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Abstract— We describe the design and hardware implemen-
tation of our walking and manipulation controllers that are
based on a cascade of online optimizations. A virtual force
acting at the robot’s center of mass (CoM) is estimated
and used to compensated for modeling errors of the CoM
and unplanned external forces. The proposed controllers have
been implemented on the Atlas robot, a full size humanoid
robot built by Boston Dynamics, and used in the DARPA
Robotics Challenge Finals, which consisted of a wide variety of
locomotion and manipulation tasks.

I. INTRODUCTION

Versatility is one of the major advantages of optimiza-

tion and model based approaches to humanoid locomotion

and manipulation. This has been demonstrated convincingly

throughout the DARPA Robotics Challenge (DRC) consid-

ering the short development time and the large number of

different tasks that need to be completed. In this paper, we

will present the design and implementation of our optimiza-

tion based walking and manipulation controllers 1. A general

summary of our entire DRC effort is presented in [1]. Both

the walking and manipulation controllers consist of a high

level controller that optimizes for task space trajectories into

the future and a low level full-body controller that generates

instantaneous joint level commands that best track those

trajectories while satisfying physical constraints. Hardware

experiments are conducted with the Atlas robot built by

Boston Dynamics. It has 30 actuated degrees of freedom

(DoF), six for each leg, seven for each arm, three for the

spine, and one for neck pitch. Most of them are hydraulic

actuators with the exception of the neck and the last three

joints on each arm which are electric.

Since the DRC Trials at the end of 2013, we have been

focusing on implementing the previous walking controller

[2] on the Atlas robot. We have also spent some effort

on tuning gains and filter parameters on the hardware for

better joint level tracking performance. The low level full-

body controller is also redesigned to address an inconsistency

issue we encountered during the DRC Trials [3]. The new

architecture is summarized in Figure 1.

The foundation of our controller is a quadratic program-

ming (QP) based inverse dynamics module. Like many

others, it originates from [4]. Desired motions are specified
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Fig. 1. For walking, in addition to tracking desired joint torques, the
lower body joint level controllers have velocity control loops whose targets
are the integrated accelerations optimized by inverse dynamics. The arm
joints have position and velocity control loops, and the desired values come
directly from the high level plan. For manipulation, full state is first solved
by inverse kinematics, which is then tracked by inverse dynamics.

in task space, and convex optimization is used to handle con-

straints and solve for controls that best track these motions.

For controlling a high DoF system such as a humanoid robot,

there are two main approaches for resolving redundancies:

rank the objectives using different weights; or impose a strict

hierarchy on the objectives. The hierarchical approaches [5]–

[10] typically ensure low priority objectives are within the

null space of higher priority ones. They are appealing in the

sense that no low priority tasks can ever jeopardize higher

priority ones. However in practice, only a small number

of hierarchies are implemented, and objectives within the

same hierarchy are still weighted. Furthermore, enforcing

constraints for all hierarchies is typically computationally

more expensive. We prefer the simpler and faster weighted

approaches [11]–[15]. There is also much interest in formu-

lating a smaller optimization problem. Contact forces can

be removed using orthogonal decomposition [16]. Another

approach is to optimize for force allocation among multiple

contacts first and solve inverse dynamics in the second stage

[17]–[20].

For mostly static manipulation tasks, we use an explicit

inverse kinematics controller to first optimize for the full

generalized state, which is then tracked using inverse dynam-

ics. It is formulated as a QP optimizing for the generalized

velocity, and the joint configuration is integrated from the

joint velocity. Our approach is an extension to the damped

least squares method used by [21] and is similar to [22] in

spirit.

The Linear Inverted Pendulum Model (LIPM) is widely

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2015 IEEE-RAS International Conference on Humanoid Robots.

Received July 7, 2015.



used for generating center of mass (CoM) trajectories for

walking. Preview Control [23] is one of the most successful

applications. Momentum based methods [12], [20] have been

developed for balancing and walking. We use Differential

Dynamic Programming [24] to optimize for a nominal CoM

trajectory, together with a linear policy and local quadratic

approximation of the value function, which are used to

stabilize the robot around the nominal trajectory. [11] shares

the same idea.

