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Optimization Based Rate Control for Multirate Multicast Sessions

Koushik Kar Saswati Sarkar Leandros Tassiulas
Department of Electrical & Computer Engg.

University of Maryland
College Park, MD 20742, USA

Abstract— Multirate multicasting, where the receivers of
a multicast group can receive service at different rates, is an
efficient mode of data delivery for many real-time applica-
tions. In this paper, we address the problem of achieving
rates that maximize the total receiver utility for multirate
multicast sessions. This problem not only takes into account
the heterogeneity in user requirements, but also provides a
unified framework for diverse fairness objectives. We pro-
pose two algorithms and prove that they converge to the op-
timal rates for this problem. The algorithms are distributed
and scalable, and do not require the network to know the
receiver utilities. We discuss how these algorithms can be
implemented in a real network, and also demonstrate their
convergence through simulation experiments.

I. INTRODUCTION

Many present day real-time applications, like teleconfer-
encing and audio/video broadcasting, require communica-
tion within a group, and hence multicast is the inherent
mode of delivery for these applications. In conventional
multicasting, all receivers of the same multicast group re-
ceive service at the same rate. However, in general, dif-
ferent receivers belonging to the same multicast group can
have widely different characteristics. Thus a single rate
of transmission per multicast group is likely to overwhelm
the slow receivers and starve the fast ones. It is therefore
desirable to use multirate transmission, where the receivers
of the same multicast group can receive service at differ-
ent rates. Multirate transmission allows a receiver to re-
ceive data at a rate that is commensurate with its require-
ments and capabilities, and also with the capacity of the
path leading to it from the source. Multirate transmission
can be attained by hierarchically encoding real time sig-
nals. In this approach, a signal is encoded into a number
of layers that can be incrementally combined to provide
progressive refinement. Every layer is transmitted as a sep-
arate multicast group and receivers adapt to congestion by
joining and leaving these groups. Refer to [11] and [12]
for internet protocols for adding and dropping layers. This
layered transmission scheme have been used for both au-
dio[4] and video[19] transmissions over the internet and
has potentials for use in ATM networks as well [8]. Note
that in multirate multicast transmission, there is no concept
of unique multicast session rate, and one needs to consider

receiver rates separately. Also note that in this case, the
rate on a link needs to be equal to the maximum of the
rates of all receivers downstream of that link (since it has
to match the fastest of the downstream receivers).

An effective rate control strategy is required to ensure
that traffic offered to a network by different traffic sources
remain within the limits that the network can carry. Be-
sides ensuring stability, the rate control strategy should en-
sure efficient use of the network, and also that the network
resources are allocated to the competing flows in some fair
manner. It may therefore be desirable that the rate control
algorithm would steer the network towards a point where
some measure of global fairness is maximized.

There could be many acceptable definitions of fairness.
However, since receivers could have heterogeneous re-
quirements, the same amount of bandwidth could be val-
ued differently by different receivers (note that through-
out the paper, we use the terms “receiver” and “user” syn-
onymously). Therefore it is important to generalize the
notions of fairness so that one can differentiate among re-
ceivers within the framework of fairness . This can be done
by associating an utility function (assumed to be concave)
with each receiver, which could be a measure of say, the
perceived quality of audio/video, the user satisfaction, or
even the amount paid by the receiver. In this paper, we try
to design the rate control algorithms such that they maxi-
mize the sum of the utilities over all receivers, an objective
that was proposed in [6]. Even if all the utility functions
are the same, it can be shown that various fairness objec-
tives can be realized within this framework for different
choices of the utility functions.

Very recently, the problem of fair allocation of resources
in multirate multicast networks has received considerable
attention. However, most of the current research in this
context is concerned only with the notion of max-min fair-
ness (see [13], [15], [16], [17]). Amongst these, [15] con-
siders the problem of utility allocation. Whereas we are
concerned about maximizing the aggregate utility, the ob-
jective in [15] is to allocate the utilities fairly.

The problem of maximizing the aggregate utilities has
not been explored in the multirate multicast context. How-
ever, several rate control algorithms that attain this objec-
tive for unicast sessions have been proposed in recent liter-



ISR TECHNICAL REPORT TR 2000-21 2

ature. In [7], both primal and dual algorithms that solve an
approximate version of the actual problem, are presented.
A dual algorithm that converges to the optimal solution
is proposed in [10]. In these algorithms, an unicast source
updates its rate based on the congestion information (“con-
gestion price”) communicated to it by the network. The
network updates the congestion information based on the
source rates, either communicated by the source or mea-
sured. For some other approaches in the unicast case, see
[9], [18].

As already mentioned, in this paper we consider the
problem of maximizing the aggregate receiver utility for
the case of multirate multicast sessions. The solutions that
we propose are distributed and scalable, and are practical
for implementation in a large network. Like the approach
used in [10] for the unicast case, our approach also uses
dual methods. In fact, in the special case where all the
sessions are unicast, the two algorithms that we propose
reduce to the algorithm proposed in [10]. However, as we
will see in the following sections of this paper, there are
several factors that make the problem in our case much
more complex than its unicast equivalent.1

The paper is organized as follows. The problem is stated
formally in Section II, while the the basic solution ap-
proach is presented in Section III. We present two differ-
ent algorithms in Sections IV and Section V, and describe
their practical implementation in Section VI. We present
some experimental results in Section VII and conclude in
Section VIII.

II. PROBLEM STATEMENT

First we present a mathematical formulation of the op-
timization problem. We then provide an alternative for-
mulation of the problem, which will form the basis of the
solutions we propose.

A. The Optimization Problem

Consider a network consisting of a setL of unidirec-
tional links, where a linkl ∈ L has capacitycl. The
network is shared by a set ofM multicast groups. Each
multicast group is associated with a unique source, a set of
receivers, and a set of links that the multicast group uses
(the set of links form a tree)2. Thus any multicast group
m ∈ M is specified by{sm, Rm, Lm} wheresm is the
source,Lm is the set of links in the multicast tree, andRm
is the set of receivers in groupm. As already mentioned,

1However note that the problem for the unirate or conventional mul-
ticasting case is much simpler, and in general, the solutions for the
unicast case can be directly extended to that case.
2We assume fixed path routing. So the tree associated with each mul-

ticast group is fixed.

the total rate of traffic of a multicast group over any link on
the tree must be equal to the maximum of the traffic rates
of all downstream receivers of the group.

LetR be the set of all receivers over all multicast groups.
Also let Sl denote the set of receivers using linkl ∈ L.
Each receiverr ∈ R is associated with an utility function
Ur(xr), wherexr is the rate at whichr receives data.3 Let
br ≥ 0 andBr <∞ be the minimum and maximum rates,
respectively, required by receiverr. Let Xr = [br, Br]
denote the interval in which the receiver ratexr must lie,
and letX = {(x1, ..., x|R|) : xr ∈ Xr ∀r ∈ R}. Let
x = (xr, r ∈ R) be the vector of all the receiver rates.

