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Optimization and Simulation of an Evolving
Kidney Paired Donation (KPD) Program

Yijiang Li, Jack Kalbfleisch, Peter Xuekun Song, Yan Zhou, Alan Leichtman,
and Michael Rees

Abstract

The old concept of barter exchange has extended to the modern area of living-
donor kidney transplantation, where one incompatible donor-candidate pair is
matched to another pair with a complementary incompatibility, such that the donor
from one pair gives an organ to a compatible candidate in the other pair and vice
versa. Kidney paired donation (KPD) programs provide a unique and important
platform for living incompatible donor-candidate pairs to exchange organs in or-
der to achieve mutual benefit. We propose a novel approach to organizing kidney
exchanges in an evolving KPD program with advantages, including (i) it allows
for a more exible utility-based evaluation of potential kidney transplants; (ii) it
takes into consideration stochastic features in managing a KPD program; and (iii)
it exploits possible alternative exchanges when the originally planed allocation
cannot be fully executed. Another primary contribution of this work is rooted in
the development of a comprehensive microsimulation system for simulating and
studying various aspects of an evolving KPD program. Various allocations can be
obtained using integer programming (IP) techniques and microsimulation models
can allow tracking of the evolving KPD over a series of match runs to evaluate
different allocation strategies. Simulation studies are provided to illustrate the
proposed method.
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achieve mutual benefit. We propose a novel approach to organizing kidney exchanges in an evolving
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potential kidney transplants; (ii) it takes into consideration stochastic features in managing a KPD

program; and (iii) it exploits possible alternative exchanges when the originally planed allocation

cannot be fully executed. Another primary contribution of this work is rooted in the development of

a comprehensive microsimulation system for simulating and studying various aspects of an evolving

KPD program. Various allocations can be obtained using integer programming (IP) techniques and

microsimulation models can allow tracking of the evolving KPD over a series of match runs to
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method.
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1. Introduction

For patients with end-stage renal disease, successful renal transplantation provides a consid-

erably better quality of life and improved survival, as compared with the dialysis treatment

(Wolfe et al., 1999; Evans et al., 1985; Russell et al., 1992). Cost effectiveness is another

advantage of renal transplantation as compared to continuing dialysis (Laupacis et al.,

1996). However, due to limited supplies of cadaveric kidneys and a substantial and growing

demand for them, many patients who need a transplant have been placed on long waiting

lists. According to the Organ Procurement and Transplantation Network (OPTN), as of

December 2010, more than 87,000 kidney transplant candidates in the U.S. are on a waiting

list; and in 2009, about 34,000 candidates in the U.S. were added to the list, whereas only

about 10,000 actually received a kidney transplant from a deceased donor. In one response

to this shortage, candidates have increasingly undergone living-donor transplants. Moreover,

living-donor transplants have the advantage of a higher graft survival rate, in both the short

and the long term, than deceased-donor transplants (Terasaki et al., 1995; Hariharan et al.,

2000).

A major issue surrounding the living-donor kidney transplant is the unfortunate fact

that willing donors, even related living donors, are often incompatible with their intended

candidates, because of ABO blood type incompatibility and/or antibodies against some of

the donors’ Human Leukocyte Antigens (HLA). With respect to blood type compatibility,

A and B donors can donate to candidates of the same blood type or of type AB; AB donors

can donate only to AB candidates; and O donors, known as universal donors, can donate

to candidates of any blood types. The second form of incompatibility, also called a positive

crossmatch, refers to the presence of anti-donor antibodies in the blood of a candidate when

incubating the candidate blood with the white blood cells of a prospective donor. Both

http://biostats.bepress.com/umichbiostat/paper90
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forms of incompatibility can lead to rejection of the transplanted organ and thus prohibit

transplant.

Some of these incompatible donors, however, might be completely compatible with other

potential candidates. In 1986, the idea of kidney paired donations (KPD) was set forth by a

transplant surgeon, Felix Rapaport. Rapaport (1986) and later Ross et al. (1997) envisioned

that two candidates with willing, but incompatible, donors could solve each other’s problem

by simultaneously exchanging the two donors’ kidneys; see Figure 1-A for an example of

two-way exchanges. More complex exchanges of organs involving three or more pairs are also

possible, as schematically illustrated in Figure 1-B.

[Figure 1 about here.]

While three-way or higher exchange cycles increase the chance of finding compatible

matches, most transplant centers in practice restrict exchanges to at most three ways mainly

for two reasons: (i) All operations on an exchange cycle must be performed simultaneously

to avoid the risk that one of the donors may renege. This avoids a situation where a donor

withdraws his or her commitment after the other donor has undergone nephrectomy and

donated to the candidate associated with this reneging donor. This requirement of performing

operations simultaneously creates substantial logistical difficulties of scheduling, say, eight

surgeons and eight operating rooms at the same time for a four-way exchange. (ii) In addition,

the greater the length of an exchange cycle, the less likely the potential transplants will

actually occur since if any of the proposed transplants cannot proceed the whole cycle would

collapse.

