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Optimization Based Rate Control for Multirate Multicast Sessions

Koushik Kar Saswati Sarkar Leandros Tassiulas

Department of Electrical & Computer Engg.
University of Maryland
College Park, MD 20742, USA

Abstract— Multirate multicasting, where the receivers of receiver rates separately. Also note that in this case, the
a multicast group can receive service at different rates, is an rate on a link needs to be equal to the maximum of the
efficient mode of data delivery for many real-time applica- ates of all receivers downstream of that link (since it has
tions. In this paper, we address the problem of achieving 1, maich the fastest of the downstream receivers).
rateg that maximize the total receiver utility for.multlrate An effective rate control strategy is required to ensure
multicast sessions. This problem not only takes into account ) i )
the heterogeneity in user requirements, but also provides a that traffic offered to a network by different traffic sources
unified framework for diverse faimess objectives. We pro- remain within the limits that the network can carry. Be-
pose two algorithms and prove that they converge to the op- Sides ensuring stability, the rate control strategy should en-
timal rates for this problem. The algorithms are distributed  sure efficient use of the network, and also that the network
and scalable, and do not require the network to know the resources are allocated to the competing flows in some fair
receiver utilities. We discuss how these algorithms can be janner. It may therefore be desirable that the rate control
implemented in a real ’FetWOF"' and al;o demonstrate their algorithm would steer the network towards a point where
convergence through simulation experiments. . . o

some measure of global fairness is maximized.

There could be many acceptable definitions of fairness.
However, since receivers could have heterogeneous re-

Many present day real-time applications, like teleconfeguirements, the same amount of bandwidth could be val-
encing and audio/video broadcasting, require communiesed differently by different receivers (note that through-
tion within a group, and hence multicast is the inherentt the paper, we use the terms “receiver” and “user” syn-
mode of delivery for these applications. In conventionainymously). Therefore it is important to generalize the
multicasting, all receivers of the same multicast group reetions of fairness so that one can differentiate among re-
ceive service at the same rate. However, in general, digivers within the framework of fairness . This can be done
ferent receivers belonging to the same multicast group danassociating an utility function (assumed to be concave)
have widely different characteristics. Thus a single rat@th each receiver, which could be a measure of say, the
of transmission per multicast group is likely to overwhelmerceived quality of audio/video, the user satisfaction, or
the slow receivers and starve the fast ones. It is therefessen the amount paid by the receiver. In this paper, we try
desirable to use multirate transmission, where the receivierglesign the rate control algorithms such that they maxi-
of the same multicast group can receive service at diffenize the sum of the utilities over all receivers, an objective
ent rates. Multirate transmission allows a receiver to rdyat was proposed in [6]. Even if all the utility functions
ceive data at a rate that is commensurate with its requiege the same, it can be shown that various fairness objec-
ments and capabilities, and also with the capacity of thiees can be realized within this framework for different
path leading to it from the source. Multirate transmissiozhoices of the utility functions.
can be attained by hierarchically encoding real time sig-Very recently, the problem of fair allocation of resources
nals. In this approach, a signal is encoded into a numtsemultirate multicast networks has received considerable
of layers that can be incrementally combined to providgtention. However, most of the current research in this
progressive refinement. Every layer is transmitted as a sepntext is concerned only with the notion of max-min fair-
arate multicast group and receivers adapt to congestionr®ss (see [13], [15], [16], [17]). Amongst these, [15] con-
joining and leaving these groups. Refer to [11] and [12]ders the problem of utility allocation. Whereas we are
for internet protocols for adding and dropping layers. Thincerned about maximizing the aggregate utility, the ob-
layered transmission scheme have been used for both jaative in [15] is to allocate the utilities fairly.
dio[4] and video[19] transmissions over the internet andThe problem of maximizing the aggregate utilities has
has potentials for use in ATM networks as well [8]. Notaot been explored in the multirate multicast context. How-
that in multirate multicast transmission, there is no concepter, several rate control algorithms that attain this objec-
of unique multicast session rate, and one needs to consiiler for unicast sessions have been proposed in recent liter-

I. INTRODUCTION
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ature. In [7], both primal and dual algorithms that solve ahe total rate of traffic of a multicast group over any link on
approximate version of the actual problem, are presentétk tree must be equal to the maximum of the traffic rates
A dual algorithm that converges to the optimal solutioaf all downstream receivers of the group.
is proposed in [10]. In these algorithms, an unicast sourcd et R be the set of all receivers over all multicast groups.
updates its rate based on the congestion information (“coXIso let S; denote the set of receivers using lihke L.
gestion price”) communicated to it by the network. Thgach receiver € R is associated with an utility function
network updates the congestion information based on Uﬁ(xT), wherez, is the rate at which receives data.Let
source rates, either communicated by the source or mga= (0 andB, < co be the minimum and maximum rates,
sured. For some other approaches in the unicast case,rggpectively, required by receiver Let X, = (b, By
(9], [18]. denote the interval in which the receiver ratemust lie,

As already mentioned, in this paper we consider thgd letX = {(wl,...,x‘m) s x, € X, Vr € R}. Let
problem of maximizing the aggregate receiver utility fof = (z,,r € R) be the vector of all the receiver rates.
the case of multirate multicast sessions. The solutions thafye are interested in maximizing the “social welfare”,
we propose are distributed and scalable, and are practical sum of the utilities over all receivers, subject to the
for implementation in a large network. Like the approadihk constraints, as well as the maximum/minimum rate

used in [10] for the unicast case, our approach also Ug@sstraints. The problem can be posed as:
dual methods. In fact, in the special case where all the

sessions are unicast, the two algorithms that we propgse max Y Uy (z,)
reduce to the algorithm proposed in [10]. However, as we reR

will see in the following sections of this paper, there are

several factors that make the problem in our case mugthbject to

more complex than its unicast equivalént.

