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Optimization-based inverse model of Soft Robots with Contact Handling

Eulalie Coevoet1, Adrien Escande2 and Christian Duriez1

Abstract— This paper presents a physically-based algorithm
to interactively simulate and control the motion of soft robots
interacting with their environment. We use the Finite Element
Method (FEM) to simulate the non-linear deformation of the
soft structure, its actuators, and surroundings, and propose
a control method relying on a quadratic optimization to find
the inverse of the model. The novelty of this work is that
the deformations due to contacts, including self-collisions, are
taken into account in the optimization process. We propose a
dedicated and efficient solver to handle the linear complemen-
tarity constraints introduced by the contacts. Thus, the method
allows interactive transfer of the motion of soft robots from
their task space to their actuator space while interacting with
their surrounding. The method is generic and tested on several
numerical examples and on a real cable-driven soft robot.

I. INTRODUCTION

Soft robotics is an emerging opportunity to re-think the

way robots are designed, used, and controlled, and to provide

new capabilities. Using soft materials or flexible structures,

these robots take motion by deformation. In opposition

to articulated rigid structures, the kinematics do not only

depend on the geometry, but also on the material prop-

erties. Moreover, they have a theoretical infinite number

of degrees of freedom and it is hard to get an analytic

model that describes the mechanical behavior with accuracy.

These characteristics make their modeling and control more

complex, particularly when the robot is being deformed by

contact with its environment. This issue has been identified

as a challenging open problem by several reviews on soft

robotics [1] [2] [3]. In this work, we propose the first generic

method for obtaining the inverse model of a soft robot

in contact with a known environment. We use the Finite

Element Method (FEM) for modeling the deformations and

Lagrangian constraints for actuators. The inverse model is

obtained by optimization and allows interactive control of

the motion.

Soft robots are usually inspired by living organisms, such

as snakes, octopi, or caterpillars that have a continuously

highly deformable structure. The compliance of these bodies

is particularly suitable for exploration and manipulation

in cluttered and sensitive environments. Using large strain

deformation, they can reduce or extend their nominal dimen-

sions, bend, and adapt their shape to the environment. This

compliance in the interaction reduces risks of damage for

both the robot and its surrounding. This makes them ideal for

safe interaction with human beings and especially for use in
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Japan
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medical applications such as surgery. Therefore, it is essential

to propose a control approach that takes into account possible

collisions and adjusts the deformations needed to reach a

desired position. Collisions and contacts handling are very

challenging because they significantly increase the complex-

ity of the control. In this paper, we propose an algorithm that

includes contacts in the optimization process and a specific

solver to compute the resolution at interactive rates (between

30Hz and 100Hz).

II. RELATED WORKS

A. Soft robot motion control

Several difficulties are experienced in the modeling and

control of soft robots: First, the number of actuators is finite

while the number of degrees of freedom is infinite. Therefore,

many DoFs of the robot are not directly controllable. Second,

the actuators can also be redundant and several possible

deformable postures can lead to the same position of the end

effector of the robot. Third, many new parameters (material

properties, external loads, weight...) have an influence on the

posture of the robot.

The kinematics of soft robots has been studied in the

particular case of continuum robots [4] [5]. The authors

use the hypothesis of a piece-wise constant curvature to

keep a geometrical approach to the kinematics and simplify

the problem. The approach is then based on defining the

bending deformation of soft segments as curvatures. But this

hypothesis requires a specific design of the robot and no

external and local load. For soft robots with non-continuous

curvature, a first approach based on the mechanical modeling

and a real-time FEM simulation of the structure and its

actuators was proposed in [6] [7]. Our paper extends these

works by using a specific solver to handle interactions and

self-collisions in the simulation. In this paper, the inverse

problem is formulated as a Quadratic Program (QP) with

linear complementarity constraints.

B. Inverse model of deformation with contact handling

Inverse FEM simulation with contact handling has been

used in a few works in computer graphics, to control motion

of actuated virtual soft bodies [8] [9] [10] [11]. In [8]

and [10] the authors propose to control simulated skeleton-

driven deformable characters in near real-time. They use a

penalty-based contact model to simulate collision. However,

in some cases, in order to make the character use the

ground for push off, they temporarily create a hard constraint

between a bone and the ground. In our work, we made no

assumption on the characteristics of a contact, allowing each

contact to be used for the actuation. We use Signorini’s law
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Fig. 1: Illustration of the quantities of eq. 3 for a deformable

robot with cable actuation (in blue), in the presence of an

obstacle (grey square). E∗ is the desired position for the

controlled point E.

to model the collision and guarantee a physical response.

