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Abstract— One popular approach to controlling humanoid
robots is through inverse kinematics (IK) through stiff joint
position tracking. On the other hand, inverse dynamics (ID)
based approaches have gained increasing acceptance by provid-
ing compliant motions and robustness to external perturbations.
However, the performance of such methods is heavily dependent
on high quality dynamic models, which are often very difficult
to produce for a physical robot. IK approaches only require
kinematic models, which are much easier to generate in
practice. In this paper, we supplement our previous work with
ID-based controllers by adding IK, which helps compensate for
modelling errors. The proposed full body controller is applied
to three tasks in the DARPA Robotics Challenge (DRC) Trials
in Dec. 2013.

I. INTRODUCTION

Many humanoid applications can be decomposed into a

two stage control problem: a behavior level controller that

outputs high level commands and a low level controller that

is responsible for generating joint commands. We believe

that in order to fully utilize the workspace and be robust to

external perturbations, the low level controller has to take

full body kinematics and dynamics into consideration. In

this paper, we present such a controller that solves full body

inverse dynamics (ID) and inverse kinematics (IK) at each

time step to track higher level objectives. Figure 1 shows

a block diagram for the overall system. Both ID and IK

are formulated as two separate Quadratic Programming (QP)

problems, each with their own objectives and constraints. 1

On our Atlas robot, a 28 degree of freedom hydraulic robot

built by Boston Dynamics, joint level servos compute valve

commands based on

i = Kp(qd − q) +Kd(q̇d − q̇) +Kf (τd − τ) + c, (1)

where qd, q̇d, τd are desired joint position, velocity and

torque, q, q̇, τ are measured, and c contains the constant

valve bias term plus some other auxiliary feedback terms.

This joint level servo runs at 1kHz, while we can update

qd, q̇d and τd at 333Hz. In previous work [1], [2], [3], we

focused on torque control with ID that computes τd. To take

full advantage of the on-board high bandwidth PD servo, we

need to compute qd and q̇d with IK.

Using full body inverse dynamics for force control has

become a popular topic in recent humanoid research. Much

of the research originates from [4]. A hierarchical approach
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Fig. 1. The task dependent high level controller generates a set of desired
objectives such as CoM or limb motion, and constraints such as CoP and
joint limits. The proposed full body controller, which is contained by the
dashed rectangle, takes the high level objectives and robot states (q, q̇) as
inputs and outputs position qIK , velocity q̇IK and torque τ for each joint,
which are used as desired values, qd, q̇d and τd, in Eq. 1. Note that IK uses
its own internal states rather than the measured robot states.

for handling constraints and objectives is taken in [5], [6].

Ott et al. demonstrated a balancing controller on a torque

controlled humanoid in [7]. Simple PD servos were used to

generate a desired net ground reaction wrench. Forces are

distributed among predefined contacts using optimization.

[8] describes a recent effort of using floating base inverse

dynamics and ZMP based pattern generation for dynamic

walking. The presented ID formulation solves a smaller

QP with decoupled dynamics. [9] first optimizes individual

ground reaction forces and CoP for each contact and resulting

admissible change in centroidal momenta. Then it solves a

least square problem for the state acceleration. Joint torques

are generated explicitly. Koole et al. [10] generate desired

centroidal momenta change based on instantaneous capture

points, and use QP to optimize for acceleration and contact

forces. Although detail formulation differs in [11], the same

QP inverse dynamics structure is used. [12] and [13] use

orthogonal decomposition to project the allowable motions

into the null space of the constraint Jacobian and minimize

a combination of linear and quadratic costs in the contact

constraints and the commands. [14] resolves redundancy

in inverse dynamics using a kinematic task prioritization

approach that ensures lower priority tasks always exist in

the null space of higher priority ones. Contrary to many hi-

erarchical null space projection approaches, we prefer using

soft constraints by adding terms in the cost function with
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high penalties. We gain numerical stability by sacrificing a

small fraction of precision. We continue to use the same

approach to ID that was previously developed in our group

[1], [2], [15], [3]. Unlike most other approaches that solve a

reduced form of inverse dynamics, we optimize acceleration,

torque, and contact forces simultaneously on the full robot

model. This design choice is very intuitive, and gives us

the most flexibility in terms of trading off directly among

physical quantities of interest. It also provides an easy way

to properly manage all constraints on contact forces and joint

torques. It does make the QP problem higher dimensional

than in other methods, but it is still solvable in real time

with a standard QP solver. In our implementation, ID is

operating at the acceleration and force level, thus it alone

can not compute qd or q̇d to fully use the high bandwidth

joint level controller. We could integrate q̈, the output from

ID, to generate q̇d and qd, but we find this rapidly leads to

constraint violation and instability.