A variety of foot step planners are implemented for

different scenarios. In most flat ground walking cases, we

use an A∗ based [25] planner that uses an action set of more

aggressive foot steps. Interpolation based planners are also

implemented. We rely on their repeatability for certain tasks,

such as sidestepping through an open door. Special purpose

planners are implemented for the terrain and stair tasks. The

terrain planner first fits a grid of blocks to the laser point

cloud using the operator’s alignment as an initial guess. It

then classifies each cinder block based on surface normal.

A discrete search is performed to generate the actual foot

step sequence using a set of transitions that have predefined

costs. For the stairs, a model is generated and fitted. Human

guidance can then be used to modify the generated foot step

sequence. The operator manually selects the most suitable

planner during the Finals. All planned foot steps can be

adjusted by the operator, and our interface allows manual

foot step inputs as well.

II. FULL-BODY CONTROLLER

In most cases, the high level controller outputs desired

Cartesian motions for specific parts on the robot (e.g. foot,

hand and CoM). The low level controller takes these as inputs

and generates joint level commands such as joint position,

velocity and torque, which are then used as desired values

in the joint level controllers.

A. State estimation

Before going into more details about the full-body con-

troller, we want to briefly describe our state estimator. More

details can be found in [26]. Joint position is sensed by linear

variable differential transformers (LVDTs) on the actuators,

and velocity is the low pass filtered finite difference of

positions. Actuator force is measured using oil pressure in

the piston chambers. Pelvis angular velocity and orientation

are taken directly from an inertial measurement unit (IMU)

mounted on the pelvis. Pelvis linear velocity and position are

estimated using an Extended Kalman Filter based on the IMU

acceleration measurements and forward kinematics [27].

In addition to the pelvis estimator, we also implement an

estimator that explains the modeling error on the CoM level

using LIPM dynamics, for which the modeling error can be

treated as a combination of an external force and a CoM

offset. We treat it as an external force and compensate for it

in the inverse dynamics controller.

This estimator is especially helpful when compensating for

unplanned slow changing external forces applied at unknown

locations on the robot, which is quite likely when operating
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Fig. 2. Atlas was caught on the door frame when sidestepping through
it during the dress rehearsal at the DRC Finals. The walking controller
properly delayed liftoff and remained in double support when the CoM
modeling error estimator (described in Section II-A) detected anomaly.
Single support phase is shown by the shaded area, and the black dashed
lines indicate the planned liftoff time. Estimated CoM is the sum of the
model CoM and the estimated CoM offset.

in tight spaces. It also handles relatively small dynamic

forces well when walking, e.g. dragging a tether or pushing

through a spring loaded door. Thanks to the estimator, very

little tuning is done for our mass model. The most significant

contribution of this estimator is that it can detect when a

large external force is being applied that might push the

robot over. It saved our robot from falling twice at the DRC

Finals, where no safety belay was allowed. On the dress

rehearsal day, the robot was caught on the door frame when

sidestepping through, and the walking controller stopped

to enable manual recovery. Figure 2 shows data from this

experiment. During our second run in the Finals, our electric

forearm mechanically failed when the cutting motion was

initiated for the drill task. The uncontrolled forearm wedged

the drill into the dry wall and applied a large backward force.

The manipulation controller properly froze and saved the

robot from falling. The human operator was able to recover

from an otherwise catastrophic scenario.

B. Unified full-body controller

It is necessary to generate joint level kinematic targets

for the robot implementation, since inverse dynamics alone

performs poorly when facing modeling errors. For the DRC

Trials [3], we implemented the low level controller using

independent inverse kinematics (IK) and inverse dynamics

(ID) modules. An independent IK controller was suitable

for the static motions in the Trials, and was preferred for
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easy implementation. However, we were concerned about

inconsistency between the two modules due to their different

sets of constraints. For the Finals, two versions of the full-

body controllers are implemented. When walking, we no

longer use IK for joint level kinematic targets. For the lower

body joints, we numerically integrate the joint accelerations

from ID into desired velocities, which are tracked by the joint

level controllers. Arm motions are always specified in joint

space during walking, so no extra computation is needed for

the arm joints. For manipulation, IK is used first to generate

the full state that best tracks the desired Cartesian commands.

ID is then used to track the IK’s state. Although IK does

not enforce dynamic constraints, we argue that by properly

positioning the CoM, running into a dynamic constraint is

very unlikely during manipulation for a strong robot like

Atlas. These design choices are motivated by the observation

that the legs on Atlas are much better engineered than the

arms. The leg joints have less sensor noise and friction.