The paper is organized as follows. The problem is stated Z Jpax  z < ¢ VielL Q)
formally in Section Il, while the the basic solution ap- meM SO
proach is presented in Section Ill. We present two differ- z, € X, VreR (2)

ent algorithms in Sections IV and Section V, and describe
their practical implementation in Section VI. We preseffote thatS; N R, is the set of receivers of group that
some experimental results in Section VII and conclude #$€ linkl. Thus the termmax;cgs,nr,, = denotes the rate
Section VIII. of traffic of multicast groupn on link .
Throughout the rest of the paper, we will make two as-
Il. PROBLEM STATEMENT sumptions on the primal problef:

First we present a mathematical formulation of the op-Assumption 1: (Interior poift There exists a vector
timization problem. We then provide an alternative fore € X such thaty" ., max,csnr, T < ¢ for all
mulation of the problem, which will form the basis of thé € L.

solutions we propose. Assumption 2: (Strict ConcavjtyThe utility functions
o U, are increasing, twice continuously differentiable and
A. The Optimization Problem strictly concave in the intervaX,.. Thus—U, (z,) > v, >

Consider a network consisting of a setof unidirec- 0 forall z, € X, forallr € R.

tional links, where a linkk € L has capacity;. The  Note that the interior point assumption also implies that
network is shared by a set aff multicast groups. Eachthe problemP is feasible, i.e., it has a solution. The strict
multicast group is associated with a unique source, a setoficavity assumption implies that the solution is unique.
receivers, and a set of links that the multicast group usesNext we will present an equivalent formulation of this
(the set of links form a treé) Thus any multicast group utility maximization problem. This equivalent formulation
m € M is specified by{s,,, Rm, L.} Wheres,, is the would be the key in developing the algorithms that we pro-
source,L,, is the set of links in the multicast tree, aRyl, pose subsequently. Before we proceed with this alternative
is the set of receivers in group. As already mentioned, formulation, we introduce some new terminology that will

L _ _ help us in formulating the problem and describing our al-
However note that the problem for the unirate or conventional mul- .
ticasting case is much simpler, and in general, the solutions for tggmhms'
unicast case can be directly extended to that case.

2We assume fixed path routing. So the tree associated with each mutwe assume that, in general, the functitn is known only to the
ticast group is fixed. receiverr.
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S (source node)

B. Terminology

@ ——— junction nodes

Consider Figure 1, which shows an example of a mul-
ticast tree where is the source node and,ro, 73,74}
is the set of receiver nodes. The rest of the nodes in
the multicast tree can be classified irjt;nction nodes (95,9.%.,%,.2,
andnon-junction nodesas shown in the figure. Junction
nodes are the nodes where the multicast tree “branches
off”. Thus in Figure 1,{75, 7,77} are junction nodes. (a,,a, x,v,, 7)
Receiver/junction nodes of different multicast groups are
considered to be logically different even if they are physi-
cally located at the same node. The junction nodes, apart;,
from the source and the receiver nodes, play an important
role in the optimization process, as we describe later. Inthe .
rest of the paper, we assume that the receivers are only at
the leaf nodes of the multicast tree. There is no loss of gen- (i) = variables stored ata node
erality in assuming this, since a receiver at a non-leaf node  Fig. 1. An example of a multirate multicast tree
can be replaced by creating a new leaf node and placing

the receiver in it, and connecting the new leaf node to the _
non-leaf node (where the receiver is actually located) Bpdes), takes the maximum of all the rates requested, and

a link with infinite capacity. Moreover, note that any legfi€duests that rate from its parent node. Requests go up the
node must be a receiver node. The set of links betweell€€ through the junction nodes in this fashion till it reaches
source/junction node and its immediate downstream jurl€ source node. The source sends traffic to its children
tion/receiver node will be called Branch For the mul- nodes at their requested rates; these nodes then send traffic
ticast tree in Figure 1, there are 7 branches, as showntByheir children nodes, and so on, and the traffic finally
1,42, s j7. Note that any multicast tree can be brokeffaches the receivers at their requested rates.

up into a number of branches. Also note that branches be- _ _

longing to the same multicast tree are disjoint, i.e., th€y An Alternative Formulation

have no link in common. Moreover, branches belongingThere can be a large number of ways of solving the opti-
to different multicast groups (multicast trees) are consighization problen®. However, the challenge is to obtain a
ered to be logically different (even if they consist of thgg|ytion that isdistributedandscalable Decentralization
same set of links). Thparentof a receiver/junction node 5nq scalability are necessary conditions for the solution
r refers to the closest junction/source node in the upstregin,e of any practical importance. A solution would not
path fromr towards the source. Also, bghild of junc-  gcqie if, for example, the source or a junction node in the
tion/source node, we would refer to any receiver/junction, ticast tree has to maintain data for, send data to, or re-
node whose parent is the nogde Thus in Figure 175 IS cejve data from all downstream receivers of the tree. Since
the parent of1, 77 is the parent of's, s is the parent of {he number of receivers in the group can be very large,
7. Similarly, 77 is a child ofs, while 75, 75 are children s might lead to tremendous processing and communica-
of 77, and so on. Parent and child branches of a brgnchion pressure on such a node, particularly if the node is the
are also defined similarly. Thys is the parent branch of s rce, or a junction node close to the source. Also, in the
Ji, j7is the parent branch gk, while js, j are children ¢yrrent networking standards like IP multicast, a junction
branches o7, andj, j» are children branches g§, and o4e may not know the identity of all the downstream re-
so on. Note thaf; does not havg aparent branch, while - cejvers, but will only know the downstream nodes it must
J2, j3 andjs do not have any child branch. The =, v, 2)  forward a packet to. Therefore such a solution is clearly
variables stored at the various junction/receiver nodes (a5 implementable without a major modification to the ex-
shown in Figure 1) will be explained later, when we refgging standards. In the solution we propose, the amount
to this figure again in Section VI. of extra data that a node in the multicast tree has to main-
In general, we assume that the receiver decides its ritim, depends only on the number of links (of that particu-
based on its utility function and the network congestidiar multicast tree) originating from that node. Moreover, a
feedback. It then sends its request to its parent node.s@urce/junction/receiver node only needs to communicate
junction node gathers all such requests (from its childrevith its parent or children nodes. Thus the solution is scal-

O —=—— non-junction nodes

[l —— receiver nodes

Y1)