Despite these logistical difficulties, more and more KPD programs have recently been

established, with the mission of promoting mutually beneficial organ exchanges among

incompatible donor-candidate pairs. Regional programs in the U.S. include, for example,

the New England Programs for Kidney Exchange, the Paired Kidney Exchange Program
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at Hopkins, the Alliance for Paired Donation (APD), the National Kidney Registry (NKR)

Program, and the University of Michigan Paired Kidney Exchange Program; internationally,

KPD programs exist in Netherlands (Keizer et al., 2005) and South Korean (Park et al.,

1999). Additional developments include a recent OPTN approval of a national KPD pilot

program.

Researchers from several disciplines, collaborating with transplant surgeons, have recently

become more involved in organizing and optimizing kidney exchanges in a KPD program.

For instance, economists have modeled and analyzed kidney exchanges using game-theoretic

approaches. Roth, Sönmez, and Ünver (2004) organized donor-candidate pairs as a “housing

market”, a concept first proposed by Shapley and Scarf (1974), and produced an efficient or-

gan exchange mechanism using Gale’s Top Trading Cycles (TTC) algorithm. Roth, Sönmez,

and Ünver (2005) and Segev et al. (2005) applied maximum cardinality matching algorithm

(Edmonds, 1965) to select exchanges that allow the maximum number of transplants, in

the case where only two-way exchanges are considered. Determining optimal exchanges, in

general, can be formulated as an integer programming (IP) problem (Roth, Sönmez, and

Ünver, 2007). This problem can be efficiently solved by finding a maximum weight perfect

matching when no restriction is placed on the cycle length. If, however, only cycles of length

up to k are considered, this IP problem is NP-hard when k is larger than two but less

than the number of participating pairs (Roth et al., 2007). To address this issue, Abraham,

Blum, and Sandholm (2007) have recently proposed an exact algorithm that performs quite

satisfactorily in this case. This work has greatly extended these methods to potentially handle

large KPD programs.

This paper extends and improves upon the research described above to optimize and

simulate a KPD program. Our proposed kidney allocation strategy is innovative in several

respects. First, it allows a quality-oriented evaluation of a kidney allocation through medical-
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outcome-based utilities such as post-transplant graft survival and recipient survival. Second,

it explicitly takes into consideration the probability that a predicted compatible transplant

will result in an actual transplant operation; this recognition of inherent uncertainty offers

substantial improvements over previous approaches. Third, our approach allows for one or

more contingency allocations should the originally planned exchanges fail to be executed.

Finally, we propose a data-based microsimulation system for simulating an evolving KPD,

based on which we can evaluate different kidney allocation strategies, compare their impact

on performance outcomes, and assess different choices of utility assignments. The knowledge

learned from such a microsimulation should provide invaluable guidance in implementing an

actual clinical KPD allocation system.

The rest of the article is organized as follows: in Section 2, we introduce the representation

and formulation of a KPD program and present a procedure for arranging kidney exchanges

according to the maximum utility cycle-based allocation. In Section 3, we explore some

important issues and features in a KPD program that have not been addressed by previous

studies and further propose a kidney allocation strategy based on the maximum expected-

utility set-based allocation. In Section 4, we present a microsimulation system for simulating

an evolving KPD. Section 5 reports simulation results to illustrate the application of the

proposed microsimulation system. We conclude with some discussion in Section 6.

2. Problem formulation and the maximum utility cycle-based allocation

In this section, we first present a graph representation of a KPD program, and then describe

two IP formulations for organizing kidney exchanges. Also, we introduce a procedure for

arranging organ exchanges according to the maximum utility cycle-based allocation.

Hosted by The Berkeley Electronic Press
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2.1 Graph representation

We represent a KPD program as a directed graph, G = (V,E), where the vertex set, V =

{1, 2, · · · , n}, is the set of n incompatible donor-candidate pairs, and the edge set E is a

binary relation on V , consisting of ordered pairs of vertices in V . An edge from v1 to v2,

denoted as (v1, v2), indicates that the donor of pair v1 is predicted to be compatible with the

candidate of pair v2. This predicted compatibility is based on a virtual crossmatch, which

involves computer cross-checking pair characteristics such as blood types and HLA immune

information. A negative virtual crossmatch may or may not lead to a negative result in the

confirmatory laboratory crossmatch, which involves incubating the blood of a candidate with

the white blood cells of a prospective donor. It is worth pointing out that prior research

on KPD has not taken into consideration this uncertainty, and instead has proceeded as

though a negative virtual crossmatch would guarantee, if chosen, a completed transplant.

For notational convenience, we denote an edge (v1, v2) as e in the case that specifying the

donor and candidate is not necessary. Throughout the rest of the paper, we use “a predicted

compatible transplant”, “a potential transplant”, “a negative virtual crossmatch”, and “an

edge” interchangeably.

In such a directed graph, an exchange cycle of length k (or a k-way exchange cycle),

k > 2, is defined as a sequence of vertices, 〈v1, v2, · · · , vk〉, satisfying (i) v1, v2, · · · , vk are

distinct, and (ii) (vk, v1) ∈ E and (vj−1, vj) ∈ E,∀j = 2, 3, · · · , k. For an exchange cycle c =

〈v1, v2, · · · , vk〉, we denote its vertex set as V (c) = {v1, v2, · · · , vk} and its edge set as E(c) =

{(vk, v1), (vj−1, vj), j = 2, 3, · · · , k}. In Figure 2 are shown one two-way exchange cycle,

〈v2, v4〉, and two three-way exchange cycles, 〈v1, v2, v3〉 and 〈v2, v4, v5〉. Exchange cycles form

a disjoint collection if their corresponding vertex sets are disjoint. A cycle-based allocation

for a KPD program G is defined as a collection of disjoint exchange cycles, and further

denoted as C(G). An alternative set-based allocation, denoted as S(G), will be introduced
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and discussed in Section 3. In the context of cycle-based allocations, a fundamental problem

in managing a KPD program is to select the “optimal” allocation from among the many

mathematically possible ones, and the choice of such an “optimal” allocation depends on

how an exchange cycle is evaluated.