For the arm joints, we were unable to use higher velocity

gains and failed to achieve decent joint tracking without

the position control loop. An explicit IK is also preferred

as opposed to double integration for stability and accuracy

reasons.

Both ID and IK are formulated as quadratic programing

(QP) problems. The actual implementation does not differ

greatly from [3], so we will only present the new features

here.

C. Inverse dynamics

1) Reduction in QP size: Let M(q) be the inertia matrix,

h(q, q̇) be the sum of gravitational and Coriolis and centrifu-

gal forces, τ stand for a vector of joint torques, J(q) be the

Jacobian matrix for all the contacts, and λ be a vector of

all contact wrenches in the world frame. As pointed out by

Herzog, et al. [7], the equations of motion can be decoupled

into two parts:

Mu(q)q̈ + hu(q, q̇) = JT
u (q)λ

Ml(q)q̈ + hl(q, q̇) = τ + JT
l (q)λ,

(1)

where the top represents the six rows of the floating base,

and the bottom corresponds to the actuated DoF. τ is thus

linearly dependent of q̈ and λ as

τ = Ml(q)q̈ + hl(q, q̇)− JT
l (q)λ, (2)

and can be eliminated from the QP to reduce the problem

size by almost a half. Eq. 2 is used in the cost terms and

inequality constraints to replace τ , and the top part of Eq. 1

is used as the equality constraints.

2) Approximated value function for the CoM: A new

term is added to the cost function to approximate the value

function of the CoM state with a pure quadratic. Let X =
[

x
ẋ

]

be the current CoM state, and we can approximate the

cost-to-go for the next time step with

V (X ′) ≈ 0.5(X ′ −X∗)TV ∗

XX(X ′ −X∗),

X ′ =

[

x+ ẋdt+ 0.5(J(q)q̈ + J̇(q)q̇)dt2

ẋ+ (J(q)q̈ + J̇(q)q̇)dt

]

=

[

0.5J(q)dt2

J(q)dt

]

q̈ +

[

x+ ẋdt+ 0.5J̇(q)q̇dt2

ẋ+ J̇(q)q̇dt

]

,

(3)

where V ∗

XX and X∗ are the value function’s second order

derivative and the setpoint. Eq. 3 can be further rewritten to

fit the cost term form in [3].

3) Centroidal momentum matrix: In the previous im-

plementation, desired change in centroidal momentum was

expressed as a cost term using the net external wrench from

the contact forces. On the other hand, it is also linear with

respect to the generalized acceleration [28]. In the current

implementation, the latter form is preferred since we can

then freely add virtual forces in the generalized coordinate

or in the Cartesian space that can be potentially useful for

handling modeling errors.

4) Structural change smoothing in QP: In the previous

implementation, the ID QP changes dimension based on

number of contacts. Discrete changes can also happen due

to constraint manifold changes such as during toe-off, when

the foot frame CoP is constrained at the toe. Such changes

will cause sudden jumps in the outputs that can induce

undesired oscillations on the physical robot. These jumps

are caused by structural changes in the problem specification,

and cannot be handled by just adding cost terms that penalize

changes. Our solution is to maintain the same QP dimension

and gradually blend the constraints over a short period of

time. We always assume the largest number of contacts,

but heavily regularize the magnitude of the contact force

and relax the acceleration constraints for the fake contacts.

Inequality constraint surfaces are changed smoothly when a

change is required.

5) CoM level modeling error: The estimated virtual force

is applied at the CoM and added directly in Eq. 1 to be

properly handled by ID.

D. Inverse kinematics

The main purpose of the IK controller is to maintain a

feasible full-body kinematic state that best tracks the high

level controller’s objectives during manipulation. The ID

controller then tracks IK’s full state instead of the incomplete

targets from the high level controller.

1) Self collision avoidance: For many manipulation tasks,

especially for human in the loop tele-operation, where proper

collision checking is usually not performed, the vanilla IK

controller often ends up in a self colliding state. Even in sit-

uations where desired collision free full-body trajectories are

generated with proper motion planning algorithms, avoiding

self collision in the IK controller is still useful. Trajectories

generated by typical motion planners often consist of a

sequence of key frames that is orders of magnitudes too

sparse for control purposes. Interpolation at the controller
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level is necessary for smooth motions. Furthermore, the

controller needs to modify the original plan to maintain

balance in unexpected situations during execution. On the

other hand, depending on how the particular planner handles

collisions, the planned trajectory can be arbitrarily close to

a collision surface. Any small variation can invalidate the

collision free property. Thus, it would be ideal to enforce

collision avoidance constraints in the inverse kinematics

controller.

