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Abstract

In this paper, we present an optimized GPU implementation for the induced dimension reduction algorithm. We improve

data locality, combine it with an efficient sparse matrix vector kernel, and investigate the potential of overlapping compu-
tation with communication as well as the possibility of concurrent kernel execution. A comprehensive performance eva-

luation is conducted using a suitable performance model. The analysis reveals efficiency of up to 90%, which indicates

that the implementation achieves performance close to the theoretically attainable bound.
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1 Introduction

Krylov subspace solvers (Saad, 2003) are among the

most popular methods for iteratively solving large sparse

linear systems of the form Ax= b. Given that an increas-

ing number of computer systems are equipped with hard-

ware accelerators such as GPUs (Bergman et al., 2008;

top), significant efforts are spent on investigating how

these methods can be designed to benefit from the com-

puting power of the accelerators. Possible paths range

from outsourcing individual computations to the device,

to porting the complete algorithm to the accelerator. The

algorithms typically arise as combination of a sparse

matrix vector product that is generating the Krylov sub-

space (Saad, 2003), and a set of basic linear algebra level

1 subprograms (BLAS1) operations. Hence, a straight-

forward way of using GPUs is to offload all matrix and

vector computations to the device using the BLAS1 func-

tions. In many cases, this results in significant accelera-

tion of the algorithm (Dorostkar et al., 2014). However,

even larger improvements are often available when repla-

cing the standard BLAS operations with application-

specific kernels that keep data in local memory as much

as possible. This concept of ‘‘kernel fusion’’, in particu-

lar, pays off as the algorithms are typically memory-

bound, and merging multiple linear algebra routines into

a single kernel reduces the pressure on the memory band-

width (Anzt et al., 2015b). Aside from that, significant

research is also looking into the acceleration of the

sparse matrix-vector product, as this is often the most

time consuming part of the algorithms. Although the

advantages from overlapping different operations are

typically negligible for entirely memory-bound algo-

rithms, some Krylov solvers allow for scheduling data-

independent operations in parallel, and can, for settings

where the memory bandwidth is not saturated, benefit

from concurrent kernel execution. In Anzt et al. (2015a),

the benefits of kernel fusion and concurrent kernel exe-

cution have been investigated for a GPU implementation

of the induced dimension reduction (IDR, Sonneveld

and van Gijzen, 2009) algorithm. In this paper, we

extend the previous results by applying additional tuning

steps and analyzing the runtime performance against a

performance model. This allows us to identify perfor-

mance bottlenecks, and to quantify the GPU utilization

efficiency.

We structure the rest of the paper as follows. First,

in Section 2, we provide an overview of related work on
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strategies for accelerating Krylov subspace methods on

GPUs. We then briefly review the IDR algorithm and

its variants in Section 3. In Section 4, we discuss the

optimization steps we apply to the GPU implementa-

tion: that is, the fusion of multiple linear algebra opera-

tions into a single kernel, the design of a GeMV kernel

for extremely tall-and-skinny matrices, and the possibil-

ity of overlapping different computations by running

multiple GPU kernels in concurrent fashion. We then

introduce, in Section 5, the experiment set-up and the

test matrices along with some key characteristics that

help us understand the performance results. A roofline

model, serving as a performance guideline, is intro-

duced in Section 6. It is based on a theoretical analysis

of the IDR implementation, and the quantification of

the performance-limiting GPU characteristics such as

the memory bandwidth. In Section 7, we compare the

execution times of the optimized IDR implementation

with the projected runtimes, quantify the performance

gap for different test cases, and evaluate the benefit of

concurrent kernel execution. We conclude in Section 8.

2 Related Work

Several open-source software packages provide GPU-

support for Krylov subspace solvers (MAGMA, b; vie,

2015; cus, 2015; MAGMA, a; Kreutzer et al., 2015).

