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Abstract—The reconstruction of the frequency-dispersive constitu-
tive parameters of general bianisotropic media is achieved by an opti-
mization approach. The constitutive parameters are optimized in order
to match the measured reflection and transmission data for plane wave
incidence onto bianisotropic slabs. Two optimization methods, in our
case the differential evolution (DE) algorithm and the Nelder-Mead
simplex method, are used for the reconstruction at low frequencies.
The Nelder-Mead simplex method is then used to obtain the solutions
at higher frequencies, where the initial guess is obtained by the linear
extrapolation of the solutions at previous frequencies. The proposed
reconstruction method is tested with both noiseless and noisy data,
and is proven feasible and robust.

1. INTRODUCTION

Left-handed metamaterials have been a subject of important scientific
interest since the first experimental verification of a negative refraction.
Both theoretical and experimental results show that not only isotropic
media with simultaneously negative permittivity and permeability
achieve a negative refraction, but also anisotropic and bianisotropic
media. The refraction diagram of biaxial media where the diagonal
constitutive parameters can take negative values is proposed in [1],
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and a generalization of Snell’s law to this situation is proposed in
[2]. Going beyond biaxial media, [3] shows that bianisotropy is an
important parameter for exhibiting negative refraction.

Constitutive parameters are important in quantitatively charac-
terizing the wave propagation inside metamaterials [4, 5], but they are
usually unknown to us. As stated in [6], the retrieval method from
the reflection and transmission data is the prime approach to obtain
these constitutive parameters. While there are many approaches to
retrieve the isotropic parameters [7, 8], only [9] deals with the retrieval
of the bianisotropic parameters. It should be noted, however, that in
[9], the cross-polarization properties of the medium are known a priori.
For more complicated metamaterial structures, the cross-polarization
properties remain unknown and a more general retrieval method is
needed.

This paper presents a method to retrieve the constitutive
parameters of a general bianisotropic slab from the knowledge of the
reflection and transmission matrix via an optimization approach. Each
of the permittivity tensor (ε), permeability tensor (µ), and cross-
polarization tensors (ξ, ζ) is a three by three matrix with complex
elements, so that there is a total of 72 parameters to be retrieved. The
retrieval method of obtaining the 72 parameters of a homogeneous
slab was developed by G. N. Borzdov in [10, 11], where the slabs with
different values of thickness and cuts were illuminated by plane waves
at a certain frequency. However, the requirement of having slabs of
different thicknesses and cuts cannot always be satisfied in practice.
In this scenario, we need to resort to an optimization approach.
In this paper, differential evolution (DE) and Nelder-Mead simplex
optimization methods are used in order to obtain the global-minimum
solution. In the optimization, we minimize the relative mismatch
between the measured reflection/transmission data and the calculated
ones from the forward approach, where the reflection and transmission
coefficients for a plane wave obliquely or normally incident upon a slab
in free space are calculated by the notion of propagators and wave-
splitting technique [12].

In our numerical validation, we first apply our method to the
retrieval of a rotated omega medium, where 17 parameters need to be
optimized. Then, we apply the proposed method to the retrieval of
two general bianisotropic media, where 72 parameters are optimized.
In all cases, we obtain a group of solutions, instead of a single solution,
which shows the robustness of the proposed optimization method.
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2. PROBLEM FORMULATION AND FORWARD
APPROACH

Consider a time-harmonic electromagnetic plane wave obliquely (or
normally) impinging from the region z < 0 onto a homogeneous slab
located in the region z ∈ [0, d]. Both sides of the slab are free
space. The incident wave vector ki is expressed as ki = (x̂ sin θ cosφ+
ŷ sin θ sinφ + ẑ cos θ)k0, where θ ∈ [0, π/2] and φ are the polar and
azimuthal angle of the incident wave, respectively, and k0 denotes the
wavenumber in free space. The homogeneous slab is characterized by
the electromagnetic parameters ε, µ, ξ, and ζ, and its constitutive
relationships are

D = ε · E + ξ ·H, (1)

B = µ ·H + ζ · E. (2)

In the forward problem, the reflection and transmission coefficients
are calculated by the notion of propagators and wave-splitting
technique [12]. Inside the slab, the tangential electric and magnetic
fields satisfy the following equations,

d

dz

(
Exy(z)