In the interest of complexity and computational cost, only

approximate self collision avoidance is implemented. We use

capsules as collision shapes for the major limbs and torso.

Figure 3 shows the collision shapes we use for the Atlas

robot. Given the current configuration qik of the robot, for

any two capsules of interest, Ca and Cb, we first find the

closest two points on their surfaces respectively, ca and cb.

Assuming ca and cb will remain the closest points on Ca
and Cb for the next time step, we can construct a frame Oa,

whose origin is at ca, the Z axis has the same direction as

cb − ca, and the Y axis is perpendicular to both cb − ca and

Ca’s principal axis da.

Za =
cb − ca
|cb − ca|

Ya = Za × da

Xa = Ya × Za

Ra =
[

Xa Ya Za

]

(4)

Let Ha =

[

Ra ca
0 1

]

be the homogeneous transformation

from the world frame to Oa, and we use acb to denote the

position of cb specified in frame Oa. Collision free between

Ca and Cb can be approximated by enforcing acb to keep a

minimum value in its Z coordinate. Let ′ denote variables

for the next time step. Assuming the orientation for O′

a is

the same as Oa, we have

H ′

a =

[

Ra ca + Jaq̇dt
0 1

]

c′b = cb + Jbq̇dt
[

ac′b
1

]

= H ′

a

−1

[

c′b
1

]

⇒ ac′b = R−1

a (cb + Jbq̇dt)−R−1

a (ca + Jaq̇dt)

= R−1

a (Jb − Ja)q̇dt+R−1

a (cb − ca),

(5)

where Ja and Jb are Jacobian computed at ca and cb. Eq. 5

is linear with respect to q̇, and the inequality constraint for

avoiding collision is

ac′b[Z] ≥ ǫ, (6)

where [Z] takes only the Z component of ac′b, and ǫ is some

positive safety margin.

Due to the kinematics of the Atlas robot and empirical

observations, we only consider a subset of all possible self

collisions to speed up computation.

�� 

�� 

�� 

�� 

�� �� 

�� 
�� 

(a) Coordinate system for setting up a collision
constraint

(b) Simplified collision
shapes for the Atlas
robot

Fig. 3. Figure 3(a) is an illustration for Eq. 4 and Eq. 5. Ca and Cb are
the two collision shapes of interest. ca and cb are the two closest points on
Ca and Cb. da is a unit vector that represents the principle axis of Ca. Xa,
Ya and Za are defined in Eq. 4. Figure 3(b) shows the collision shapes we
used for the Atlas robot represented by transparent grey capsules.

III. HIGH LEVEL CONTROLLERS

A brief summary of the walking and manipulation high

level controllers is presented in this section. The walking

controller is based on previous simulation work [2], and the

manipulation controller is largely the same as in [3].

A. Walking controller

Given a sequence of desired foot steps, the walking

controller optimizes a CoM trajectory using Differential

Dynamic Programming [24], which is a local iterative trajec-

tory optimization technique that can be applied to nonlinear

dynamics. A nonlinear point mass model that includes the

Z dimension is used for trajectory optimization to take

height changes into account. The CoM trajectory is replanned

during every single support phase for the next two foot steps.

The swing foot trajectory is generated by a quintic spline

from the liftoff pose to the desired touch down pose. Figure

5 shows snapshots of the robot walking over a pile of tilted

cinder blocks and a standard staircase.

1) Differential Dynamic Programming: In addition to the

optimized trajectory, DDP also produces a linear policy and

local second order approximation for the value function

along the trajectory, which are used to stabilize the CoM

motion. Let Xt and ut be the state and control on the

optimized trajectory at time step t, X be the estimated

state, and Xe = X −Xt. We can compute the control and

approximated the cost-to-go with

V (X) ≈ V t
0
+ V t

XXe +
1

2
XT

e V
t
XXXe

u(X) = ut −KtXe.
(7)

u(X) can be expressed as CoM acceleration and used as an

input to ID. Xt and V t
XX are plugged into Eq. 3.

2) Step timing: Reliability is our primary objective for

the DRC Finals, so a more static walking style is preferred.