For this class of algorithms, one can often obtain a per-

formance gain compared to CPU implementations

which directly reflects the architectural benefits

(Dorostkar et al., 2014; Li and Saad, 2013; Lukash

et al., 2012). Specifically for the IDR algorithm, a first

evaluation of GPU-acceleration was investigated in

Knibbe et al. (2011). The evaluated implementation,

however, did not yet contain optimizations such as the

concept of merging multiple linear algebra operations

into one single algorithm-specific kernel. This strategy

and its performance impact has already been well inves-

tigated for other algorithms. In Filipovic et al. (2013),

the authors have shown that kernel fusion can be rea-

lized for certain BLAS1 and dense BLAS2 operations

by using a source-to-source compiler. No automatic

fusion of sparse linear algebra operations is addressed,

however. In Tabik et al. (2014), the authors combine

CUDA kernels in iterative sparse linear system solvers.

Explicit kernel coding was used in Aliaga et al. (2013),

where the authors have shown how custom-designed

kernels improve performance and energy efficiency of a

GPU implementation for the conjugate gradient itera-

tive solver. In Anzt et al. (2015b) this idea was trans-

ferred to the BiCGSTAB algorithm, and combined

with the acceleration of the sparse matrix vector prod-

uct. Also, a general model estimating the savings was

introduced. In Wang et al. (2010), the authors take a

structured approach to improve performance and

energy efficiency by way of kernel fusion. Kernel

fusions are categorized into the classes ‘‘inner thread’’,

‘‘inner thread block’’, and ‘‘inter thread block’’, and

their effects on performance and energy efficiency are

investigated by using two general benchmarks. For

sparse linear system solvers, a deeper analysis on the

first category can be found in Aliaga et al. (2015),

where a precise characterization of the kernels and the

possibility of merging them into one single kernel is

presented. Research quantifying the advantages of con-

current kernel execution has primarily focused on

compute-intense operations. Larger improvement can

be expected if other resources than the memory band-

width bound the performance. A comprehensive analy-

sis for different microbenchmarks can be found in

Wang et al. (2011). Scientifically relevant operations

like merge-sort and convolution kernels were addressed

in Gregg et al. (2012). In Jiao et al. (2015), the authors

investigate the interplay between concurrent kernel exe-

cution and dynamic voltage and frequency scaling

(DVFS), and quantify the impact on energy efficiency.

Finally, Anzt et al. (2015a) applied both optimization

techniques to the IDR algorithm, and evaluated the

performance of the resulting algorithm with respect to

a baseline implementation consisting of BLAS library

function calls.

3 Induced dimension reduction

The induced dimension reduction (IDR) algorithm is a

robust framework for deriving iterative solvers for gen-

eral linear systems of equations. It is based on the

Krylov subspace idea, and was first introduced by P

Sonneveld and MB Gijzen in Sonneveld and van Gijzen

(2009). Numerous variants exist to enhance the solver’s

convergence, stability or parallelism level (Simoncini

and Szyld, 2010; Van Gijzen and Sonneveld, 2011;

Rendel et al., 2013). However, they all share the idea of

exploiting the IDR central theorem (Sonneveld and van

Gijzen, 2009) that allows the use of a finite series of

nested linear subspaces Gj of decreasing dimension to

obtain a solution in no more than N steps for a N 3N

matrix.

One popular variant is IDR(s), which can be con-

structed by considering s independent, standard nor-

mally distributed, shadow vectors p1, p2, . . . , ps to solve

a smaller system of equations based on the iterative

residuals (Van Gijzen and Sonneveld, 2011). The

smaller system represents a set of polynomials that

force the generated residuals to be in subspaces Gj,

which thus enforces the convergence of the solution

after, at most N, dimension-reduction steps.

An improved variant is IDR(s)-biortho including

smoothing (Van Gijzen and Sonneveld, 2011). The

approach uses the iteration residuals with the assump-

tion that each residual is included in the next reduced

subspace Gj+ 1. Convergence can be accelerated by
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exploiting biorthogonality properties between sub-

spaces and applying iterative refinements.

Incorporating the residual smoothing using the tech-

nique developed by Hestenes and Stiefel Hestenes and

Stiefel (1952) results in a monotonically decreasing resi-

dual norm (van Gijzen et al., 2015). Although smooth-

ing does not accelerate the convergence, it is often

attractive for production of code, which justifies the

overhead of an additional dot product. The implemen-

tation we consider features residual smoothing as an

option. We base our experimental analysis, in this

paper, on a setting in which smoothing is enabled. A

comprehensive collection of research efforts, and a

more detailed derivation of the algorithm, can be found

in idr.