[Figure 2 about here.]

For an edge (v1, v2) ∈ E, let u(v1,v2) > 0 denote the utility of a kidney transplant from the

donor in pair v1 to the candidate in pair v2. The utility of an exchange cycle c, is the sum

of its edge utilities, i.e. Uc =
∑

e∈E(c) ue, and the utility of a cycle-based allocation C(G), is

the sum of the utilities of its cycles, i.e.
∑

c∈C(G) Uc. In this setting, the optimal cycle-based

allocation is the one with the maximal utility, denoted as C∗(G).

Roth et al. (2007) proposed two different IP formulations to determine C∗(G) that were

later also adopted in Abraham et al. (2007). One formulation encodes each exchange cycle

as a decision variable, and the other one encodes each edge as a decision variable. We first

look at the cycle formulation in Section 2.2 and then the edge formulation in Section 2.3.

2.2 Cycle formulation

Let Ck be the set of exchange cycles with lengths at most k. For each i ∈ V , let Ck(i) denote

the exchange cycles in Ck that involve pair i, i.e. Ck(i) = {c ∈ Ck : i ∈ V (c)}. Define a

decision variable Yc for each cycle c ∈ Ck, such that Yc is 1 if organ exchanges indicated

by c will be arranged, and Yc = 0 otherwise. The problem of selecting C∗(G) can then be

formulated as the following IP problem,

max
{Yc}

∑
c∈Ck

YcUc,

subject to
∑

c∈Ck(i)

Yc 6 1,∀i ∈ V.
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Note that the constraint simply codifies the fact that each pair cannot be allowed in more

than one exchange cycle simultaneously. Each feasible solution to this IP problem corresponds

to one C(G), and the optimal solution corresponds to C∗(G).

As a special case in this IP problem, when the utility of an exchange cycle is defined

as its length, i.e. Uc = |V (c)|, the resulting objective is to maximize the total number of

transplants. Most KPD studies have focused on this simplified utility assignment; see more

discussion in Section 3.

The cycle formulation usually leads to increased computation time as k grows, though in

practice most KPD programs restrict k to be three or smaller due to logistical difficulties.

Some particular values of k are worth mentioning. When k is equal to two, the optimization

problem could be solved in polynomial time using a maximum weighted matching algorithm,

which is an extended version of Edmonds’ classical maximal cardinality matching algorithm.

When k is equal to |V |, i.e. no restriction is placed on the length of an exchange cycle, the

edge formulation, to be introduced in Section 2.3, yields the optimal solution in polynomial

time. As noted earlier, when k is greater than two but less than |V |, this optimization

problem is NP-hard, which poses with associated computational challenges when the number

of incompatible pairs is large. To address this issue, Abraham et al. (2007) developed an

exact algorithm that can perform satisfactorily in practice. The efficiency of their proposed

algorithm, however, relies on the following property proved in Roth et al. (2007). In a

restricted situation where (i) only blood type incompatibility is considered, and (ii) the

length of an exchange cycle is assigned as its utility, no improvement would be obtained

in the number of arrangeable transplants by allowing k to be greater than the number of

different blood types, which is four in this case.

http://biostats.bepress.com/umichbiostat/paper90
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2.3 Edge formulation

Let Y(i,j) be a decision variable for each (i, j) ∈ E, such that Y(i,j) is 1 if edge (i, j) is chosen

for a transplant and 0 otherwise. When no restriction is placed on the length of an exchange

cycle, we solve the following IP problem:

max
{Y(i,j)}

∑
(i,j)∈E

Y(i,j)u(i,j),

subject to
∑

j:(i,j)∈E

Y(i,j) 6 1,∀i ∈ V

∑
j:(i,j)∈E

Y(i,j) =
∑

j:(j,i)∈E

Y(j,i),∀i ∈ V.

In this formulation, the IP problem could be solved efficiently in polynomial time by finding

a maximum weight perfect matching. If the exchange cycle length is restricted to be at most

k, an additional set of constraints has to be added, i.e.∑
(i,j)∈E(c)

Y(i,j) 6 k,∀c ∈ Ck.

The number of additional constraints, even when k = 3, is usually enormously large in a

realistic KPD program with several hundred incompatible pairs, which makes it impossible

to even store all the constrains in a typical IP solver such as CPLEX or Gurobi. Therefore,

the cycle formulation is usually preferred in this case.

2.4 The maximum utility cycle-based allocation

We summarize below the procedure for arranging kidney exchanges according to the maxi-

mum utility cycle-based allocation. Given a KPD program G = (V,E),

(i) Define u : E → R+, where ue is the assigned utility of an edge e ∈ E.

(ii) Enumerate Ck and find Uc for each c ∈ Ck.