We are interested in maximizing the “social welfare”,
i.e., sum of the utilities over all receivers, subject to the
link constraints, as well as the maximum/minimum rate
constraints. The problem can be posed as:

P : max
∑
r∈R

Ur(xr)

subject to

∑
m∈M

max
r∈Sl∩Rm

xr ≤ cl ∀ l ∈ L (1)

xr ∈ Xr ∀r ∈ R (2)

Note thatSl ∩ Rm is the set of receivers of groupm that
use linkl. Thus the termmaxr∈Sl∩Rm xr denotes the rate
of traffic of multicast groupm on link l.

Throughout the rest of the paper, we will make two as-
sumptions on the primal problemP:

Assumption 1: (Interior point) There exists a vector
x̃ ∈ X such that

∑
m∈M maxr∈Sl∩Rm x̃r < cl for all

l ∈ L.
Assumption 2: (Strict Concavity) The utility functions
Ur are increasing, twice continuously differentiable and
strictly concave in the intervalXr. Thus−U

′′

r (xr) ≥ γr >
0 for all xr ∈ Xr, for all r ∈ R.

Note that the interior point assumption also implies that
the problemP is feasible, i.e., it has a solution. The strict
concavity assumption implies that the solution is unique.

Next we will present an equivalent formulation of this
utility maximization problem. This equivalent formulation
would be the key in developing the algorithms that we pro-
pose subsequently. Before we proceed with this alternative
formulation, we introduce some new terminology that will
help us in formulating the problem and describing our al-
gorithms.

3We assume that, in general, the functionUr is known only to the
receiverr.
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B. Terminology

Consider Figure 1, which shows an example of a mul-
ticast tree wheres is the source node and{r1, r2, r3, r4}
is the set of receiver nodes. The rest of the nodes in
the multicast tree can be classified intojunction nodes
andnon-junction nodes, as shown in the figure. Junction
nodes are the nodes where the multicast tree “branches
off”. Thus in Figure 1,{r̂5, r̂6, r̂7} are junction nodes.
Receiver/junction nodes of different multicast groups are
considered to be logically different even if they are physi-
cally located at the same node. The junction nodes, apart
from the source and the receiver nodes, play an important
role in the optimization process, as we describe later. In the
rest of the paper, we assume that the receivers are only at
the leaf nodes of the multicast tree. There is no loss of gen-
erality in assuming this, since a receiver at a non-leaf node
can be replaced by creating a new leaf node and placing
the receiver in it, and connecting the new leaf node to the
non-leaf node (where the receiver is actually located) by
a link with infinite capacity. Moreover, note that any leaf
node must be a receiver node. The set of links between a
source/junction node and its immediate downstream junc-
tion/receiver node will be called abranch. For the mul-
ticast tree in Figure 1, there are 7 branches, as shown by
j1, j2, ..., j7. Note that any multicast tree can be broken
up into a number of branches. Also note that branches be-
longing to the same multicast tree are disjoint, i.e., they
have no link in common. Moreover, branches belonging
to different multicast groups (multicast trees) are consid-
ered to be logically different (even if they consist of the
same set of links). Theparentof a receiver/junction node
r refers to the closest junction/source node in the upstream
path fromr towards the source. Also, bychild of junc-
tion/source noder, we would refer to any receiver/junction
node whose parent is the noder. Thus in Figure 1,̂r5 is
the parent ofr1, r̂7 is the parent of̂r5, s is the parent of
r̂7. Similarly, r̂7 is a child ofs, while r̂5, r̂6 are children
of r̂7, and so on. Parent and child branches of a branchj

are also defined similarly. Thusj5 is the parent branch of
j1, j7 is the parent branch ofj5, while j5, j6 are children
branches ofj7, andj1, j2 are children branches ofj5, and
so on. Note thatj7 does not have a parent branch, whilej1,
j2, j3 andj4 do not have any child branch. The(q, x, y, z)
variables stored at the various junction/receiver nodes (as
shown in Figure 1) will be explained later, when we refer
to this figure again in Section VI.

In general, we assume that the receiver decides its rate
based on its utility function and the network congestion
feedback. It then sends its request to its parent node. A
junction node gathers all such requests (from its children
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Fig. 1. An example of a multirate multicast tree

nodes), takes the maximum of all the rates requested, and
requests that rate from its parent node. Requests go up the
tree through the junction nodes in this fashion till it reaches
the source node. The source sends traffic to its children
nodes at their requested rates; these nodes then send traffic
to their children nodes, and so on, and the traffic finally
reaches the receivers at their requested rates.

C. An Alternative Formulation

There can be a large number of ways of solving the opti-
mization problemP. However, the challenge is to obtain a
solution that isdistributedandscalable. Decentralization
and scalability are necessary conditions for the solution
to be of any practical importance. A solution would not
scale if, for example, the source or a junction node in the
multicast tree has to maintain data for, send data to, or re-
ceive data from all downstream receivers of the tree. Since
the number of receivers in the group can be very large,
this might lead to tremendous processing and communica-
tion pressure on such a node, particularly if the node is the
source, or a junction node close to the source. Also, in the
current networking standards like IP multicast, a junction
node may not know the identity of all the downstream re-
ceivers, but will only know the downstream nodes it must
forward a packet to. Therefore such a solution is clearly
not implementable without a major modification to the ex-
isting standards. In the solution we propose, the amount
of extra data that a node in the multicast tree has to main-
tain, depends only on the number of links (of that particu-
lar multicast tree) originating from that node. Moreover, a
source/junction/receiver node only needs to communicate
with its parent or children nodes. Thus the solution is scal-
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able, and conforms with the existing standards.
Note that unlike the unicast case (where the constraints

are linear), the link constraints inP contain somemax
functions. Themax functions, besides being nonlinear,
couple several variables together, and make the problem
significantly more difficult. However, note thatmax func-
tions are piecewise linear, and hence the constraint set in
(1) can be replaced by a set of linear inequalities. Lin-
earizing the constraint set makes the problem separable,
and thus helps in obtaining a distributed solution. This lin-
earization can be done in several different ways, and if not
done appropriately, it could result in a very large number
of linear constraints, which makes it difficult to develop a
scalable solution. For example, each constraint in (1) can
be replaced by a set of linear constraints, in each of which
amax term is replaced by a variable included in it. How-
ever, it is easy to see that this could result in an exponential
number of linear constraints.

