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OPTIMIZATION AND THE MATCHING LAW AS
ACCOUNTS OF INSTRUMENTAL BEHAVIOR
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The interaction between instrumental behavior and environment can be conveniently
described at a molar level as a feedback system. Two different possible theories, the match-
ing law and optimization, differ primarily in the reference criterion they suggest for the
system. Both offer accounts of most of the known phenomena of performance on concur-
rent and single variable-interval and variable-ratio schedules. The matching law appears
stronger in describing concurrent performances, whereas optimization appears stronger
in describing performance on single schedules.
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Recent years have seen the rise of two molar
theoretical approaches to understanding in-
strumental behavior: the matching law and
optimization. Although they differ in a num-
ber of ways, the two approaches share at least
two fundamental assumptions.

First, both assume that all behavior con-
stitutes choice, in the sense that, no matter
how limited the situation, an organism always
has more than one activity in which it can
engage. Besides a measured response, an or-
ganism may groom, explore, or rest. A strong
form of this assumption further supposes that
the total behavior that occurs in any given
interval of time is constant (e.g., Herrnstein,
1974; Rachlin, 1978; Staddon, 1979). Restated,
the notion means that, if one activity increases
in frequency, others must decrease in com-
pensation.

The second assumption both approaches
share is that the interaction between environ-
ment and behavior is a process of two-way
adjustment, because behavior and environ-
ment act to change one another. Restated, this
means that the interaction can, at least in
principle, be described as a feedback system.

The two assumptions together imply that be-
havior and environment constitute a feedback
system that at equilibrium balances a mix of
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activities (i.e., choice) with a mix of conse-
quences (i.e., changes in the environment).
This balance is described in a straightforward
way by the matching law: the frequency of an
activity relative to all others matches its re-
ward value relative to all others (Baum, 1973,
1974b; Herrnstein, 1970).

Optimization, on the other hand, assumes
that organisms maximize satisfaction. Several
recent theoretical accounts are based on this
as an initial assumption (Rachlin, 1978; Rach-
lin, Green, Kagel, & Battalio, 1976; Staddon
& Motheral, 1978; Baum, Note 1; Staddon,
Note 2). In present terms, we can state it thus:
choice tends to produce an optimal mix of
consequences. This implies a weighing of cost
against benefit. The analysis then has to deal
with two problems: what variables determine
cost and benefit and by what mathematical
relations?

THE ORGANISM-ENVIRONMENT
FEEDBACK SYSTEM

Considering the organism and its environ-
ment as a feedback system, we can diagram
the system as shown in Figure 1. The organism
constitutes the process controlled. Its outputs
are the frequencies of its various activities,
designated B;; only two appear in Figure 1,
although in principle there might be any
number. By virtue of the experimental proce-
dure or the nature of the organism and the
rest of the world, two sorts of variables depend
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on each B;: those beneficial to the organism or
the species, denoted as 7, (for “reward”), and
those costly to the organism or the species, de-
noted as g,. The variables 7; and g, represent
the varied punishing and rewarding conse-
quences of changes in the behavioral variable
B;. They constitute the feedback that returns
to control allocation of behavior. The two
combine to produce a single variable, 7; — q,,
which could be called the net gain returned
by the activity B;. This, together with B,, al-
lows computation of an indicator s;, by the
function f(r; — q;,B;), yet to be specified. The
reference criterion, yet to be specified, tests
whether the s, i = 1 to n, are all equal. If not,
the reference criterion generates error greater
than zero. A simple possible expression of the
reference criterion and error appears in the
figure:

2 (=97

where 5 is the average of 5;, i=1 to n. When
this quantity, the variance, is zero, the refer-
ence criterion is met. A variance greater than
zero would constitute error. When this occurs,
the variables B; change so as to diminish the
error.

Since practical and theoretical questions
such as whether the measures should be rela-
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Fig. 1. The organism and environment diagrammed
as a feedback system. See text for explanation.
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tive or absolute, whether r and ¢ require a
common scale, and whether or how to derive
a common scale of behavior tend to depend on
the indicator function f that enters into the
reference criterion, theoretical debates often
center explicitly or implicitly around the
problem of choosing the indicator. In what
follows, this problem is treated as primary.
What would the indicator be for the match-
ing law? A simple possibility emerges if we
represent matching across n alternatives as

T =T
BB = =5 )

This is algebraically equivalent to the gen-
eralized form of the matching law:

B; _n

n n
2B, 37
1=h

j=1

@)

fori=1,2,....n. If we expand Equations
1 and 2, as Farley (1980) and de Villiers (1980)
suggested, to include punishment (i.e., cost,
scaled appropriately) ¢, we have:

n—4qy _T2— 4o _ T = qn 3
=t l= =2t @
and:
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for all i =1 to n. For the matching law, then,
the indicator is:

s — g,
§¢ = B‘

Optimizing translates into maximizing of
reinforcement or, when cost is significant, net
gain. If we again suppose n reinforcement
loops (and, if necessary, n cost loops), then
optimizing consists in equating all partial de-
rivatives of net gain with respect to behavioral
allocation B:

3(1’1 - ql) = 0(12 —_ q2) — — a(rn — qﬂ) (5)
3B, 3B, '~ 6B,

If all the B’s were mutually independent, then
these derivatives would all equal zero. Such a
supposition, however, would be unrealistic. It
would mean that the performances on two con-
current schedules would match the perfor-
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mances on the two schedules presented singly.
Performance on concurrent schedules differs
from performance on single schedules precisely
because the B’s are interdependent. Since the
alternatives are mutually exclusive, behavior
given to one tends to be taken away from other
alternatives. The strongest expression of this
constraint, already mentioned, assumes that
the total of behavior remains constant in the
face of changing net gain. This constraint
will generally be assumed to apply in what
follows. In treating concurrent schedules, how-
ever, optimizing needs to assume only that the
total behavior allocated to the schedules varies
independently of the division of behavior be-
tween the schedules. Whatever constraint one
assumes, the resulting interdependence of the
B’s implies that the derivatives in Equation 5
generally will differ from zero. Equation 5
makes clear, however, that for optimization
the indicator in Figure 1 is:

5, =9 —q)
{ = aB‘

Regardless of whether the reference cri-
terion is taken to be Equation 3 or Equation
5, corrective action when error differs from
zero (Figure 1) will be the same. For either
equation, s; varies inversely with B, When s;
is too small (less than 5), B; should decrease;
when s is too large (greater than s), B, should
increase.

