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An application of advanced optimization techniques to solve the path planning problem for closed chain robot systems is
proposed. The approach to path planning is formulated as a “quasi-dynamic” NonLinear Programming (NLP) problem with
equality and inequality constraints in terms of the joint variables. The essence of the method is to find joint paths which
satisfy the given constraints and minimize the proposed performance index. For numerical solution of the NLP problem,
the IPOPT solver is used, which implements a nonlinear primal-dual interior-point method, one of the leading techniques
for large-scale nonlinear optimization.
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1. Introduction

In our everyday lives we perform many operations in
which our two hands cooperate to manipulate diverse ob-
jects. Two cooperative hands, if properly utilized, are ca-
pable of grasping and manipulating a much larger class
of objects, including long, flexible, irregularly shaped, or
complex objects (e.g., with internal degrees of freedom).
In cooperative manipulation, when multiple robot arms
or multi-fingered hands grasp a movable object, a closed
kinematic loop (or loops) is formed by the arms or fin-
gers and the object (Asfour et al., 2006; Han and Ama-
to, 2000; Szynkiewicz, 2003; Yakey et al., 2001). There
are many other applications such as modular reconfigura-
ble robots, walking machines, and parallel manipulators,
in which one or more closed chain linkages exist or can be
formed (Merlet, 2000).

It should be noted that closure constraints are com-
mon in many domains beyond robotics, for example, in
virtual prototyping, computer graphics, and computatio-
nal chemistry (Fiser et al., 2000; Kallmann et al., 2003).
An underlying commonality among such systems is that
they have many Degrees Of Freedom (DOFs). In this case,
motion planning usually involves high-dimensional confi-

guration spaces and complicated constraints. While clo-
sed chain systems can offer advantages over open cha-
ins in terms of the rigidity of the whole mechanism, mo-
tion planning is complicated by the need to maintain the
closed loop structure, described by the closure constra-
int. For linkages with closed kinematic chains, loop clo-
sure constraints restrict the configuration space to a real
algebraic variety that is not necessarily parameterizable
(Latombe, 1991; LaValle, 2006). In this paper we are fo-
cused on path planning for closed chain mechanisms.

Several strategies for path planning for closed cha-
in systems have been proposed in the last years (Cortés
et al., 2002; Han and Amato, 2000; Trinkle and Mil-
gram, 2002; Tang et al., 2007; Szynkiewicz and Gosiew-
ski, 1995; Yakey et al., 2001). All existing techniques for
solving a motion planning problem for closed linkages ha-
ve some limitations. In theory, complete algorithms can
be applied to systems with holonomic equality constra-
ints such as those imposed by closed kinematic chains
(Canny, 1988). Complete, polynomial-time algorithms are
limited to some simplified problems, e.g., path planning
for planar linkages neglecting collisions with obstacles
and with other links (Trinkle and Milgram, 2002). Recen-
tly, complete algorithms that take into account point ob-
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stacles have been proposed (Liu and Trinkle, 2005). Ho-
wever, computational complexity of exact algorithms still
restricts their use in practical problems with complex lin-
kages and work spaces with various obstacles.

The most effective robot path planning strategies to-
day are built upon randomized search techniques. Sample-
based algorithms such as Probabilistic Roadmap Methods
(PRMs) (Kavraki et al., 1996) and Rapidly-exploring
Randomized Trees (RRTs) (Kuffner and LaValle, 2000;
Abbasi-Yadkori et al., 2010) have been adapted to so-
lve path planning problems for closed chain linkages
(Cortés et al., 2002; Han and Amato, 2000; Yakey et al.,
2001; Yershova and LaValle, 2009).

The general methodology of PRMs and RRTs is to
construct a graph (the roadmap) during preprocessing to
capture the connectivity of the valid subset of the configu-
ration space and then to query the roadmap to find a path
for a given motion planning task. The roadmap becomes
suitable for path planning when the following features can
be achieved: There is a one-to-one correspondence betwe-
en components of a graph and components of a free con-
figuration space (C-free). Given a point in space C-free, it
is relatively easy to find a path connecting it to the graph.
The main problem is that the probability that a randomly
sampled point belongs to the closure set is equal to zero.