Next we present a reformulation of the problemP,
where the constraint set is linearized such that it enables
us to develop a scalable solution. First, we present some
notation that we will use. Let̂R be the set of all junction
nodes (over all multicast groups). LetR̃ = R ∪ R̂. Note
that each branch can be associated with a junction node
or a receiver node (the junction/receiver node where the
branch terminates). Thus in Figure 1, associatej7 with r̂7,
j5 with r̂5, j1 with r1, j2 with r2 and so on. Therefore,
J̃ , the set of all branches (over all multicast trees) can be
written as,J̃ = J ∪ Ĵ , whereJ is the set of branches asso-
ciated with receiver nodes (“receiver branches”) andĴ is
the set of branches associated with junction nodes (“junc-
tion branches”). LetKl ⊆ J̃ be the set of branches that
share linkl ∈ L. Now associate a rate variableyj with
each branchj ∈ J̃ (thereforeyj is also the rate variable
for the receiver/junction node associated with branchj).
Let y = (yj , j ∈ J̃) be the vector of these rate variables.
Let r(j) ∈ R̃ denote the receiver/junction node associated
with branchj ∈ J̃ . For each receiver branchj, letUj de-
note the utility function associated with the corresponding
receiver,r(j). Now consider the following problem

P
′
: max

∑
j∈J

Uj(yj)

subject to :∑
j∈Kl

yj ≤ cl ∀ l ∈ L (3)

yj ≤ yπ(j) ∀ j ∈ J̃ s.t. π(j) 6= φ (4)

yj ∈ Yj ∀ j ∈ J̃ (5)

whereπ(j) is the parent branch of branchj and the inter-

valsYj are defined as

Yj =

{
Xr(j) if j ∈ J
[0, B] if j ∈ Ĵ

(6)

whereB is any number satisfying

B > max
r∈R
Br (7)

It is easy to see that the interior point assumption holds
for P

′
if it holds for P. ComparingP

′
with P, note that

we have replaced eachmax term in (1) with a separate
variable (the rate variable for that branch) and added the
constraints (4) in order to enforce the property that the
rate on a branch cannot be less than that on its children
branches. Note that since the objective function ofP

′
is

strictly concave with respect to the variables(yj , j ∈ J),
these variables are unique in any optimal solution ofP

′
.

The variables(yj, j ∈ Ĵ) in an optimal solution may not
be unique, though.

Theorem 1:Let y∗ = (y∗j , j ∈ J̃) be any optimal solu-

tion of P
′
. Theny∗J = (y

∗
j , j ∈ J) is the unique optimal

solution ofP.
The proof of the above result is straightforward, and is

stated in Appendix I. The theorem shows that we can ob-
tain the optimum solution ofP by solvingP

′
. Note that

the variables(yj, j ∈ Ĵ) may not necessarily be equal
to the correspondingmax values (the actual rates on the
corresponding branches) at optimality, but may be greater,
as (4) indicates. We will therefore call the variableyj
the pseudo-rateon branchj. In the subsequent sections,
we will show how we can solveP

′
to obtain the optimal

pseudo-rates, and use them to obtain the optimal (actual)
rates.

III. SOLUTION APPROACH

Since the problemP
′

is separable, dual methods pro-
vide attractive approaches for obtaining distributed solu-
tions (see Chp. 6 of [2]).

A. The Dual Problem

Let pl be the dual variable (“price”) associated with the
link constraint (3) for linkl ∈ L. Let p̃j be the sum of
the prices of all the links in branchj, i.e., p̃j =

∑
l∈Lj pl,

whereLj is the set of links in branchj. We will call pl
the link priceof link l andp̃j thebranch priceof branchj.
Let J̃S be the set of branches that start from source nodes,
i.e., J̃S = {j : π(j) = φ}. Then each constraint in (4)
can be associated with a branch iñJ \ J̃S . Let qj be the
dual variable (“price”) associated with the constraint (4)
for branchj ∈ J̃ \ J̃S . Also letCj be the set of children
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for any branchj ∈ J̃ , i.e.,Cj = {j
′
: π(j

′
) = j}. Note

thatCj = φ for any j ∈ J (receiver branch). Letp =
(pl, l ∈ L) andq = (qj, j ∈ J̃ \ J̃S) be the price vectors.

The Lagrangian [2] forP
′
is

L(y, p, q)

=
∑
j∈J

Uj(yj)−
∑
l∈L

pl(
∑
j∈Kl

yj − cl)

−
∑
j∈J̃\J̃S

qj(yj − yπ(j))

=
∑

j∈J∩J̃S

{ Uj(yj)− yj p̃j }

+
∑
j∈J\J̃S

{ Uj(yj)− yj(p̃j + qj) }

+
∑

j∈Ĵ∩J̃S

{− yj (p̃j −
∑
j
′∈Cj

qj′ )}

+
∑
j∈Ĵ\J̃S

{− yj (p̃j + qj −
∑
j
′∈Cj

qj′ )}

+
∑
l∈L

plcl (8)

We can simplify the expression in (8) by introducing ad-
ditional variables(qj , j ∈ J̃S), assumed to be identically
zero. Then the Lagrangian in (8) can be written as

L(y, p, q)

=
∑
j∈J

{ Uj(yj)− yj(p̃j + qj) }

+
∑
j∈Ĵ

{− yj (p̃j + qj −
∑
j
′∈Cj

qj′ )}

+
∑
l∈L

plcl (9)

Let Y = {(y1, ..., y|J̃ |) : yj ∈ Yj ∀j ∈ J̃}. The dual of

the primal problemP
′
is (see [2])

D
′
: min

p,q≥0
D(p, q) (10)

where the dual objective functionD(p, q) is given as

D(p, q) = max
y∈Y

L(y, p, q) (11)

=
∑
j∈J

D̃j(p, q) +
∑
l∈L

plcl (12)

whereD̃j(p, q) is given as

D̃j(p, q)

=



maxyj∈Yj{Uj(yj)− yj(p̃j + qj)} if j ∈ J
maxyj∈Yj{− yj (p̃j + qj −

∑
j
′∈Cj
qj′ )}

if j ∈ Ĵ
(13)

As (11)-(13) show, the problem of evaluating the dual
objective function for a given(p, q) (or in other words,
finding y ∈ Y such that it maximizes the Lagrangian
L(y, p, q)) can be decomposed into separate branch opti-
mization problems, one for each of its branches. These
decompositions are possible due to the separable nature of
the problemP

′
. Moreover, note from (13) that in order to

evaluateD̃j(p, q) for any branchj, the only prices that are
required are thep andq prices associated with that branch,
and theq prices of its children branches.