In comparing the matching law with optimi-
zation, the first question that arises is whether
optimizing theory can describe the same basic
phenomena as the matching law. When and to
what extent do their predictions diverge? To
provide a partial answer, we consider now
some common laboratory situations: concur-
rent variable-ratio (VR) schedules, concurrent
variable-interval (VI) schedules, and concur-
rent VR VI schedules in which both alterna-
tives deliver the same reinforcer.

Concurrent VR VR

Choice between two concurrent ratio sched-
ules usually produces exclusive preference for
the smaller ratio (Herrnstein & Loveland,
1975). An account of this as optimizing is
straightforward.

Let B; and B, be the response rates at Al-
ternatives 1 and 2, and r, and r, the rates of
reinforcement produced by B; and B,. We des-
ignate the overall response rate as:
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BEB1+B2,

and the proportion of responding at Alterna-
tive 1 as:

__B
P=B+B,

Since a ratio schedule provides that the rate of
reinforcement is directly proportional to the
rate of responding, we write:

1, =By and vy, = B, 6)

understanding that ¢; and ¢, are the recipro-
cals of the two ratios. From Equation 6 and
our definition:

1+ 13 =pB 4+ c(1 — p)B
Rearranging, we obtain:
11+ 12 = B{cy + (1 — c)p} ™

Neglecting for now any differences in cost
that might influence choice, we can consider
how the gain and loss of overall reinforcement
represented in Equation 7 would influence
the distribution of responding p. Without loss
in generality, we can assume that Alternative
1 is the richer alternative; that ¢, exceeds c,.
The relationship between overall reinforce-
ment and p is linear, with slope B(c; — ¢;) and
intercept Bc,. In the range of possible values
of p, this relation has its maximum where p
equals 1.0—exclusive preference for the richer
alternative. If behavior were guided by optimi-
zation, p would have to go to 1.0.

As the two ratios differ by less and less, the
slope of the relation in Equation 7 gets flatter
and flatter. When ¢, equals c,, 7y + 72 becomes
independent of p. One would expect then that
minor differences between the alternatives,
omitted from Equation 7, would determine p.
One could expect also that preference (p)
would become idiosyncratic from subject to
subject. Herrnstein and Loveland (1975) re-
ported just such findings.

A more rigorous account, based on Figure 1
and Equation 5, is straightforward, because
an ar,
0B, 0B;
schedules are the same, ¢; equals ¢, and the
reference criterion is satisfied regardless of
behavioral allocation. If the schedules are
unequal, the reference criterion cannot be
met. If ¢; exceeds c,, then s, is too large
(s; > s) and s, is too small (s; <5). Corrective

equals ¢; and equals c,. If the ratio
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action increases B, and decreases B, until B,
goes to zero and B; comes under the control
characteristic of a single ratio schedule (see
later).

Although Herrnstein and Loveland (1975),
and others since, supposed that the matching
law can predict only exclusive preference for
one VR, but not which VR will be preferred,
in fact the matching law offers an account of
the same set of phenomena. Using Equations
1 and 2, we can write the prediction made in
two ways:

B, n
E - -7—2_ ®)
7y T2
B," B, ©)

Since the left of Equation 9 is ¢, and the right
side is c,, the equation shows that if ¢, equals
¢, matching prevails regardless of how re-
sponses might be distributed, whereas if ¢,
differs from c,, matching cannot prevail as long
as B, and B, both exceed zero. Equation 8, on
the other hand, shows that matching can be
satisfied if B, and r, or B; and 7, equal zero.
If ¢; exceeds c¢;, and we assume that the or-
ganism initially samples both alternatives,
then the left side of Equation 9 exceeds the
right side. Since Equation 3 provides that the
difference between the two will be interpreted
as error (see Figure 1), the system will act to
correct the discrepancy. Since the left side of
Equation 9 could be decreased only by in-
creasing B,, and the right side could be in-
creased only by decreasing B,, the system
can act only by increasing B,, decreasing B,,
or both—in other words by increasing p. Al-
though the corrective action continues, the
error never vanishes, until B, and 7, reach
zero and their ratio becomes indeterminate.
The system goes to the extreme and stays there.
At this point, since both sides of Equation 8
are infinite, the matching law is satisfied.

Concurrent VI VI

Since this is the situation in which the
matching relation was first observed, the ac-
count based on the matching law is straight-
forward. Equations 8 and 9 apply. The system
acts to equate rate of payoff across alternatives
as in Equation 1 (Rachlin, 1973; Revusky,
1963).

Staddon and Motheral (1978) suggested an
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account based on optimizing. The following
is similar to theirs, but presents the problem
more generally and relies on a simpler proof.
Any optimizing account begins with the re-
lation by which a VI schedule makes rate of
reinforcement depend on response rate:

1

r=irg (10)

where ¢ is the programmed average interrein-
forcement interval and E represents the time
beyond this, from scheduling of a reinforcer
to its delivery, added by the behavioral re-
quirement of the schedule. It is a function of
B, the response rate. When B is high, then E
should be small, and r should approach the
programmed rate of reinforcement, 1/t. As B
declines, E must grow; as B approaches zero, E
must approach infinity. A simple function with
these properties is: E =1/B. Figure 2 shows
this relation and the curve it defines for
Equation 10.