It is very difficult to find and connect configurations
that satisfy the closure constraints using only randomized
techniques. While several strategies use specific heuristics
to improve the probability of sampling closed configura-
tions (Cortés et al., 2002), sampling is still very difficult
and time consuming for high-dimensional systems. A con-
siderable improvement is obtained by breaking the kine-
matic loops and employing both forward and inverse kine-
matics (Han and Amato, 2000). Each loop in the linkage
is broken into two sub-chains called respectively the “ac-
tive chain” and the “passive chain”. For node generation,
standard random sampling techniques and forward kine-
matics are applied to the active chain, and then inverse ki-
nematics are used for the passive chain in order to enforce
the closure constraints. However, closed-form inverse ki-
nematics solutions of the passive chain are required for the
efficiency of roadmap computation.

The method developed by Cortés et al. (2002) is an
extension of the approach proposed by Han and Amato
(2000). They proposed a simple geometric technique cal-
led the Random Loop Generator (RLG) to generate confi-
gurations in each single loop. The main goal of the RLG
is to generate random configurations for the active chain
that have a high probability to be reachable by the passive
chain.

More recently, Han et al. (2006) proposed a new set
of geometric parameters, some inter-joint distances and
triangle orientation data, for closed chain linkages such
that the problem can be reformulated as a system of linear
inequalities. Then, linear programming and other algori-

thms can be used for sampling and local planning. Inste-
ad of randomly sampling in the joint angle space to find
closed configurations, Tang et al. (2007) proposed the so-
called Planning with Reachable Distance (PRD). In PRD,
the subspace where closed constraints are satisfied is pre-
computed and then sampling is preformed directly in this
subspace. It should be noted that randomized techniques
have wildly varying performance and are not complete,
they are not guaranteed to find a solution when one exists,
nor can they determine that a solution does not exist when
that is the case. Some of them achieve a weaker notion of
probabilistic completeness, i.e., they find a path with some
probability whenever one exists.

Robot motion planning is often viewed as an opti-
mization problem that aims to minimize a given objective
function. Numerous approaches have been proposed to so-
lve this problem. A hybrid algorithm for optimizing robot
trajectories to achieve minimal motion time and to avo-
id collisions was described by Zhang and Knoll (1995).
Zefran and Kumar (1997) proposed a variational formu-
lation of a general motion planning and numerical algo-
rithm for solving such variational problems. A functional
gradient descent technique called CHOMP (Covariant Ha-
miltonian Optimization for Motion Planning) was used
for motion planning for a 7 DOF manipulator (Ratliff
et al., 2009). Kanehiro et al. (2008) described a local me-
thod for collision avoidance between non-strictly convex
polyhedra with continuous velocities as an optimization
problem with linear inequality constraints.

In this paper we propose an optimization-based ap-
proach to path planning for robot systems with closed ki-
nematic chains. Originally, the path planning problem is
formulated as a calculus of variation problem involving
a conditional extreme. To obtain a numerical solution, this
problem is converted to a finite-dimensional mathematical
programming problem. To solve it, an advanced optimiza-
tion method, namely, the interior point IPOPT algorithm,
is utilized. In the proposed method only direct kinematics
of the robot arms is used. For practical applications, kine-
matic motion planning is employed more frequently than
dynamic motion planning.

Amongst numerical optimization methods for effec-
tively solving large-scale nonlinear problems, at present
the most popular are Sequential Quadratic Programming
(SQP) algorithms and interior-point methods for nonlinear
problems. In terms of computational effectiveness and ro-
bustness, interior-point methods are better fitted to large-
scale nonlinear optimization than SQP methods. In publi-
cations from the nonlinear programming area it is possi-
ble to come across a lot of reports comparing numerical
performance of solvers based on SQP and interior-point
methods for nonlinear problems using the methodology
of the performance profiles (Dolan and Moré, 2002). It is
worthwhile to mention the works of Benson et al. (2002)
and Morales et al. (2001), comparing SNOPT, filterSQP,
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LOQO and KNITRO solvers, along with those by Wäch-
ter (2002) as well as Wächter and Biegler (2006), where
the IPOPT solver was benchmarked with LOQO and KNI-
TRO solvers. However, Błaszczyk (2007) and Błaszczyk
et al. (2007) compare the effectiveness of specialized SQP
solvers using the problem structure and the IPOPT solver
for dynamic optimization problems, for which the solu-
tion is obtained as a result of their transformation to NLP
problems.

In this work, to solve the path planning problem for
closed chain robotic systems, the IPOPT1 solver was used,
which is based on the primal-dual interior-point method
for nonlinear problems (Wächter and Biegler, 2006). The
outline of this paper is as follows. In Section 2, the con-
figuration space of a closed chain system is defined. The
kinematic description of two robot arms handling a single
object is given in Section 3. The admissible path planning
as a variational problem involving a conditional extreme
is formulated in Section 4. The algorithm of solving the
NLP problem in a finite-dimensional space is presented in
Section 5. A numerical example to demonstrate the effec-
tiveness of the proposed method is given in Section 6. In
Section 7 some concluding remarks are presented.