Similar to ID, our IK is also formulated as a QP, where

the unknowns are the velocities of the floating base and all

the joints. At each time step, we solve for a set of q̇ that

obeys kinematic constraints and minimizes a combination of

costs. q is computed by integrating q̇ from the IK results.

Our approach is similar in spirit to [16]. Although Mistry et

al. also solve for q̇, they compute it by carefully constructing

and inverting a matrix composed of end effector and contact

constraint Jacobians. This incremental approach of solving

for q̇ and integrating to obtain q is the primary difference

between our approach and most traditional IK approaches

such as [17], [18]. The incremental method can get stuck in

local minima, but it does not produce discontinuous results.

The main contribution of this work is the successful

application and many modifications of existing techniques

to a physical system, as well as the lessons learned and

intellectual challenges that arise from this endeavor.

II. FULL BODY CONTROL

For many tasks, we specify desired Cartesian motions for

specific locations on the robot (e.g. foot, hand and CoM) in

the high level controller. The proposed low level controller

takes these as inputs, and computes physical quantities for

each individual joint such as joint position, velocity and

torque. These outputs are then used as references in the joint

level servos on the robot. Figure 1 shows a block diagram for

the overall system. Joint position and velocity are computed

separately from joint acceleration and torque. We refer to

the former problem as Inverse kinematics (IK) and the latter

as Inverse dynamics (ID). Both are formulated as Quadratic

Programming (QP) problems.

min
X

0.5X TGX + gTX

s.t. CEX + cE = 0

CIX + cI >= 0.

The unknown, X , and constraints, CE , cE , CI and cI , are

problem specific, which we will elaborate on in the following

sections. Both QP problems are solved at each time step in

a 3ms control loop with a standard solver.

For both problems, we optimize a cost function of the

form 0.5‖AX − b‖2. Thus G = ATA, and g = −AT b. A
and b can be decomposed into smaller blocks as
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. (2)

Each row emphasizes a certain desired behavior with weight,

wi.

III. INVERSE DYNAMICS

The equations of motion and the constraint equations for

a floating base humanoid robot can be described as

M(q)q̈ + h(q, q̇) = Sτ + JT (q)F

J(q)q̈ + J̇(q, q̇)q̇ = ẍ,

where (q, q̇) is the full state of the system including 6 DOF

at the floating base, M(q) is the inertia matrix, h(q, q̇) is the

sum of gravitational, centrifugal and Coriolis forces, S is a

selection matrix, where the first 6 rows that correspond to the

6 DOF floating base are zeros, and the rest form an identity

matrix, τ is a vector of joint torques, JT (q) is the Jacobian

matrix for all the contacts, F is a vector of all contact forces

in the world frame, and x is a vector of contact position

and orientation in Cartesian space. F and JT ’s dimensions

depend on the number of contacts.

We can rewrite the equations of motion as

[

M(q) −S −JT (q)
]





q̈
τ
F



+ h(q, q̇) = 0.

Given a state, (q, q̇), the equations of motion are linear in

terms of
[

q̈ τ F
]T

.

Let X =
[

q̈ τ F
]T

. We turn the equations of motions

into the equality constraints. The inequality constraints con-

sist of various terms such as joint torque limits and contact

force limits due to friction cone constraints and center of

pressure (CoP) remaining in the support polygon constraints.

A. Cost function

We list a few examples of the objectives that can be

plugged into the rows of Eq. 2.