With concurrent VI schedules, overall rate
of reinforcement would conform to:

1 1
ry+ro= +

1 1
htg bt

B,

Using the same definitions of p and B as we
used to write Equation 7, we obtain:

1 1
T+ 1y = 1+ I

t +Z’§ t2+-————(1 —p)B

1)

This relation is shown graphically in Figure 3.
In this figure, and in the ones like it to follow
(Figures 4 and 6), B was assumed to be con-
stant and equal to 100, so that the relations
could be illustrated in two dimensions. Al-
though the curve representing Equation 11 ap-
pears almost flat, clearly it has a maximum;
at either extreme of preference, rewards come
from only one alternative, whereas intermedi-
ate preferences produce rewards from both,
and therefore represent more nearly optimal
performances. Figure 4 shows another method
of depicting the interaction between overall re-
inforcement and distribution of behavior. In-
stead of the proportion of behavior, the index
of distribution is the logarithm of the ratio of
the two frequencies. This method makes the
existence of an optimal distribution more ob-
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Fig. 2. A possible feedback function for variable-
interval schedules, based on the assumption that re-
sponses are random in time. A: The feedback curve and
its limits for low and high response rates. B: The curve
relating the error (time between set-up of reinforcement
and its delivery) introduced by the schedule’s response
requirement and rate of responding.

vious. For the sake of algebraic simplicity,
however, we can rely on Equation 11.

Figures 3 and 4 show that if we assume the
division of behavior to be independent of the
overall response rate B, then optimization be-
comes equivalent to finding that division of
behavior (p here) that maximizes the overall
rate of reinforcement (Equation 11). The proof
that follows here is formally equivalent to ap-
plying Equation 5; it is only more direct con-
ceptually.

To find the optimal value of p, we take the
partial derivative of Equation 11 with respect
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to p. (Adding cost in no way changes these
statements, because, as we shall see (Figure 11),
g% is approximately constant over most of
the range of B.) This produces:
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At the maximum, this derivative equals zero,
with the result that:

it
P*B~ (T— pyB
This simplifies to:
P
1—p

From the definition of p, we conclude:

Sy

B, _n
B, 1y

The optimal value of p is the value that con-
forms to the matching relation. Optimizing
and matching predict the same performance.

A question remains: how critical were the
assumptions represented in Figure 2? Assum-
ing that the portion of interreinforcement
time dependent on behavior, E, equals the
average interresponse interval, 1/B, amounts
to assuming that responding occurs randomly
through time—that responses are generated by
a Poisson process. Although this might be
reasonable as a first approximation, doubtless
it is inaccurate. For example, if responding
tended to occur at a constant tempo, k, while
the organism was engaged in responding then
as response rate increased E would gradually
approach 14k. The more accurate VI feedback
function presented by Nevin and Baum (1980)
captures exactly these properties. Whatever
the model, however, the function relating E
to B must have a form similar to that shown
in Figure 2. Since this determines the shape of
the VI reinforcement function, which in turn
determines the optimal value of p (Figures 3
and 4), almost any concave-upward function
for E should predict at least an approximation
to matching. This is true, for example, of the
model proposed by Heyman and Luce (1979).

Beginning with a different set of assump-
tions, Heyman and Luce concluded that op-
timization predicts performance diverging
from matching. The difference between their
conclusion and the present one is more appar-
ent than real, however, because they omitted
any calculation of relative reinforcement ob-
tained, assuming instead that it remained close
to the relative reinforcement programmed.
When preference is strong, however, response
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rate on the nonpreferred alternative can fall
low enough to decrease rate of reinforcement
at that alternative substantially. Since the
matching relation always refers to reinforce-
ment obtained, only a comparison of optimal
choice with relative reinforcement obtained
can reveal whether optimization diverges from
matching.

Figure 5 shows a replotting of Heyman and
Luce’s Figure 3, with the addition of the omit-
ted information about obtained reinforcement.
It shows, for conc VI 1 VI 3, overall rate of
reinforcement as a function of response ratio,
for five different rates of changeover (Heyman
and Luce’s parameter I, which is half the
average interchangeover interval). The rela-
tions are shown in the manner of Figure 4,
whereas Heyman and Luce used the coordi-
nates of Figure 3. The symbols in Figure 5
show optimal performances. The diamonds
represent the maximum rates of reinforcement
(ordinates) and the corresponding response
ratios (abscissae). The up-arrows represent,
with the same ordinates, the reinforcement ra-
tios obtained by the response ratios (abscissae).
The horizontal distance between each pair of
symbols indicates the degree of deviation from
the matching relation. The deviation remains
small even when preference is unrealistically

50 60 70
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Fig. 5. Overall rate of reinforcement obtained from
conc VI 1 VI 3 as a function of response ratio, according
to the model of Heyman and Luce (1979). Parameter I
equals half the average interchangeover interval in
seconds. Symbols indicate optimal performance. Dia-
monds show optimal response ratios (abscissae). Up-
arrows show optimal reinforcement ratios (abscissac).
Symbols’ ordinates are the maximal reinforcement rates.
Note logarithmic x-axis.
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great (13 to 1) and rate of changeover unrealis-
tically low (I = 120; one changeover every 4
min). For realistic rates of changeover (I =
30; rate of changeover = 1 per min), the devi-
ations of optimal performance from matching
are negligible. Had Heyman and Luce in-
cluded reinforcement obtained in their figure
as Rachlin (1979) suggested, they would have
come to a conclusion opposite to the one they
published.

Concurrent VR VI

Once again, the account in terms of the
matching law is straightforward. If the VR
reinforcement function is r; = cB;, then the
system would act to equate the rates of payoff,
as in Equation 9. In this case, since r;/B; must
equal ¢, the only adjustment can be to set
72/B, equal to ¢ as well. In two separate ex-
periments, Herrnstein found close approxima-
tions to matching (Baum, 1974a; Herrnstein,
1970).

Herrnstein and Heyman (1979) and Stad-
don and Motheral (1978), using different ap-
proaches, have argued that matching is incom-
patible with optimizing in this situation. The
following account suggests that there is a re-
lation between the two predictions and that
under some conditions they may converge.