2. Configuration space of a closed chain
system

Suppose that the world, W , is a subset of the
3-dimensional Euclidean space, i.e., W ⊂ R

3. Consider
a mechanism (linkage) M = (L ,J ) consisting of links
Li ∈ L (rigid bodies) connected by joints Jk ∈ J , where
L = {L1, . . . ,Lnl} is a finite set of nl links and J is a set
of joints. One can use a standard parameterization tech-
nique for M (Latombe, 1991). Then the configuration of
M can be expressed as a vector qqq = [q1, . . . ,qn]T of real-
valued parameters. Let C denote the configuration space
(or the C-space) of the mechanism. Let M (qqq) denote the
transformation of M to the configuration given by qqq.

Feasible configurations for M (qqq) should not involve
collision between the robot and workspace obstacles, or
self-collision among the links. Let B = (B1, . . . ,Bnb)⊂W
denote a set of static obstacles in the workspace. If the ob-
stacle region is denoted as Cobs ⊂ C , then the collision-
free (C-free) portion of the configuration space can be de-
fined as follows (LaValle, 2006):

C f ree =

⎛
⎝ ⋃

i∈[1,nb]

{qqq ∈ C | (M (qqq)∩Bi = /0)}
⎞
⎠

∪
(
⋃

i, j∈CP

{qqq ∈ C | (Li(qqq)∩Lj(qqq) = /0)}
)

,

(1)

1An open-source C++ version of IPOPT is available at
http://projects.coin-or.org/Ipopt.

where CP denotes the set of collision pairs, in which each
collision pair (i, j) ∈ CP (i �= j) represents a pair of links
Li(qqq) and Lj(qqq) that are not allowed to be in a configura-
tion qqq.

In general, the closure constraints are holonomic
constraints, and can be expressed in the form fff (qqq) = 000.
Configurations of a closed chain mechanism belong to the
set

Cclo = {qqq | qqq ∈ C

∧ fff (qqq) = { f1(qqq) = 0, . . . , fm(qqq) = 0}}. (2)

If the dimension of C is equal to n, then m < n, and
Cclo ⊂ C . It should be noted that closure constraints can
be transformed to the zeros of a system of polynomial equ-
ations using a projective transformation (Latombe, 1991).
The set of all configurations for linkages that maintains
a closed kinematic chain is generally not a manifold. Equ-
ation (2) restricts the configuration space to a real algebra-
ic variety, Cclo, embedded in C . However, the algebraic
variety Cclo can be stratified into a collection of manifolds
(Latombe, 1991; LaValle, 2006).

Finally, the valid configurations of a closed chain me-
chanism that satisfy collision constraints belong to the set,
Cval :

Cval = Cclo ∩ C f ree. (3)

3. Kinematics of two cooperating robot arms

Let us consider a closed chain mechanism consisting of
two robot manipulators transferring a single rigid object as
shown in Fig. 1. Since the object, the two robot arms and
the ground form a closed kinematic chain, the kinematic
constraints imposed on the system restrict the reachable
locations by the object.

The linkage can be treated as a chain that is compo-
sed of two sub-chains (Fig. 1). The configuration of a sub-
chain i, i = 1,2 can be specified by its base configuration
and its vector of generalized variables qqqi ∈ R

ni . The con-
figuration of the closed chain is described by the vector
qqq = [(qqq1)T ,(qqq2)T ]T ∈ R

n, where n = n1 + n2. To specify
the position and orientation of coordinate frames shown
in Fig. 1, the following (4×4) homogeneous transforma-
tion matrices are defined: the matrix Twbi , i = 1,2 descri-
bes the pose of the i-th robot base frame Fbi in the world
frame Fw, the matrix Tbiei(qqq

i), i = 1,2 is the forward kine-
matic transformation of the i-th sub-chain, which determi-
nes the end-effector’s frame Fei in the Fbi frame, and the
matrix Teio, i = 1,2 describes the object frame Fo in the
end-effector frame Fei .