(szyz) (ngyg) (Xaxya)
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able, and conforms with the existing standards. valsY; are defined as
Note that unlike the unicast case (where the constraints
are linear), the link constraints iR contain somenax y. — { Xog i Je€ J (6)
functions. Themax functions, besides being nonlinear, 1 [0,B] if jedJ
couple several variables together, and make the problem
significantly more difficult. However, note thatax func- WhereB is any number satisfying
tions are piecewise linear, and hence the constraint set in
(1) can be replaced by a set of linear inequalities. Lin- B> ruax By (7

earizing the constraint set makes the problem separable,

and thus helps in obtaining a distributed solution. This lidt IS €asy to see that the interior point assumption holds
earization can be done in several different ways, and if f8f P if it holds for P.- ComparingP with P, note that
done appropriately, it could result in a very large numblé‘fe_have replaced egahax term in (1) with a separate

of linear constraints, which makes it difficult to develop ¥2riable (the rate variable for that branch) and added the
scalable solution. For example, each constraint in (1) cg@nstraints (4) in order to enforce the property that the
be replaced by a set of linear constraints, in each of whitdf¢ 0n & branch cannot be less than that on its children
amax term is replaced by a variable included in it. HowPranches. Note that since the objective functiorPofis

ever, itis easy to see that this could result in an exponen@4iictly concave with respect to the variablgg, j < J),
number of linear constraints. these variables are unique in any optimal solutioPof
Next we present a reformulation of the problefy 1he variablegy;,j € J) in an optimal solution may not
where the constraint set is linearized such that it enabR&unique, though. 3 _
us to develop a scalable solution. First, we present Somgheorefm Lilety" = (yj,j € J) be any optimal solu-
notation that we will use. Lek be the set of all junction tion of P'. Theny’; = (y;,j € J) is the unique optimal
nodes (over all multicast groups). LBt= R U R. Note solution ofP.
that each branch can be associated with a junction noddhe proof of the above result is straightforward, and is
or a receiver node (the junction/receiver node where tit@ted in Appendix I. The theorem shows that we can ob-
branch terminates). Thus in Figure 1, assocjataith #;, tain the optimum solution oP by solvingP’. Note that
js with 75, 71 with r1, j» with o and so on. Therefore, the variables(y;,7 € J) may not necessarily be equal
J, the set of all branches (over all multicast trees) can bethe correspondingnax values (the actual rates on the
written as,J = JU.J, whereJ is the set of branches assocorresponding branches) at optimality, but may be greater,
ciated with receiver nodes (“receiver branches”) anig as (4) indicates. We will therefore call the variabje
the set of branches associated with junction nodes (“juribe pseudo-rateon branchj. In the subsequent sections,
tion branches”). Letk; C J be the set of branches thawve will show how we can solv®’ to obtain the optimal
share linkl € L. Now associate a rate variabje with pseudo-rates, and use them to obtain the optimal (actual)
each branch € J (thereforey; is also the rate variable rates.
for the receiver/junction node associated with bragzh
Lety = (y;,7 € j) be the vector of these rate variables.
Letr(j) € R denote the receiver/junction node associatedSince the problenP’ is separable, dual methods pro-
with branchj € J. For each receiver branghlet U; de- vide attractive approaches for obtaining distributed solu-
note the utility function associated with the correspondint@ns (see Chp. 6 of [2]).
receiver,r(7). Now consider the following problem

I1l. SOLUTION APPROACH

A. The Dual Problem

L max Z Uj(v;) Let p; be the dual variable (“price”) associated with the
7ed link constraint (3) for linkl € L. Letp; be the sum of
subject to : the prices of all the links in branch i.e.,p; = Z,eLj Dl
where L; is the set of links in branch. We will call p,
Yy < o« VielL (3) thelink price of link 7 andp; thebranch priceof branch;.
JER ~ Let jS be the set of branches that start from source nodes,
Yi < uyny Viedsta()#¢ (4 ie.Js = {j: w(j) = ¢}. Then each constraint in (4)
y €Y vjeld (5) can be associated with a branchJn, Js. Letg; be the

dual variable (“price”) associated with the constraint (4)
wherer(j) is the parent branch of branghand the inter- for branchj € J \ Js. Also letC; be the set of children
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for any branchj € J, i.e.,C; = ={j : n(j') = j}. Note

thatC; = ¢ foranyj € J (recelver branch). Lep =

(p,1 € L) andq = (¢;,5 € J \ Js) be the price vectors.
The Lagrangian [2] foP’ is

L(y,p,q)
= " Uily;) = d_m( >y — )
jeJ IeL  jeK;
= > 4 = vep)
jeN\Js
> {U(yy) —yps }
jeJnJg
+ > {U(y) — (B + ) }
J€NJTs
+ Z { y] Z qJ
]EJOJS i EC
+ > {—yii+ta— Y ¢}
j€NTs i'ec;
+ Zplcl (8)
leL

As (11)-(13) show, the problem of evaluating the dual
objective function for a giver{p,q) (or in other words,
finding y € Y such that it maximizes the Lagrangian
L(y,p,q)) can be decomposed into separate branch opti-
mization problems, one for each of its branches. These
decompositions are possible due to the separable nature of
the problemP’. Moreover, note from (13) that in order to
evaluate[)j (p, q) for any branchy, the only prices that are
required are the andgq prices associated with that branch,
and theg prices of its children branches.

B. Interpretation of the Prices

In this section, let us interpret the pseudo-rate on a
branch as the actual rate on that branch. Then the inter-
pretation of the link priceg is straightforward. As noted
in [10], p; can be interpreted as the “congestion price” of
link {. Note that at optimality, from Kuhn-Tucker condi-
tions,p; > Oifand only if 3°,c k, y; = ¢;. Therefore, at
optimality, price of an uncongested link is zero.