To discover what optimizing would predict,
we follow the same line of reasoning as before.
The overall rate of reinforcement is approxi-
mated by:

1
—71 1

‘“taTps

1+ ro=cpB+

Figure 6 shows this relation for one pair of
schedules. Although there is an optimal value
of p, it strongly favors the VR schedule. This
could be compatible with matching if the ten-
dency to favor the VR schedule affected only
a bias in preference (Baum, 1974a). Such a
bias can be seen in the data of several experi-
ments, for which Equation 8 must be modi-
fied to include a constant w:

B r

F; =w i (13)
where a value of w different from 1.0 repre-
sents an asymmetry between alternatives in fac-
tors such as unmeasured reinforcement (or
cost) or manner of responding (Baum, 1974a).
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Such a result, plotted in logarithmic coordi-
nates, parallels the matching relation, differing
from it only in having an intercept different
from zero (log w).

Taking the partial derivative of Equation
12 with respect to p, we obtain:

3(71 + 1‘2) — CB ‘r22

op " (T-peB

Setting this equation to zero, eliminating B,
and rearranging terms, we find:

Pt
T—pp o

From the definition of p, this is equivalent to:
BE=C e (14

Taking the square root of both sides of Equa-
tion 14, we see that optimizing predicts biased
matching (Equation 13), with bias w equal
to 1/7/c, provided that c¢ remains constant.
This means that if one varied the VI while
holding the VR fixed, optimal performance
would parallel matching, with a bias equal to
the square root of the VR.
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If the VR (and hence ¢) were varied, other
results should ensue, deviating from matching.
Suppose one kept the VI schedule constant,
varying the VR from condition to condition.
We can rewrite Equation 14 as:

By2?_B, 1
B2 1, 1y

(15)

As long as B,, the response rate at the VI
schedule, remains above some minimal level,
the rate of reinforcement obtained from that
alternative, r,, will tend to remain invariant.
If, moreover, B, tends to be the lower, as well
as the more flexible response rate, then most
of the variation in preference would arise from
variation in B,, and B, would tend to remain
high and relatively fixed. From Equation 15,
we see that these approximate invariances
should lead to optimal performances con-
forming approximately to:

B; _ L5
By~ 75
where ¢ equals \/B, /r».

Figure 7 shows optimal performances, de-
rived by the graphical method depicted in
Figure 6. Both the relations suggested in
Equations 14 and 16 are verified in Figure 7,
which shows optimal performances arrived at

RESPONSE RAT1IO0: B(VR) /B (VD)

T T

T I’ l’

T T 7] ]
1 4 5 10
REINFORCER RATIO: R(VR) /R (VD)

20

Fig. 7. Optimal performances on various conc VR VI
schedules. Ratio of responses (VR to VI) appears as a
function of ratio of obtained reinforcement (VR: to VI).
Lines with symbols show predictions for experiments in
which one schedule is held constant while the other is
changed. Plain diagonal line shows the matching rela-
tion. Note logarithmic axes.
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by inspecting, for each VR VI pair, a graph
similar to Figure 6. When the VR is held fixed,
a line parallel to the matching relation results.
This is biased matching, the bias increasing
with increases in the fixed VR. When the VI
is held fixed, Equation 16 appears in these
logarithmic coordinates as a straight line with
a slope of .5. The more sparse the VI schedule,
the more bias shifts toward the VR, as one
would expect from the corresponding decreases
m 7s.

How well do observed performances con-
form to these optimal performances? Figure 8
shows the optimal performances from the five
conditions of one of Herrnstein's experiments
(reported in Baum, 1974a). In three of the
conditions, the pigeons’ pecks at one key were
reinforced on a VR 30, whereas their pecks
at the other were reinforced according to a
VI that varied from condition to condition
(VI 40-sec, VI 30-sec, and VI 15-sec). In ac-
cordance with Equation 13, the optimal per-
formances for these three lie on a line parallel
to the matching line. Three of the conditions
contained the same VI 40-sec at one alterna-
tive while pairing it with three different VR
schedules (VR 30, VR 45, and VR 60). The
optimal performances for these three lie on a
line with a slope of .5 in accordance with
Equation 16. Given the usual sort of variation
in data, such an arrangement of points might
appear to conform to biased matching. This

RESPONSE RARTIO: BI(VR)/B(V)

i1l

T T T T T T T

I I T T 71T I I
H 2 4 5 10 20
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Fig. 8. Optimal performances on conc VR VI, as in
Figure 7, showing predictions for the conditions of
Herrnstein’s experiment (points).
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arises mainly from the use of a common VR
schedule in three of the conditions.

Figure 9 shows the actual data from Herrn-
stein’s experiment (Baum, 1974a). The points
parallel the matching relation closely, more
closely than Figure 8 would suggest. More-
over, the bias (1.4) falls far short of the value
of 5 or 6 (i.e.,, \/30) that one would expect
from Figure 8 and Equation 13. The dis-
crepancy in bias alone cannot establish that
the performances in Figure 9 were nonoptimal,
however, because other factors that affect bias
could have reduced it to the level observed. In
the absence of additional data, one can only
agree with Herrnstein and Heyman (1979)
that the observed matching appears incom-
patible with optimization. The crucial ex-
periment remains to be done: does matching
hold when the VI is fixed while the VR is
varied? Although Herrnstein's data suggest
that it does, the proposition remains to be
tested systematically.

Single VI and VR Schedules
Herrnstein's (1970) equation, based on the
matching law, for describing performance on
single schedules is:
kr
r+r,

B =

7)

where B, k, and r are as we have defined them
already: response rate, tempo (maximum pos-
sible response rate), and rate of reinforcement,
respectively. The parameter 7, represents re-
inforcement from unprogrammed sources,
brought into the situation by the nature of the
organism itself, such as grooming, exploring,
stretching, and possibly adjunctive behavior
(Cohen, 1975; Staddon & Simmelhag, 1971).
Regardless of whether it is correct or not,
Equation 17 embodies an indispensable prin-
ciple: no matter how carefully controlled the
situation, the organism itself brings in be-
havioral tendencies that compete with sched-
uled reinforcement. Without the assumption
of some sort of intrinsic modulating factors,
there can be no explanation of why response
rate ever varies as the schedule changes. Hind-
sight shows us that earlier explanatory propo-
sitions, such as the law of least effort and differ-
ential reinforcement of interresponse times,
reflected this need implicitly. In reply to the
question why a VI 30-sec maintains a higher
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response rate than a VI 5-min, the law of
least effort appeals to the organism’s intrinsic
sensitivity to the cost of the reinforced behav-
ior, in comparison with the gain it achieves.
Differential reinforcement of interresponse
times refers to the organism’s capacity to be
rewarded for pausing—that is, for engaging in
activities other than the one reinforced by the
schedule. Herrnstein may only have been the
first to recognize explicitly the part played by
the organism’s intrinsic tendencies.