η0J ·Hxy(z)

)
= ik0M ·

(
Exy(z)

η0J ·Hxy(z)

)
(3)

where J is a two-dimensional rotation dyadic, and M , a function of
ε, µ, ξ, and ζ, is the fundamental dyad of the bianisotropic medium
whose explicit expression can be found in [12]. Upon integrating, we
map the fields on the left-hand side boundary (z = 0) to the right-hand
side boundary (z = d) as(

Exy(d)

η0J ·Hxy(d)

)
= P ·

(
Exy(0)

η0J ·Hxy(0)

)
(4)

where P = eik0dM is known as the propagator. On both sides of the
slab, the wave splitting technique is used in free space,


Exy(z) = E+(z) + E−(z)

ηJ ·Hxy(z) = −O
−1

· E+(z) +O
−1

· E−(z)
(5)

where O is assimilated to an impedance dyad [12]. By combining
Eqs. (4) and (5), we obtain the scattering relation,(

E
+(d)
E

−(d)

)
= T ·

(
E

+(0)
E

−(0)

)
. (6)
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The reflection and transmission dyads for the tangential electric field
are defined by 

 r = −T
−1

22 · T 21

t = T 11 + T 12 · r
(7)

In terms of the strengths of the fields of TE and TM waves, the
reflection and transmission coefficients are defined to be

rEE = r22, rEM = r21 cos θ, rME = −r12/ cos θ, rMM = −r11 (8)
tEE = t22, tEM = t21 cos θ, tME = t12/ cos θ, tMM = t11 (9)

and the reflection and transmission tensors in terms of the fields
strengths are

r̃ =
(
rEE rEM

rME rMM

)
, t̃ =

(
tEE tEM

tME tMM

)
(10)

The aforementioned method have been compared with the one
presented in [3] for a variety of numerical cases. In all of them, the two
methods yielded identical results, validating in this way the forward
method used in this paper.

3. OPTIMIZATION APPROACH TO INVERSE
PROBLEM

3.1. Objective Function

In the inverse problem, we optimize the constitutive parameters so that
the calculated reflection and transmission data match the measured
ones. We denote all the parameters to be optimized by x, and define
the objective function as,

f(x) =
∑
{θ,φ}

∑
i,j∈{1,2}

{
W r

ij(θ, φ)|r̃ij(θ, φ)−r̃mij (θ, φ)|2

+W t
ij(θ, φ)|t̃ij(θ, φ)− t̃mij (θ, φ)|2

}
(11)

where r̃ij(θ, φ), t̃ij(θ, φ) are the calculated reflection and transmission
coefficients, and r̃mij (θ, φ), t̃mij (θ, φ) are the measured ones. The
weighting factor is chosen asW r

ij(θ, φ) = 1/(|r̃mij (θ, φ)|+α), where α is a
positive parameter that avoids an infinite weight for small magnitudes
of r̃mij (θ, φ). Note that W t

ij is defined similarly.
The optimization method seeks at minimizing the objective

function whose global-minimum value is zero, which is obtained when
the measured and computed data are identical, indicating that the
retrieved constitutive tensors are identical to the original ones.
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3.2. Optimization Methods

The optimization problem Eq. (11) is highly non-linear, since all the
unknown parameters are in the argument of the exponential function
in Eq. (4). The objective function has many local minima, which
makes the search for a global minimum intractable with deterministic
optimization methods. Hence stochastic optimization methods should
be used instead. However, stochastic methods are often slowly-
convergent. Therefore, we design here a hybrid optimization algorithm,
which combines the DE [13] algorithm to the simplex method.

Differential evolution algorithm is a stochastic parallel direct
search optimization algorithm, which utilizes a number of parameter
vectors, known as individuals, as a generation to explore the search
space. In each generation, mutation and crossover operators are
applied to the individuals of the current generation to generate a trial
population. The corresponding individuals in the two populations
compete in the selection operation to become members of the next
generation. The mutation operator of DE generates new parameter
vectors by adding the weighted difference between two parameter
vectors to a third one. The algorithm stops when a specified maximum
number of generations is reached. Numerical simulations show the DE
algorithm exhibits good global searching ability [13].