4 Optimizing IDR(s) on GPUs

The pseudocode for a basic implementation of the

IDR(s)-biortho algorithm using standard BLAS func-

tion calls can be found in Anzt et al. (2015a). In

Figure 2, we outline the optimized version that we use

in the performance analysis in Section 7. The most rele-

vant modifications improving performance are the

following.

� Kernel fusion. An important optimization step in

memory-bound algorithms is the fusion of BLAS

functions into algorithm-specific kernels. Based on

the classification proposed in Aliaga et al. (2015),

we identify kernels that can be mapped. We then

ignore all kernels that have no data dependency and

all kernels that do not share any data beside scalars.

Also, we do not consider fusing the sparse matrix

vector product generating the Krylov subspace with

any other operations. The motivation is to maintain

the algorithm’s flexibility with respect to switching

between different sparse matrix vector kernels. The

remaining operations that allow and potentially

benefit from kernel fusion are the smoothing opera-

tions (line 35, 40, 54, and 59 in Figure 2). For those,

we design algorithm-specific kernels that operate on

data local in the multiprocessor’s cache.
� Merged dot product. The IDR(s) algorithm, as

given in Figure 2, requires multiple gemv calls with

a matrix of size n3 s, where n is the problem size

and s is the shadow space dimension. Typically, n is

much larger than s, and handling this operation

with a special kernel based on the strategy of inter-

leaving multiple dot products can be much faster

Anzt et al. (2015b). In Figure 1, we compare the

performance achieved for this operation using dif-

ferent kernels with the performance expected from

a roofline performance analysis, as presented in

Section 6. The tested scenario is a matrix of size

5, 000, 0003 s with s� 32. The results show that

the magma_dmdotc achieves, for all s, the best per-

formance, which is about 60% of the theoretical

bound. Given this observation, we replace, in the

optimized IDR(s), all gemvs of this kind with the

magma_dmdotc function (see lines 3, 29, 36, 49,

and 55 in Figure 2). In Collignon and van Gijzen

(2011), the authors propose to also merge all dot

products involving the columns of P (correspond-

ing to lines 18 and 29 in Figure 2). In the resulting

algorithm, every cycle has s+ 1 combined inner

products involving the columns of P. Although not

realized in the GPU implementation we consider,

this strategy may provide some additional

improvement.
� Reducing host-device communication. We reduce the

communication between host and device to a level

where it no longer has an impact on performance.

Precisely, only some scalar values are communi-

cated; all vector data and the majority of scalar val-

ues are kept in GPU memory only.

Apart from these optimizations, we evaluate also, in

Section 7, the potential of concurrent kernel execution

and overlapping computation with device-host commu-

nication. Given the background that the IDR(s) algo-

rithm arises as a combination of memory-bound

operations, the benefit of this optimization is expected

to be small: the memory bandwidth is the performance-

limiting factor for each kernel, and thus makes it

impossible to execute operations on the unused GPU

resources. Performance improvements can only be

expected if the parallelism, reflected in the number of

active GPU threads, is too small to saturate the mem-

ory bandwidth. As we communicate only a few scalars

between host and device, overlapping communication

and computation is expected to bring relevant effects

only for computationally cheap problems. In Figure 3,

we visualize the data dependencies in one outer IDR(s)

Figure 1. Performance comparison of different

implementations for solving s dot products xTi y with i= 1, . . . , s

and xi, y vectors of length 5,000,000.