While more general, this makes the problem harder to solve

in real-time. In [11], the authors use FEM and muscle fibers

actuation to simulate a soft body character’s locomotion. The

solver we propose in this paper to handle the complemen-

tarity constraints introduced by Signorini’s law, is similar

to theirs. However, in this study, we propose to find the

inverse of the model of real robots. The method has real-

time performance thanks to, among others, a projection of

the model in the space of the optimization variables. To the

best of our knowledge, this paper is the first work in soft

robotic to propose an interactive motion control in the task

space which handles interactions with the environment.

III. METHOD

A. Inverse problem formulation

The goal is to find how to actuate the robot so that

selected points reach desired positions. We use the FEM

implementation provided by the framework Sofa [12] and

a tetrahedral or hexahedral mesh representation of the robot

body to simulate the deformation of the volume structure.

The tetrahedral volumetric meshes are generated with the

software Gmsh or the CGALPlugin of Sofa.

The configuration of the robot at a given time is obtained

by solving the static equilibrium between the internal forces

of the deformable structure f(x), the external loads fext
(such as gravity) and the contributions of actuators HT

a λa

and contacts HT
c λc, yielding:

f(x) = −fext −HT
a λa −HT

c λc, (1)

with HT the direction of the effort applied by the con-

straints (actuators and contacts) on the FEM nodes and λ the

intensity of this effort. At each time step i of the simulation,

we compute a linearization of the internal forces:

f(xi) ≈ f(xi−1) +K(xi−1)dx (2)

where K(x) is the tangent stiffness matrix that depends

on the current position of the FEM nodes, and dx is the

difference between consecutive positions in time dx = xi −
xi−1. The size of the matrix K is related to the number of

FEM nodes, which is often very large. An optimization in

the motion space would then be computationally expensive.

Instead, we project the model in the space of the actuation

and contact variables, leading to (see [6] for more details):
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δmax ≥ δa ≥ δmin (4)

λmax ≥ λa ≥ λmin (5)

0 ≤ λc ⊥ δc ≥ 0 (6)

where matrices Wij = HiK
−1HT

j (i, j = e, a, c) are

homogeneous to a compliance, and gather the mechanical

coupling between effector points e, actuators a and contacts

c. We thus have a relation between the actuator and contact

forces, λa and λc, the shift between controlled points and

their desired positions δe, the displacement (or volume

growth for pneumatic actuation) of actuator δa and the gap

between two colliding points δc (see Fig. 1). Eq. (4) and

(5) respectively are, constraints on actuators such as limits

on the cables displacements, and limits on actuation forces.

In this work, we follow Signorini’s law for contact (6). We

do not consider friction. This law guaranties that there is no

interpenetration and that the contact forces are well oriented.

The values δfreee , δfreea and δfreec respectively corresponds to

the shift δe, the displacement (or volume growth) δa, and

the interpenetration δc computed during a free motion, that

is when solving the structure with no effort on actuators and

contacts, i.e λa = 0 and λc = 0 (see [6]). We note na and

nc the number of actuator and contact forces.

To control the robot, we want to find the actuation λa so

that effectors reach their desired positions. This corresponds

to minimizing the norm ‖δe‖, while respecting the con-

straints (4), (5), and (6). Using eq. (3) to get the expressions

of δe and δc, we formulate the following Quadratic Program

with (linear) Complementarity Constraints (QPCC):

min.
λc,λa

∥

∥Wecλc +Weaλa + δfreee

∥

∥

2

(7)

s.t. A

[

λa

λc

]

≥ b

0 ≤ λc ⊥ Wccλc +Wcaλa + δfreec ≥ 0

When no potential collision has been detected (nc = 0),

the problem is a simple QP. Note that λc is part of the

optimization variables, which allows the controller to make

use of contact forces to achieve the desired motion.

If the robot has a number of actuators greater than the

DoFs of the controlled points, the QPCC may have an

infinite number of solutions. In such case, we introduce in

the minimization expression, the mechanical work of the

actuator forces E = ∆δaλa, with ∆δa = δa − δfreea the

displacements of the actuators during a time step. E is

linked to the mechanical energy of the robot deformation.