(iii) Determine C∗(G) by solving an IP problem with cycle formulation.

(iv) Arrange kidney exchanges according to C∗(G).
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In (ii), we enumerate Ck by developing an algorithm based on deep-first search (DFS).

DFS prioritizes the direction of search to offspring vertices first, and then to sibling vertices.

This is the first of three procedures to organize kidney exchanges in a KPD program. Two

others are presented and further discussed in Section 3.

3. Optimal kidney allocation in a KPD program

In Section 2, we have introduced a graph representation of a KPD program and presented

an allocation strategy based on C∗(G). In this section, we focus on issues in organizing a

KPD program that have not been previously addressed, and explore alternative procedures

for arranging kidney exchanges.

3.1 General utilities

Much of the prior work has focused on a simplified edge utility, namely ue = 1,∀e ∈ E. As

a result, the utility Uc of an exchange cycle c equals its length, and the objective function

in the IP problem is the total number of arrangeable transplants. This objective function,

however, is restrictive especially when a major interest presumably lies in medical outcomes

such as graft survival after transplant. Roth et al. (2007) actually used this simplified utility

assignment when they first proposed the IP approach to the KPD optimization problem.

And although Abraham et al. (2007) adopted a more general way of assigning edge utilities,

or edge weights as referred to in their work, the efficiency of their proposed exact algorithm

in solving the IP problem relies partially on using this simplified edge utility, as we have

discussed in Section 2.2.

Some recent developments, however, have emerged in assigning more general edge utilities

so that they better evaluate potential transplants. In an operational guideline recently posted

by the U.S. national KPD pilot program, each potential transplant is initially assigned a base

utility of 200 points. Extra points are added as bonuses to edges that, say, have zero antigen
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mismatches, or that involve a donor and a candidate in the same transplant center; on the

other hand, a certain number of points are deducted, for example, when a donor has one or

more of the candidate’s other antibody specificities.

We propose to associate with edge (i, j), a more general utility u(i,j), quantifying the

medical outcome from a potential kidney transplant involving the donor in pair i and the

candidate in pair j. This outcome could be, for example, graft survival, post-transplant

recipient survival, or the incremental years of recipient life that would accrue with a kidney

transplant as opposed to remaining on dialysis. Clearly, by incorporating this more general

utility, we are able to evaluate and compare competing kidney allocations with a quality-

oriented view, and provide kidney transplant candidates with organs that are not only

compatible, but that could potentially lead to a good quality of life after transplants.

3.2 Operational uncertainties in a KPD program

Prior research on KPD has implicitly assumed that a predicted compatible transplant, if

attempted, would yield an actual transplant. In reality, predicted compatible transplants

have to be confirmed by laboratory crossmatches, and hence may or may not lead to

actual transplant operations. This uncertainty is a necessary ingredient since laboratory

crossmatches cannot be undertaken on all possibly compatible donors and candidates due

to labor and resource limitations. Further, even if the laboratory crossmatch is negative, a

proposed transplant may fail to occur due to other friction including, for example, donor

refusal, illness or death of the candidate. Throughout the rest of the paper, we use the term

“is viable” to indicate that the edge actually results, if chosen, in a completed transplant

operation. An exchange cycle is viable if each of its edges is viable.

Ignoring this uncertainty can result in a situation in which long exchange cycles are

evaluated more favorably than short ones, despite the fact that longer cycles are much less

likely to be implemented. To partially incorporate this uncertainty into the arrangement of
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kidney exchanges, the operational guidelines for the national KPD pilot program proposed

a deduction of 30 points for a three-way exchange cycle, but not for an exchange cycle that

is two-way.

To address this stochastic feature in a KPD program, we associate a probability with

each edge corresponding to the chance of that edge being viable. For given e ∈ E, let Xe

be a Bernoulli random variable with Xe = 1 if e is viable, and Xe = 0 otherwise. By

letting pe = P (Xe = 1), a cycle c is viable with probability equal to Pc =
∏

e∈E(c) pe, under

the assumption that edges in an exchange cycle have an independence relationship. More

formally, this assumption is regarded as having independent random variables, Xe, e ∈ E(c).

In the rest of this paper, we assume in general that {Xe, e ∈ E} are independent.

As we should see later in Section 3.4, the incorporation of probabilities into the framework

of a KPD program also opens up the opportunity to identify possible alternatives a fall back

position that can be implemented if the primary choice does not lead to a completed set of

exchanges.

3.3 Maximum expected-utility cycle-based allocation

A natural way to quantify the value of an exchange cycle c is to use its expected utility, namely

EUc = UcPc, This approach recognizes the fact that a longer exchange cycle has a smaller

chance of being viable, which counterbalance the fact that such a cycle might potentially

contribute greater utilities and allow more transplants. Further, the expected utility of a

cycle-based allocation C(G), is the sum of the expected utilities of its exchange cycles, i.e.∑
c∈C(G)EUc. Among all cycle-based allocations, the one with the largest expected utility is

the maximum expected-utility cycle-based allocation, denoted as C∗(G). The following pro-

cedure generates this C∗(G) in a KPD program G = (V,E), and arranges kidney exchanges

accordingly.
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(i) Define u : E → R+, where ue is the utility of an edge e ∈ E, and p : E → [0, 1], where

pe is the probability that e is viable.