Anzt et al. 3
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Figure 2. GPU implementation of IDR(s) in pseudocode using the MAGMA library.
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iteration. The graphs are colored to represent the dif-

ferent regions of the algorithm (e.g. loops and smooth-

ing), this helps identify which steps are suitable for

overlapping. In the experiments assessing the benefits

of overlap, operations in the same row are scheduled

for concurrent execution. This requires the rearrange-

ment of some operations in the pseudocode provided in

Figure 2. Precisely, the gemv (lines 3) and triangular

solve (line 7) are taken out of the loop, and overlapped

with the final smoothing operation of a previous itera-

tion. The solution approximation of the next inner

iteration (line 33) can be handled independently and

therefore parallel to the bi-orthogonalization loop. For

shadow space dimensions s.1, this applies also to the

update of f (line 5 ff in Figure 2). A 3-way overlap

occurs after the bi-orthogonalization loop between the

gemv (line 29), scalar transfer (line 31), and the update

of U (line 26) using a gemv kernel. Inside the smooth-

ing operations, the residual and solution updates can

be scheduled in parallel. Finally, some computations of

the next iteration (lines 3, 7, 10, 12) can be overlapped

with the current residual update (line 51).

5 Testbed

The GPU results for this paper are obtained from a

Tesla K40 GPU which belongs to the Kepler line of

NVIDIA’s hardware accelerators and has a theoretical

peak performance of 1682 Gflop/s (double precision).

On the GPU, the 12 GB of device memory are suffi-

ciently large to keep all the matrices and all the vectors

needed in the iteration process. The theoretical memory

bandwidth is listed as 288 GB/s. The practical band-

width that can be achieved is determined in Section 6.

The GPU hosts a shared L2 cache of 1.5 MB size. The

IDR(s) implementation is based on NVIDIA’s CUDA

version 7.5 cud (2015). For the experiments, we use a

set of test matrices taken from the University of Florida

matrix collection. (UFMC)1 Also, the efficiency of the

sparse matrix vector product is guiding the performance

of any Krylov subspace solver. Optimizing the sparse

matrix vector product is outside the focus of this paper,

but we always use the sliced Ellpack format with block-

size 32 (SELL-32 to follow the notation of Monakov

et al. (2010)) for storing the matrices and handling the

SpMV. Depending on the matrix characteristics, this can

result in malicious vector access and significant storage

overhead. For the latter, we report, in Table 1, the over-

head of nonzeros explicitly stored in the used SELL-32

format. We use double precision arithmetic throughout

all experiments, and 32-bit integers to store indexes.

6 Performance model

To assess the efficiency of the optimized IDR(s) imple-

mentation, we derive a roofline performance model

Williams et al. (2009) that provides an upper perfor-

mance bound. In general, the execution performance P

of any algorithm is bound by

P=min(Ppeak
; Ib) Gflop=s ð1Þ

with Ppeak being the theoretical peak performance of

the processing units, I the computational intensity of

Figure 3. Dependency graph for a single iteration of IDR(s) biortho-variant enhanced with smoothing. The colors correspond to

specific regions of the algorithm: blue ! main loop, yellow ! shadow space loop, green ! biorthogonalization loop, and red !
smoothing steps.
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the algorithm (that is, the number of executed floating

point operations per transferred byte), and b the maxi-

mum attainable memory bandwidth.

The attainable bandwidth b has to be measured with

a suitable micro-benchmark. For the K40 GPU, we use

a copy benchmark from a GPU implementation of the

STREAM McCalpin (1995) benchmark suite to quan-

tify the attainable memory bandwidth b. The data

reported in Figure 4 shows that we need large data sets

and thread counts exceeding one million for saturating

the main memory bandwidth. For some of the prob-

lems listed in Table 1, this requirement is not fulfilled,

and the performance for those systems may be limited

by a significantly lower bandwidth (see the respective

matrix names indicated in Figure 4). To keep the

performance model as generic as possible, we do not

take the dependency between bandwidth and problem

size into account, but base the roofline model on the

maximum bandwidth of b= 193 GB=s.
Table 2 lists the computational intensities of the dif-

ferent operations involved in the IDR(s) algorithm. We

assume perfect data reuse within operations and no

data reuse across operations. The first assumption

means that the input vector of spmv has to be read

only once. This corresponds to the best case scenario

for this operation and this assumption can be made in

the light of giving an absolute upper performance limit.