Simplex method [14] is a direct search optimization algorithm, i.e.,
there is no need for gradient information of the objective function. The
geometric figure formed by a set of n + 1 points in an n-dimensional
space is called a simplex. The basic idea of simplex optimization
method is to compare the values of the objective function at the n+ 1
vertices of a simplex and rearrange the simplex gradually toward the
optimum point during the iterative process. The movement of the
simplex is achieved by using three operations: reflection, contractions,
and expansion. The movement stops when the standard deviation of
the function at the n + 1 vertices of the simplex is smaller than a
prescribed small quantity. Simplex method is good at searching local
minima and converges fast compared to the DE algorithm.

In the retrieval of bianisotropy media, DE is first used to perform a
parallel search in order to explore the entire solution space, and yields
a set of solutions bearing good genes. The simplex method, which
is good at obtaining local minimum, is used subsequently, taking the
solution set from the DE as initial guesses.

4. NUMERICAL RECONSTRUCTION

In this section, numerical examples are presented to show the feasibility
and the robustness of the proposed optimization method. In the first



6 Chen, Grzegorczyk, and Kong

example, a priori properties of the medium are known so that the total
number of unknowns is reduced. In the subsequent examples, we apply
a 72-parameter retrieval method to two arbitrarily chosen media. In
all cases, we show that the proposed method is able to reconstruct the
constitutive tensors despite the high nonlinearity of the problem. Note
that in all numerical examples, we first calculate the reflection and
transmission parameters using the forward problem solver, and then
treat them as the measured ones to evaluate the optimized ones in the
inverse process.

4.1. Rotated Omega Medium

In this first example, prior knowledge of the medium is assumed: we
know that the medium to be retrieved is an Omega medium, yet, the
numerical values of the constitutive parameters and the axes of the
medium are unknown. Hence, we characterize the medium through
the tensors,

ε = ε0UT ·


 εx 0 0

0 εy 0
0 0 εz


 · U, µ = µ0U

T ·


 µx 0 0

0 µy 0
0 0 µz


 · U,

ξ =
1
c
UT ·


 0 0 0

0 0 0
0 −iξ0 0


 · U, ζ =

1
c
UT ·


 0 0 0

0 0 iξ0
0 0 0


 · U, (12)

where U is the rotation matrix defined by Euler angles (α, β, γ) [15].
Consequently, the optimization vector contains 17 unknowns, x =
(α, β, γ, ε′x, ε

′
y, ε

′
z, ε

′′
x, ε

′′
y, ε

′′
z , µ

′
x, µ

′
y, µ

′
z, µ

′′
x, µ

′′
y, µ

′′
z , ξ

′
0, ξ

′′
0 ), where (·)′ and

(·)′′ denote the real part and imaginary part operators, respectively.
Various values and frequency dependent functions have been

successfully retrieved with our method, although these are not shown
here. For the sake of illustration, we choose here the following
parameters,

α = π/5 β = π/4 γ = π/6

εx = 1 − Fexf
2

(f2 − f2
ex + iγexf)

εy = 1 − Feyf
2

(f2 − f2
ey + iγeyf)

εz = 1 − Fezf
2

(f2 − f2
ez + iγezf)

µx = 1 − Fmxf
2

(f2 − f2
mx + iγmxf)

µy = 1 − Fmyf
2

(f2 − f2
my + iγmyf)

µz = 1 − Fmzf
2

(f2 − f2
mz + iγmzf)
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ξ0 = 1 − Fξf
2

(f2 − f2
ξ + iγξf)

(13)

where fex = 4.0 GHz, fey = 5.0 GHz, fez = 3.5 GHz, fmx = 5.0 GHz,
fmx = 4.0 GHz, fmx = 3.5 GHz, fξ = 4.0 GHz, γex = 0.5 GHz,
γey = 0.4 GHz, γez = 0.3 GHz, γmx = 0.4 GHz, γmy = 0.3 GHz, γmz =
0.2 GHz, γξ = 0.5 GHz, Fex = 0.5, Fey = 0.3, Fez = 0.4 Fmx = 0.3,
Fmy = 0.2, Fmz = 0.3 and Fξ = 0.4. The operating frequency range is
from 2 GHz to 8 GHz and the thickness of the slab is λ0/20, where λ0

is the wavelength in free space at the initial frequency. The incident
angles are chosen to be (θ, φ) ∈ {(45◦, 0◦), (45◦, 45◦), (45◦, 90◦)}.