(ii) Enumerate Ck and calculate EUc = UcPc for each c ∈ Ck,.

(iii) Find C∗(G) by an IP-based approach as in Section 2.2, with Uc replaced by EUc.

(iv) Arrange kidney exchanges according to C∗(G).

In (iii), the cycle formulation works in a straightforward manner, but the edge formulation

cannot be extended, since this formulation represents each edge as a separate decision variable

and hence cannot describe EUc. Notice that the above procedure and the one in Section 2.4

are both fixed in that they do not specify how to proceed if an exchange cycle c ∈ C∗(G) or

c ∈ C∗(G)is not viable.

3.4 Contingency plans

Let us begin with a motivating example. In a small KPD program as represented in Figure 2,

there are two three-way exchange cycles, c1 = 〈v1, v2, v3〉 and c2 = 〈v2, v4, v5〉, with expected

utilities EUc1 and EUc2 , and one two-way exchange cycle, c3 = 〈v2, v4〉, with expected utility

EUc3 . We find that EUc1 > EUc2 > EUc3 , and thus conclude that C∗(G) is {c1}. A further

examination, however, reveals that the incompatible pairs in c3 are part of the pairs in c2,

i.e. V (c3) = {v2, v4} ⊂ V (c2) = {v2, v4, v5}. This observation might suggest that, when c2

is selected but could not be completed because of problems in either (v4, v5) or (v5, v2),

the two-way exchange cycle c3 could still be selected. Therefore, the contribution from this

back-up exchange cycle c3 would add some extra value to the exchange cycle c2. Does this

extra value make {c2} a preferred allocation to {c1}? How should we evaluate {c2} so as to

correctly recognize {c3} as a possible back-up allocation? To address these questions in this

specific example and address other related issues in general, we propose the following.

First, we give two definitions from graph theory: (i) a graph G′ = (V ′, E ′) is a subgraph

of G = (V,E), if V ′ ⊂ V and E ′ ⊂ E, and (ii) a graph G′ = (V ′, E ′) is an induced subgraph
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of G = (V,E), if G′ is a subgraph of G, and in addition, E ′ = {(u, v) ∈ E : u, v ∈ V ′}.

In the context of a KPD program G = (V,E), we then define an exchange set, denoted by

s = (V ′, E ′), as an induced subgraph of G with the extra requirement that it allows at least

one exchange cycle of length |V ′|, where |V ′| is also defined as the size of this exchange set. In

Figure 2 are shown two exchange sets of size 3, s1 = ({v1, v2, v3}, {(v1, v2), (v2, v3), (v3, v1)})

and s2 = ({v2, v4, v5}, {(v2, v4), (v4, v5), (v5, v2), (v4, v2)}), and one exchange set of size 2,

s3 = ({v2, v4}, {(v2, v4), (v4, v2)}).

By definition, an exchange set would allow one or more cycle-based allocations; if there is

more than one and not all of the exchange cycles in the first attempted allocation are viable,

we might still have the option to select another allocation, which is called a contingency.

Therefore, the expected utility generated from arranging exchanges in an exchange set de-

pends on the order in which the possible cycle-based allocations are utilized. Such an ordering

defines a general procedure, which includes the two previously introduced procedures as

special cases. For example, if s = (V ′, E ′) and C∗(s) is adopted as top priority with no

allocation assigned as a contingency, this in fact corresponds to the procedure presented in

Section 2.4 and in consequence, the generated expected utility is
∑

c∈C∗(s)EUc; similarly,

the procedure described in Section 3.3 corresponds to selecting C∗(s) as a first priority but

again with no contingency at all, and hence generates an expected utility of
∑

c∈C∗(s)EUc.

According to what we have discussed, both of these two procedures are fixed in the sense

that they each select an allocation only for s = (V ′, E ′), but do not specify how to proceed

on (V ′, E ′ \ Ef ), where Ef = {e ∈ E ′ : Xe = 0} is observed when executing that chosen

allocation. In contrast, the following “greedy” procedure is sequential and generates the

largest expected utility.

(i) Find C∗(s) in s = (V ′, E ′) using the procedure presented in Section 2.4.

(ii) If all exchange cycles in C∗(s) are viable, finish with a claimed utility of
∑

c∈C∗(s) Uc; if
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certain edges, denoted as Ef , fail to be carried forward to actual transplants, then abort

the original allocation and go back to (i) with E ′ ← E ′ \ Ef .

Return to Figure 2, where both the three-way exchange cycle, c2 = 〈v2, v4, v5〉, and the

two-way exchange cycle, c3 = 〈v2, v4〉, could be selected in the exchange set s2. If Uc2 is larger

than Uc3 , c2 should be chosen as the first priority. When edge (v4, v5) and/or edge (v5, v2) in

c2 are not viable, c3 could be tried as a contingency plan. On the other hand, if Uc2 is less

than Uc3 , then c3, backed up by c2, should be selected as the first priority.

