolute value and the steady state value of the error
were criteria to be minimized. Constraint over phase margin φd sought to ensure robustness
of closed-loop system. Second constraint avoids compromising controller’s implementation
viability by limiting tuning parameters to those values that produce only the controller
phase contribution needed to achieve the required φd.

Optimization results showed that both algorithms converge to similar parameter val-
ues for a specific minimization criterion. Small differences were observed when comparing
optimization results between both minimization criteria (Table 2). This behavior was repeti-
tive in controller coefficients computation (Table 3) and implementation component values
(Table 4). It is remarkable from Table 4 that smaller component values were obtained when
optimizing with proposed minimization criteria, thus resulting in smaller control laws.

A comparison between the proposed approach and its integer-order counterpart
allowed us to determine viability, effectiveness and superiority of the fractional-order PD
controller approximation. By using performance parameters of both step responses, faster
regulation velocity from the proposed approach was confirmed. In addition, the overshoot
was smaller in when the fractional-order PD controller was used.

Experimental data confirmed numerical simulations, where proposed approach ef-
fectiveness to regulate buck converter output voltage vo(t) was predicted. In addition,
reference tracking and regulation in the presence of load variation were determined.

Future direction of this work seem to be the proposal of a control strategy that considers
not only robustness and performance but also disturbance rejection in a multi-objective
optimization scheme, a multi-loop or current control mode approach to take advantage of
convergence velocity from second variable.
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