The feedback model in Figure 1 provides
a means of describing modulating factors and
making the need for them explicit. By itself,
a monotonically increasing reinforcement
function provides only for positive feedback.
With no additional processes, we would have
no reason to expect responding to occur at any
frequency but the maximum possible. For be-
havior to stabilize at intermediate frequencies,
the system must include negative feedback.
This is provided in Figure 1 in two ways: by
cost functions and by competing sources of
reinforcement.

Costly relations include punishment and ef-
fort, the direct deterrents to responding. Com-
peting sources of reinforcement provide nega-
tive feedback in the form of lost opportunities
for positive reinforcement from alternative
sources. The more time is devoted to one ac-
tivity, the less is available for other, possibly

rewarding, activities. Indeed, according to
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Herrnstein’s (1974) general formulation, 7,
which explicitly refers to alternative oppor-
tunities for reinforcement, ought to vary under
some circumstances. Pear (1975) suggested that
it might decrease if programmed reinforce-
ment engaged a large enough portion of be-
havior. In discussing concurrent schedules,
we assumed implicitly that competition be-
tween the two programmed sources of rein-
forcement so dominated the situation as to
render other beneficial and costly relations
negligible. In considering single schedules,
for which programmed reinforcement pro-
vides only positive feedback, inclusion of un-
programmed costly relations becomes ines-
capable.

Two differences between performances on
ratio and interval schedules are well docu-
mented: (1) ratio schedules engender higher
response rates, and (2) interval schedules main-
tain responding no matter how sparse rein-
forcement may be, whereas ratio schedules
maintain responding only at relatively high
rates of reinforcement. To avoid the complexi:
ties of pausing in fixed-interval and fixed-ratio
performances, we consider only the differences
between VI and VR performances (e.g., Ferster
& Skinner, 1957; Catania, Matthews, Silver-
man, & Yohalem, 1977; Zurift, 1970).
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Fig. 10. Performance on variable-ratio schedules: re-
sponse rate as a function of rate of reinforcement. Un-
connected points show data from Brandauer’s (1958)
three pigeons. Line without symbols connects the aver-
age performances. Points marked x show average data
from Lieberman’s (1972) monkeys. Note logarithmic
axes.
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Although several sets of data document the
general shape of the relation relating response
rate to rate of reinforcement as VI schedule
varies (e.g., Catania & Reynolds, 1968), few
comparable sets exist for VR schedules. Bran-
dauer’s (1958) data on random-ratio schedules
appear to be the only archival parametric data
on single VR schedules. He exposed pigeons to
schedules ranging from continuous reinforce-
ment (CRF) to VR 600, which maintained re-
sponding in only one of three birds. Figure 10
shows his data, along with some gathered
by Lieberman (1972). Lieberman’s, from a
study of observing responses in monkeys, show
the same pattern as Brandauer’s.

The two features of VR performance al-
ready mentioned appear clearly in Figure 10:
response rates were generally high, and no
responding could be sustained for rates of
reinforcement below 20 per hour (equivalent
to a VI 3-min).

A third feature of VR performance appears
in the data of both studies. As rate of rein-
forcement increased, response rate, at first re-
maining approximately constant, suddenly
dropped by five to ten fold. In Brandauer’s
experiment, this shift occurred between a
random-ratio 10 and CRF. In Lieberman’s, it
occurred between VR 25 and VR 5.

One might expect some decrease in response
rate at high rates of reinforcement, simply be-
cause a small obligatory pause must follow
each reinforcer. It may be no more than the
time required to move from the feeder to the
key—a fraction of a second. If it included the
time required to finish eating or to consume a
pellet, the pause would be longer. If one
counted postprandial activities like grooming
as reflexive, and hence obligatory, the pause
might be longer still. At low rates of reinforce-
ment, a pause of even a few seconds can be
negligible, but at high rates, even a pause of a
fraction of a second can become significant.
Presumably only a portion of the postrein-
forcement pauses that actually occur should be
viewed as obligatory in this way. The best
estimate of the obligatory pause would be the
shortest pause that actually occurs. In Bran-
dauer’s experiment, this was .9 sec. If, for every
reinforcement, .9 sec is subtracted from the
time base, the response rate on CRF rises from
27 responses per minute only to 46—far less
than the 150 to 200 required. Clearly we must
look beyond mere artifact to account for the
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change in performance. Whether a similar
shift occurs with interval schedules as they
approach CRF remains to be documented. Any
complete account of single schedules will at
least have to explain the shift for ratio sched-
ules.

Single Schedules and the Matching Law

Equation 17 follows from the feedback
model in Figure 1, when Equation 3 serves as
reference criterion. It is Equation 4 (alge-
braically equivalent to Equation 3) with cost
assumed negligible and only two categories
of behavior, B and B,:

B _r
B+B, r+r,

Since B + B, equals k by definition, Equation
17 follows directly.

Were cost to be included, Equation 17
would become:

r—4q
B=kh— 7
r—q+1,—q, (18)

In practice, however, one finds that the two
parameters k and r, suffice for curve-fitting (de
Villiers, 1977).