For the initial frequency of 2 GHz, we use the DE and the
simplex methods to optimize for the constitutive parameters and the
rotation angles. In the first stage of the optimization, DE runs for
2000 generations, with a total population of 170 individuals in each
generation. Subsequently, half of the population of the last generation
is used in the simplex method, where each of the individuals is treated
as an initial guess. After the first round of simplex method, about half
of the solutions are chosen as initial guesses for the second round of
simplex optimization. The above procedure is iterated until solutions

Table 1. Optimization results for the rotated Omega medium.

Exact Optimized1st Optimized 2nd Optimized 3rd Optimized 4th

α 6.2832e-01 6.2964e-01 6.2978e-01 6.2844e-01 3.7698e+00

β 7.8540e-01 7.8695e-01 7.8708e-01 7.8554e-01 2.3563e+00

γ 5.2360e-01 5.2271e-01 5.2259e-01 3.6651e+00 2.6179e+00

ε′x 1.1655e+00 1.1651e+00 1.1650e+00 1.1654e+00 1.1655e+00

ε′y 1.0571e+00 1.0571e+00 1.0571e+00 1.0571e+00 1.0571e+00

ε′z 1.1929e+00 1.1936e+00 1.1936e+00 1.1928e+00 1.1929e+00

ε′′x 1.3793e-02 1.5862e-02 1.6209e-02 1.3972e-02 1.3662e-02

ε′′y 2.1737e-03 2.1362e-03 2.1529e-03 2.1664e-03 2.1756e-03

ε′′z 1.4030e-02 1.4184e-02 1.4285e-02 1.3988e-02 1.3987e-02

µ′
x 1.0571e+00 1.0570e+00 1.0570e+00 1.0571e+00 1.0571e+00

µ′
y 1.0665e+00 1.0660e+00 1.0662e+00 1.0665e+00 1.0665e+00

µ′
z 1.1451e+00 1.1446e+00 1.1448e+00 1.1451e+00 1.1451e+00

µ′′
x 2.1737e-03 2.2299e-03 2.1899e-03 2.2087e-03 2.1763e-03

µ′′
y 3.3250e-03 4.2892e-04 4.9731e-06 3.2113e-03 3.4997e-03

µ′′
z 7.0358e-03 6.7278e-03 6.5528e-03 7.0260e-03 7.0613e-03

ξ′
0 1.1324e+00 1.1330e+00 1.1331e+00 -1.1324e+00 -1.1324e+00

ξ′′
0 1.1034e-02 1.0586e-02 1.0560e-02 -1.1077e-02 -1.1043e-02

f(x) 0 2.5906e-05 2.8427e-05 3.7121e-06 1.6790e-06
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with small objective functions are achieved. In the present numerical
example, we obtain four solutions shown in Table 1 by using the DE
and five rounds of simplex method. The fact that the coordinate axes
are labeled differently (for example, the x̂ and ŷ are labeled as −x̂ and
−ŷ, respectively, in the third solution) makes the solutions seemingly
different from each other. In fact, the four solutions are almost identical
when expressed in the rotated form as in Eq. (12). For the retrieval
at higher frequencies, we choose the linear extrapolation of the results
at the previous two frequencies as the initial guess for the simplex
optimization.

In order to quantitatively describe the match between the true and
the retrieved constitutive parameters, we define the relative mismatch
(RM) as

RM(ρ) =




|ρt − ρr|
|ρt|

if |ρt| > τ,

|ρr| otherwise,
(14)

where τ is a small positive parameter, ρ can be any component of
constitutive tensors, and the subscripts “t” and “r” denote “true” and
“retrieved”, respectively. In numerical examples, we choose τ to be
0.05. To represent the mismatch across all sample frequencies, we
define an averaged relative mismatch (ARM ) to be the mean of RM
across all sample frequencies.

The optimization results show that the true and the optimized
results are almost identical at most frequencies for the components of ε,
µ, and ξ. Here only ξ0 is shown in Fig. 1 for the purpose of illustration.
The maximum ARM among the seven components is obtained on ξ0,
and amounts to 0.0096.

4.2. General Bianisotropic Medium

In the following two numerical examples, we consider the problem
of parameter reconstruction in media with arbitrary constitutive
parameters. In the forward problem, we consider two media, known as
Chiroferrite D∞(C∞) and Omegaferrite C2v(Cs) [16].