In light of this and similar examples, we quantify the value of an exchange set s using

the above greedy procedure, which defines EUs, the expected utility of s. This approach

takes into consideration the full-potential contributions from all back-up allocations. The

expected utility of an exchange set can be exactly formulated as follows. For an exchange

set s = (V ′, E ′), let 2E′ denote the collection of all subsets of E ′, and for each Ẽ ∈ 2E′ , let

P (Ẽ) =
∏
e∈Ẽ

pe
∏

e∈(E′\Ẽ)

(1− pe),

which is the probability that the edges in Ẽ are viable whereas those in E ′ \ Ẽ are not. For

s̃ = (V ′, Ẽ), let

U(Ẽ) =
∑

c∈C∗(s̃)

Uc.

It follows that

EUs =
∑

Ẽ∈2E′
U(Ẽ)P (Ẽ).

In Figure 2, s2 would be preferred to s1 if EUs2 > EUs1 .

3.5 The maximum expected-utility set-based allocation

In Section 2.1, we introduced a cycle-based allocation as a collection of disjoint exchange

cycles. Among all such allocations, the procedure in Section 2.4 arranges kidney exchanges

according to the one with the maximum utility while the procedure in Section 3.3 according

to the one with the maximum expected utility.
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In this subsection, we define a set-based allocation as a collection of disjoint exchange

sets, and further denote it as S(G) for a KPD program G. Following the way in which the

expected utility of an exchange set is defined in Section 3.4, the expected utility of a set-based

allocation S(G) is, therefore,
∑

s∈S(G)EUs. Among all set-based allocations, the following

procedure arranges kidney exchanges in a KPD program G = (V,E) according to the one

with the maximum expected utility, which is denoted as S∗(G).

(i) Define u : E → R+ and p : E → [0, 1] as in Section 3.3.

(ii) Enumerate Sk, the set of all exchange sets of size at most k, where 2 6 k 6 |V |.

(iii) For each s ∈ Sk, calculate its expected utility as EUs =
∑

Ẽ∈2E′ U(Ẽ)P (Ẽ).

(iv) Select S∗(G) by forming an IP problem similar to the one discussed in Section 2.2.

(v) Apply the aforementioned greedy procedure to each s ∈ S∗(G).

Several remarks on the above procedure are in place. In (ii), a reasonable k, say three or

four, is required in practice due to logistical concerns as in Section 1. Enumerating Sk could

be accomplished by a DFS-based algorithm similar to the one presented in Section 2.4. In

(iii), calculating EUs involves a summation over |2E′ | terms, which poses no computational

difficulties in practice for small k.

As we have discussed, arranging kidney exchanges according to S∗(G) allows a more flexible

utility-based evaluation of potential transplants, takes into consideration the uncertainties

in a KPD, and provides contingency options when possible.

3.6 Estimation of utilities and probabilities

So far in this paper, we have assumed that we are given a utility function u : E → R+ and a

probability function. In practice, however, these utilities and probabilities are not available

and have to be estimated.

In the literature, modeling of outcome-based utility has been considered in deceased-donor

kidney transplants by Wolfe et al. (2008). Such models could be adopted comparatively
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easily to living-donor kidney transplants. On the other hand, the model for probability can

be established through a logistic modeling approach, based on clinical data from multiple

KPD programs, including the Scientific Registry of Transplantation Recipients (SRTR), the

Alliance for Paired Donation (APD), and the University of Michigan Transplant Center. In

this logistic model, some primary predictors include, for example, percentage peak panel

reactive antibody (PRA), and cross reactivity of antibody specificities.

Thus, in practice, all three procedures previously discussed for selecting the cycle-based or

set-based allocations can be easily adopted by replacing the u and p with estimated û and

p̂.

3.7 A KPD match run and an evolving KPD program

We consider a match run as a series of operations on a collection of incompatible pairs V :

(i) Form G = (V,E), where E is determined by checking virtual crossmatches on V .

(ii) Assign each e ∈ E with an estimated utility ûe and an estimated probability p̂e according

to the models discussed in Section 3.6.

(iii) Arrange kidney exchanges according to C∗(G), C∗(G), or S∗(G).

(iv) Recycle any donor-candidate pair that does not proceed to an actual transplant back

to the KPD pool awaiting for future matches.

Every KPD program is constantly evolving in that successfully transplanted pairs leave

and new incompatible pairs arrive over time. In addition, existing pairs in the pool could

withdraw due to factors such as donor or candidate pregnancy, illness, or death. Such an

evolving KPD program is managed by repeatedly executing match runs on a regular basis

over time. See Figure 3 for an illustration.

[Figure 3 about here.]
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4. Microsimulation system

In Sections 2 and 3, we have presented three allocation strategies for managing kidney

exchanges, namely, C∗(G), C∗(G), and S∗(G). A comparison among them and other possible

allocations is of high importance with respect to the practical management of a KPD

program. Such a comparison, however, usually cannot be performed in the traditional clinical

trials due to the nature of kidney transplantation, or any transplantation for that matter.

Thus, microsimulation plays a important pole for this purpose. In this section, we discuss

the key ingredients of such a microsimulation system.