B. Interpretation of the Prices

In this section, let us interpret the pseudo-rate on a
branch as the actual rate on that branch. Then the inter-
pretation of the link pricesp is straightforward. As noted
in [10], pl can be interpreted as the “congestion price” of
link l. Note that at optimality, from Kuhn-Tucker condi-
tions,pl > 0 if and only if

∑
j∈Kl yj = cl. Therefore, at

optimality, price of an uncongested link is zero.
Now let us try to interpret theq prices. LetJ̃m denote

the set of all branches that belong to the multicast tree of
groupm. Then J̃m = Jm ∪ Ĵm, whereJm and J̃m are
respectively the set of the receiver and junction branches in
groupm’s multicast tree. Consider any branchj belonging
to groupm’s multicast tree, i.e.,j ∈ J̃m. Let Tj be the
set of all branches downstream of (and including) branch
j in groupm’s multicast tree. For example, in Figure 1,
Tj5 = {j1, j2, j5}. Now for any branchj

′
∈ J̃m, consider

the “branch profit” termPj′ defined as (see (13))

Pj′ =



Uj′ (yj′ )− yj′ (p̃j′ + qj′ ) if j

′
∈ Jm

− yj′ (p̃j′ + qj′ −
∑
j
′′∈C

j
′
qj′′ ) if j

′
∈ Ĵm

(14)

Summing up the branch profitsPj′ for all j
′
∈ Tj, we

obtainP (Tj), the overall profit of the subtreeTj , as

P (Tj) =
∑

j
′∈Jm∩Tj

Uj′ (yj′ )−
∑
j
′∈Tj

p̃j′yj′

−qjyj −
∑

j
′∈Tj−{j}

qj′ (yj′ − yπ(j′)) (15)

Note that at optimality, from Kuhn-Tucker conditions,
qj′ (yj′ − yπ(j′)) = 0. Therefore, at optimality,

P (Tj) =
∑

j
′∈Jm∩Tj

Uj′ (yj′ )−
∑
j
′∈Tj

p̃j′yj′ − qjyj (16)

Note that
∑
j
′∈Jm∩Tj

Uj′ (yj′ ) is the total utility of all the
receivers inTj . Also, if we interpretpl as the price per
unit bandwidth on linkl (and hencẽpj as the price per unit
bandwidth on branchj), then

∑
j
′∈Tj
p̃j′yj′ is the price
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paid for the usage of all the links in the subtreeTj. How-
ever, note that the receivers inTj also use some bandwidth
in the links of the branches from the source down to (and
excluding) branchj, which are not included inTj . There-
fore, from (16), we see thatqjyj can be interpreted as the
price paid by the receivers inTj for the usage of links
that are outsideTj. Note that at optimality,qj = 0 if
yj < yπ(j). In other words, the receivers ofTj are not
charged for the usage of links in the branches from the
source to branchπ(j) if they use less rates than the rate
at branchπ(j). Thus a receiver does not get charged for
a link/branch if it is not using the maximum amount of
bandwidth amongst all receivers of its group that use that
link/branch.

Now let us calculate the total profit of the multicast
groupm, i.e., the sum total of the profits of all of its
branches. At optimality, we obtain,

∑
j∈J̃

Pj =
∑
j∈Jm

Uj(yj)−
∑
j∈J̃m

p̃jyj (17)

which can be interpreted as the profit of the entire group,
i.e., sum of the receiver utilities− price paid for link
(branch) usages. Since the branch ratesyj are chosen to
maximize the branch profits (see (13)), it follows that at
optimality, the ratesy ∈ Y are such that these “group
profits” are maximized for all groups. This can be seen
as a generalization of the fact that in the unicast case, it is
the “session profit” that is maximized (see [10]).

For the unicast case described in [10], each userr
chooses its rate such that its “session profit”{Ur(yr) −
pryr} is maximized (wherepr is the sum of the prices
of the links on its path). Considering the branch maxi-
mization problem of (13) and comparing it with the unicast
case, we see that the session optimization problem of the
unicast case has been replaced by the branch optimization
problem in the multirate multicast case. In the latter case,
the different branches act like somewhat independent uni-
cast sessions, with theq variables ensuring that the rate re-
lationships between parent/child branches (as in (4)) hold
at optimality.

C. Dual Minimization

Since the objective function of the primal problemP
′
is

concave and the constraints linear, there is no duality gap
(Proposition 5.2.1 of [2]). Moreover, the interior point as-
sumption (Assumption 1) implies that the set of all dual
solutions (which is the same as the set of Lagrange multi-
pliers) is bounded [2](pp. 450). Let(p∗, q∗) be any dual
optimal solution, and lety(p∗, q∗) = (yj(p∗, q∗), j ∈ J̃)
attain the maxima in (13). Then it is easy to show that

yJ(p
∗, q∗) = (yj(p

∗, q∗), j ∈ J) is the unique optimal so-
lution ofP (see Proposition 5.1.1 of [2]).

Now let us see how we can minimize the dual as in
(10). Gradient-based methods are, in general, attractive
approaches to carry out minimizations of this type. Un-
fortunately, in our case, the dual objective function isnon-
differentiable, and therefore its gradient may not always
exist. This is because in general, differentiability of the
dual requires a unique primal optimizer (see [2] (Chp. 6)),
whereas in our case, the optimal values of the variables
(yj, j ∈ Ĵ) can be non-unique. Therefore the well-known
gradient-based algorithms do not apply in this case.

One way to handle the nondifferentiability problem is to
usesubgradient4 methods, which do not require differen-
tiability of the objective function. Another alternative is
to make an approximation to the original problem so that
the dual becomes differentiable, and then apply gradient
methods. In the following sections, we propose algorithms
based on both these approaches.

IV. SUBGRADIENT ALGORITHM

The subgradient algorithm that we propose next is based
on the subgradient method developed by N. Z. Shor,
among others (see [14] (Chp. 2) for a detailed discus-
sion on this method). In our problem, although the dual
gradient does not exist, subgradients do. Moreover, from
Proposition 6.1.1 of [2], it follows that we can obtain a
subgradient∂D at (p, q) as

∂D|pl = cl −
∑
j∈Kl

yj(p, q) (18)

∂D|qj = yπ(j)(p, q)− yj(p, q) (19)

where∂D|pl and∂D|qj are the components of∂D for pl
andqj, respectively, andyj(p, q) are such that they maxi-
mize the LagrangianL(y, p, q) atp, q (i.e., attains the max-
imum in (13)). Now consider a sequenceαn satisfying

lim
n→∞

αn = 0
∞∑
n=1

αn =∞ (20)

As an example,αn = (1/n) is a sequence that satisfies
(20). The iterative step of the subgradient algorithm is
similar to the gradient projection algorithm, with the sub-
gradient replacing the gradient and the step-size satisfying
(20). Thus ifp(n)l , q

(n)
j are the prices at thenth step, then

4A subgradient, defined in the context of convex/concave functions,
can be viewed as a generalized gradient, and may exist even if the gra-
dient does not. At points where the function is differentiable, the sub-
gradient is unique, and is the same as the gradient.
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the update procedure of the prices are

p
(n+1)
l = [ p

(n)
l + αn (

∑
j∈Kl

y
(n)
j − cl) ]+ (21)

q
(n+1)
j = [ q

(n)
j + αn (y

(n)
j − y

(n)
π(j)) ]+ (22)

where[ · ]+ = max(0, ·) andy(n)j is such that it attains the

maximum in (13) with pricesp(n)l , q
(n)
j . The maximiza-

tion in (13) is easy to carry out; forj ∈ J , y(n)j can be
expressed as

y
(n)
j =



br(j) if p̃(n)j + q

(n)
j ≥ U

′

j(br(j))

Br(j) if p̃(n)j + q
(n)
j ≤ U

′

j(Br(j))

U
′

j

−1
(p̃
(n)
j + q

(n)
j ) o.w.