The constitutive tensors of the Chiroferrite D∞(C∞) is given by

ε = ε0


 εxx εxy 0

−εxy εxx 0
0 0 εzz


 , µ = µ0


 µxx µxy 0

−µxy µxx 0
0 0 µzz


 ,

ξ =
1
c


 ξxx ξxy 0

−ξxy ξxx 0
0 0 ξzz


 , ζ =

1
c


 −ξxx −ξxy 0
ξxy −ξxx 0
0 0 −ξzz


 . (15)
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Figure 1. Comparison of the retrieved and the true ξ0 of an Omega
medium.

It is important to highlight that although the tensors have some zero
components, this is not an information used by our method and we
optimize 72 parameters, thus retrieving a value of zero whenever
necessary. The non-zero parameters are chosen to be

εxx = 1 −
f2

pexx

(f2 − f2
0exx + iγexxf)

εxy = 0.1 + 0.05i

εzz = 1 −
f2

pezz

(f2 − f2
0ezz + iγezzf)

µxx = 1 −
f2

pmxx

(f2 − f2
0mxx + iγmxxf)

µxy = 0.1i µzz = 1

ξxx = 1 − e−f/1010
ξxy = 1 −

f2
pξ

(f2 − f2
0ξ + iγξf)

ξzz = (0.1 + 0.05i)f/109 (16)

with fpexx = 4.5 GHz, fpezz = 3.5 GHz, fpmxx = 4.0 GHz, fpξ =
3.0 GHz, f0exx = 4.0 GHz, f0ezz = 3.0 GHz, f0mxx = 3.5 GHz,
f0ξ = 2.5 GHz, γexx = 2.0 GHz, γezz = 1.2 GHz, γmxx = 1.5 GHz,
and γξ = 1.1 GHz. We first optimize the parameters at the initial
frequency of 0.1 GHz. Totally unconstrained optimization problems
with 72 unknowns are difficult and time-consuming to deal with, so
we resort to a physical assumption that simplifies the optimization
problem and makes it manageable on a single PC within a few hours.
Our assumption is that the bianisotropy is weak, namely, ξ and ζ
approach zero at relatively low frequencies, which is true for most
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materials. Hence, at the first stage of the optimization, ε and µ are
optimized with ξ and ζ being zero. When a good match in reflection
and transmission is achieved, i.e., ε and µ are close to the exact
solution, we start the second-stage of optimization, where ξ and ζ,
together with ε and µ are optimized at low frequencies, with the
solution obtained at the first stage serving as the initial guess.

In the numerical simulation, we take a slab thickness of λ0/30,
where λ0 denotes the wavelength in free space at the initial frequency
(0.1 GHz). Note also the importance of the thickness of the slab in the
optimization: if the slab is too thin compared with the wavelength,
it is almost transparent so that the reflection is almost zero and the
transmission is almost unity. On the other hand, if the slab is too
thick, the problem becomes dramatically nonlinear and is difficult to
optimize. From our experience, thicknesses within λ0/30 to λ0/10 are
good for the optimization at the initial frequency.

There are two important issues in solving the inverse problem
with 72 parameters, namely uniqueness and computational burden.
Fewer incidences are likely to result in non-uniqueness, while too many
incidences require intractable computation power. Therefore, it would
be valuable to know the number of the incidence directions that are
necessary and sufficient to obtain a unique solution with a manageable
computational burden. Unfortunately, it is difficult or even impossible
to answer this question and we have to choose the incidence directions
empirically. In our numerical simulations, we choose different number
of incidences at different optimization stages. Since the DE algorithm
explores the search space using a group of individuals as a generation,
it is characterized by the properties of good global searching abilities
but also is time-consuming. In this respect, we choose few incidences
in the DE optimization. On the other hand, since there are fewer
individuals in the simplex method and we aim at obtaining the unique
solution at this optimization stage, we choose more incidences in the
simplex optimization.