These two parameters, if allowed to vary,
can account for most of the features of VR and
VI performance. Herrnstein and Loveland
(1974) and Pear (1975) suggested that some of
the unprogrammed reinforcement 7, is ratio-
like, and therefore competes with concurrent
programmed reinforcement differently, de-
pending on whether the programmed rein-
forcement flows from a ratio or an interval
schedule. More generally, we might suppose
that r,, like any reinforcement, is governed by
a reinforcement function—that there is a posi-
tive relation between the magnitude of r, and
the time devoted to the activities (B,) that
produce it. The time available for producing
r,, of course, is the time left over from the
time devoted to the programmed reinforce-
ment. For low rates of responding, which leave
a lot of time over, B, is high, and we expect
7, to be near a maximum. Although over a
wide range of rates 7, may remain approxi-
mately constant, when responding at the pro-
grammed source occurs at a high enough rate,
it must decrease B, enough to decrease r,. A
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ratio schedule, which maintains a much higher
response rate for any given value of r than an
interval schedule, should force a decrease in
7,, which accords with a higher rate in Equa-
tion 17. For example, if k equals 200 and r
equals 40, then 7, equal to 10 predicts a rate
of 160 responses per minute, whereas 7, close
to zero predicts close to 200 responses per
minute.

The example makes clear, however, that
change in r, alone cannot account for the dif-
ference in rates. In two types of experiments—
one in which pairs of aniamls receive equal
rates of reinforcement, one animal on a VI
schedule and the other on a VR (the *“yoked-
box” experiment; e.g., Catania et al., 1977),
and one in which a single animal receives rein-
forcement on a VI schedule and a VR schedule
presented alternately in the presence of dis-
tinguishing stimuli (a multiple schedule; e.g.,
Zuriff, 1970)—the ratio of VR response rate
to VI response rate, for the same rate of rein-
forcement, generally equals two to one or
more. The typical range of variation of 7,
(10 to 20 reinforcers per hour) cannot ac-
commodate differences this large, because
changes in 7, leave the predicted maximum
rate k& unchanged. Typical values of % fitted
to VI performance rarely exceed 100 responses
per minute (de Villiers, 1977), whereas pigeons
often peck a key associated with a VR schedule
at rates exceeding 200 responses per minute
(e.g., Figure 10). The difference must reflect a
change in k.

The higher value of k for ratio schedules
could arise from a difference in the manner of
the pigeon’s interaction with the response key.
Laboratory lore and high-speed photography
(Smith, 1974) suggest this is almost certainly
the case. Whereas on interval schedules pigeons
tend to make single discrete pecks, on ratio
schedules they tend to vibrate or swipe at the
key, producing several operations for a single
cycle of extension and retraction.

To account for the dip in responding at
high rates of reinforcement (Figure 10), Equa-
tion 17 again requires that k change value.
As reinforcement becomes dense, and a single
response or only a few responses are required
for each reinforcer, the matching law requires
that the manner of responding become less
efficient—i.e., that k decrease. Although an in-
crease in 7, could theoretically account for the
drop, Brandauer’s data would require an im-
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plausibly large value of r, in the CRF condi-
tion, on the order of 8,000 reinforcers per
hour. The longer postreinforcement pause,
therefore, would have to reflect, at least in
part, a more lackadaisical manner of re-
sponding.

Pear (1975) pointed out that the VR rein-
forcement function (Equation 6) together with
Equation 17 predict the cut-off in responding
for large ratios. Substituting r = ¢B in Equa-
tion 17, we find:

TD
B=Fk— = (19)
which states that whenever the product of the
VR times r, equals or exceeds £, no responding
will occur.

One feature of VR performance may re-
main intractable for the matching law: the
absence of responding maintained at low rates
of reinforcement. Nothing about Equation 19
suggests that the function relating response
rate to rate of reinforcement (Equation 17)
should end abruptly at what, for interval
schedules, would be a moderately high rate of
reinforcement. Yet Brandauer’s data (Figure
10) and all accounts of “ratio strain” (e.g.,
Ferster & Skinner, 1957) indicate that such is
the case. Equations 17 and 18 are continuous
for rates of reinforcement all the way down to
zero. For k equal to 210 and r, equal to 1.0,
Equations 17 and 18 predict that a VR 200 will
maintain 10 responses per minute at 3 rein-
forcers per hour. Such performances fail to
occur. Some additional principle would need
to be added to the matching law to account for
the discontinuity.

Many details remain to be worked out if
the matching law is to be considered an ade-
quate theory of performance on single sched-
ules. At the least, a better understanding of
variation in k& would be required, the manner
in which r, varies with the time available to it
would need to be specified, the effects of direct
deterrents to responding, punishment and
other forms of cost, would need to be incorpo-
rated (Equation 18).

Optimization and Single Schedules

Optimization offers an account of all the
phenomena in VR and VI performance. It
requires that the costly relations of Figure 1
be specified. Earlier accounts that pointed
to the likelihood that interval schedules dif-
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ferentially reinforce longer interresponse times
presupposed, usually implicitly, either the law
of least effort or the maximization of frequency
of reinforcement (e.g., Anger, 1956; Dews,
1962; Morse, 1966). The longer the pause, the
more likely the next response will be rein-
forced. But if a 5-sec pause is better than a
1-sec pause, so too is a 1-hr pause still better
than either. Why don’t organisms respond so
slowly that each response or interresponse
time is certain of reinforcement? Why, on the
other hand, do organisms respond at high rates
on ratio schedules when all interresponse times
are reinforced with equal probability? The
answers invariably imply sensitivity to average
frequency of reinforcement. Why does re-
sponse rate ever fall short of the maximum
possible? The answer always implies that the
performance tends to minimize effort.

The optimizing account requires both un-
programmed reinforcement 7, and cost, but
it emphasizes cost. Figure 1 shows that every
situation must include at least two sources of
reinforcement or cost. (Cost is included here,
because performance could consist in bal-
ancing two sources of cost, such as concurrent
avoidance schedules.) For a single schedule of
reinforcement, the second source consists in
7, We assume, however, that in optimal per-
formance the net gain from B,, 7, — q,, will
always be at its maximum. From Equation 5:

8,40 _0(r—q) _,
oB, B

This means that optimizing for a single sched-
ule consists in maximizing the net gain r — g
as a function of B. Hence we emphasize the
modulating effects of the cost function.
Assuming that Equation 10 and Figure 2
describe the VI reinforcement function, that
Equation 17 describes stable performance on
VI schedules, and that stable performance
maximizes the difference between gain and
cost, one can derive a cost function analytically.
Its exact form may be of little interest, because
it depends on so many assumptions. As an
alternative, one can begin with a few simple
assumptions, and derive a similar function.