(23)

while for j ∈ Ĵ , y(n)j can be expressed as

y
(n)
j =



0 if p̃(n)j + q

(n)
j −

∑
j
′∈Cj
q
(n)

j
′ > 0

B if p̃(n)j + q
(n)
j −

∑
j
′∈Cj
q
(n)

j
′ < 0

b for anyb ∈ [0, B] o.w.

(24)

Note that existence of the inverse functionU
′

j

−1
in (23)

follows from the strict concavity assumption on the func-
tion Uj . Now assuming that the initial prices are feasible,
i.e., p(0), q(0) ≥ 0, we can obtain the following conver-
gence result.

Theorem 2:Consider dual subgradient algorithm as de-
scribed in (21)-(24) with the step-sizes satisfying (20).
Then the sequence of vectorsy(n)J = (y

(n)
j , j ∈ J) con-

verges to the unique optimal solution ofP.
The proof of the above theorem is stated in Appendix

II. Note that Theorem 2 does not state anything about the
convergence ofy(n)

Ĵ
= (y

(n)
j , j ∈ Ĵ). In generaly(n)

Ĵ
may

not converge, as can be expected from (24) (this does not
matter since we infer the actual rates only fromy(n)J ). Note
that sinceαn → 0, the pricesp, q (updated according to
(21)-(22)) converge, even though the pseudo-ratesy may
not.

In practice, it may be difficult to implement the step-size
constraint (20); a constant step-size may be more practical.
For a constant step-size, however, the subgradient method
may not converge to an optimal solution. However some
weaker results can be derived in that case (see [14]). In
practice, a constant step-size also works well, provided the
step-size is small (see Section VII).

In section VI, we describe a distributed implementation
of this algorithm with constant step-sizes.

V. PROXIMAL APPROXIMATION ALGORITHM

The reason behind the nondifferentiability of the dual
objective function is the lack of strict concavity of the pri-
mal objective function inP

′
(note that the primal objec-

tive function is strictly concave with respect to the vari-
ables(yj, j ∈ J), but not so with respect to the variables
(yj, j ∈ Ĵ)). Note, we can make the primal objective
function strictly concave by adding some strictly concave
terms, for each of the variables(yj , j ∈ Ĵ), and thereby
make the dual differentiable. The algorithm that we de-
scribe next uses this idea, and is based on theproximal
approximation methodproposed in [3](Section 3.4.3).

For eachj ∈ Ĵ , defineUj(yj) = − 12κ(yj − zj)
2,

whereκ > 0 is any constant, and(zj , j ∈ Ĵ) are ad-
ditional variables. Now consider the approximate primal
problemP

′′
which has the same set of constraints asP

′

((3)-(5)), but with the objective function
∑
j∈J̃ Uj(yj) =∑

j∈J Uj(yj)−
1
2κ

∑
j∈Ĵ(yj−zj)

2. The proximal approx-
imation algorithm is an iterative procedure, as stated be-
low. In the procedure, assumey(0) is any feasible point,
andz(0) = y(0)

Ĵ
.

Proximal Approximation Algorithm
Forn = 1, 2, ..., do:
Step 1: SolveP

′′
, with zj = z

(n)
j for all j ∈ Ĵ , to obtain

the new optimal solutiony(n+1).
Step 2: Setz(n+1)j = y

(n+1)
j for all j ∈ Ĵ

Then, in this case too, we can show a convergence result
similar to Theorem 2 (see Appendix III for proof).

Theorem 3:Under the proximal approximation algo-
rithm, the sequence of vectorsy(n)J = (y

(n)
j , j ∈ J) con-

verges to the unique optimal solution ofP.
We will solve Step 1 of the algorithm described above

using the dual approach. Following the analysis of Section
III, it is easy to see that the dual functionD(p, q) in this
case is given as

D(p, q) =
∑
j∈J̃

D̃j(p, q) +
∑
l∈L

plcl (25)

whereD̃j(p, q) is given as (compare with (13))

D̃j(p, q) =

maxyj∈Yj{Uj(yj)− yj(p̃j + qj)} if j ∈ J
maxyj∈Yj{Uj(yj)− yj (p̃j + qj −

∑
j
′∈Cj
qj′ )}

if j ∈ Ĵ
(26)

Now since the primal objective function is strictly concave,
the dual is differentiable, and the components of the gradi-
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ent∇D at (p, q) are obtained as

∇D|pl = cl −
∑
j∈Kl

yj(p, q) (27)

∇D|qj = yπ(j)(p, q)− yj(p, q) (28)

where∇D|pl and∇D|qj are the components of∇D for pl
andqj , respectively, andyj(p, q) are such that they attain
the maximum in (26). Now applying the gradient projec-
tion method with a constant step-sizeα, the price update
procedures at thenth step become

p
(n+1)
l = [ p

(n)
l + α (

∑
j∈Kl

y
(n)
j − cl) ]+ (29)

q
(n+1)
j = [ q

(n)
j + α (y

(n)
j − y

(n)
π(j)) ]+ (30)

where, as before,y(n)j is such that it attains the maximum

in (26) with pricesp(n)l , q
(n)
j . The maximization in (26)

is easy to carry out; forj ∈ J , y(n)j can be expressed as
(compare with (23))

y
(n)
j =



br(j) if p̃(n)j + q

(n)
j ≥ U

′

j(br(j))

Br(j) if p̃(n)j + q
(n)
j ≤ U

′

j(Br(j))

U
′

j

−1
(p̃
(n)
j + q

(n)
j ) o.w.

(31)

while for j ∈ Ĵ , y(n)j can be expressed as (compare with
(24))

y
(n)
j =



0 if p̃(n)j + q

(n)
j −

∑
j
′∈Cj
q
(n)

j
′ ≥ U

′

j(0)

B if p̃(n)j + q
(n)
j −

∑
j
′∈Cj
q
(n)

j
′ ≤ U

′

j(B)

U
′

j

−1
(p̃
(n)
j + q

(n)
j −

∑
j
′∈Cj
q
(n)

j
′ ) o.w.