Having a low cadence allows us to arbitrarily pause while

walking and gives the operator a chance to recover when
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Fig. 4. Atlas walking at 0.4m/s with 0.8s per step. These snapshots are
taken every 0.2s.

things go wrong. In the DRC Finals, we use a nominal step

length of 40cm and 4s for each step (8s for a complete stride

of left and right steps). Among the top three Atlas teams that

developed their own walking controllers, we have the lowest

cadence but take the most aggressive foot steps. On the other

hand, the controller is capable of more dynamic walking, and

we have achieved 0.4m/s walking reliably by just speeding

up the cadence to 0.8s per step. Snapshots of the experiment

are shown in Figure 4.

3) Improved toe-off criteria: Toe-off is triggered by de-

tecting a stance leg approaching knee straight. However, this

is not a sufficient condition for toe-off. For some of the more

challenging configurations or more dynamic walking, blindly

switching to toe-off mode without considering dynamic fea-

sibility will result in the robot falling. When a near straight

knee configuration is detected, we prepare for toe-off by

adding a high weight cost term in ID that moves the CoP

in the relevant foot’s frame to be at its toe without changing

the constraint. Once the optimized CoP is close to the toe,

we then start shrinking the CoP constraint to be exactly at

the toe.

4) Offset for the planned CoM trajectory: In the current

implementation, we only replan the CoM trajectory at every

single support phase. We need a heuristic to modify the

planned CoM trajectory to compensate for inevitable foot

placement errors. We define xoff = xactual
foot − xplanned

foot in

the horizontal plane, where xactual
foot is the actual location for

the touch down foot, and xplanned
foot is the planned. xoff is

computed on every time step and used to offset the planned

CoM and CoP trajectories. To ensure smoothness, xoff

is gradually ramped up over a short period of time after

touchdown. During our first official run at the Finals, our

robot did not lift its swing foot high enough when stepping

down on the cinder block course. The swing foot scraped

a cinder block halfway through and triggered touch down

much earlier than planned. The walking controller was able

to handle this situation despite the large xoff .

B. Manipulation controller

The operator can directly specify desired Cartesian mo-

tions for the hands, the pelvis and the upper torso. Direct

joint commands for the upper body can also be issued. Figure

6 shows pictures of Atlas doing manipulation tasks.

(a) Walking over cinder blocks

(b) Walking up a staircase

Fig. 5. Snapshots of Atlas walking over cinder blocks and climbing a
staircase. The top ones are taken every 12s, and the bottom ones are taken
every 2s.

For the Finals, we add a new feature that takes in full state

trajectories planned by an external motion planner, TrajOpt,

developed by Schulman et al. [29] These trajectories are

specified by sequences of key frames. Since the centroidal

momentum [28] is linear with respect to the generalized

velocity, which is approximately the finite difference between

two consecutive key frames, we can compute the minimum

duration between two key frames by bounding the maximum

magnitude of the centroidal momentum. The controller then

linearly interpolates between two key frames using this dura-

tion. Intuitively, the trajectory slows down when it generates

larger whole body motions and speeds up otherwise.

For the drill task in the Finals, in order to make a reliable

cut, the robot needs to press the drill firmly against the dry

wall with a small amount of constant force. Since the arms

are essentially position driven for end effector accuracy, we

servo the hand Cartesian target based on the wrist force
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Fig. 6. Motions that need to satisfy nontrivial constraints, such as turning
a door handle, are planned using TrajOpt. The operator can directly issue
Cartesian or joint commands, which are useful for human-in-the-loop visual
servoing and fault recovery. The DRC surprise tasks are completed using
direct Cartesian commands.

torque sensor.

When the manipulation controller detects a near falling

scenario, it will terminate all ongoing trajectories, maintain

its current posture and block future commands until the

operator attempts manual recovery. Fall detection [26] is

based on a capture point [30] estimator combined with the

external force estimator discussed in Section II-A.

Since a full fledged IK is running inside the manipulation

controller, it can be used as a standalone kinematic tool

for previewing commands before sending them to the actual

robot.

IV. HARDWARE IMPLEMENTATION

A. Joint level controllers

On the Atlas robot, all the leg, back and upper arm

joints are hydraulic. The joint level controllers compute valve

commands based on

i = Kqp(qd − q) +Kqi

∑

(qd − q)dt

+Kqd(q̇d − q̇) + Fqdq̇ + Fqdd
q̇d

+Kτp(τd − τ) + Fτdτd

+ Fconst.