We then minimize the sum (||δe||
2 + ǫE), with ǫ chosen

sufficiently small so that the deformation energy does not



disrupt the quality of the controlled points positioning. In the

implementation, we use ǫ = 1e−3||WT
eaWea||∞/||Waa||∞

(with the norm ||.||∞ being the maximum absolute row sum

of the matrix). A unique solution of the problem can then

be found, without a significant impact on the quality of the

solution. In the rest of the paper, we omit this damping term

ǫE, for the sake of clarity. It is straightforward to extend the

developments below to incorporate it.

B. Quadratic program with linear complementarity con-

straint solver

Recent works in optimization have addressed the problem

of linear and quadratic programs with linear complementarity

constraints [13] [14]. They seek to find the global optimum

of the problem and demonstrate that it can be accomplished

in finite time. However, as finding the global minimum is dif-

ficult to achieve in real-time, we developed our own specific

solver based on the decomposition method as mentioned in

[15].

The complementarity constraints (6) defines 2nc choices.

Each of them can be characterized by a subset I of

{1, . . . , nc} giving the elements of λc that are forced to be

zero. Let ei be the i-th column of the nc-by-nc identity

matrix, and define SI as the matrix whose columns are

the ei for i in I. Given a matrix M , MSI (respectively

ST
I
M ) selects the columns (respectively rows) of M indexed

by I. Likewise, we define S̄I for i not in I.
[

SI S̄I

]

is a permutation (and thus orthonormal) matrix. Given a

complementarity choice I, QPCC (7) rewrites

min.
λa,λc

∥

∥Weaλa +Wecλc + δfreee

∥

∥

2

(8)

s.t. Aλa ≥ b (9)

ST
I λc = 0 (10)

ST
I (Wccλc +Wcaλa + δfreec ) ≥ 0 (11)

S̄I

T
λc ≥ 0 (12)

S̄I

T
(Wccλc +Wcaλa + δfreec ) = 0 (13)

This is a QP piece of (7) we refer to as QPI.

We propose an iterative method that starts from an initial

feasible set I. After solving QPI, we inspect the state of the

inequality constraints. If an inequality constraint has reached

its boundary at the end of the optimization, it means that the

solution may potentially be further optimized by pivoting the

corresponding constraint. We set each inequality constraints

that reached their boundary at the end of the optimization

as candidate for pivot. To guarantee the convergence of the

algorithm only one constraint can be pivoted at a time. As

mentioned in [15], one way to determine which constraint

should be the best candidate for pivot is to examine the

values of the dual variables. In our implementation, we select

the candidate with the greater dual variable. By pivoting

the corresponding complementarity constraint we get a new

QP with a different set of linear constraints. We solve this

new problem and repeat the process until there is no more

candidate for pivot, effectively solving a sequence of QPI.

A proof of the convergence of this kind of algorithm to a

stationary point is given in [16].

C. Reduced formulation

The above scheme can be improved by taking into account

the specificity of our problem. Indeed, Wcc is positive

definite (because K is positive definite). As a result (see

below equations), λc is an affine function of λa for a given

I. This allows the removal of λc from QPI to solve a

smaller problem. We name this the reduced formulation. In

the remainder of this section, we drop the index I for matrices

SI and S̄I.

Using that λc =
[

S S̄
] [

S S̄
]T

λc = SSTλc+ S̄S̄Tλc,

we get from eq. (10) that λc = S̄S̄Tλc. Reintroducing this

result in eq. (13), and solving for S̄Tλc yields:

S̄Tλc = −
(

S̄TWccS̄
)−1

S̄T
(

Wcaλa + δfreea

)

We define AI and bI such that the above relation rewrites

S̄Tλc = AIλa + bI. Then we have the affine relation

λc = S̄ (AIλa + bI) (14)

and QPI is equivalent to the following QP we name QP r
I

:

min.
λa

∥

∥

(

WecS̄AI +Wea

)

λa +WecS̄bI + δfreee

∥

∥

2

(15)

s.t. Aλa ≥ b

AIλa ≥ bI

ST
(

WccS̄AI +Wca

)

λa + ST
(

WccS̄bI + δfreee

)