(32)

Now assuming that the initial prices are feasible, i.e.,
p(0), q(0) ≥ 0, we can obtain the following convergence
result. Letγ̄ = min( 1κ , γ), whereγ = minr∈R γr, andγr
is defined as in Assumption 2. Also, lets̄ = |L|+|J̃ |−|J̃S |
andt̄ = |J̃ |.

Theorem 4:Consider the dual gradient projection algo-
rithm as described in (29)-(32) with the step-sizeα sat-
isfying 0 < α < 2γ̄

s̄t̄
. Then the sequence of vectors

y(n) = (y
(n)
j , j ∈ J̃) converges to the unique optimal so-

lution ofP
′′
.

For the proof of Theorem 4, see Appendix IV. Note that
the proximal approximation algorithm is a two-level opti-
mization procedure, as evident from its description. Thus
Step 2 of the algorithm is executed only when procedure
used to solve Step 1 converges. Since this convergence can
be asymptotic, in a real network, it may be difficult to de-
cide when Step 2 should be executed. However, note that if

κ is large, the objective function ofP
′′

is close to the actual
objective function. Therefore, we would expect that Step
1 would converge to a value close to the optimum, even
when executed once. In general, a largerκ requires fewer
iterations (of Steps 1 & 2) for convergence of the proximal
approximation method (see Section 3.4.3 [3]). Moreover,
under some stronger conditions, the method can converge
in a single execution of Step 1 (see Proposition 4.1 (d) of
[3](pp. 234)). The disadvantage of using a largeκ is that
the convergence is guaranteed only if the step-size is suffi-
ciently small (Theorem 4), and a small step-size may lead
to slow convergence. A practical implementation of the
algorithm is described in the next section.

VI. D ISTRIBUTED IMPLEMENTATION

Now we describe how the subgradient algorithm (SGA)
and the proximal approximation algorithm (PAA) can be
implemented in a real network in a distributed and scalable
way .

First we will describe how the protocol works. As men-
tioned before, in our algorithms, a source/junction/receiver
node needs to communicate only with its parent and chil-
dren nodes. Assume that the each source/junction node
sends forward control packets (FCP) to its children nodes.
Also assume that each receiver/junction node sends back-
ward control packets (BCP) to its parent node (see Fig-
ure 2). Note that the BCP that a junction node sends to
its parent is formed by merging the BCPs that it receives
from all of its children. As in the figure, each FCP con-
tains a price fieldP , while each BCP contains a fieldX
(which contains the actual rate) and a fieldY (which con-
tains the pseudo-rate). Note that in real implementation,
these control packets need not be communicated as sep-
arate packets; the FCPs can be piggybacked on the data
packets, while the BCPs can be piggybacked on the ac-
knowledgement (ACK) packets.

junction nodes 

non-junction nodes 

 FCP

 FCP

 FCP

 BCP

 BCP

 BCP

 X  Y

 FCP  (forward control packet)

 BCP  (backward control packet)

 P

Fig. 2. Message exchanges

For any branchj ∈ J̃ , the actual rate variablexj and
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the pseudo-rate variableyj (and also the variablezj , in the
case of PAA) are stored inr(j), the junction/receiver node
associated with branchj. A junction noder(j) also stores
the variables (prices)qj′ , for all j

′
∈ Cj (see Figure 1).

The variable (price)pl for any link l ∈ L is stored in the
node where the link originates.

When sending an FCP to a child, a source/junction node
stamps the correspondingq price in theP field of the
packet (the source always stamps a price of 0). Each sub-
sequent link (i.e., the node which stores the link price) on
the branch leading to the child adds the link price in the
P field. After the child (which is a junction or receiver
node) receives the FCP, it uses the price in theP field to
compute the new pseudo-rate (see the algorithms for the
receiver and junction nodes, stated below).

A junction/receiver node communicates thex, y vari-
ables stored at it to its parent node through theX, Y fields
of the BCPs. They variable is used to update the corre-
spondingq variable stored at the parent node. Thex vari-
able lets the parent node know at what rate it needs to send
traffic to the corresponding child. Thex variable at a re-
ceiver node is always set to the correspondingy variable.
Thex variable at a junction node is set to the maximum
of thex variables (communicated through the BCPs) of its
children nodes. As already mentioned, it is thex variable
that determines the traffic rate on the corresponding branch
(i.e., the rate at which the associated junction/receiver node
receives traffic). Therefore, for the branches associated
with junction nodes, at any step of the optimization pro-
cess, the actual rate of traffic can be less than, equal to,
or even greater than the corresponding pseudo-rate. Also
note that when a BCP is going through the node associated
with link l, the node reads the fieldY and uses it to update
the pricepl stored at the node.

In the algorithms stated below, the pseudo-rate compu-
tation occurs at a node on receiving an FCP, while updates
of the variablesp, q, x occur on receiving a corresponding
BCP (at the receiver nodes, however,x is updated on the
arrival of an FCP). In practice, these updates can also be
done after some fixed time-intervals.

In the following, P j denotes theP field of the FCPs
on branchj, whileXj , Y j denote theX, Y fields of the
BCPs on branchj (note, these BCPs packets travel on the
backward direction on branchj). Also, in the algorithms
described below, the step-size for price updates is kept
constant atα. Thus the algorithms for the source/receiver
nodes for SGA and PAA become the same. However, the
algorithm for the junction nodes for the two cases have a
few differences. Below, we describe the junction node al-
gorithms for SGA and PAA under the same heading, point-
ing out the specific differences between the two, wherever

they exist. Also, for the case of PAA, we assume that the
updating of thez variables (Step 2 of PAA) occur at regular
intervals. Since we would like these updates to occur at a
much larger timescale than the rest of the optimization pro-
cedure, these intervals will typically be much larger than
the intervals at which the rate/price updates occur.

Link l’s algorithm:

On receiving a BCP:
Read theY field to know the updated pseudo-rates, and update
the link’s pricepl as

pl ← [ pl + α (
∑
j∈Kl

Y j − cl) ]+

and forward the BCP on to the next link.

On receiving an FCP:
Add the pricepl to theP field of the FCP and forward it on to
the next link.

Sources’s algorithm:

On receiving a BCP:
1. Read theX field to know the new rate requested by the child.
2. Send an FCP to that child, setting theP field to 0.

Receiverr(j)’s algorithm:

On receiving an FCP:

1. Read theP field to know the appropriate updated price,
and calculate the new rates as:

xj = yj ← argmax
y∈Yj

{ Uj(y)− P jy }

2. Send a BCP to the parent node, settingXj ← xj and
Y j ← yj

Junction noder(j)’s algorithm:

On receiving an FCP:
1. Read theP field to know the appropriate updated price, and
calculate the new pseudo-rate as:

For SGA:

yj ← argmax
y∈Yj

{ −(P j −
∑
j
′∈Cj

qj′ )y }
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For PAA:

yj ← argmax
y∈Yj

{ −
1

2κ
(y − zj)

2 − (P j −
∑
j
′∈Cj

qj′ )y }

2. Send an FCP to each child noder(j
′
) (j

′
∈ Cj ), setting

P j′ ← qj′ .