A Cost Function

We may suppose that there are two sources
of cost: effort and discomfort from neglecting
activities that satisfy basic bodily needs (e.g.,
grooming, stretching, scratching). Assuming
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the sum total of behavior to be constant, we
define:

B+B,=k

where B is response rate of the activity under
study, B, is the behavior, in units of B, allo-
cated to all other activities, and & has the same
meaning as earlier.

For effort, we can assume most simply a
direct proportionality to response rate B:

The discomfort due to neglecting the body
might be directly proportional to the expected
delay to service of a need. If we assume that
this is zero when the organism is not respond-
ing, then it equals the probability that the
organism is responding times the average delay
to service d:

g2 =532 (@1)
If we assume further that switching between
the activity B and other activities B, is en-
tirely random, then d is inversely proportional
to the probability of the other activities: B,/k.
Substituting for d, we rewrite Equation 21:

B B
q2=b B = b+ (22)
Adding Equations 20 and 22, we write:
B

The cost function in Figure 11 represents
Equation 23 with m equal to .03, b equal to
.95, and & equal to 100.

Although the assumptions leading to Equa-
tion 23 might vary, the cost function it speci-
fies has two important properties: it is posi-
tively accelerated and its slope at the origin
exceeds zero. Taking the derivative:

dg _ k

aB= m+b m
Since m and b are positive, this derivative is
positive and grows as B approaches k. When
B equals zero, the derivative equals m + b/k,
a number greater than zero.

A positively accelerated cost function means
that at low response rates cost is practically
negligible, but that as response rate grows,
cost grows disproportionately. The same incre-
ment in rate adds more to cost when rate is
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high than when rate is low. Staddon and
Motheral (1978, Appendix B) showed that as-
suming cost directly proportional to response
rate (9 = wB) leads to:

B=a(l}\/%~ 1) (24)
where a is the programmed rate of reinforce-
ment of a VI schedule. If w is a constant, then
Equation 24 makes the erroneous prediction
that response rate on VI schedules is directly
proportional to programmed rate of reinforce-
ment. Herrnstein (1970) originally proposed
Equation 17 precisely because, as VI schedules
are improved (that is, as the average interval is
decreased), response rate grows nonlinearly:
rapidly at first, but ever slower and slower,
apparently approaching a limit (k). Equation
24 cannot be correct unless w varies. To ac-
commodate the negatively accelerated curve
that VI responding follows, w must increase
as the response rate B increases. This means
a positively accelerated cost function, because
w represents the increment in cost for a unit
increase in response rate. If w increases as B
increases, then cost grows more rapidly for
higher rates than for lower rates.

Cost and Performance

Figure 11 shows how the properties of the
cost function can account for the differences
between VI and VR performances. The upper
part shows reinforcement functions for a VI
schedule and a VR schedule along with a cost
function. The optimal response rates, at which
gain differs maximally from cost, for VI and
VR are indicated as a and b, respectively. The
lower portion of Figure 11 makes this clearer
by showing the differences between gain and
cost for the two reinforcement functions. At
response rate a or b, net gain reaches a
maximum.

The optimal response rate for the VR sched-
ule (b) is greater than that for the VI sched-
ule (a). Indeed the geometry of the curves indi-
cates that it would be difficult, if not im-
possible, to find a pair of VI and VR schedules
such that the optimal VR response rate was the
lower of the two. The shapes of the reinforce-
ment functions, given a positively accelerated
cost function, insure that VI responding re-
mains the lower of the two as rate of reinforce-
ment increases. Extremely short interval sched-
ules must operate identically with the extreme
for ratio schedules, CRF; the VI reinforcement
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Fig. 11. Cost (q) and benefit (r: rate of reinforcement)
as a function of response rate on variable-interval and
variable-ratio schedules. Upper graph shows the two
reinforcement functions and the cost function. Lower
graph shows the two curves describing variations in
difference between benefit and cost (net gain). Vertical
lines indicate abscissae corresponding to optimal per-
formances: a indicates optimal VI performance; b indi-
cates optimal VR performance. See text for further
explanation.

function would be effectively linear over the
range of possible response rates. Apart from
convergence at this extreme, optimizing pre-
dicts that maintained VR responding will oc-
cur at a higher rate than VI responding.

The difference between VI and VR perfor-
mances at low rates of reinforcement also can
be readily predicted from Figure 11. As the
rate of reinforcement programmed by the VI
schedule decreases, the asymptote of the rein-
forcement function falls, and the rate of ap-
proach to the asymptote increases—that is, as
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the curve lowers, it also becomes flatter. Given
the positively accelerated cost function, almost
no matter how sparse the programmed rein-
forcement ‘might be, still a low, but optimal,
response rate will exist. The negatively accel-
erated reinforcement function will still diverge
from the positively accelerated cost function.
For ratio schedules, in contrast, as the schedule
grows leaner and the slope of the reinforce-
ment line falls, the line must approach the
cost curve. Eventually it must become indis-
tinguishable from the lower portion of the cost
curve, or even fall below it. Since the slope of
the cost function is greater than zero at the
origin, the reinforcement line not only may
cease to lie above the cost curve for practical
purposes, but even may do so mathematically.
For such schedules, there exists no optimal
response rate; the organism cannot gain by re-
sponding. This means that responding on VR
schedules should occur at high rates until the
ratio is increased beyond a certain value; at
that point, the cut-off point, responding should
cease. Optimization, therefore, predicts not
only the cut-off in ratio performance, but also
what the matching law cannot: inability of
ratio schedules to maintain responding at low
rates of reinforemcent.

To account for the precipitous drop in re-
sponse rate at the highest rates of reinforce-
ment (Figure 10), we need one additional, but
reasonable, assumption: that there is a prac-
tical upper limit on rate of reinforcement.
That is, creatures are constructed so that rein-
forcing activities like eating, drinking, copu-
lating, and so on have upper limits as to how
often they can be repeated. The acts involved
take time, and the bodily processes they ini-
tiate (e.g., digestion, recovery from fatigue)
take time as well.