1) Cartesian space acceleration: Since

ẍ = J(q)q̈ + J̇(q, q̇)q̇,

we can penalize deviation from the desired Cartesian accel-

eration using

Acart =
[

J(q) 0 0
]

bcart = ẍ∗ − J̇(q, q̇)q̇.

The input ẍ∗ is computed by

ẍ∗ = Kp(x
∗

d − x) +Kd(ẋ
∗

d − ẋ) + ẍ∗

d,



where x∗

d, ẋ∗

d and ẍ∗

d are specified by a higher level controller,

and x and ẋ are computed by forward kinematics based on

the current robot state. Many objectives such as CoM, hand,

foot motion and torso orientation are specified in this form.

Depending on the objectives, we sometimes drop the rows

in the Jacobian that we do not want to constrain.

Rather than treating contacts as hard constraints, we find

that using a soft penalty with a high weight is generally more

numerically stable and faster to solve. For such contact costs,

we disregard x∗

d and ẋ∗

d, and set ẍ∗ = 0.

2) Center of pressure tracking: Given the forces and

torques, bM,b F , specified in foot frame, the location of the

center of pressure in the foot frame is

p =

[

−bMy/
bFz

bMx/
bFz

]

.

We can penalize center of pressure deviation with

Acop =

[

0 0

[

0 0 p∗x 0 1 0
0 0 p∗y −1 0 0

] [

R 0
0 R

]]

bcop = 0,

where (p∗x, p
∗

y) is the desired center of pressure in foot frame

given by a high level controller, and R is the rotation matrix

from the world frame to the foot frame.

3) Weight distribution: In double support, it is often

desirable to specify the desired weight distribution w∗ =
Fzl/(Fzl + Fzr). We add this term to the cost function by

Aweigt =
[

0 0 Sweight

]

bweigt = 0,

where Sweight is a row vector with zeros, except

Sweight(3) = 1− w∗ and Sweight(9) = −w∗.

4) Direct tracking and regularization: We can also di-

rectly penalize X from desired values with

Astate = I

bstate =
[

q̈∗ τ∗ F ∗
]T

.

0 is used if no target value is specified. This term is useful

for directly controlling specific joints or forces. It also

regularizes X to make the QP problem well conditioned.

5) Change in torques: To avoid high frequency oscilla-

tions, we penalize changes in τ with

Adτ =
[

0 I 0
]

bdτ = τprev,

where τprev is output from the last time step.

B. Constraints

Equations of motion are used as equality constraints.

Torque limits can be easily added into the inequality con-

straints. Friction constraints are approximated by

|bFx| ≤ µbFz

|bFy| ≤ µbFz.

The center of pressure also has to be under the feet, which

can be written as

d−x ≤ −bMy/
bFz ≤ d+x

d−y ≤b Mx/
bFz ≤ d+y ,

where bF and bM denote forces and torques in the foot

frame, and d− and d+ are the sizes of foot. The body frame

forces and torques are computed by rotating F into the foot

frame.

IV. INVERSE KINEMATICS

Unlike traditional IK approaches that generate positions

for the entire desired trajectory ahead of time, we compute

desired velocities at each time step and integrate them to

get desired positions. The controller can be more responsive

to changes in the high level commands, and computation is

averaged across the course of motion.

For the IK QP, X = q̇, and the numerically integrated

floating base position and joint position is denoted by qik.

Our IK formulation is very similar to ID’s except rather

than using the real robot states, we use the internal states

to compute the desired velocities. The internal states are set

to the real robot states in the initialization stage. All the

internal states are denoted with subscripts ik.

A. Cost function

We list a few examples of the objectives that can be

plugged into Eq. 2.

1) Cartesian space velocity: We penalize deviation from

the desired Cartesian velocity with

Acart = J(qik)

bcart = ẋ∗,

where

ẋ∗ = Kp(x
∗

d − xik) + ẋ∗

d.

We use a different set of Kp here than in ID.

The flow chart in Figure 1 shows that the actual physical

robot state is not used by the IK. Without any such feedback,

it is easy for the IK to diverge significantly from the

measured position of the robot. In fact, it is nearly inevitable

during walking. For example, suppose we wish to take a

step of some specific length. The IK will advance almost

exactly the desired amount. The real robot, however, might

take a step of a significantly different length either because

of tracking error or slipping. After several steps, this can add

up to a large error. This becomes a problem because we wish

to command desired locations (for e.g. feet, hands, or CoM)

in world coordinates.