On receiving a BCP:
1. Letr(j

′

) (j
′

∈ Cj) be the child node that sent the BCP.
Read theX andY fields to know the updated rates, and
(a) Update the priceqj′ as

qj′ ← [ qj′ + α (Y j′ − yj) ]+

(b) Update the actual rate as

xj ← max
j
′∈Cj
Xj′

2. On receiving the BCP from all children nodes, send a BCP to
the parent node, settingXj ← xj andY j ← yj.

At regular intervals: /* Only for PAA */
Updatezj as

zj ← yj

VII. E XPERIMENTAL EVALUATION

In earlier sections, we have proved the convergence of
our algorithms with the assumption of synchronous up-
dates. However, simulations that we have carried out on
various network topologies confirm that the algorithms
achieve the optimal rates even in an asynchronous slowly
time-varying environment. Next we present a few repre-
sentative examples to demonstrate this fact. In these ex-
periments, the algorithms are implemented as described in
the previous section, with the difference that the prices are
updated only at regular intervals.

Consider Figure 3, which shows two multicast groups
sharing a 10-link network. The utility functions of all re-
ceivers of group 1 andr5 of group 2 areln(1 + x), while
those of the rest are2 ln(1 + x). The minimum and maxi-
mum receiver rates are 0 and 5 Mbps respectively. Assume
that receiversr1, r2, r3, r4, r6 andr7 arrive at timet = 0.
Also, receiverr5 joins att = 600 secs, while receiverr2
leaves att = 1200 secs. Figure 4, which shows some
rate plots in the time window 0-1800 secs, demonstrate
the performance of the subgradient algorithm (SGA) (with
a constant step-sizeα = 0.001 and a price update interval
of 0.1 sec) in this scenario. Figure 4(a) and (b) show the
(achieved) receiver rates ofr1 andr5 along with the opti-
mal rates (the curves of the other receiver rates also exhibit
a similar trend). Figure 4(a) shows that the observed rate of

r 1

s r 5 r r 6  7 2

s 1 r 1 r r r 2  3  4

Multicast group 2   ( source:     ,  receivers:     ,     ,     )

Multicast group 1   ( source:     ,  receivers:     ,     ,      ,     )

r r 3 r 4

r 6

r 7r 5

 2

 1s

 2
s

5

5

5

5

3 3

5
5

4

4

Fig. 3. An example network(The numbers associated with the links are

the link capacities (in Mbps). The propagation delay for each link is 1 ms.)

r1 tracks the optimal rate closely even as the optimal rate
changes (due to the arrival/departure of other receivers).
Figure 4(b) also shows the same trend. Note that there is
a sharp peak in Figure 4(b) att = 600 secs (whenr5 ar-
rives). This is because on arrival,r5 receives a very small
congestion price from the network and thus starts sending
traffic at its maximum rate. However, as the figure shows,
this rate decreases gradually and converges to the optimal
rate. Figure 4(c) and (d) show the average and maximum
relative errors over all receivers. Ifxar(t) andxor(t) respec-
tively denote the achieved and optimal rates of receiverr

at timet, the relative error for receiverr at timet is defined
as|1− x

a
r (t)
xor(t)
|. The sharp peaks exhibited by the curves are

due to the sudden change in the optimal rates due to the
arrival/departure of receivers. The relative errors decrease
with time and gradually approach zero, indicating the con-
vergence of all receiver rates to the optimal values.

A careful observation of Figure 4(c) and (d) shows that
even after reaching the optimal values, the rates exhibit
very small fluctuations around the optimum. In general,
for constant step-sizes, the computed rates in SGA con-
verge to a neighborhood of the optimum rates and oscillate
in the neighborhood thereafter. Smaller step-sizes reduce
oscillations, but at the same time slow down the conver-
gence. The choice of the step-size is trade-off between the
speed of convergence and magnitude of oscillations.

As we would intuitively expect, the performance of PAA
with a large proximal constantκ is very similar to that of
SGA (in that case, PAA converges to the optimum solu-
tion in a single execution of Step 1). Next we investigate
the convergence properties of PAA for a smallκ, in the
same example as described above. Figure 5 shows some
rate plots for PAA, whenκ = 10, and the update interval
for the z variables is 100 secs. All other parameters are
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Fig. 4. Convergence of achieved rates for SGA.(The straight lines in (a) and (b) are the optimal (theoretical) rates.)
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Fig. 5. Convergence of achieved rates for PAA.(The straight lines in (a) and (b) are the optimal (theoretical) rates.)

the same as those for SGA. Figure 5 demonstrates the con-
vergence of PAA in an asynchronous environment. Note
that in this case, PAA converges after multiple executions
of Steps 1 and 2.

Comparing Figures 4 and 5, we see that in this particular
example, SGA converges faster that PAA. In this example,
a larger value ofκ in PAA results in faster convegence, and
the convergence speed of PAA matches with that of SGA
whenκ is sufficiently large. However, in general, a larger
value ofκ may not always lead to better performance, for
reasons we have stated in Section V. Moreover, note that
in PAA, the rates do not show any fluctuations after they
have converged to the optimum, unlike those in SGA.

VIII. C ONCLUDING REMARKS AND FUTURE WORK

Note that in the algorithms presented here, the conges-
tion prices (dual variables) could vary over a wide range.
This poses a problem in communicating the prices to the
user using a small number of bits, without compromising
accuracy. In [1], the authors present a randomized marking
based implementation of the algorithm presented in [10],
where a single congestion indication bit is marked proba-
bilistically based on the link price. Our algorithms for the
multicast case could also be implemented in a similar way.

There are several related issues that need to be investi-
gated further. Note that all the convergence results pre-
sented in the paper are for synchronous updates. Although
the algorithms converged to the optimal rates in all of our
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experiments carried out in asynchronous environments,
derivation of a formal proof of convergence for that case is
an interesting problem from the theoretical point of view.
Also note that in our algorithms, the pseudo-rates, required
for price updates, need to be explicitly conveyed from the
junction/receiver nodes to the links. Whether the algo-
rithms can be suitably modified, without disturbing their
convergence properties, to avoid this overhead of explicit
pseudo-rate communication, remains an interesting open
question.
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APPENDIX I: PROOF OFTHEOREM 1

Proof of Theorem 1: LetU∗ andV ∗ be the optimal values
of the objective functions ofP andP

′
, respectively. Let

x∗ = (x∗r , r ∈ R) be the unique optimal solution ofP.
For any branchj ∈ J̃ , let y̌j = maxr∈Sl∩Rm(j) x