Now let us try to interpret the prices. LetJ,, denote
the set of all branches that belong to the multicast tree of
groupm. ThenJ,, = J,, U J,,, whereJ,, andJ,, are

We can simplify the expression in (8) by introducing adespectively the set of the receiver and junction branches in
ditional variables(q;,j € Js), assumed to be identicallygroupm’s multicast tree. Consider any branghelonging

zero. Then the Lagrangian in (8) can be written as

L(y,p,q)
—Z{U y] prJ+QJ)}
jeJ
> v Bi+a— Y g)}
jeJ i ec;
+ ZPZCZ 9)
leL

LetY = {(y1,-yj) : j € ¥j Vj € J}. The dual of
the primal problen®’ is (see [2])

D : min D(p, q) (20)

p,9=>0

where the dual objective functiaR(p, ) is given as
D(p,q) = max L(y,p,q) (11)
yey

= > Dip,g) +> ma (12

jeJ leL

whereD;(p, q) is given as

Dj(p,q)
max, ey, {U;(y;) —y;j(B; +q;)} ifjeJ
= ¢ maxyey{=y; % + 4~ Xyec, 47))  (13)
if jeJ

to groupm’s multicast tree, i.ej € J,,. Let T; be the

set of all branches downstream of (and including) branch

j in groupm’s multicast tree. For example, in Figure 1,

Tj, = {j1,J2,J5}. Now for any branchj’ € J,,,, consider

the “branch profit” terij/ defined as (see (13))

p, =) Ul =uy by tay) € Jm (14)
J —yy by Ty — Xy, 47) T35 € Jm

Summing up the branch profit8, for all j' & T;, we
obtain P(T}), the overall profit of the Subtreg;, as

P(Ty) = Y. Uiy Z Py
J EJmﬁT J ET
a5y = Y 4y Wy — Yery) (15)
i €T; {4}
Note that at optimality, from Kuhn-Tucker conditions,
ay (Y — yﬂ(j/)) = 0. Therefore, at optimality,

P(Ty)= Y Uplyy)— Y byyy —ajy; (16)

§ €ImNT; i €Ty

Note that)_ v ; ~r, Uy (y;) is the total utility of all the
receivers |rfT Also |f we interpretp; as the price per
unit bandW|dth on link (and hence; as the price per unit
bandwidth on branch), then Zj/eTj pyy; is the price
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paid for the usage of all the links in the subtfBe How- y;(p*,¢*) = (y;(p*,¢*),j € J) is the unique optimal so-
ever, note that the receiversih also use some bandwidthlution of P (see Proposition 5.1.1 of [2]).
in the links of the branches from the source down to (andNow let us see how we can minimize the dual as in
excluding) brancly, which are not included iff;. There- (10). Gradient-based methods are, in general, attractive
fore, from (16), we see thaty; can be interpreted as theapproaches to carry out minimizations of this type. Un-
price paid by the receivers iffi; for the usage of links fortunately, in our case, the dual objective functionds-
that are outsidel;. Note that at optimalityg; = 0 if differentiable and therefore its gradient may not always
y; < Yr(j)- In other words, the receivers @f; are not exist. This is because in general, differentiability of the
charged for the usage of links in the branches from thigal requires a unique primal optimizer (see [2] (Chp. 6)),
source to branchr(j) if they use less rates than the ratehereas in our case, the optimal values of the variables
at branchr(j). Thus a receiver does not get charged fgy;, j € J) can be non-unique. Therefore the well-known
a link/branch if it is not using the maximum amount ofjradient-based algorithms do not apply in this case.
bandwidth amongst all receivers of its group that use thatone way to handle the nondifferentiability problem is to
link/branch. usesubgradiertt methods, which do not require differen-
Now let us calculate the total profit of the multicastiability of the objective function. Another alternative is
group m, i.e., the sum total of the profits of all of itsto make an approximation to the original problem so that

branches. At optimality, we obtain, the dual becomes differentiable, and then apply gradient
methods. In the following sections, we propose algorithms
SP= Y Uily) — Y. by (17) based on both these approaches.
jeJ J€JIm j€dm

: : , _ IV. SUBGRADIENT ALGORITHM
which can be interpreted as the profit of the entire group,

i.e., sum of the receiver utilities- price paid for link  The subgradient algorithm that we propose next is based
(branch) usages. Since the branch ratgare chosen to on the subgradient method developed by N. Z. Shor,
maximize the branch profits (see (13)), it follows that @&mong others (see [14] (Chp. 2) for a detailed discus-
optimality, the rategy € Y are such that these “groupsion on this method). In our problem, although the dual
profits” are maximized for all groups. This can be seegradient does not exist, subgradients do. Moreover, from
as a generalization of the fact that in the unicast case, ifigoposition 6.1.1 of [2], it follows that we can obtain a

the “session profit” that is maximized (see [10]). subgradien®D at(p, q) as
For the unicast case described in [10], each user
chooses its rate such that its “session profit/;.(y,) — Dy, = a— Y yi(p,q) (18)
p"y,} is maximized (where” is the sum of the prices JEK
of the links on its path). Considering the branch maxi- ODlg; = Yr(j)(P:q) — yi(ps ) (19)

mization problem of (13) and comparing it with the unicast

case, we see that the session optimization problem of #aeredD|, anddD|,; are the components &tD for p,
unicast case has been replaced by the branch optimizaf®flg;, respectively, ang;(p, q) are such that they maxi-
problem in the multirate multicast case. In the latter cad@ize the Lagrangiad.(y, p, q) atp, ¢ (i.., attains the max-
the different branches act like somewhat independent utium in (13)). Now consider a sequeneg satisfying
cast sessions, with thevariables ensuring that the rate re-

- - . - oo
Iat|0n§h|p§ between parent/child branches (as in (4)) hold lim a, =0 Z 0, = 00 (20)
at optimality. oo 1
C. Dual Minimization As an exampleq,, = (1/n) is a sequence that satisfies

(20). The iterative step of the subgradient algorithm is

Since the objective function of the primal probl@nis .’ . . ) )
. : ) .. similar to the gradient projection algorithm, with the sub-
concave and the constraints linear, there is no duality gat%dient replacing the gradient and the step-size satisfyin
(Proposition 5.2.1 of [2]). Moreover, the interior point as? P g g P g

e (n) (n) ;
sumption (Assumption 1) implies that the set of all du&f0)- Thus ifp;”, ¢ are the prices at theth step, then
solutions (which is the same as the set of Lagrange multi;A baradient. defined in th et of . funcii
. . . subgradient, defined in the context of convex/concave functions,
plle_rs) IS bou_nded [21(pp. :1'50*) Lfép q *) b*e ahy dlilal can be viewed as a generalized gradient, and may exist even if the gra-
optimal solution, and leg(p*,¢*) = (y;(»*,4*),7 € J) dient does not. At points where the function is differentiable, the sub-
attain the maxima in (13). Then it is easy to show thatadient is unique, and is the same as the gradient.
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the update procedure of the prices are V. PROXIMAL APPROXIMATION ALGORITHM
(n+1) (n) (n) The reason behind the nondifferentiability of the dual
Dy = [p +om (‘Z y; —a)ly  (21) objective function is the lack of strict concavity of the pri-
JeK mal objective function irfP’ (note that the primal objec-
q§n+1) — [q](.") + ap (yj(»") - yf:(‘;)) l+ (22) tive function is strictly concave with respect to the vari-

ables(y;, j € J), but not so with respect to the variables

where[ - ], = max(0,-) andy™ is such that it attains the (45> € J)). Note, we can make the primal objective