(8)

In Eq. 8, K∗ stands for gains for feedback terms, F∗ stands

for feedforward gains, Fconst is a constant bias term, and

subscript d denotes desired values. We use Kqp, Kqd, Kτp,

Fqd and Fconst in our implementation. The electric forearms

share the same interface, but we only use the Kqp, Kqd and

Kqi terms.

During implementation, we found that specifying gains

in actuator coordinate gives us better joint tracking perfor-

mance. The actuator gains need to be transformed to fit the

interface’s joint space specification. This is done using the

transmission information disclosed by Boston Dynamics. We

use actuator gains for all the linearly actuated joints, which

are all the leg joints and spine pitch and roll joints. Let

l denote piston length, and e∗ for tracking error for the

following equations. Valve commands computed in either the

joint or actuator space should be the same, thus for the Kqd

term,

Kqdeq̇ = Kldel̇

Kqd

dq

dl
el̇ = Kldel̇

Kqd =
dl

dq
Kld,

(9)

since q̇ = dq
dl
l̇. Similarly, Fqd = dl

dq
Fld.

For the torque feedback term, the virtual work produced

in both spaces should be the same, and τ = dl
dq
F , thus

Kτpeτ = KFpeF

Kτp

dl

dq
eF = KFpeF

Kτp =
dq

dl
KFp.

(10)

dl
dq

is a function of q and specified in a table by Boston

Dynamics. Linear interpolation is used for smoothing.

The ankle roll and pitch joints on Atlas are mechanically

coupled. Let qy and qx stand for the ankle pitch and roll

joint angle, and ll and lr be the left and right piston length.

The relationship between the joint and actuator velocity is

[

l̇l
l̇r

]

= J

[

q̇y
q̇x

]

, J =

[

dll
dqy

dll
dqx

dlr
dqy

dlr
dqx

]

. (11)

The valve commands for the left and right ankle actuators

are computed by
[

il
ir

]

= J

[

i′qy
i′qx

]

+

[

Fqy

Fqx

]

const

, (12)

where i′qy and i′qx are computed with Eq. 8 without the Fconst

term.

Thus for the velocity term,

Kldel̇ = JKqdeq̇ = JKqdJ
−1el̇

⇒ Kqd = J−1KldJ
(13)

where Kld and Kqd are 2 × 2 gain matrices, and el̇ and eq̇

are 2× 1 error vectors. Let Kqd =

[

kyy kyx
kxy kxx

]

,

[

il
ir

]

qd

= JKqdeq̇

= J

([

kyy 0
0 kxx

] [

eq̇y
eq̇x

]

+

[

kyxeq̇x
kxyeq̇y

])

⇒ Ky
qd = kyy

Kx
qd = kxx

F y
const +=

dll
dqy

kyxeq̇x +
dll
dqx

kxyeq̇y

F x
const +=

dlr
dqy

kyxeq̇x +
dlr
dqx

kxyeq̇y .

(14)

The components for Fqd terms are computed in the same

way.

For deriving torque gains, the piston force and joint torque

are related by

τττ = JT F, (15)
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where τττ and F are vectors. The derivation is similar to Eq.

13,

KFpeF = JKτpeτ = JKτpJ
T eF

Kτp = J−1KFpJ
−T ,

(16)

and the individual terms are computed same as in Eq. 14.

B. Joint velocity filtering

Joint position and torque are directly measured on the

actuator side with LVDTs and pressure sensors inside the

pistons, then transformed to joint space. Velocity is computed

by filtering the finite difference of positions. In addition to

Boston Dynamics’ default filters for joint position, velocity,

torque and error in torque, second and third order low pass

filters with custom parameters are provided. We have the

option to replace the default filters with these custom ones

in the joint level controllers. In our implementation, we

use second order Butterworth filters for joint velocities and

keep the default filters for the rest. We found that Boston

Dynamics’ default velocity filter is very sensitive to sharp

velocity changes and amplifies the actual changes. It also

filters slow signals more and induces a larger delay. For us,

the first attribute leads to undesired rumbling when we use

higher Fqd or Kqd gains. We are able to drastically increase

the velocity gains with our simple low pass filters. The cutoff

frequencies are summarized in Table I.