≥ 0

We obtain QP r
I

by solving eqs. (10) and (13), what would

have been done anyway by the QP solver. But we did so by

leveraging the structure of the problem (with respect to λa

and λc), and we can take into account the fact that S̄TWccS̄
is positive definite1. In particular, we can use the Cholesky

decomposition of S̄TWccS̄ to compute its inverse2, which

is much cheaper computationally than the more general

decomposition the QP solver would need to use. As a result,

given the matrices Wij and A, and the vectors δfreei and

b, solving QPI is slower than computing the matrices and

vectors in QP r
I

and solving QP r
I

. The ratio between the two

computation times depends on na and nc. When na >> nc,

the timings are the similar (in particular, if nc = 0, both

problems are the same). However, for a fixed na, the reduced

formulation becomes better and better as nc increases. For

example, for (na, nc) = (3, 3), the average ratio is 1.25. It

is 1.88 for (3, 10), and 7.82 for (3, 50). Usually, nc is much

larger than na so that the reduced formulation has a real

computational advantage.

The computation time could be further reduced when

we consider the sequence of resolutions performed in the

iterative method described above. Indeed, in this case, two

successive set I differ by only one element, so that we pass

1It is a principal minor of the positive definite matrix Wcc.
2Note that, following the recommended practice, we do not compute

explicitly the inverse. Rather (see [17]), given the Cholesky decomposi-
tion S̄TWccS̄ = LLT , with L a lower triangular matrix, we compute
[

AI bI

]

= −L−TL−1S̄T
[

Wca δfreea

]

, where the left multiplication

by L−1 and L−T are obtained by forward and backward substitution.



from one matrix S̄TWccS̄ to an other by adding or removing

one row and one column. Therefore, there is no need to

compute the Cholesky decomposition from scratch at each

iteration, but it can rather be updated. The full decomposition

is in O(k3) where k is the size of the matrix, while the update

is in O(k2)[17]. Preliminary tests show that this reduces the

computation time by 20− 25% for all but the first iteration.

We do not use this improvement yet in the controller.

D. Initialization

As mentioned above, our solver requires an initial feasible

set I. In the implementation, this initial set is found by

solving the contacts as a Linear Complementarity Constraint

(LCP) while considering the actuator force λa constant:

δc = Wccλc +Wcaλa + δfreec

0 ≤ λc ⊥ δc ≥ 0
(16)

This system has a solution for any λa because Wcc is positive

definite[18]. Thus there is always at least one feasible set I.
Furthermore, the solution is unique, and is given explicitly by

eq. (14). The initial guess of λa is either 0 or the solution of

the previous QPCC optimization when it is available (warm

start).

E. Visualization

A by-product of the reduced formulation is that it allows

one to visualize the problem when na is small (1,2 and

partially for 3), even for complex contact configurations, with

large nc. This is helpful to better understand the properties

of the problem, and it also has an educational value.

For a given I, the two last constraints of QP r
I

defines

a polytope PI (possibly empty or unbounded) in the space

of λa. A face of this polytope corresponds to one line

of these constraints holding as an equality, i.e. a change

of complementarity choice. Since for every λa there is

at least one I (and that when there are more than one,

this corresponds precisely to changes of complementarity

choices), the union of these polytopes cover the whole space

of λa. Two polytopes PI1 and PI2 may share a part of their

boundaries, when one goes from I1 to I2 by at most na

changes (pivots).

Since for each λa there is a unique λc, we can express

the cost function of the QPCC (7) as a function of λa only

(for a given I, it is the cost function of QPI). We denote

as c(λa) this function. It is defined by pieces, each piece

support being a polytope PI. With this representation, the

original QPCC can be seen as an optimization problem with

a piecewise-defined cost function with only the constraint on

the actuation:

min.
λa

c(λa) (17)

s.t. Aλa ≥ b

When na is 1 or 2, it is possible to draw the graph of

c. We give examples of such graphs for na = 2 on Fig. 2

and 3.

Fig. 2: Piecewise cost function for the problem corresponding

to Fig. 4 (left), with λa ∈ [0, 500]2. Each colored region

correspond to a complementarity choice I and is supported

by the corresponding polytope (polygon in the 2d case) PI.