The latter assumption is valid against the back-

ground that we consider data sets that are large com-

pared to the L2 cache size of about 1.5 MB. To

determine whether equation (1) is bound by Ppeak or Ib,

we consider the largest computational intensity of any

involved operation. Naturally, the computational

intensity of the entire algorithm can never be larger

than this value.

In the search space of any values of n, nz, and s, the

maximum computational intensity for a single opera-

tion is 1/4 flops/byte. This intensity is achieved for

nrm2 and, for very large values of s, also for mdotc/

gemv. In this case, we get

Pnrm2,mdotc,gemv =min(Ppeak
; Ib)

=min(1682; 193=4) Gflop=s

Hence, even the computationally most intense opera-

tions are bound by the bandwidth. We deduce that the

entire algorithm, as well as all individual kernels, are

memory bound. Thus, we can limit our performance

analysis to a pure bandwidth analysis.

Quantifying the performance of the algorithm in

Gflop/s would be nonintuitive, and we reformulate the

Table 1. Key characteristics of the test matrices ordered with increasing size.

abbrev matrix size n nonzeros nz nz/n nz stored in SELL-32 SELL-32 overhead [%]

SCR scircuit 170,998 958,936 5.61 2,410,304 151.35
TDK thermomech_dk 204,316 2,846,228 13.93 3,288,352 15.53
WEB webbase-1M 1,000,005 3,105,536 3.11 9,828,736 216.49
NLP nlpkkt80 1,062,400 28,704,672 27.02 29,074,432 1.29
DIE dielFilterV2real 1,157,456 48,538,952 41.94 87,200,640 79.65
THM thermal2 1,228,045 8,580,313 6.99 10,586,976 23.39
AFS af_shell10 1,508,065 52,672,325 34.93 52,749,920 0.15
MLG ML_Geer 1,504,002 110,879,972 73.72 111,261,248 0.35
G3 G3_circuit 1,585,478 7,660,826 4.83 7,794,048 1.74
TRA Transport 1,602,111 23,500,731 14.67 23,582,656 0.35

Figure 4. Attainable main memory bandwidth as obtained by a

copy benchmark on the K40 GPU. Each thread copies one data

element. A thread block contains 1024 threads and the number

of thread blocks is doubled for each data point. Vector lengths

for a selection of test problems (cf. Table 1) are marked.

Table 2. Maximum computational intensities in flops/byte of operations executed in our IDR(s) implementation.

mdotc, gemv copy spmv dotc, smoo2 axpy smoo1 nrm2

1
4(1+ 1=s)

0 1
6+ 8n=nz

1
8

1
12

1
24

1
4
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roofline model for predicting execution times. For V

being the minimum data volume which has to be trans-

ferred to or from main memory, the following formula

defines a minimum runtime estimate for bandwidth-

bound algorithms

tmin=
V

b
sec

Table 3 lists all relevant operations in the IDR(s)

implementation for different shadow space dimensions

s. In the end, one outer iteration of IDR(s) requires

22+ 9s2=2+ 55s=2 vector transfers and s+ 1 matrix

reads. Given the testbed setting described in Section 5,

a vector transfer contains 8n bytes and a matrix trans-

fer contains at least 12nz bytes (8 bytes for the value, 4

bytes for the column index). Therefore, the roofline

performance model predicts the minimum execution

runtimes for a single outer IDR(s) iteration as

tmin
IDR(s) =

8n(9s2=2+ 55s=2+ 22)+ 12nz(s+ 1)

b
s ð2Þ

7 Performance evaluation

For the matrices listed in Section 5, we measure the exe-

cution time for 100 outer iterations, and compare with

the minimum runtime estimate as given in equation (2).

The ratio between actual runtime and predicted run-

time quantifies the efficiency of the optimized IDR(s)

implementation.

In the left-hand panel of Figure 5, we visualize the

efficiency for different shadow space dimensions s. As

previously elaborated, the runtime of the SpMV kernel

can significantly differ from the projected performance

due to matrix storage overhead, malicious access pat-

terns and undersized data sets. In order to differentiate

between those influences, we present adjusted efficiency

numbers under the assumption that all stored matrix

entries contain useful information in the right-hand

panel of Figure 5. This compensates for the storage

overhead (which, in some sense, corresponds to a

SELL-C-sKreutzer et al. (2014) matrix with optimally

chosen s). However, it ignores the effects of malicious

vector access and small data sets not saturating the

memory bandwidth.