C. Joint elasticity compensation

Due to pre-transmission joint position sensing and com-

pliance in the mechanism, forward kinematics is not great on

Atlas. For stationary single stance, there can be up to 3cm
offsets between the model CoM from forward kinematics and

the measured CoP. A simple linear torque dependent heuristic

to reduce the effects of joint compliance is proposed by [12],

which is also employed in our controller.

D. Control loop frequency

The joint level controllers run at 1kHz, and we can receive

states and issue commands at the same frequency. On the

other hand, one cycle of our state estimator and control

loop takes about 1.5ms. Stock Ubuntu 12.04 is used on our

control computers, and we have observed very consistent and

uniform computation time when the X server (for graphical

interface) is disabled. Thus we did not pursue a real-time

operating system in favor of easier development. In the final

implementation, the state estimator runs within the robot

communication loop run at 1kHz, while the controller runs

on a separate thread at 500Hz. We are able to get much

more uniform control ticks than what we had for the DRC

Trials. The uniform control loop enable us to numerically

integrate computed joint accelerations into velocities, which

are used as the desired values in the joint level controllers.

V. DISCUSSION AND FUTURE WORK

To be computationally feasible for real-time control, a cas-

cade of smaller optimizations is usually favored, which for us

and many others eventually boiled down to reasoning about

TABLE I

CUTOFF FREQUENCIES FOR SECOND ORDER BUTTERWORTH JOINT

VELOCITY FILTERS [HZ]

Back z Back y Back x Neck y

10 10 10 2

Hip z Hip x Hip y Knee y Ankle y Ak. x

10 12.5 15 15 15 15

Shoulder z Sh. x Elbow y El. x 3 Elec. Wrists

7 7 5 5 10

long term goals using a simplified model and a one-step

constrained convex optimization that uses the full kinematics

and dynamics. Although effective, this approach suffers from

the common problem that plagues hierarchical systems: how

to generate a different high level plan when something goes

wrong at a lower level, which is not even modeled or

represented in the high level planner? We think the ideal

solution is to include as complete a model as possible in

the high level planner and replan as often as possible, but

it is unfortunately currently computationally impractical. A

second alternative is to give limited “foresight” to the low

level controller and guide it towards the original high level

goal in that limited horizon. We have experimented with

providing the approximated local value function computed

by DDP to the inverse dynamics controller, but we have

yet to observe a significant increase in either performance

or stability. We think this is due to the fact that we are

not previewing far ahead enough in time. For walking, we

had the most issues with kinematic related constraints, such

as rear ankle joint limit when taking a step down and

knee singularity when it goes straight. Just adding inequality

constraints on accelerations is not sufficient in most cases. In

the end, we worked around these issues with special purpose

heuristics that operate in joint space and incur increasingly

higher costs as the system approaches these constraints.

Although crude, it is a way of injecting some notion of

the future into greedy local optimization. Some high level

changes are also necessary, such as limiting step length and

allowing toe-off in various situations. A third direction is

to insert a simpler trajectory optimizer that has a shorter

horizon, but replans much more rapidly. We are currently

exploring this idea by adding a receding horizon control

component at the 1kHz time scale rather than at the 1Hz

time scale, as is currently done.

One of our goals is coming closer to human behavior in

terms of speed, robustness, full body locomotion, and versa-

tility. A very simple step recovery behavior based on capture

point has been implemented. We think high cadence dynamic

walking, heel strike, and toe push off are essential to fast

robust walking. To achieve this, better system identification

will further bridge the gap between simulation and hardware

and improve the overall performance. Optimizing angular

momentum in the high level controller will also benefit fast

walking. It will increase the safety margin for balancing as

well.
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VI. CONCLUSIONS

In this paper, we presented our controller design and

hardware implementation on the Atlas robot for the DARPA

Robotics Challenge Finals. Our main progress since the DRC

Trials are: a new walking controller that is based on a cascade

of online optimizations, hardware related parameter tuning

that enabled successful robot application, and an estima-

tor for CoM level modeling errors and unplanned external

forces. Although it was tuned to be slow and static for

reliability, the walking controller is capable of more dynamic

and faster walking with a simple parameter change. The new

estimator also serves as an anomaly detector that triggers

recovery behaviors when necessary. It successfully prevented

catastrophic falls at the Finals, where no safety belay was

allowed. Thanks to it, we were the only competitive walking

humanoid team at the Finals that did not fall or require a

physical human intervention.
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