_ _ _ e ) () o function strictly concave by adding some strictly concave
maximum in (13) with priceg; ", ¢;*. The maximiza- tgrms for each of the variabldg;, j € J), and thereby

tion in (13) is easy to carry out; fof € J, yﬁ") can be make the dual differentiable. The algorithm that we de-

expressed as scribe next uses this idea, and is based onptiogimal
approximation methogroposed in [3](Section 3.4.3).
br(j) if ]5]-”) —I—q](-n) > U;(br(])) For eachj S j, define Uj(yj) = —i(yj — Zj)2,
yj(.") ={ B, if ]5;”) + q§”) < U\(B,) (23) Wheres > 0 is any constant, anfz;,j € J) are ad-
U}_l(ﬁgn) n an)) oW, ditional variables. Now consider the approximate primal

problemP” which has the same set of constraintsRis
((3)-(5)), but with the objective functiod”, ; Uj(y;) =

.ZJ'E:’ U;(y;) - i Zjej(yj — z?)2. The proximal approx-
imation algorithm is an iterative procedure, as stated be-

while for j € J, y§") can be expressed as

0 if ﬁﬁ-”) + qj(-n) —2jec, q;@ >0 low. In the procedure, assumé’ is any feasible point,
b foranyb € [0, B] O.W.

Proximal Approximation Algorithm

. . -1, Forn=1,2,..., do:
Note that existence of the inverse functibfy ~ in (23) Step 1: SolveP”, with 2= zﬁ”) forall j € J. to obtain

follows from the strict concavity assumption on the func—— _ )
tion U/;. Now assuming that the initial prices are feasibld€ €W optlrpa_:ls)olutl?%l) ' )
i.e., p© ¢ > 0, we can obtain the following conver-Step 2: Setz;"~ = y;" " forall j € J
gence result.
Theorem 2:Consider dual subgradient algorithm as de- 1"€n, in this case too, we can show a convergence result
scribed in (21)-(24) with the step-sizes satisfying (20§imilar to Theorem 2 (see Appendix lil for proof).
Then the sequence of Vectajg?ﬂ) _ (y](n)’j € J) con- Theorem 3:Under the proximal approximation algo-

i n) _ ¢ (n) ;
verges to the unique optimal solution Bf rithm, the sequence of vectoy{j = (y; ',j € J) con-

The proof of the above theorem is stated in Append}é?rges to the unique optimal solution B

II. Note that Theorem 2 does not state anything about the//€ Will solve Step 1 of the algorithm described above

convergence Of/gn) _ (y§"),j c j)_ In generaly@ may using the dual approach. Following the analysis of Section

not converge, as can be expected from (24) (this does Hhtlt Is easy to see that the dual functidi(p, ) in this

. : case is given as
matter since we infer the actual rates only frggﬁ)). Note g

that sincea,, — 0, the pricesp, ¢ (updated according to D(p,q) = Dip,g)+ S pie (25)
(21)-(22)) converge, even though the pseudo-ratesay ) g (8 9) ;
not.

In practice, it may be difficult to implement the step—sizwhereDj( ,q) Is given as (compare with (13))
constraint (20); a constant step-size may be more practical.
For a constant step-size, however, the subgradient methé¥ (p, ¢) =
may not converge to an optimal solution. However som maxy, ey, {U;(y;) — v (B; + )} if jeJ
Weaker results can be derlved in that case (see [.14]). Nmax, ey, {U;(y;) — v; (B + ¢ — Zj/e o, qj,)} (26)
practice, a constant step-size also works well, provided the if jeJ
step-size is small (see Section VII).
In section VI, we describe a distributed implementatioNow since the primal objective function is strictly concave,
of this algorithm with constant step-sizes. the dual is differentiable, and the components of the gradi-
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entVD at(p, ¢q) are obtained as x is large, the objective function & is close to the actual
objective function. Therefore, we would expect that Step
VD|,, = ¢— Z y;(p,q) (27) 1 would converge to a value close to the optimum, even

JEK when executed once. In general, a largeequires fewer
VDl = Yn(j)(P:q) — y;i(p: q) (28) iterations (of Steps 1 & 2) for convergence of the proximal

approximation method (see Section 3.4.3 [3]). Moreover,
whereV Dl andVD|,; are the components & D for i nger some stronger conditions, the method can converge
andg;, respectively, ang;(p, ¢) are such that they attain;, 5 single execution of Step 1 (see Proposition 4.1 (d) of
the maximum in (26). Now applying the gradient projegz; i, 234)). The disadvantage of using a largis that
tion method with a constant step-siae the price update o ¢onvergence is guaranteed only if the step-size is suffi-
procedures at theth step become ciently small (Theorem 4), and a small step-size may lead

(n+1) (n) (n) to slow convergence. A practical implementation of the
Py = [p" +a (,EEI; Yj )l (29) algorithm is described in the next section.
J l
q§”+1) - [q](-n) +a (yj(-”) - yfr’z;)) )+ (30) VI. DISTRIBUTED IMPLEMENTATION

(n) - . _ _ Now we describe how the subgradient algorithm (SGA)
where, as beforer is such that it attains the maximumy g the proximal approximation algorithm (PAA) can be

in (26) with priceSpl”), §”). The maximization in (26) implemented in a real network in a distributed and scalable

is easy to carry out; foj € J, yﬁ") can be expressed agVay -

(compare with (23)) . First we will Qescribe hqw the protocol \{vorks. As men-
tioned before, in our algorithms, a source/junction/receiver
by(: if ;5.”) 4 q(.") > U'-(bT ) node needs to communicate only with its parent and chil-
(n) v n) | ) ) dren nodes. Assume that the each source/junction node
vi’ =4 B it 5" +4;" <Uj(Br)) (1) ' )

sends forward control packets (FCP) to its children nodes.
Also assume that each receiver/junction node sends back-
_ . - () “ward control packets (BCP) to its parent node (see Fig-
while for j € J, y;* can be expressed as (compare Witfye 2y Note that the BCP that a junction node sends to