The closure constraints can be obtained by writing
down two homogeneous transformation matrices for a co-
ordinate frame of the object. Each of the matrices corre-
sponds to two different paths to the object (respectively
sub-chain 1 or sub-chain 2). The closure constraint can be

http://projects.coin-or.org/Ipopt
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Fig. 1. Closed chain linkage formed by two robot manipulators transferring a common object.

obtained by forcing the frame of the object to be the same,
regardless of the path that was chosen. As a consequence,
we get the following loop closure constraint:

Twb1 Tb1e1(qqq
1)Te1o = Twb2 Tb2e2(qqq

2)Te2o. (4)

The closure constraint (4) can be reduced to

Tb1e1(qqq
1)Te1o −Tb1b2 Tb2e2(qqq

2)Te2o = 000, (5)

where Tb1b2 is the transformation from the base of the sub-
chain 1 to the base of the sub-chain 2 (Fig. 1). To formu-
late the path planning problem, we transform the closure
constraints described by (5) to the vector form. Using a
proper parameterization of the object position and orien-
tation, Eqn. (5) can be rewritten as follows:

hhh(s,qqq) = ppp1(qqq1(s))− ppp2(qqq2(s)) = 000, ∀s ∈ [0,1], (6)

where the vector pppi(qqqi(s))∈R
6, i = 1,2, describes the po-

se of the object frame Fo with respect to the world fra-
me Fw expressed as a function of the generalized variables
qqqi. Mechanical constraints due to mobility limitations of
the joints and constraints caused by workspace occupan-
cy conflicts between the object and the robot arms can be
described as

ggg(s,qqq) ≤ 000. (7)

Due to the constraints imposed on the overall system, the
problem is to develop an admissible path planning me-
thod.

4. Path planning

The path planning problem for the closed chain system
shown in Fig. 1 is formulated in terms of the object to be

manipulated. The path planning problem is described as
follows:

Problem statement. Given a start configuration qqqs ∈ Cval ,
which corresponds to the initial object pose ppp(0), and a fi-
nal configuration qqqf ∈ Cval , which corresponds to the fi-
nal object pose ppp(1), find a continuous joint path qqq(s) :
[0,1]→Cval such that qqq(0) = qqqs and qqq(1) = qqq f , where pa-
rameter s∈ [0,1] is the normalized arc length of the spatial
curve traversed by the object.

For a path to exist between qqqs and qqqf , it will be ne-
cessary for both configurations to be contained within the
same connected component of Cval . What makes this class
of path planning problems difficult, even though collisions
are ignored is the complexity of the valid portion of the C-
space, Cclo, which, as mentioned before, is a real algebraic
variety of co-dimension 3 (for spatial closed chains) that
is not necessarily parameterizable (LaValle, 2006). Howe-
ver, the dimension of this variety is significantly smaller
than that of the ambient space (Latombe, 1991). In such a
situation it is of great interest to develop motion planning
algorithms which take advantage of this fact and whose
complexity reflects the dimension of this variety rather
than that of the ambient space.

4.1. Variational formulation of the admissible path
planning problem. As shown by Szynkiewicz and Go-
siewski (1995), a path planning problem for closed-chain
systems can be formulated as a variational problem invo-
lving a conditional extreme. We consider the functional in
a general form,

I[s,qqq] =
∫ 1

0
F(s,qqq(s))ds, (8)
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subject to

qqq ∈ Y �{ qqq ∈ C2([0,1]) : hhh(s,qqq) = 000

∧ggg(s,qqq) ≤ 000 ∧ qqq(0) = qqqs, qqq(1) = qqqf } .

(9)

Let pppd(·) denote a desired path of the object in the
task space connecting the initial pose ppps and the final pose
ppp f . The desired path is arbitrarily chosen without regard
to whether it is admissible. We minimize the functional
I[qqq(·)]) defined as

I[qqq(·)]

=
∫ 1

0

(
pppi(qqqi(s))− pppd(s)

)T
W
(

pppi(qqqi(s))− pppd(s)
)

ds,

(10)

where pppi(·), i = 1,2 is the current path of the object. The
weighting matrix W = W T ≥ 0 is a (6×6) symmetric po-
sitive semi-definite matrix that should be selected appro-
priately for the task to be performed.

The admissible object path is the closest to the de-
sired path in the sense that the functional I defined by
(10) is minimized with respect to qqq and subject to con-
straints given by (9). To obtain a numerical solution, the
infinite-dimensional optimization problem is approxima-
ted by a finite-dimensional problem of mathematical pro-
gramming.