4.1 Generating incompatible pairs

To create an incompatible pair, we generate its donor and candidate separately according

to their own population distributions. Candidates are sampled at random with replacement

from databases of candidates presenting with a willing but incompatible donor. One of such

databases is derived from the University of Michigan KPD program, in which candidates

are measured by variables of blood type, PRA, candidate antibody specificities (with mean

fluorescence intensity (MFI) > 5000), and so on. Currently, the UM database consists of 187

incompatible pairs, and additional databases from other KPD programs (as they become

available to us through data-usage agreements) will be incorporated for better variation in

candidates. Donors, on the other hand, are generated by separately sampling their blood

types and HLA haplotypes. Precisely, blood types are drawn from the U.S. population

distribution: O, 44%; A, 42%; B, 10%; and AB, 4% (Stanford Blood Center, 2010). HLA

haplotypes are sampled according to their frequencies in the U.S. population, which is derived

from an extensive public database on potential bone marrow donors (Maiers et al., 2007).

A simulated donor-candidate pair is regarded as an incompatible pair and hence included

in the KPD pool if either their ABO blood types mismatch, or the donor’s HLA haplotypes

contain any of the candidate’s antibody specificities (with MFI > 5000), or both. Note that
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only incompatible pairs enter the KPD pool since compatible ones can directly go for a

transplant.

4.2 Simulating a match run and an evolving KPD program

We simulate a KPD match run on a collection of incompatible pairs V by simulating each

of its four steps, as discussed in Section 3.7.

(i) Determine E according to the simulated blood types and HLA haplotypes.

(ii) Estimate both ue and pe based on generated pair characteristics.

(iii) Apply C∗(G), C∗(G), or S∗(G) to arrange kidney exchanges.

(iv) Since a potential transplant may not be viable, we simulate such uncertainty via a

Bernoulli trial with the probability of success equal to that edge probability. The real-

ization of such a Bernoulli trial will indicate if a pair proceeds to an actual transplant

and hence leaves the pool, or remains in the pool and awaits future matches.

To address the feature that a KPD program is evolving over time as discussed in Section

3.7, we first generate an initial KPD pool of N incompatible pairs as described in Section

4.1. Further, we assume that the arrival of new incompatible pairs follows a Poisson process

with a rate λ. This rate may be governed by a log-linear model with covariates of age, race,

and the relationship between donor and candidate, among others. Also, we assume that the

withdrawal of existing pairs follows another Poisson process with a rate µ; and the log-linear

model for µ could include other relevant covariates.

5. Simulation results

The proposed microsimulation system in Section 4 enables us to investigate several aspects of

KPD, among which comparing different kidney allocation strategies is of special interest. This

section presents these results based on simulation studies. We implement the microsimulation
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models using the C++ programming language, and the related IP problems are solved by

Gurobi Optimizer. 1

5.1 Problem complexity

The number of exchange cycles or exchange sets can be enormous in a reasonably large

KPD pool of, say, several hundred pairs, even if the size of exchange cycles or exchange

sets is restricted to at most three. Such complexity causes solving related IP problems

computationally rather expensive. Table 1 summarizes the averaged numbers (over 200

rounds of simulation) of exchange cycles or exchange sets up to three pairs in a KPD pool

whose size varies over 100, 200, 300, 400, and 500, where incompatible pairs are generated

according to Section 4.1.

[Table 1 about here.]

5.2 Simulation setup

We perform a total of 600 simulations, in which {pe, e ∈ E} is generated according to

a uniform distribution U(0.1, 0.5). We use two other uniform distributions, U(10, 20) and

U(20, 30), to generate {ue, e ∈ E}, each corresponding to 200 rounds of simulation; the

utility is fixed at 1 in the remaining 200 simulations.

We start each round of simulation by generating a pool of N = 200 incompatible pairs.

Additionally generated pairs then enter this pool according to a Poisson process with λ = 10

pairs per month over a period of m = 24 months. For simplicity, we assume no existing pairs

drop out of the pool.

We execute a match run at the end of each month on this evolving pool starting with

the initial pool. Pairs that arrive during the time of a match run will not participate but

wait for the next match run. At each simulation, we make three copies of the evolving

1Gurobi Optimizer Version 2.0. Houston, Texas: Gurobi Optimization, Inc.
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KPD program, and execute each of the three match runs (which arrange kidney exchanges

according to C∗(G), C∗(G), and S∗(G)) on each copy such that we can directly compare these

three allocation strategies. At the end of each match run, the KPD pool is updated with

some pairs leaving or staying. We record several important measures needed for comparison,

such as cumulative claimed utilities, cumulative number of transplants, and blood types of

candidates receiving transplants.

The above setup provides a simple microsimulation system that enables us to examine

and compare different allocation strategies. More realistic models will be further explored

by incorporating more comprehensive data on pair characteristics and actual transplant

operations, when such data become available to us via data-usage agreements.

5.3 Results

First, we report on the cumulative number of transplants over a period of 24 months across

three allocation strategies, C∗(G), C∗(G), and S∗(G), and under three different models of

utilities, i.e. U(1, 1), U(10, 20), and U(10, 30); see Figure 4, which unveils a consistent pattern

regardless of utility models that S∗(G) results in the greatest number of transplants, whereas

C∗(G) leads to the fewest number of transplants. Take Figure 4-C as an example. When the

edge utility is fixed at 1, allocation strategy S∗(G) gives 50 (median over 200 simulations)

transplants after match run 10 (at the end of month 9); in contrast, for exactly the same

evolving KPD program, strategy C∗(G) only leads to a median of 34 completed transplants

over the same period of time. Also, allocation strategy C∗(G) allows for a significantly higher

number of transplants than C∗(G) does, though it performs worse than S∗(G).