-1

=1 =(n) n)
U, (" +q¢;') ow

(24)) its parent is formed by merging the BCPs that it receives
() (n) (n) ) from all of its children. As in the figure, each FCP con-
0 if e Zj/ecj 9 2 UJ(O) tains a price fieldP, while each BCP contains a field
y§”) ={ B if ;5]-") + qﬁn) —Yiec, qJ(,fL) < U;(B) (32) (which contains the actual rate) and a figldwhich con-

tains the pseudo-rate). Note that in real implementation,

these control packets need not be communicated as sep-
i_é\’rate packets; the FCPs can be piggybacked on the data
dackets, while the BCPs can be piggybacked on the ac-
knowledgement (ACK) packets.

=1 5(n) (n) (n)
U; (pj +4; _ZjIECj 95 ) 0.W.

Now assuming that the initial prices are feasible,
p©,¢© > 0, we can obtain the following convergenc
result. Lety = min(%,~), wherey = min,cg 7, andy,
is defined as in Assumption 2. Also, ket= |L|+|J|—|Js| ® ~—— juncionnodes
andt = |.J|.

Theorem 4:Consider the dual gradient projection algo-
rithm as described in (29)-(32) with the step-sizesat-
isfying 0 < a < 2 Then the sequence of vectors °
y™ = (y§"),j e J) converges to the unique optimal so- ~ BCP
lution of P”.

For the proof of Theorem 4, see Appendix IV. Note that
the proximal approximation algorithm is a two-level opti- FCP (forward control packet)
mization procedure, as evident from its description. Thus _

Step 2 of the algorithm is executed only when procedure BEP (backward contolpackey
used to solve Step 1 converges. Since this convergence can Fig. 2. Message exchanges

be asymptotic, in a real network, it may be difficult to de-

cide when Step 2 should be executed. However, note that ifor any branchj € J, the actual rate variable; and

O —=—— non-junction nodes
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the pseudo-rate variablg (and also the variable;, inthe they exist. Also, for the case of PAA, we assume that the
case of PAA) are stored ir(j), the junction/receiver node updating of the: variables (Step 2 of PAA) occur at regular
associated with branch A junction noder(j) also stores intervals. Since we would like these updates to occur at a
the variables (pricesqj/, forall j' ¢ C; (see Figure 1). much larger timescale than the rest of the optimization pro-
The variable (pricep; for any link! € L is stored in the cedure, these intervals will typically be much larger than
node where the link originates. the intervals at which the rate/price updates occur.
When sending an FCP to a child, a source/junction node
stamps the corresponding price in the P field of the Link I's algorithm:
packet (the source always stamps a price of 0). Each sub- .
sequent link (i.e., the node which stores the link price) dar receiving a BCP:
the branch leading to the child adds the link price in tHgead the’” field to know the updated pseudo-rates, and update
P field. After the child (which is a junction or receiverthe link’s pricep, as
node) receives the FCP, it uses the price inFhfeld to
compute the new pseudo-rate (see the algorithms for the
receiver and junction nodes, stated below).
A junction/receiver node communicates they vari- and forward the BCP on to the next link.
ables stored at it to its parent node throughxher” fields
of the BCPs. They variable is used to update the corre©n receiving an FCP:
spondingg variable stored at the parent node. Theari- Add the pricep; to theP field of the FCP and forward it on to
able lets the parent node know at what rate it needs to semelnext link.
traffic to the corresponding child. Thevariable at a re-
ceiver node is always set to the correspondjneariable.
The z variable at a junction node is set to the maximurBources’s algorithm:
of thex variables (communicated through the BCPs) of its
children nodes. As already mentioned, it is theariable On receiving a BCP:
that determines the traffic rate on the corresponding branchRead théX field to know the new rate requested by the child.
(i.e., the rate at which the associated junction/receiver nagleSend an FCP to that child, setting tRdield to O.
receives traffic). Therefore, for the branches associated
with junction nodes, at any step of the optimization pro-
cess, the actual rate of traffic can be less than, equal Receiverr(j)’s algorithm:
or even greater than the corresponding pseudo-rate. Also
note that when a BCP is going through the node associat®d receiving an FCP:
with link 7, the node reads the field and uses it to update
the pricep; stored at the node. 1. Read theP field to know the appropriate updated price,
In the algorithms stated below, the pseudo-rate compid calculate the new rates as:
tation occurs at a node on receiving an FCP, while updates _
of the variable®, ¢,  occur on receiving a corresponding Tj = Yy argTnax {Uiw) — Py}
BCP (at the receiver nodes, howeveris updated on the
arrival of an FCP). In practice, these updates can alsoe Send a BCP to the parent node, settig < =z; and
done after some fixed time-intervals. Y+ y;
In the following, P, denotes theP field of the FCPs
on branchj, while X;,Y; denote theX, Y fields of the
BCPs on branchj (note, these BCPs packets travel on thiiinction noder(j)’s algorithm:
backward direction on brancgf). Also, in the algorithms .
described below, the step-size for price updates is k«%’i] receiving an FCP:

constant at. Thus the algorithms for the source/receivel: R€ad theP field to know the appropriate updated price, and

nodes for SGA and PAA become the same. However, tﬁaelculate the new pseudo-rate as:

algorithm for the junction nodes for the two cases haveg, gga-

few differences. Below, we describe the junction node al-

gorithms for SGA and PAA under the same heading, point- y; < argmax { —(P; — > q¢; )y}
yeyY;

J

ing out the specific differences between the two, wherever i ec;

g <—[Pl+0¢(27j—cz)]+
JEK
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For PAA:

1 _
Y %arggg%{—%(y—zjf—(f’j— z; a;)y }
7 €Cj

2. Send an FCP to each child nodg’) (j' € C;), setting

Pj/ gy

On receiving a BCP:

1. Letr(j') (' € C;) be the child node that sent the BCP.
Read theX andY fields to know the updated rates, and
(a) Update the pricg; as

~—— Multicast group 1 (source: S, receivers: Iy, I, I'3,1,)

SV N e — Multicast group 2 (source: S,, receivers: I'g, I, I
4y <l +a ¥y -yl goup 2 (souree: s o for 1)

Fig. 3. An example networkhe numbers associated with the links are

(b) Update the actual rate as _ N _ -
the link capacities (in Mbps). The propagation delay for each link is 1 ms.)