In order to tie the IK root position to reality, we use

the contact positions as “anchor” points. We use a “leaky”

integrator to adjust the desired contact position x∗

contactd

towards the measured contact position xcontact,

x∗

contactd
= αxcontact + (1− α)x∗

contactd
. (3)

x∗

contactd
is the input to IK, and is initialized to the IK’s

internal value upon establishing the contact. Since x∗

contactd



essentially contains all the information about long term

tracking error and state estimator drift, and IK will track

x∗

contactd
obeying all the kinematic constraints, we can use

x∗

contactd
to update IK’s root position to match the state

estimator’s. ID is not affected since it ignores this term.

2) Direct tracking and regularization:

Astate = I

bstate = q̇∗,

where q̇∗ can be target joint velocity or 0 for regularization.

3) Change in velocity:

Adq̇ = I

bdq̇ = q̇prev,

where q̇prev is the result from the previous time step. This

term is useful to eliminate high frequency oscillation.

B. Constraints

We do not impose equality constraints in the IK QP. In-

equality constraints mainly consist of joint limits. Depending

on the application, we also add constraints in Cartesian space.

The joint limit constraints are

q− ≤ qik + q̇dt ≤ q+,

where dt is the time step, and q− and q+ are the upper and

lower joint limit. For Cartesian space position constraints,

x− ≤ xik + J(qik)q̇dt ≤ x+,

where x− and x+ are the upper and lower limits. Velocity

constraints in joint space can be easily added, and Cartesian

space velocity constraints need to be transformed by a

Jacobian matrix.

V. APPLICATIONS

The proposed full body controller is tested on Boston

Dynamics’s Atlas robot in the DARPA Robotics Challenge.

Atlas has 28 hydraulic actuators, 6 for each leg and arm,

3 for the back joints, and 1 for neck pitch. Our rough

terrain walking, ladder climbing and full body manipulation

controllers are all targeted for it. For all three applications,

the state estimator is based on [19].

A. Static walking

Given the short time frame for development for the DRC

Trials, we decided to use a simple static walking strategy.

The high level desired motions such as CoM and swing foot

trajectories are generated with quintic splines. The given foot

step locations are used as knot points for the splines. Figure

2 shows snapshots of the Atlas robot traversing piled cinder

blocks with tilted tops, and CoM and feet trajectories are

plotted in Figure 3. The desired CoP trajectory is generated

using a Linear Inverted Pendulum Model (LIPM). Figure 4

shows CoP tracking for the Atlas robot stepping up piled

cinder blocks.

Most other teams at the DRC build a map with laser

point clouds and select foot steps with either a human

operator or some combination of heuristics and simple plan-

ning. We provide our human operator with a live camera

stream augmented with the current swing foot pose computed

from forward kinematics, and let the operator “nudge” the

swing foot around in the 6 dimensional Cartesian space by

commanding offsets in foot position and orientation. Once

the operator is satisfied with the foot pose, a “continue”

command is given, allowing the robot to lower the swing

foot straight down until ground contact is detected. Because

of forward kinematic errors in the robot, registering laser

points while moving did not work well. Our main motivation

was to avoid standing still and waiting for sufficient laser

scanner data to accumulate. On the other hand, our approach

requires more (and more difficult) input from the operator,

and extends the single support phase unnecessarily since the

operator commands are given during single support rather

than double support.

The following modifications to the full body controller as

described above were made for the walking task:

1) Ankle torque controlled: To fully control CoP for

achieving better balancing and being more robust to per-

turbation, we control the stance ankle joints in pure torque

mode. IK solutions for the stance ankle joints are ignored.

The downside is that the ankle angle errors propagate up

the kinematic chain, and result in significant errors in swing

foot position tracking. An integrator on the desired swing

foot position is used to compensate for this.

errswing = errswing +Ki(x
′

swingd
− xswing)

x∗

swingd
= x′

swingd
+ errswing,

(4)

where x′

swingd
is the desired swing foot position, xswing is

the computed position from forward kinematics, and x∗

swingd

is used in IK and ID as inputs.