When the feedback function is sufficiently
steep that it would predict an optimal response
rate that would produce a rate of reinforce-
ment higher than this upper limit, the optimal
response rate becomes the one at which the
feedback function intersects the upper limit
(line xo in Figure 11). In Brandauer’s data
(Figure 10), for example, the upper limit
would be around 1,600 reinforcers per hour.
For maximal response rates of about 200 re-
sponses per min, 1,600 reinforcers per hr is
exceeded when the schedule falls below VR
7.5. Beyond this, the optimal response rate
begins to fall. For VR 7, it is 187; for VR 5,
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it is 133; for VR 3, it is 80; for VR 2, it is
53. As a result, the performance curve (Figure
10) turns an abrupt corner at an abscissa value
of 1,600, and response rate falls precipitously.

If this reasoning is correct, the upper limit
ought to apply to performance on interval
schedules as well. As the programmed inter-
reinforcement interval is decreased, an interval
schedule ought to function more and more like
a ratio schedule and should eventually show
the same drop in responding at some high rate
of reinforcement. This remains to be docu-

mented.
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Fig. 12. Optimal performances on VR and VI sched-
ules. The upper set of data (VR) is from Brandauer’s
(1958) Pigeon 15. The lower set of data (VI) is from
Catania and Reynolds’s (1968) Pigeon 279. See text for
explanation.

Performance curves resulting from this sort
of optimizing model appear in Figure 12. The
upper set of points represents the data from
Brandauer’s Pigeon 15 (circles in Figure 10).
Although this bird’s response rates generally
exceeded those of the other birds, the pattern
of its points resembles theirs; it was selected
because it produced the most data. The lower
set of points represents the data from a typical
pigeon exposed to a range of VI schedules
(Catania & Reynolds, 1968; Pigeon 279). The
curves give the loci of points representing op-
timal performances. The cost function derived
earlier was used. For VR performance, the
maximum possible response rate, k, equaled
290, and the parameters m and b equaled .12
and .2. For VI performance, k equaled 70, and
m and b equaled .0001 and .033.

The curves in Figure 12 show all the fea-
tures expected. Responding on VI schedules is
predicted to decrease continuously as the
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schedule becomes leaner. Responding on VR
schedules is predicted to remain relatively
constant, decreasing gradually for large ratios,
and then abruptly breaking off at a still moder-
ate rate of reinforcement. Both curves turn an
abrupt corner at the maximum possible rate
of reinforcement, the value of which (1,065)
was chosen to conform to the performance of
Brandauer’s pigeon on the two richest sched-
ules (CRF and VR 10).

Other optimizing models of performance on
single schedules have been proposed. Since
Allison’s only applies in a straightforward way
to ratio schedules, we need not discuss it here
(Allison, Miller, & Wozny, 1979). Two others
derive so-called “bitonic” performance curves
—that is, they predict decreased responding at
both low and high rates of reinforcement. Al-
though the curves in Figure 12 could be
called “bitonic,” they differ significantly from
the other curves that have been proposed.
Staddon (1979) and Rachlin and Burkhard
(1978) fail to predict the cut-off in VR perfor-
mance at moderately low rates of reinforce-
ment. Instead, they predict VR responding to
fall continuously as rate of reinforcement
falls. They fail to predict also the abrupt shift
in VR responding at high rates of reinforce-
ment, predicting instead a gradual decline.
In practice, data must be carefully gathered
and treated to reveal an abrupt shift in a
dependent variable. Averaging and any kind
of error tend to make sharp corners appear
round and vertical drops appear sloped. The
data Staddon used to test his model, for ex-
ample in his Figure 7, contain both of these
problems. Despite this, however, his plots re-
veal that the drop in ratio responding is pre-
cipitous—decreases of 50 to 1 and more in
responding for increases of only 2 to 1 in rate
of reinforcement.

Rachlin (1978) is ambiguous as to whether
he predicts the cut-off in VR responding for
large ratios, because he applies two different
models to small and large ratio schedules. He
predicts unstable performance for large ratios
under some circumstances. His model fails en-
tirely, however, to predict the decline in re-
sponse rate for small ratio schedules.

Although all of these models were tested
against data, the data used were generally
inappropriate. Many were averages across
groups of animals. Many were from fixed-
interval, fixed-ratio, and mult VR VI sched-
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ules. For modeling performance of individual
organisms on single schedules, it is best to
use data of individual organisms on single
schedules. Averaging generally distorts. This
can be seen even in Figure 10, where the aver-
age performance suggests a gradual decline in
responding at high rates of reinforcement,
whereas examination of the data of individual
pigeons suggests an abrupt drop. In mult VR
VI, the effects of alternating VR components
with VI components remain to be learned.
Similarly, the postreinforcement pauses in
fixed schedules remain to be understood. Can
we simply ignore the inhomogeneity they
represent?

Why none of the other models was tested
against Brandauer’s (1958) data remains un-
clear. It appears to be the only set of data on
single VR schedules. More such data are
needed, particularly comparing performances
of the same organism on VR and VI schedules.

CONCLUSION

Many complications remain to be explored,
in the light of both matching and optimizing.
This paper has ignored the effects of varying
amount and quality of reinforcement, for
example. Fixed-interval and fixed-ratio sched-
ules produce different results than VI and
VR schedules; the role of the postreinforce-
ment pause remains to be assessed. Other
questions and extensions are inevitable. The
present work represents only a start.

Likening the interaction between instru-
mental behavior and environment to a
feedback system seems to provide a handy
framework for comparing different theoretical
accounts. In contrast to many earlier ap-
proaches, it has the advantage of suggesting
experimental tests that can be informative
no matter how they turn out. Several general
possibilities remain to be explored. Since at
present the matching law appears to account
better for concurrent performances, whereas
optimization appears to account better for per-
formances on single schedules, we need to con-
sider whether at some times one principle
might apply and at other times the other.
Finally, we need to consider whether the defi-
nition of optimal performance in the labora-
tory might differ from optimization in for-
aging in nature (Pyke, Pulliam, & Charnov,
1977).

WILLIAM M. BAUM
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