{L'j — maé( Yj/

J €eq;
n tracks the optimal rate closely even as the optimal rate
changes (due to the arrival/departure of other receivers).
Figure 4(b) also shows the same trend. Note that there is

2. On receiving the BCP from all children nodes, send a BCP
the parent node, setting; < z; andY ; < y;.

At regular intervals: * Only for PAA */ a sharp peak in Figure 4(b) ait= 600 secs (whemn; ar-
Updatez; as rives). This is because on arrival, receives a very small
25 < Yj congestion price from the network and thus starts sending

traffic at its maximum rate. However, as the figure shows,

this rate decreases gradually and converges to the optimal
VIl. EXPERIMENTAL EVALUATION rate. Figure 4(c) and (d) show the average and maximum
rg]fative errors over all receivers.af (t) andz?(t) respec-

In earlier sections, we have proved the convergence . . )
P g tively denote the achieved and optimal rates of receiver

our algorithms with the assumption of synchronous up- .. . ; . . i
9 P y gt timet, the relative error for receiverat timet is defined

dates. However, simulations that we have carried out on a o
as|1 — 28 |. The sharp peaks exhibited by the curves are

various network topologies confirm that the algorithm o h dden chanae in th timal rates due to th
achieve the optimal rates even in an asynchronous slowft)jf 0 the sudden change © optimal rates due 1o the
time-varying environment. Next we present a few reprg— ival/departure of receivers. The relative errors decrease
ary ' . with time and gradually approach zero, indicating the con-
sentative examples to demonstrate this fact. In these ex- ) :
. . . ined/§loence of all receiver rates to the optimal values.
periments, the algorithms are implemented as described in _ _
the previous section, with the difference that the prices are® careful observation of Figure 4(c) and (d) shows that
updated only at regular intervals. even after reaching the optimal values, the rates exhibit
Consider Figure 3, which shows two multicast group&ry small quctuatipns around the optimum. In general,
sharing a 10-link network. The utility functions of all refor constant step-sizes, the computed rates in SGA con-
ceivers of group 1 ands of group 2 ardn(1 + z), while Verge to aneighborhood of the optimum rates and oscillate
those of the rest arzln(1 + z). The minimum and maxi- in the neighborhood thereafter. Smaller step-sizes reduce
mum receiver rates are 0 and 5 Mbps respectively. Assuffgillations, but at the same time slow down the conver-
that receivers, rs, 73,74, 76 andry arrive at timet = 0. 9ence. The choice of the step-size is trade-off between the
Also, receiverrs joins att = 600 secs, while receiver, SPeed of convergence and magnitude of oscillations.

leaves at = 1200 secs. Figure 4, which shows some As we would intuitively expect, the performance of PAA
rate plots in the time window 0-1800 secs, demonstrakgéth a large proximal constamt is very similar to that of

the performance of the subgradient algorithm (SGA) (WitBGA (in that case, PAA converges to the optimum solu-

a constant step-size = 0.001 and a price update intervaltion in a single execution of Step 1). Next we investigate
of 0.1 sec) in this scenario. Figure 4(a) and (b) show tllge convergence properties of PAA for a smallin the
(achieved) receiver rates of andrs along with the opti- same example as described above. Figure 5 shows some
mal rates (the curves of the other receiver rates also exhitite plots for PAA, whemx = 10, and the update interval

a similar trend). Figure 4(a) shows that the observed ratefof the = variables is 100 secs. All other parameters are
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Fig. 5. Convergence of achieved rates for PAWe straight lines in (a) and (b) are the optimal (theoretical) rates.)

the same as those for SGA. Figure 5 demonstrates the covitll. C ONCLUDING REMARKS AND FUTURE WORK
vergence of PAA in an asynchronous environment. Note
that in this case, PAA converges after multiple executionsNote that in the algorithms presented here, the conges-
of Steps 1 and 2. tion prices (dual variables) could vary over a wide range.
This poses a problem in communicating the prices to the
user using a small number of bits, without compromising
Comparing Figures 4 and 5, we see that in this particufgcuracy. In [1], the authors present a randomized marking
example, SGA converges faster that PAA. In this exampfased implementation of the algorithm presented in [10],
a larger value of: in PAA results in faster convegence, an¥here a single congestion indication bit is marked proba-
the convergence speed of PAA matches with that of sdistically based on the link price. Our algorithms for the
when is sufficiently large. However, in general, a |argemulticast case could also be implemented in a similar way.
value ofx may not always lead to better performance, for There are several related issues that need to be investi-
reasons we have stated in Section V. Moreover, note tigated further. Note that all the convergence results pre-
in PAA, the rates do not show any fluctuations after thesented in the paper are for synchronous updates. Although
have converged to the optimum, unlike those in SGA. the algorithms converged to the optimal rates in all of our
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experiments carried out in asynchronous environmenis] S. Kunniyur, R. Srikant,“End-to-End Congestion Control
derivation of a formal proof of convergence for that case is  Schemes: Utility Functions, Random Losses and ECN Marks”,

an interesting problem from the theoretical point of vie
Also note that in our algorithms, the pseudo-rates, requir

Proceedings of Infocom 20p0March 2000.
Vng] T. Turletti and J. C. Bolot Issues with multicast video distribution
in heterogeneous packet networRacket Video Workshopo4.