2) Toe-off: For static walking, the CoM needs to be

completely shifted to the next stance foot during double

support. When taking longer strides or stepping to a greater

height, extending the rear leg knee alone is often insufficient

to move the CoM all the way. Toe-off is one solution to

this problem. During double support in our controller, toe-off

is triggered when the rear knee approaches the joint angle

limit (straight knee). Once triggered, special modifications

are used in both ID and IK. We first move the rear foot

reference point, where the Jacobian is computed to the toe.

In ID, the contact cost term for the rear foot is transformed to

its local frame, and the row that corresponds to pitch angular

acceleration cost is removed. We also constrain the allowed

pitch torque to be zero. This effectively turns the rear foot

contact into an unactuated pin joint around the pitch axis.

In IK, we transform the rear foot’s pitch tracking error into

the foot frame and drop the pitch term. A slightly bent rear

knee angle is used as desired to bias IK towards using ankle

angle for a toe-off solution.

3) Integrator for desired CoM offset: During static robot

experiments, the measured CoM location, which is measured

with foot force sensors, deviates from the model’s prediction.

We also believe this modeling error depends on the robot

configuration. During the second half of double support and



Fig. 2. These photos show the Atlas robot practicing for the segment 3
of the terrain task for DRC. The snapshots were taken every 5 seconds.

full single support phase, we integrate this error and use it

to offset the desired CoM location so that the true CoM

matches the desired. Assuming the robot is moving slowly

enough, we can approximate the true location of CoM with

the measured CoP. The integrator is set up similarly to Eq.

4.

B. Full body manipulation

During full body manipulation, the operator gives a series

of commands requesting either direct joint angles for one or

both arms or target Cartesian locations for one or both hands.

These commands are used to update the desired IK position.

We use equality constraints in the IK QP formulation to

enforce directly-specified joint angles. For large Cartesian

motions, we transition the desired locations through splines

starting at the current target and ending at the new target.

For small motions, we use the “nudge” method as described

above for precise foot placement: single keyboard taps result

in small instantaneous changes in the desired IK position. We

then use PD gains comparing the measured and IK positions

(of hands, CoM, etc.) to produce input desired acceleration

for the ID. Figure 7 shows a picture of the Atlas robot

performing the valve task during the DRC Trials.

We make a few small changes to the basic full body

control algorithm:

1) No anchoring: During manipulation, we keep both feet

planted and do not take any steps. Accordingly, we do not

have to worry about the IK position diverging from the

estimated robot position. However, the leaky integrator in

Eq. 3 can result in a failure mode characterized by a constant

velocity sliding of the foot. We call this failure mode a

“chase condition”, and it occurs when the contact friction

is too low to keep the feet from sliding on its own (usually

because very little weight is on one of the feet). Normally,

the foot would slide a small amount, but then the position

gains from the IK prevent further sliding. However, when we

constantly update the IK to the measured position, it can then

constantly slide farther. We therefore disable this integrator

during manipulation.

2) Allowing rotation: For some tasks, we only care about

the position of the hand, and the orientation is unimportant.
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(a) Measured feet and CoM trajectories in XY plane for terrain task
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(b) Measured feet and CoM trajectories in XZ plane for terrain task

Fig. 3. These plots show the Atlas robot traversing segment 3 of the
terrain task. X axis is the forward direction, Y points to the robot’s left,
and Z points upward. Left and right foot positions are shown with red
and green lines, and center of mass is plotted in blue. The robot walks in
a straight line in reality. Without external observation, our state estimator
drifts significantly as shown in the top plot.

For such cases, we can turn the weight for the hand orienta-

tion equations in the IK to 0, or we can remove the equations

entirely. For some tasks, we can allow free rotation around

one vector, but not otherwise. For example, while drilling

through a wall, the robot can freely rotate the drill around

the drilling axis, but must maintain its position while keeping

that axis normal to the wall. Allowing the controller the

freedom to rotate around one axis can drastically increase

the available workspace.