The right-hand side of Figure 5 shows that we

achieve very good efficiency for problems that are suit-

able for use of the SELL-32 format and large enough

to saturate the memory bandwidth. We have around

70% efficiency for the THM problem and between

75% and 90% efficiency for the problems G3, AFS,

NLP, TRA and MLG. For those systems, the effi-

ciency is mostly consistent across the different shadow

space dimensions.

Efficiency is much lower for WEB and DIE. For

both problems, the efficiency grows with larger shadow

space dimensions s. As larger shadow space dimensions

decrease the impact of the SpMV on the overall runtime,

this indicates that the performance is lost in the SpMV.

This is consistent with the SELL-32 matrix storage for-

mat incurring significant overhead for these systems

(see Table 1). Looking at the right-hand side of Figure

5 reveals that a performance model that accounts for

the additionally stored zero elements reduces the per-

formance gap for both systems. For the DIE problem,

the memory-adjusted efficiency is about 80%, and is

constant across the shadow space dimensions. The effi-

ciency for the WEB problem stays below 50%, which

still shows that the efficiency increases for larger

shadow space dimensions. Detailed analysis reveals

that the SpMV performance for the WEB problem suf-

fers from the random vector access pattern which is not

Table 3. Minimum amount of vector and matrix transfers for

each operation used in our IDR(s) implementation with line

numbers as given in listing 2. Only operations which copy at

least n data elements are considered. The last line summarizes

the transfers for the full IDR(s) solver.

Line Operation Vector transfers Matrix transfers

3 mdotc s+ 1
8 copy 2s
10 gemv

Ps+ 1
i= 2 i

12 gemv
Ps+ 1

i= 2 i
13 copy 2s
14 spmv 2s s
18 dotc

Ps�1
i= 1 2i

21 axpy
Ps�1

i= 1 3i
26 gemv

Ps
i= 2 i

29 mdotc
Ps+ 1

i= 2 i
33 axpy 3s
34 axpy 3s
35 smoo1 2s
36 mdotc 3s
39 axpy 3s
40 smoo2 3s
41 nrm2 s
48 spmv 2 1
49 mdotc 2
54 axpy 3
55 axpy 3
56 smoo1 3
57 mdotc 2
60 axpy 3
61 smoo2 3
62 nrm2 1

mdotc s2=2+ 9s=2+ 5
copy 4s
gemv 3s2=2+ 7s=2� 1
spmv 2s+ 2 s+ 1
dotc s2 � s
axpy 3s2=2+ 15s=2+ 9
smoo1 3s+ 3
smoo2 3s+ 3
nrm2 s+ 1
IDR(s) 9s2=2+ 55s=2+ 22 s+ 1

Anzt et al. 7
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accounted for in the memory-adjusted roofline model.

Similar findings regarding this test case have also been

made in Kreutzer et al. (2014).

For the small problems SCR and TDK, we achieve

only 30%–45% and 50% efficiency, respectively. For

SCR, the increase in efficiency with the shadow space

dimension s is again an indicator for the nonoptimality

of the SpMV. Also, when accounting for the memory

overhead, we do not exceed 45% efficiency for the SCR

case and 55% for the TDK case.

Given these efficiency numbers, we want to investi-

gate whether we missed relevant optimization steps, or

whether the remaining performance gaps originate from

the specific problems and the nonoptimality of GPU

kernel execution. For this purpose, we focus on the THM

problem, and use a detailed performance analysis to

identify missed optimization steps that help to reduce

the performance gap to the roofline model.