for price updates, need to be explicitly conveyed from the
junction/receiver nodes to the links. Whether the algo- APPENDIX |: PROOF OFTHEOREM 1

rithms can be suitably modified, without disturbing theilggroof of Theorem 1: Let U* andV*
convergence properties, to avoid this overhead of expligiftthe objective functions P and P,
pseudo-rate communication, remains an interesting open _
guestion.
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Proof of Theorem 2: For any\ = (p, ¢) > 0, lety()) de- > Ulay* + (1 — a)y™tD)

note the maximizer in (13). Let* be the optimal solution 1 n+1) n)
—5-llays + (1 — )y =y

of P. Then for any\* € A*, y;(A\*) = z*. Also note that 2, 1577 J J

ys(A) is a continuous function of. From these facts and > aU(y*) + (1 — a)U(y™tD)

Lemma 1, it follows that the sequence of vect@gé”)} 1 (n+1) (n+1) ()12
converges ta:*. O _%Ha(yj —y; )+ -y I (38)

APPENDIX IIl: PROOF OFTHEOREM 3 SinceY is bounded, there exists &, such thatHy} —

Proof of Theorem 3: We proceed in the same way as i@&””\] < B for all n. Thus, taking the limit ag — oo,
the proof of Theorem 4.1 (c) of [3] (pp. 240). LE{(y) = from (37) and (38), we obtain
YiesUj(y;), and lety; = (y;,j € J). Note that theath

iteration of the proximal approximation algorithm can be Uly")-U>* < —B? (39)
written as (combining Steps 1 and 2)

1 Since (39) holds for allv € (0,1), it follows thatU> =

ym ) = arg glea;{{U(y) ~ 5. Z(yj — yﬁ”))Q} U(y*), implying thaty?® = y% = z*. Therefore, the se-
jeJ quence{yS")} converges ta:*. 0
1 (n)2
= argI;g({U(y) - %Hyj —Y; 17} APPENDIX |V: PROOF OFTHEOREM 4

Let\ = (p, q) be the vector of all dual variables (prices).
First we prove the following lemma:
I (n+1) _  (n) 2 Lemma 2:Under Assumptions 1 and ¥, D satisfies the
Yj Yj Lipschitz condition

Therefore, it follows that

1
(n+1)y _ =
Uy™) = 5
L ()2
2 Uly) = o5 -lly; =5l Vyey (35) 57
IVD(A1) = VD(X2)l| < ;HM — Ag|
Settingy = y(™ in (35) yields
forall Ay, A2 > 0.

U(y™D) — 2i||y§”+1) _ y§")|‘2 > U(y™) (36) Proof: Letthe set of constraints in (3)-(4) be written com-

k pactly asdy < C, whereA andC ares x t ands x 1

matrices, respectively. Léf(y) = Zje 7Uj(y;j). From

First how that th 1 i
rst we show that the sequengg, '} has a unique ., o g’ o it for anh > 0,

limit point. Let y5° be any limit point of the sequence
{y&")} (note that the existence of a limit point is guaran- VD)) = —Ay(\) + C (40)
teed by the compactness Bf). Then there is a subse-

quence{y&")}ne ~ that converges t95°. Note thatU(y) From (40), we obtain that for any;, A2 > 0,

depends only ory;. Let U denote the value o/ (y)

wheny; = 5. Then, from (36), it follows thak/ (y") in- VD(A1) = VD(X2) = —A(y(A1) —y(A2))  (41)
creases monotonically and converge€/t§. Since func-

tion U is continuous and one-to-one with respectyio

(n) o0
thereforey; must converge tg3*.. y(N) = argmax{U(y) — (A, Ay)} (42)
Next we show that the unique limit poigt® is equal yey

to =*, the optimal solution oP. SincelU(y™) converges,
from (36), it also follows that

where

where(a,b) = a”'b denotes the inner product of vectars

andb. From (42), it follows that

(n+1) (n) ’ ‘

lim ||y —Y; =0 (37)

n—oo ' '7J

(VU@(\) —ATA\y—y(\)) <0 WyeY (43)

L*et Y™ tie the set of optimal solutipns &t . Crloose any | et us denotey(\1) andy(Xs) by 71 andgs, respectively.
y* € V" and anya € (0,1). Settingy = ay” + (1 = Then, from (43), it follows that
a)y"*+1 in (35), and using concavity df, we get,

(VU () — AT A1, 32 — )
(VU(2) — AT X2, 1 — T2)

VANVAN

U(yD) — =[ly0 Y — )2

1
2K
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From the above two inequalities, we obtain Let §* be the unique optimal solution dP”. Let
{)\(”)}neN be a subsequence converging X6 € A*.

(VU(1) — VU(82), 51 — §2) Note, y(A\*) = §*. Also note thaty()) is a continuous

> (AT = o), 51 — i2) (44) function of \. Sincelim, . neny A = \*, therefore

, _ limy s eomen y™ = y(A*) = §*. The result of Theorem 4
Note thatU; (y;) < —v forall y; € Y, forallj € J. follows. 0

Using this fact, we can easily derive the following relation
(VU(1) — VU (2), i1 — §2) < =7l — 32|I*  (45)
From (44) and (45)
1

g1 — Bo|* < —§<AT(>\1—>\2%§1—§2>
< %HAT(M—AQ)HHgl—gQH
and therefore,
[ AT %HAT(M—AQ)H (46)

Using the fact that the elements dfare1,0 or —1, it is
easy to show that

AT = N)|| < VEVE|IM =Xl (47)
Similarly,
A@ —32)ll < VEVilg —g2l|  (48)

From (46) and (47),
~ 1 —
g1 — g2l < %VStH)\l—)QH (49)

From (41) and (48),
IVD(\) = VDo)l < Vst ||gi— 2l (50)

From (49) and (50), the result of Lemma 2 follows. O
Proof of Theorem 4: Let A* be the set of optimal prices
for the problemP”. The arguments that we follow next
are similar to those used in the proof of Theorem 1 of [10].
From Proposition 2.3.2 of [2], and using Lemma 2, it fol-
lows that if the step-size: satisfies) < a < %j— then
every limit point of the sequenc\(® = (p{™), (™)} is

a dual optimal solution.

Note that from Assumption 1 and the non-negativity
contraints on the prices, it follows that* is bounded.
Thus the level seh = {\ > 0,D(\) < DA} is com-
pact. Moreover, fof) < a < 2, D(A(™) decreases with
n, and therefore\(® remains withinA for all n. There-
fore, the sequencé\(™} must have at least one limit
point.