There are two local minima corresponding to pulling one

cable or the other. Pulling slightly the lower cable (up to

λa1 ≈ 75N , local minimum with the green cross) lowers

the beam but pulling more makes the end effector go up due

to the lower contacts. Pulling on the upper cable makes use

of the upper contacts to lower the end effector and reach

the global minimum (red cross, λa2 ≈ 495N ). One can see

valleys along λa1 = λa2. This is because the two cables are

opposite, thus for a given λa, λa + (µ, µ)T (µ ∈ R) gives a

similar (but not identical) end-effector displacement.

Fig. 3: An example for the same robot and different positions

of obstacles, with λa ∈ [0, 2000]2. Starting from λa = (0, 0)
(thin red zone in the upper right), our solver iterates across

the regions in that order: red, orange, dark purple, green,

cyan, brown, and finally blue, where the global minimum

(red cross) is obtained. Note that the order to choose the

pivot has an impact here: one could also have gone from the

dark purple region to the gray one, and ended up in local

minimum.

Fig. 4: Soft beam actuated with two cables. In this simula-

tion we control the beam end-effector position. The orange

spheres are fixed rigid obstacles. The white sphere is the

desired position.



self-collisions

region
unknown

pressure

desired

position

Fig. 5: Soft tower with four cavities actuated with pressure. The algorithm determines how to inflate each cavity to get the

end-effector reach the desired position (white sphere). Self-collision points are represented by red lines.

unknown

forces
controlled

point

possible

trajectories

Fig. 6: Soft beam actuated with four cables. In this simulation we control the end-effector of a soft beam inserted in a pipe.

The white sphere is the desired position.

IV. EXPERIMENTS AND RESULTS

A. Numerical examples

In this section we describe the results of our method on

several numerical examples. We use qpOASES [19] to solve

the QPs. In each case we control one point of the model

and the target is interactively moved by a user or follows a

predefined trajectory.

1) Tower: the first example is a simulation of a soft

body with four cavities actuated with pressure (Fig. 5).

Each inflatable section being separate from the others

by a self-collision region. In this example, having the

controlled point (top of the body) reaches its desired

position entail the use of self-collisions. Note that, as the

solver converges to a stationary point and not the global

solution, the contacts have to be active (λc > 0) at the

beginning of a QP resolution to be exploited by the actuation.

2) Rod: the second example is a simulation of a soft

rod insertion into a pipe with a fork (Fig. 6). The rod has

five actuators; four cables allow for orientation of the rod

end-effector (up / down / left / right), and the fifth one

moves the rod extremity along a fixed direction allowing its

insertion into the pipe. Using our controller, we were able

to optimize the five actuators so that the rod end-effector

could be inserted in both branches. These results could be

interesting, for instance, in interventional radiology, where

therapeutic tools are inserted within the arteries through a

catheter. We could imagine a simulation of the intervention,

available in the operating room, and adapted to the patient’s

anatomy and physiology, to help the physician.

3) Beam: in Fig. 4 we show a simulation of a soft

beam with one extremity fixed. The soft object is placed

between two close obstacles that change the coupled

direction between the actuators (two opposite cables) and

the controlled point (tip of the beam). This simple example

illustrates how the contacts are part of the optimization and

can be used by the actuation to optimize the end-effector.

4) Two deformable bodies in contact: the last example

is a simulation of two colliding soft bodies (Fig. 7), each

body having some fixed part. The problem we want to solve

in this inverse simulation is how to push the wall of a

first deformable body, using an instrument, so that we can

control a point of a second deformable body, thanks to

transmission of forces allowed by contacts. In this example,

we show that our method could have possible extension

in medical applications (like medical robotics): Indeed, for

some medical applications, it could be useful to know how

much force/displacement to apply on a deformable wall (for

instance with ultrasound probe when doing robotic assisted

echography) in order to obtain a desired motion on an

underlying deformable organ. Of course, dedicated study

would be necessary to validate the use of the method in

such an application. Here it just demonstrates the genericity

of our algorithm and a potential larger use than soft robotics.

controlled

point

unknown

forces

desired

position

Fig. 7: Possible extension of the method: registration of

colliding deformable bodies. The red squares are the fixed

points. We control the position (white sphere) of a point of

the red body by applying a force on the brown one.



Fig. 8: Top: Real cable-driven soft robot, Bottom: Corresponding motion computed by the simulated inverse model. The

input of the inverse model is the motion of the robot’s tip.

section 2section 1

Fig. 9: Design of the soft trunk-like robot actuated with eight

cables. A slice view (left) and a side view (right).