At the first stage of the optimization, i.e., looking for ε and µ with
ξ and ζ being zero, the DE is applied first and the simplex method is
used subsequently. In the DE optimization, the slab is illuminated at
normal incidence as well as oblique incidences with θ = 4π

9 and seven
φ evenly distributed from 0 to 2π, which is shorted as < 4π

9 , 7 > . The
population in each generation is 360 and the total generation of the
evolution is 2000. Subsequently, the simplex method is used to realize
the local search, where more incidences (< 2π

5 , 5 >, < π
3 , 4 >) are

added in addition to the original ones. Simplex method is sequentially
carried out until there is no significant improvement over the results
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obtained from the previous round. We finally obtain 6 solutions, all of
which have an objective function smaller than 0.003.

At the second stage of the optimization, we use the results
obtained at the first stage as initial guesses, and optimize
72 constitutive parameters to further match the reflection and
transmission coefficients. During the sequential application of the
simplex method, we drop the worst one among the 6 solutions due
to its slow convergence, and finally obtain 5 solutions, all of which
are close to the exact solution. The best one xopt, with the objective
function value 8.2819 × 10−5, is expressed in tensor form as

ε =


 2.25 × 100 + i3.11 × 10−2 1.00 × 10−1 + i5.01 × 10−2

−1.00 × 10−1 − i5.00 × 10−2 2.25 × 100 + i3.10 × 10−2

−1.64 × 10−3 − i1.30 × 10−3 −1.07 × 10−3 − i1.14 × 10−3

−1.73 × 10−3 − i1.35 × 10−3

2.05 × 10−3 − i1.64 × 10−3

2.42 × 100 − i5.96 × 10−2


 ,

µ =


 2.29 × 100 + i2.99 × 10−2 −7.05×10−5+i1.00×10−1

2.96 × 10−5 − i1.00 × 10−1 2.29 × 100 + i2.99 × 10−2

−7.62 × 10−4 − i5.63 × 10−4 8.60 × 10−4 − i7.34 × 10−4

−6.17 × 10−4 − i5.27 × 10−4

−3.77 × 10−4 − i5.25 × 10−4

1.01 × 100 − i1.47 × 10−2


 ,

ξ =


 9.68 × 10−3 + i4.91 × 10−5 2.53 × 10−3 + i1.83 × 10−2

−2.55 × 10−3 − i1.83 × 10−2 9.68 × 10−3 + i1.99 × 10−5

−6.77 × 10−4 + i1.12 × 10−4 3.81 × 10−4 + i4.03 × 10−4

−4.38 × 10−5 + i3.23 × 10−5

1.14 × 10−5 + i1.62 × 10−5

1.06 × 10−2 + i4.37 × 10−3


 ,

ζ =


−9.96×10−3+i−1.42 × 10−4 −3.02×10−3−i1.97×10−2

3.03 × 10−3 + i1.97 × 10−2 −9.96×10−3−i1.28×10−4

−1.04 × 10−4 + i1.35 × 10−4 −1.48×10−4−i6.82×10−5

7.83 × 10−5 + i3.38 × 10−5

9.58 × 10−5 + i3.37 × 10−5

−1.13 × 10−2 − i4.65 × 10−3


 .
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Figure 2. Comparison of the retrieved (thin lines) and the true (thick
lines) ε of a Chiroferrite medium. The solid and dotted-dashed lines
are for the real and imaginary parts, respectively.

We find that the solution is fairly close to the true solution xt:

εt =


 2.26 × 100 + i1.58 × 10−2 1.00 × 10−1 + i5.00 × 10−2

−1.00 × 10−1 − i5.00 × 10−2 2.26 × 100 + i1.58 × 10−2

0 0
0
0

2.36 × 100 + i1.81 × 10−2


 ,

µt =


2.30×100+i1.60×10−2 i1.00 × 10−1 0

−i1.00 × 10−1 2.30×100+i1.60×10−2 0
0 0 1.00×100


 ,

ξt =


 9.95 × 10−3 1.85 × 10−3 + i2.54 × 10−2

−1.85 × 10−3 − i2.54 × 10−2 9.95 × 10−3

0 0
0
0

1.00 × 10−2 + i5.00 × 10−3


 ,
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Figure 3. Comparison of the retrieved (thin lines) and the true (thick
lines) µ of a Chiroferrite medium. The solid and dotted-dashed lines
are for the real and imaginary parts, respectively.

ζt =


 −9.95 × 10−3 −1.85 × 10−3 − i2.54 × 10−2 0

1.85 × 10−3 + i2.54 × 10−2 −9.95 × 10−3 0
0 0

0
0

−1.00 × 10−2 − i5.00 × 10−3


 .