4.2. Finite dimensional approximation. The propo-
sed approach is based on a modified Ritz method (Daniel,
1971), one of the direct methods of the calculus of varia-
tions. The basic idea of the Ritz method is that the values
of a functional (10) are considered not on arbitrary admis-
sible curves of a given variational problem but only on all
possible linear combinations,

qqq(N)(·) =
N

∑
j=0

ccc(N)
j ϕ j, dim qqq = dim ccc(N)

j , (11)

of the first N + 1 functions of some chosen sequence of
functions,

{
ϕ j
}∞

j=0, where ccc j denotes the undetermined

parameters termed Ritz coefficients. The functions qqq(N)

given in (11) must be admissible for the functional (10).
A convergent Ritz approximation requires the follo-

wing (Daniel, 1971):

1. ϕ j must satisfy the specified essential boundary con-
ditions.

2. ϕ j must be continuous and smooth enough, as requ-
ired by the variational statement being used.

3. The set
{

ϕ j
}

must be linearly independent and com-
plete.

If the basis functions satisfy the requirements, the assu-
med approximation qqq(N) normally converges to the actual
solution q̄qq when N → ∞.

To formulate a finite-dimensional nonlinear opti-
mization problem, the basis is defined as a sequence{

ϕ j
}N

j=0, where ϕ j, j = 0,1, . . . ,N is a set of appropria-
tely chosen basis functions.

The quality of the obtained solution depends on a
proper choice of the basis functions. In our approach, we
choose cubic B-splines (de Boor, 1978) as the basis func-
tions.

Let the interval [0, 1] ⊂ R
1 be divided into N equal

segments Δs = s j+1 − s j = 1/N for s j, j = 0,1, . . . ,N−1,
where s j are values such that 0 = s0 < s1 < · · · < sN = 1.

Denote by B
2 the cubic B-spline space. The basis in

the space B
2 can be defined using the following formula

(de Boor, 1978):

b j,0(s) =
{

1 if s ∈ [s j,s j+1
]

0 otherwise .
(12)

The (cubic) B-spline function on the interval
[
s j,s j+4

]
is

defined as

b j,3(s) =
s− s j

s j+3 − s j
b j,2(s)+

s j+4 − s

s j+4 − s j+1
b j+1,2(s). (13)

The admissible path finding problem is reduced to
minimizing a function of (N + 3)× n variables. Witho-
ut loss of generality, the weight matrix can be defined as
W = diag(w1, . . . ,w6). Now, the functional (10) can be
expressed as a function of the coefficients ccc =

[
cccT

1 , cccT
2

]T
(ccci ∈ R

ni×(N+3), i = 1,2) of the path qqq(·) in the basis{
ϕ j
}N+2

j=0 ,

min
ccc

N−1

∑
j=0

∫ s j+1

s j

6

∑
k=1

wk

(
p1k

(
j+3

∑
i= j

ccc1iϕi(s)

)
− pd

k (s)

)2

ds.

(14)
The function (14) is minimized with respect to the vector
variable ccc, and subject to

ccc ∈ YN ={ ccc ∈ R
n×(N+3) | hhh(s j,ccc) = 0 ∧ggg(s j,ccc) ≤ 0,

j = 0, . . . ,N } .

(15)

The admissible path planning problem was reduced to a
finite-dimensional nonlinear optimization problem. It can
be solved by means of appropriate, efficient methods of
mathematical programming, particularly interior-point or
barrier algorithms for large-scale nonlinear programming.

5. Interior-point algorithm for NLP
problems

Interior-point methods for nonlinear programming, also
called barrier methods, rose from the need for effective



664 W. Szynkiewicz and J. Błaszczyk

solving of large-scale optimization problems. In particu-
lar, for NLP problems with a large number of inequali-
ty constraints, these methods offer a serious alternative to
active-set strategies. Within the last 15 years, researchers
have led to a better understanding of the convergence of
interior-point methods and have also developed effective
computational algorithms with desirable global and local
convergence properties.

The term interior-point method was used for the first
time by Fiacco and McCormick (1968) for any algorithm
that was designed for the calculation of a local minimum
of an NLP problem by the solution of a determined sequ-
ence of unconstrained minimization problems. Such a de-
finition evolved to the form in which we think of the IP
method as of any algorithm for solving a set of optimi-
zation problems associated with a decreasing value of the
multiplier μ , to find local solutions lying in the interior of
the feasibility set determined by nonlinear constraints of
the NLP problem.

To allow convergence from “bad” starting points
for interior-point methods in both trust region and line-
search versions, researchers developed exact penalty merit
functions that ensure progress toward the solution (Byrd
et al., 2000; Tits et al., 2002). On the other hand, Fletcher
and Leyffer (2002) recently proposed filter methods as an
alternative to merit functions which guarantee the global
convergence for nonlinear programming algorithms. They
are based on the idea of the approval of trial points gene-
rated by the optimization algorithm in the case when they
improve the value of the objective function or improve the
value of a constraint violation, instead of a combination of
those two measures defined by a merit function.