To allow rotation about one axis, we first construct a

basis of three orthogonal unit vectors including the desired

free-to-rotate-about axis. We then rotate the IK equations

concerning hand orientation into this basis and remove the

one corresponding to the specified axis.
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Fig. 4. The top plot shows CoP in the X (forward) direction, the middle
plot shows CoP in the Y (side) direction, and the bottom plot shows Z
(vertical positions). This data was collected when the robot was stepping
up the cinder block piles. Measured CoP is plotted in solid blue. Desired
CoP given by the high level controller is shown with dashed green. ID’s
output CoP is shown with solid red. These traces are very similar. Cyan
and magenta lines represent left and right foot position computed through
forward kinematics respectively. CoP tracking is within 1cm.

Fig. 5. These photos show the Atlas robot climbing the top half of the
same ladder as used in DRC. The snapshots were taken every 13 seconds.
The top row shows repositioning of the hook hands, and the bottom row
shows stepping up one tread. Most of the climbing motions are scripted.
After each limb’s rough repositioning, the operator can fine adjust its final
position with “nudge” commands that are small offsets in Cartesian space.
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(a) Measured limb and CoM trajectories in the XZ plane
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Fig. 6. These two plots show the Atlas robot climbing the first five treads
during the actual run at DRC Trials. X axis is the forward direction, Y
points to the robot’s left, and Z points upward. Left and right foot positions
are shown with red and green solid lines, and left and right hand positions
are plotted in cyan and magenta dashed lines. Center of mass is shown with
solid blue line. While approaching the ladder, the robot has its arms outside
of the ladder railings, and we have to first raise both arms all the way up
and around to get them both between the railings. The swinging motions at
the beginning of the hand trajectories are results of this motion.

C. Ladder climbing

The underlying controller for ladder climbing is similar to

that used for manipulation, but the majority of the motion is

scripted ahead of time with only the final placement of the

hands and feet controlled by the operator. Figure 5 shows

snapshots of a complete cycle of the Atlas robot climbing

the ladder. For each limb, the hand or foot is automatically

moved to approximately the desired position by placing it

relative to the other hand or foot. Then, the operator uses the

keyboard to precisely place the limb with 1cm increments.

The correct vertical height is found automatically, using force

sensors to detect contact for the feet and position sensing

when contact is known to have already occurred for the



Fig. 7. The proposed low level controller is applied on the Atlas robot to
turn a valve in the DRC Trials.

hands.

Once on the steps, only the toes of the feet are supported,

so we adjust the CoP constraint accordingly. Having all

of the weight on the toes makes the robot vulnerable to

rotational slipping, causing unexpected yaw rotations. In

order to correctly place the hands on the next rung to recover

from such rotations, we must rotate the IK solution to match

the measured orientation. We therefore periodically rotate the

IK solution such that the feet are aligned with the measured

feet orientations, allowing the robot to reorient its upper body

towards the ladder and correctly reach targets in the real

world. It would have been preferable to update the orien-

tation continuously, but periodic updates were easier from

a software engineering perspective. Additionally, periodic

updates are less susceptible to the “chase condition” problem

described above. This reorienting serves a similar purpose to

Eq. 3, but for rotation instead of translation. To avoid chase

conditions, we disable Eq. 3 if there is not significant (about

20%) weight on the foot.

1) Elbow management: We climb the ladder by placing

the hands (hooks made from pipes) on the steps. The robot’s

shoulders are nearly as wide as the railings, so the necessity

of shifting weight from side to side results in a significant

danger of bumping the arms on the railings. We avoid such

collisions by estimating the railing location based on the hand

location (based on the assumption that the hand is pushed up

against the side of the rung) and adding inequality constraints

to the IK. The inequality constraints limit how far outward

each elbow can move in the lateral direction. Additionally,

when we wish to intentionally lean on the railing, we provide

a desired elbow location (in only the lateral direction) with

a low weight. To prevent the problem from becoming over-

constrained by elbow management, we use low weights for

commanding hand orientation. Specifically, we rotate the

hand orientation equations into a basis containing the hand

axis, a pitch-like vector, and a yaw-like vector. We use a very

low, but non-linear weight for rotation about the hand axis

(roll-like), allowing it roll about 45 degrees nearly freely, but

preventing it from rolling much farther.