B. Real cable-driven soft robot

In this section we apply our method on a real cable-driven

soft trunk-like robot made of silicone. In each experimental

scenario we control the tip of the trunk and the target is

interactively moved using a Gametrak device or follows a

predefined trajectory.

The robot is actuated with eight cables. Four cables actuate

a first section of the trunk while the other four go through the

entire trunk (see Fig. 9), allowing it to perform a S-shape.

In practice, we place flexible tubes inside the silicone that

allows the cables to slip with low friction. To represent, in the

simulation, the additional rigidity created by these tubes, we

use a model of stiff springs in the direction of the tubes. The

real trunk is attached to a platform moving along the robot

direction, allowing a forward and backward displacement.

This actuation is also modeled in the simulation. In this way,

we were able to interactively drive the trunk end-effector

between two cylinders using the optimization (see Fig. 8).

In Fig. 10, we show an example of the same robot but with

a moving obstacle (a rigid cylinder). We used a Gametrak

device to interactively update the position of the moving

obstacle in the simulation. Using our algorithm we were

able to find the new configurations of the robot actuation so

that the end-effector keeps a fixed position. Having a real-

time control of the robot motion could also be beneficial in

scenarios where the robot actuation is changed, for example

if a cable brakes. With feedback from the real robot we could

interactively remove the broken cable from the simulation

and get in real-time a new configuration for the actuators. In

Fig. 11 we simulated this scenario, by interactively removing

Fig. 10: Top: Real cable-driven soft robot, Bottom: Corre-

sponding motion computed by the simulated inverse model.

We interactively move an obstacle while the input of the

inverse model is a fixed position of the robot’s tip.

cable removed

same end-effector 

target

Fig. 11: Top: trunk-like robot inverse simulation. Bottom:

same simulation, with same end-effector target, after in-

teractively removed one cable. The algorithm finds a new

configuration in real-time without losing the end-effector

position.



one of the eight cables of the trunk-like robot (top one of

the section 2, see Fig. 9). The algorithm was able to find a

new configuration without losing the end-effector position.

C. Performance

In this section, we give the computation time3 of each

simulation shown in this paper. The two main computation

steps of the simulation are the computation of the matrices

Wij (i, j = e, a, c) and the resolution of the sequence of QP

problems. In Table. 12, we show the average computation

time for these two main steps. We can see that thanks to

the projection of the model in the space of the actuation

and contact variable, we are able to compute simulations at

interactive rates (between 30Hz and 100Hz), and that the

decomposition method we use to solve the contacts allows

us to maintain these interactive rates. For more complex

geometries, a large number of nodes may be required. In

that case, the size of the FEM matrix will be large as well

and the computation of W will take time. We use the work

of [20] on asynchronous preconditioners to reduce this time

and allow to compute in real-time, simulations of a robot

with around 6000 DoFs.

Example Model Cont. DoFs W(ms) QPs(ms)

Tower FEM 21 1680 10.53 0.445

Rod Beam 47 66 0.757 3.136

Beam FEM 16 480 2.003 0.15

Two bodies FEM 16 2313 10.458 0.123

Trunk FEM 76 1665 23.288 5.529

Fig. 12: The different examples simulated, with their model

used, the average number of contacts, the number of DoFs

and the computation time in ms of the matrices Wij con-

struction and sequence of QPs resolution.

V. CONCLUSION AND FUTURE WORK

We proposed a generic method for interactive simulation

and control of soft robots interacting with their environment.

This method is based on a FEM simulation of the robot

and QP with linear complementarity constraints. We were

able to achieve fast inverse computation thanks to a reduced

compliance matrix between controlled point, actuator and

contact and dedicated optimization solver taking advantage

of the problem properties. The method was applied to several

numerical examples and on a real cable-driven soft robot.

This work focused on non frictional contact, but as a future

work we will look forward on adding friction to the problem.

We would also like to use this work for trajectory plan-

ning. Controlling the robot interactively can be interesting

in applications such as assisting the medical intervention

of catheter insertion. However, for other tasks like robot

locomotion for instance, we may use the simulation as a

tool for command planning. We are also looking forward to

close the control loop with feedback information extracted

from vision sensors. It would allow the robot to progress in a

3On a desktop computer with an i7 Intel processor 3.60GHz

changing environment, and we could also use this feedback

to correct errors introduced by the model.
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