More recently, this filter technique has been adapted
to barrier methods. Ulbrich et al. (2004) consider a trust-
region filter method, in which the consequent iterations
of the solution are accepted on the basis of the norm of
optimality conditions. Also, Benson et al. (2001) propo-
sed several heuristics based on the concept of filter me-
thods, for which the efficiency improvement was obtained
as compared with their previous experience with merit
functions. Finally, Wächter and Biegler (2005) provided
global convergence analysis of an interior-point algorithm
with a filter line-search.

Interior-point methods for NLP problems were im-
plemented within many optimization solvers, such as LO-
QO (Vanderbei and Shanno, 1997), KNITRO (Byrd et al.,
1999; Waltz and Plantenga, 2006) or IPOPT (Wächter,
2002; Wächter and Biegler, 2006). In numerical tests the-
se solvers proved to be quite effective and robust for many
large-scale NLP problems.

5.1. IPOPT solver. To solve the path planning problem
for closed chain robot systems, we used a primal-dual
interior-point algorithm with line-search minimization ba-
sed on the filter method, employed in the implementation

of the IPOPT solver. A formal description and analysis of
the filter line-search procedure implemented in the IPOPT
solver can be found in the work of Wächter and Biegler
(2005). In comparison with traditional line-search algori-
thms, such as a single merit function technique, the filter
method is usually less conservative and makes it possible
to take a larger step size. Moreover, the protection in the
form of a restoration phase makes the filter algorithm re-
sistant to unnecessary errors, such as those presented by
Wächter and Biegler (2000).

The computationally most expensive part of the opti-
mization algorithm implemented in the IPOPT solver (not
including computations of the objective function, constra-
ints and their derivatives) is the solution of the linear sys-
tem of equations, which is most often of high order and
has a sparse structure. For its factorization and solution,
IPOPT uses external sparse direct linear solvers, such as
MA27 (default option), MA57, WSMP, PARDISO and
MUMPS.

6. Numerical example

Let us consider a system consisting of two Asea IRb-6
robot arms (robots have only 5 DOF each) manipulating
a rigid beam as shown in Fig. 1 (Haegele et al., 2008).

The parameters of the Denavit–Hartenberg notation
and joint ranges of the IRb-6 manipulator are listed in Ta-
ble 1. The forward kinematics for the IRb-6 robot arm are

Table 1. Denavit–Hartenberg parameters and joint ranges of the
Asea IRb-6 robot manipulator.

Joint i αi−1 ai−1 di [θ min
i , θ max

i ]

[rad] [m] [m] [rad]

1 0 0 0.7 [− 17
18 π, 17

18 π]

2 −π/2 0 0 [− 13
18 π,− 5

18 π]

3 0 0.45 0 [− 25
180 π, 4

18 π]

4 0 0.67 0 [− 1
2 π,+ 1

2 π]

5 −π/2 0 0 [−π,+π]

6 0.1

given by a (4×4) homogenous transformation matrix (6),

Tbiei(qqq
i) =

⎡
⎢⎢⎢⎣

ci1si4ci5 + si1si5 −ci1si4si5 + si1ci5 ci1ci4

si1si4ci5 − ci1si5 −si1si4si5 − ci1ci5 si1ci4

ci4ci5 −ci4si5 −si4

0 0 0

ci1(di6ci4 + ai3ci3 + ai2ci2)
si1(di6ci4 + ai3ci3 + ai2ci2)
di1 −di6si4 −ai3si3 −ai2si2

1

⎤
⎥⎥⎥⎦ ,
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where si j = sin(θi j) and ci j = cos(θi j), i = 1,2, j =
1, . . . ,5. Joint angles θi j represent configuration variables,
other parameters are given in Table 1.

The pose of the base of the robot manipulator 2 with
respect to the world coordinate frame Fw is given by

Twb2 =

⎡
⎢⎢⎣

−1 0 0 l0
0 −1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

where l0 = 1.8 [m] is the distance between origins of the
coordinate frames Fb1 and Fb2 .