2) Hand to CoM integration: Our robot model had inac-

curate forward kinematics. One result is that if the hands

are resting on one rung and the robot steps up one step

on the ladder, even though the true position of the hands

will not have moved, the measured position will have moved

several centimeters. If not accounted for, this will push the

CoM far from the desired location, eventually resulting in

failure. We therefore introduce an integrator that gradually

adjusts the desired position of both hands in the horizontal

plane based on the deviation between the measured and

desired CoM position. Essentially, we are using the arms to

pull or push the CoM into the desired position. To avoid

unintentionally rotating the robot, this integrator is only

active while both hands are in contact with the rung (not

during hand repositioning). CoM and limb trajectories from

the actual run during the DRC Trials are plotted in Figure 6.

VI. DISCUSSION AND FUTURE WORK

During early development on the real robot, we found

using ID alone is insufficient to generate the desired motions

on the physical robot. We attribute this to modeling errors

and joint stiction and friction, especially for the swing leg.

Some control based on kinematics is necessary to achieve

accurate foot placement. We have briefly experimented with

naively integrating desired accelerations from ID into desired

velocity and position, which resulted in unstable overall

behaviors. Thus, a separate IK pass was introduced as a

temporary solution to these problems. Inconsistency between

their answers becomes our major concern. A failure mode we

observe is due to IK and ID having separate constraints. For

example, when ID is unable to produce the demanded CoM

acceleration due to limited friction, the CoM will physically

diverge from the desired trajectory. However, IK is unaware

of such constraints, and it will keep generating the physically

unrealistic answers. We have also experimented with heavily

biasing IK solutions to match the acceleration from ID,

which also resulted in unstable behaviors, and, to its limit, is

equivalent to just integrating the acceleration. We think one

approach to resolve this issue is to replace our current ID

IK combination with Receding Horizon Control on the full

dynamic model similar to [20], which is close to, but not

yet, computationally tractable in a real-time setting.

The current implementation works well for static be-

haviors. Being static allows us to use various integrators

to compensate for modelling errors easily. It also greatly

reduces the effects of all kinds of delays. We want to achieve

more dynamic behaviors in the near future to gain speed and

improve stability. Dynamic walking is one of our top priority

goals. Modelling errors and system delay stopped our early

attempt to walk dynamically with the walking controller



presented in [3]. The high level controller needs to rapidly

re-optimize for step timing and location in a receding horizon

fashion to account for delays and maximize stability. We are

actively experimenting with explicitly accounting for torque

delays in our inverse dynamics formulation. The current low

level controllers are optimizing greedily for the current time

step. We want to include the value function that captures the

future cost similar to [11].

Due to the tight timeline for the DRC Trials, we have

not conducted many system identification procedures on the

robot. We hope to increase the quality for both kinematic

and dynamic models in the near future. All the leg joint

level sensing on the Atlas robot such as positioning, velocity

(numerically differentiated from position) and torque are pre-

transmission. This hardware design choice alleviates jitter

in the low level joint control, but introduces problems for

forward kinematics and torque control. Unmeasured stiction

greatly degrades performance of torque control. Better state

estimation technology is necessary to achieve more accurate

position tracking and force control.

VII. CONCLUSIONS

We modified previous work to implement the proposed

controller on the Atlas robot. Our approach use both ID

and IK in the low level controller. The inverse dynamics

module provides us compliant motion and robustness against

perturbation. The inverse kinematics module helps us battle

modelling errors and makes our approach applicable to the

real hardware. The combined low level controller abstracts

away the details about the physical system and provides

mechanisms to realize and trade off among high level

controllers’ potentially conflicting objectives while obeying

various constraints. We have successfully demonstrated our

approach on three different challenging life applications,

uneven terrain traversal, ladder climbing, and manipulation

during the DRC Trials. We are the only Atlas team that was

able to climb the ladder reliably, and one of the two Atlas

teams that implemented their own walking controller during

the Trials.
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