[Figure 4 about here.]

Figure 5 demonstrates that S∗(G) is advantageous over both C∗(G) and C∗(G), in the sense

that S∗(G) on average achieves the largest cumulative claimed utility. Notice that when edge

utilities are fixed at 1, the cumulative claimed utility is the same as the cumulative number of
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transplants; in such scenario, the superiority of S∗(G) has been shown in Figure 4, and hence

we only compare these allocation strategies under two other utility models, i.e. U(10, 20) and

U(10, 30). It is clear in Figure 5 that the strategy of S∗(G) outperforms the other two.

[Figure 5 about here.]

We can also examine via the proposed microsimulation system other aspects of a KPD

program. For example, we are interested in exploring how the chance of having a transplant

being associated with blood types. In practice, candidates with blood type O are usually at a

disadvantageous position due to the limitation that they can only receive kidneys from blood

type O donors, who, however, can donate to candidates of any blood type. This phenomenon

is clearly observed in Figure 6, where about 60% of the incoming candidates are of blood

type O while only about 40% of the performed transplants involve a blood O candidate. As a

consequence, candidates of the other blood types (A, B, and AB) are more represented among

all candidates receiving a transplant. One possible solution to this difficulty is to assign bonus

utility to a potential transplant that involves an O donor giving to an O candidate.

[Figure 6 about here.]

6. Concluding remarks

In this paper, we have proposed a novel approach to arranging kidney exchanges in an

evolving KPD program. Our approach identifies the maximum expected-utility set-based

allocation that (i) allows for a more flexible utility-based evaluation of potential kidney

transplants, (ii) takes into consideration stochastic features in managing a KPD program,

and (iii) exploits possible back-up exchanges when the originally planed allocation cannot be

fully executed. Another primary contribution is rooted in the development of a comprehensive

microsimulation system that enables us to simulate and examine various aspects in an

evolving KPD program. This microsimulation system allows us to emulate genetic and

http://biostats.bepress.com/umichbiostat/paper90



22

demographic data from existing KPD programs, and to derive statistical models similar

to the actual KPD program in practice. In particular, we have suggested (i) models for

donors’ and candidates’ characteristics as well as for their arrival in and withdrawal from

a KPD pool; (ii) models for the estimation of the outcome-based utility of a potential

transplant; and (iii) models for the prediction of the probability that a planned transplant

would indeed occur. Utilizing such a microsimulation system, we are able to quantitatively

compare different kidney allocation strategies; and results shed light on decision support in

actual KPD programs.

We have illustrated the proposed microsimulation system to compare several kidney allo-

cation strategies. Through simulation studies, we demonstrate advantages of the maximum

expected-utility set-based allocation over the other two allocations. Such advantages are

attributive to the concept of an exchange set, in which uncertainties in a KPD are properly

incorporated and possible contingency allocations are allowed in the case of failure at the

original planned exchange. In the future work, we plan to base our simulation on more

realistic models that will be developed by incorporating more KPD program source data.

Another possible future work is to consider exchanges initiated by an altruistic donor (Rees

et al., 2009). An altruistic donor does not have a designated candidate and donates a kidney

voluntarily. Figure 7 gives an illustration on a chain of transplants initiated by an altruistic

donor. Since the transplants along the chain are not required to be performed simultaneously,

a bridge donor (namely the donor whose incompatible candidate received a kidney but has

yet donated) at the end of the chain could make a donation to a future-arrival compatible

candidate, whose willing but incompatible donor then becomes the new bridge donor. In

this respect, the chain is open-ended and greatly increases the chance for a highly sensitized

candidate to receive a compatible kidney. The proposed work could be easily extended to

include altruistic donors as participants in a KPD program. More specifically, a chain of
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kidney transplants can be viewed as a special exchange cycle, in which the bridge donor

“donates” to a phantom candidate associated with the altruistic donor who first initiated

that chain, and hence form a hypothetical “edge” (denoted by dashed arrowed lines in Figure

7). Future research on KPD with altruistic donors is certainly of high importance and great

interest; we will report our results in a separate publication in future.

[Figure 7 about here.]
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Figure 1. (A): A two-way exchange cycle; (B): A three-way exchange cycle. The two graphs
in the bottom are the corresponding graphical representations of the top ones.
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Figure 2. One two-way exchange cycle, 〈v2, v4〉, and two three-way exchange cycles,
〈v1, v2, v3〉 and 〈v2, v4, v5〉.
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Figure 3. A flow diagram of an evolving KPD program
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Figure 7. A chain of transplants initiated by an altruistic donor. The dashed arrow
indicates a hypothetical “edge”, which represents a “donation” to a phantom candidate
associated with the altruistic donor.
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Table 1
The averaged numbers of exchange cycles or exchange sets up to three pairs in KPD pools of various sizes; standard

deviations are given in the parentheses; the summary is calculated over 200 rounds of simulation.

exchange cycles (length 2 & 3) exchange sets (size 2 & 3)
pool size mean (standard deviation) mean (standard deviation)

100 388 (237) 383 (229)
200 2659 (998) 2630 (977)
300 9413 (3164) 9305 (3100)
400 21076 (6140) 20829 (5992)
500 40290 (9337) 39815 (9120)
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