In Figure 6, we compare the runtime for the distinct

solver routines reported by NVIDIA’s profiler with

the execution time values projected by the roofline per-

formance model. The upper bars are for a shadow space

dimension s= 1 (IDR(1)). The entirely vector-parallel

operations axpy, smoo1 and smoo2, show only negligi-

ble differences from predictions. The roofline model does

not account for the reduction phase included in nrm2,

xdot and in mdotc. This explains why the runtimes for

these routines are larger than predicted. Also, the gemv

kernel shows performance lower than the model’s predic-

tions. The largest deviation, both relative and absolute,

is, however, reported for the SpMV routine. Optimizing

the sparse matrix product is outside the focus of this

work, but its complexity is well known in the community

(for GPU-related work on SpMV performance see, for

example, Bell and Garland (2009); Monakov et al.

(2010); A. Dziekonski and Mrozowski (2011); Vázquez

et al. (2011); Kreutzer et al. (2014)).

The lower bar plot in Figure 6 is for IDR(8), using a

shadow space dimension of s= 8. For larger shadow

space dimensions, the SpMV becomes less important,

and the performance impact of other operations is

enhanced. As a result, the overall runtime gets closer to

the roofline model prediction. Performance is still lost

in the operations including a reduction phase and the

SpMV. As previously elaborated, the roofline model is

for those operations based on optimality premises that

are unrealistic for an actual implementation.

Finally, we investigate whether concurrent kernel

execution, as suggested in Anzt et al. (2015a), can

improve the overall IDR(s) performance. Concurrent

execution is only possible for data-independent kernels

and communication instances. Also, benefits are only

Figure 5. Efficiency of the optimized IDR(s) implementation based on MAGMA library function calls with respect to the roofline

performance model. On the left-hand side the performance of the roofline model is based on an optimal sparse matrix vector

product (SpMV) implementation. The roofline model on the right hand-side accounts for the matrix storage overhead to reflect the

nonoptimality of the SpMV.

Figure 6. Runtime contributions for 100 outer iterations of IDR(1) (left panel) and IDR(8) (right panel) for the THM test case. The

mdotc and dotc runtimes have been combined because the latter function gets called from within mdotc if appropriate and the

profiler output does not reflect this fact.
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available in case operations listed side by side in

Figure 3 and do not fully utilize the GPU resources.

The analysis in Section 6 has revealed that the IDR(s)

implementation is entirely bandwidth bound. Therefore

performance improvements can only be expected if the

parallelism, reflected in the number of active GPU

threads, is too small to saturate the memory band-

width. The bandwidth test in Section 6 indicates that

this situation may occur for the small test matrices. At

the same time, the cost of communicating scalar values

between host and device becomes more relevant for

decreasing problem size. Hence, also overlapping the

communication with kernel execution may bring larger

benefit for small problems. In Figure 7, we report the

performance improvements obtained from concurrent

kernel execution for the test cases with the lowest effi-

ciency: SCR, TDK, WEB and DIE.

Noticeable benefits can only be observed for the small

systems. For SCR and TDK, runtime can be reduced by

5%–7% when using shadow space dimensions 2, 4 or 8.

The improvement benefits cases where s.1 for two main

reasons. First, the transition between iterations in both

inner and outer loops overlap; therefore concurrency

gains will be more noticeable as the number of iterations

increases. Second, operations in the inner loop use

matrices and vectors with sizes based on parameter s,

while operations in the outer loop are based on the actual

problem size. These factors are more likely to allow inner

loop operations to run in a concurrent fashion.

8 Summary

In this paper, we have proposed a GPU implementation

of the IDR(s) algorithm based on algorithm-specific

and data-optimized kernels. A roofline performance

model was used to evaluate the efficiency for different

test matrices. The analysis revealed that the IDR(s) per-

formance is close to the maximum that can be expected

for this algorithm. We also evaluated the benefits of

overlapping computation with communication, and the

possibility of concurrent kernel execution. As expected

for memory-bound algorithms, the potential of these

techniques is very limited, and only relevant when tar-

geting small problems.
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Note

1. We selected a mix of symmetric and nonsymmetric

matrices to cover a broad spectrum with respect to

dimension and sparsity (see Table 1 for some key charac-

teristics). The matrix characteristics can have significant

impact on the IDR(s) performance. Larger problems pro-

vide more parallelism, which brings the achieved band-

width closer to the maximum bandwidth the roofline

performance model is based on (see Section 6).
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