Finally, for the retrieval at higher frequencies, we choose the linear
extrapolation of the results at the previous two frequencies as initial
guess for the simplex optimization. We observe that at 2.1 GHz, the
thickness of the slab is seventy percent of the wavelength, consequently
making the optimization very unstable. Thus starting at 2.1 GHz, we
choose a thinner slab whose thickness is five percent of the wavelength
at 2.1 GHz. The optimization results are shown in the Fig. 2–Fig. 5.
The results show that most of the constitutive parameters are retrieved
successfully, although there are some discrepancies around the resonant
frequencies. The averaged relative mismatch of each component of the
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Figure 4. Comparison of the retrieved (thin lines) and the true (thick
lines) ξ of a Chiroferrite medium. The solid and dotted-dashed lines
are for the real and imaginary parts, respectively.

constitutive tensors is as follows:

ARM (ε) =


 0.113 0.829 0.003

0.810 0.109 0.004
0.028 0.028 0.064




ARM (µ) =


 0.100 0.818 0.003

0.811 0.096 0.003
0.039 0.039 0.061




ARM (ξ) =


 0.218 0.078 0.003

0.077 0.212 0.004
0.028 0.026 0.113




ARM (ζ) =


 0.254 0.048 0.003

0.047 0.254 0.003
0.041 0.040 0.076




We see that most components have an averaged relative mismatch less
than 0.12.

As a second example, we consider an Omegaferrite C2v(Cs)
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Figure 5. Comparison of the retrieved (thin lines) and the true (thick
lines) ζ of a Chiroferrite medium. The solid and dotted-dashed lines
are for the real and imaginary parts, respectively.

medium in the forward problem, whose constitutive parameters are

ε = ε0


 εxx 0 εxz

0 εyy 0
−εxz 0 εzz


 , µ = µ0


 µxx 0 µxz

0 µyy 0
−µxz 0 µzz


 ,

ξ =
1
c


 0 ξxy 0
ξyx 0 ξyz

0 ξzy 0


 , ζ =

1
c


 0 −ξyx 0

−ξxy 0 ξzy

0 ξyz 0


 . (17)

The numerical values of the constitutive parameters are chosen
from [17]. In this example, we aim at testing the robustness of the
linear extrapolation technique in the retrieval at the higher frequencies.
Both noiseless and noisy data are tested. In the simulations, 2%
and 5% Gaussian random noises are added to the reflection and
transmission coefficients. The reconstruction results for noiseless and
2% noise cases, not shown here, generally match the true solutions in a
similar way as shown in Fig. 2–Fig. 5 in the previous example. For the
case of 5% noise, most of the constitutive parameters are also generally
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Figure 6. Comparison of the retrieved (thin lines) and the true (thick
lines) ε of an Omegaferrite medium (5% noise). The solid and dotted-
dashed lines are for the real and imaginary parts, respectively.

reconstructed. Most components have an averaged relative mismatch
smaller than 0.25. The reconstruction results for ε are shown in the
Fig. 6 for the purpose of illustration.

5. CONCLUSION

An optimization approach is used to retrieve the constitutive
parameters of a slab of general bianisotropic medium from the
knowledge of the reflection and transmission data. The method is
for either rotated media with known constitutive properties or more
general media with unknown constitutive properties. High dimensional
inverse problems are tackled by the combination of the differential
evolution algorithm and the simplex method. The DE is used first to
parallel explore the searching space and then the simplex method is
applied to accelerate the convergence. Fewer incidences are used in the
DE method in order to reduce the computation burden, and diverse
incidences are used in the simplex method in order to obtain the unique
solution. Importantly, our method obtains a group of solutions, all



Progress In Electromagnetics Research, PIER 60, 2006 17

of which are almost identical to the true one. Linear extrapolation
of the results at the previous two frequencies are used as an initial
guess for the retrieval of dispersive medium using simplex optimization
method. Both noiseless and noisy data are tested. Optimization results
show that the constitutive parameters are reconstructed successfully.
The limitation of the proposed method is that it cannot deal with
bianisotropic media whose cross-polarization terms are not close to
zero at low frequencies. However, this difficulty could be overcome by
parallel computing in a reasonable time.
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