The pose of the object frame with respect to the end-
effector frames Fei is given by the following matrices:

Te1o =

⎡
⎢⎢⎣

1 0 0 l1
0 −1 0 0
0 0 −1 0
0 0 0 1

⎤
⎥⎥⎦ ,

Te2o =

⎡
⎢⎢⎣

0 0 1 0
0 1 0 0
−1 0 0 l2
0 0 0 1

⎤
⎥⎥⎦ ,

where l1 = l2 = 0.2 [m] denote the distances between ori-
gins of the coordinate frame Fo and Fe1 and Fe2 , respecti-
vely. The desired object path pppd(·) in the coordinate frame
Fw is defined as the straight line path

pppd(s) = pppd(0)(1− s)+ pppd(1)s, s ∈ [0, 1].

The initial and final object locations in the Fw reference
frame are given in Table 2. Object orientation is parame-

Table 2. Initial and final object locations in the reference frame.
Coordinate Object pose

Initial Final

x [m] 0.90 0.95
y [m] 0 0.30
z [m] 0.90 1.00

φ [rad] 0 0.3059
θ [rad] 0 π/2
ψ [rad] 0 0

terized by three Z-Y-Z Euler angles, respectively φ , θ , ψ .
The corresponding initial and final configuration of both
robot manipulators is given in Table 3. We assume that
the initial and final object poses and corresponding confi-
gurations of both robot arms are feasible. (This means that
the initial and final configuration belong to the set of valid
configurations, qqqs,qqqf ∈ Cval .)

The discussed NLP problem for the system of two
cooperating robots was implemented in the C++ program-
ming language using classes and inheritance mechani-
sms. In addition, for handling vector-matrix operations,

Table 3. Initial and final joint values for two robot arms.
Joint Robot 1 Robot 2

variable Initial Final Initial Final

q1 [rad] 0 0.3059 0 −0.3393
q2 [rad] −1.4674 −0.9087 −1.6193 −0.9039
q3 [rad] 0.2221 0.3903 0.3815 −0.3766
q4 [rad] π/2 0 0 π/2
q5 [rad] 0 0 0 −0.6451

the uBLAS library was used. Specifically, classes for fi-
xed size vectors and matrices were implemented, and
also a class for handling homogeneous transformation
matrices, based on the available implementation in the
MRROC++ robot programming framework (Zieliński and
Winiarski, 2010).

MRROC++ contains, among other things, methods
for the conversion of homogeneous matrices to Cartesian
coordinates and Z-Y-Z or Z-Y-X Euler angles. To solve the
resulting NLP problem, the IPOPT solver was used, confi-
gured to employ second order derivatives of the objective
function and constraints, which had considerable influen-
ce on convergence to the local optimum. The IPOPT so-
lver was configured to use the MA57 matrix solver from
the Harwell Subroutine Library (HSL). Moreover, a few
values of IPOPT parameters were adjusted, which had
crucial influence on the convergence.

As the starting point for the IPOPT solver, the valu-
es of c-coefficients were used, obtained from the solution
of an auxiliary linear system of equations for a previo-
usly computed permissible initial path. The computation
of such a path is based on iteratively searching for suc-
cessive points of the path, solving the NLP problem for
a single point, rather than for the entire path. Of course,
there is no guarantee that the resulting sequence of points
will yield a continuous initial path, but it is a set of accep-
table points. In order to avoid computation and program-
ming of complex analytical formulas for the first and the
second function derivatives, we used the automatic diffe-
rentiation library CppAD2 (Bell and Burke, 2008), which
has support for the IPOPT solver.

In the numerical example considered we chose the
cubic B-splines as the basis functions. The interval [0,1]
was partitioned into N = 50 even subintervals of Δs = 0.02
length each. Since the initial and final points of the ro-
bot paths are fixed, it was required to introduce additional
equality constraints to the NLP problem. The convergen-
ce behavior of the IPOPT algorithm depends on the form
of the objective function and constraints. In the case con-
sidered, the objective function is nonconvex and equality
constraints are nonlinear. Therefore, IPOPT might conver-
ge to a local optimum which is not a global solution. Ho-

2An open-source C++ code of the CppAD library is available at
http://projects.coin-or.org/CppAD.

http://projects.coin-or.org/CppAD
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Fig. 2. Paths in joint coordinates of both robot manipulators.

wever, from a practical point of view, it is more important
to obtain a feasible solution in a relatively short time than
spending a lot of time searching for a global solution. The
tolerance of equality constraints in the NLP problem for
the considered case was about 10−10. The constraint vio-

lation is the norm of the constraint equations (which are
supposed to be zero at a feasible point).

Numerical results obtained by solving the optimiza-
tion problem are presented in Figs. 2–4 and Table 4. In
Fig. 2, joint paths of both robot manipulators are shown.
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Fig. 3. Desired (dotted line) and actual (solid line) object paths.

The joint paths are always continuous and smooth enough
because they are described as a linear combination of the
cubic B-spline basis functions. Moreover, as a B-spline
curve the path can be locally modified without affecting
the whole curve. In Fig. 3 we show Cartesian coordinates
(x,y,z) of the path traversed by the origin of the local fra-
me Fo associated with the object, and Z-Y-Z Euler angles
(φ , θ and ψ , respectively) representing the orientation of
the object with respect to the reference frame, Fw.

The object path was obtained by solving forward ki-
nematics. The desired object path is drawn with dotted li-
nes, whereas the actual path with the solid one. It should
be noted again that the desired object path is not neces-
sarily admissible. It might happen that the object cannot
follow this path without violating the constraints. Howe-
ver, the actual path is the “closest” to the desired one in the
sense that all constraints are satisfied and the cost function
is minimized. In Fig. 4 the object path and orientation in
3D space are shown. Translation motion is a curve in R

3,
so it can be naturally formulated as a 3D cubic B-spline.
Rotation motion is also a 3D cubic spline in 3D “space” of
Euler angels. The combination of translation and rotation
curves constitutes the motion spline curve.

Comparing our approach to modern sampling ba-
sed methods, it should be noted that the paradigm un-
derlying sampling-based planners does not by itself en-
force any form of solution optimization. Searching for a
feasible path may often result in solutions of unpredicta-
ble length, with superfluous motions. The resulting path
may contain unnecessary turns, or the velocities at the
vertices may change arbitrarily. In contrast, paths produ-
ced by our algorithm are smooth and “close” do the de-
sired ones, which can be chosen according to the needs.
Moreover, as mentioned before, it is very difficult to find
and connect configurations that satisfy the closure con-
straints using only randomized techniques. Combinatorial
approaches to motion planning find paths through the con-
tinuous configuration space without resorting to approxi-
mations. These approaches construct explicit geometrical
and topological representations of the closure set, but are
usually inefficient in practice. However, due to the diffi-
culty of computing the exact representation of the closure
constraints, most implementations of these algorithms are
limited to robots with few DOFs or special shapes. Mo-
reover, in our approach there is no need to solve the in-
verse kinematics problem, which can be difficult and time
consuming for mechanisms with many DOFs and many
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Fig. 4. 3D object paths: position (a), orientation (b).

Table 4. Computational results for the numerical example with N increasing from 25 to 800 segments (n,me,m stand for the numbers
of variables, equality and inequality constraints in NLP problems, respectively). The number of iterations and CPU times (in
seconds) are listed for the IPOPT solver. The times are taken using a PC with an Intel Q6600 processor with a 2.4 GHz clock.
The parameters ep,max and eo,max are the accuracies of the calculated paths for position and orientation, respectively. The SP
flag determines whether or not a starting point for the IPOPT solver was generated before optimization.

N n me m SP Iter Time [s] ep,max[m] eo,max[rad]
25 280 144 280 1 13 0.6 1.19e−08 9.77e−11

0 18 0.9 1.61e−08 1.31e−10
50 530 294 530 1 15 2.5 6.09e−10 4.43e−12

0 21 3.3 6.13e−10 4.46e−12
100 1030 594 1030 1 19 10.2 6.16e−11 2.27e−12

0 − − − −
200 2030 1194 2030 1 22 43.4 2.67e−10 4.78e−11

0 25 50.1 2.68e−10 4.79e−11
400 4030 2394 4030 1 24 193.3 2.25e−10 8.13e−11

0 26 219.6 2.25e−10 8.13e−11
800 8030 4794 8030 1 24 779.2 1.31e−08 4.67e−09

0 24 820.1 1.31e−08 4.62e−09

closed chains. Also, additional constraints like task con-
straints can be easily included in our framework.

7. Conclusion

This paper presents an optimization-based approach to
path planning for closed chain robotic systems. The path
planning problem was formulated as a functional mini-
mization problem with equality and inequality constraints
in terms of the joint variables. It was solved numerically.
The obtained joint and object paths are always continuous
and smooth enough due to cubic B-spline approximation.
All kinematic constraints imposed on the two robot arms
handling a single rigid object were satisfied. A variatio-
nal approach to path planning is suitable not only for sim-
ple linkages with a single loop and a few links, but also

for complex mechanisms with multiple closed chains and
many obstacles in the workspace. It may also be directly
applicable to kinematically redundant robot systems. The
effectiveness and accuracy depend on the resolution of di-
scretization of the configuration space and the quality of
nonlinear programming techniques used to solve the pro-
blem.
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