∗
r, where

l is any link in branchj, andm(j) is the multicast group
to which branchj belongs. Then it is easy to see that the
vector y̌ = (y̌j, j ∈ J̃) is feasible toP

′
. Moreover, the

objective function ofP
′
attains a valueU∗ at y̌. Therefore

V ∗ ≥ U∗ (33)

Now consider any optimal solution ofP
′
, y∗. It is easy to

observe thaty∗J is feasible toP. Moreover, the objective
function ofP attains a valueV ∗ at y∗J . Therefore

V ∗ ≤ U∗ (34)

From (33) and (34), it follows thatU∗ = V ∗. Therefore,
y∗J = x

∗. 2

APPENDIX II: PROOF OFTHEOREM 2

Letλ = (p, q) be the vector of all dual variables (prices).
Let Λ∗ be the set of optimal prices. Also letρ(x, Y ) =
miny∈Y ||x−y|| denote the Euclidean distance of a pointx
from any setY . First we state a lemma on the convergence
of the prices. Note that the prices are lower bounded by
zero. Moreover, the interior point assumption ensures that
the optimal prices are upper bounded (see [2](pp. 450)).
Therefore, the set of optimal prices is bounded. Also,
since the pseudo-rates are bounded, the dual subgradients
(as stated in (18)-(19)) are bounded too. Using these facts,
the following lemma directly follows from Theorem 2.3 of
[14].5

Lemma 1:Consider dual subgradient algorithm as de-
scribed in (21)-(24) with the step-sizes satisfying (20).
Then

lim
n→∞

ρ(λ(n),Λ∗) = 0

5In [14], the algorithms and convergence results are stated only for
the case when there are no max/min constraints on the variables. In
our case, however, we have non-negativity constraints on the variables
(prices). When there are max/min constraints, one needs to take a pro-
jection of the variables on to the space defined by the max/min con-
straints, as we do in our case. It is straightforward to show, using the
projection theorem (Proposition 2.1.3 of [2]) that the convergence re-
sults in [14] hold even in this more general case.
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Proof of Theorem 2: For anyλ = (p, q) ≥ 0, let y(λ) de-
note the maximizer in (13). Letx∗ be the optimal solution
of P. Then for anyλ∗ ∈ Λ∗, yJ(λ∗) = x∗. Also note that
yJ(λ) is a continuous function ofλ. From these facts and

Lemma 1, it follows that the sequence of vectors{y(n)J }
converges tox∗. 2

APPENDIX III: PROOF OFTHEOREM 3

Proof of Theorem 3: We proceed in the same way as in
the proof of Theorem 4.1 (c) of [3] (pp. 240). LetU(y) =∑
j∈J Uj(yj), and letyĴ = (yj, j ∈ Ĵ). Note that thenth

iteration of the proximal approximation algorithm can be
written as (combining Steps 1 and 2)

y(n+1) = argmax
y∈Y
{U(y)−

1

2κ

∑
j∈Ĵ

(yj − y
(n)
j )

2}

= argmax
y∈Y
{U(y)−

1

2κ
||yĴ − y

(n)

Ĵ
||2}

Therefore, it follows that

U(y(n+1))−
1

2κ
||y
(n+1)

Ĵ
− y

(n)

Ĵ
||2

≥ U(y)−
1

2κ
||yĴ − y

(n)

Ĵ
||2 ∀y ∈ Y (35)

Settingy = y(n) in (35) yields

U(y(n+1))−
1

2κ
||y
(n+1)

Ĵ
− y

(n)

Ĵ
||2 ≥ U(y(n)) (36)

First we show that the sequence{y(n)J } has a unique
limit point. Let y∞J be any limit point of the sequence

{y
(n)
J } (note that the existence of a limit point is guaran-

teed by the compactness ofY ). Then there is a subse-
quence{y(n)J }n∈N that converges toy∞J . Note thatU(y)
depends only onyJ . Let U∞ denote the value ofU(y)
whenyJ = y∞J . Then, from (36), it follows thatU(yn) in-
creases monotonically and converges toU∞. Since func-
tion U is continuous and one-to-one with respect toyJ ,
thereforey(n)J must converge toy∞J .

Next we show that the unique limit pointy∞J is equal
to x∗, the optimal solution ofP. SinceU(yn) converges,
from (36), it also follows that

lim
n→∞

||y
(n+1)

Ĵ
− y

(n)

Ĵ
|| = 0 (37)

Let Y ∗ be the set of optimal solutions ofP
′
. Choose any

y∗ ∈ Y ∗ and anyα ∈ (0, 1). Settingy = αy∗ + (1 −
α)y(n+1) in (35), and using concavity ofU , we get,

U(y(n+1))−
1

2κ
||y
(n+1)

Ĵ
− y

(n)

Ĵ
||2

≥ U(αy∗ + (1− α)y(n+1))

−
1

2κ
||αy∗

Ĵ
+ (1− α)y

(n+1)

Ĵ
− y

(n)

Ĵ
||2

≥ αU(y∗) + (1− α)U(y(n+1))

−
1

2κ
||α(y∗

Ĵ
− y

(n+1)

Ĵ
) + (y

(n+1)

Ĵ
− y

(n)

Ĵ
)||2 (38)

SinceY is bounded, there exists ãB, such that||y∗
Ĵ
−

y
(n+1)

Ĵ
|| ≤ B̃ for all n. Thus, taking the limit asn → ∞,

from (37) and (38), we obtain

U(y∗)− U∞ ≤
α

2κ
B̃2 (39)

Since (39) holds for allα ∈ (0, 1), it follows thatU∞ =
U(y∗), implying thaty∞J = y

∗
J = x

∗. Therefore, the se-

quence{y(n)J } converges tox∗. 2

APPENDIX IV: PROOF OFTHEOREM 4

Letλ = (p, q) be the vector of all dual variables (prices).
First we prove the following lemma:

Lemma 2:Under Assumptions 1 and 2,∇D satisfies the
Lipschitz condition

||∇D(λ1)−∇D(λ2)|| ≤
s̄t̄

γ̄
||λ1 − λ2||

for all λ1, λ2 ≥ 0.
Proof: Let the set of constraints in (3)-(4) be written com-
pactly asAy ≤ C, whereA andC are s̄ × t̄ and s̄ × 1
matrices, respectively. LetU(y) =

∑
j∈J̃ Uj(yj). From

(27)-(28), it follows that for anyλ ≥ 0,

∇D(λ) = −Ay(λ) + C (40)

From (40), we obtain that for anyλ1, λ2 ≥ 0,

∇D(λ1)−∇D(λ2) = −A(y(λ1)− y(λ2)) (41)

where

y(λ) = argmax
y∈Y
{U(y)− 〈λ,Ay〉} (42)

where〈a, b〉 = aT b denotes the inner product of vectorsa
andb. From (42), it follows that

〈∇U(y(λ))−ATλ, y − y(λ)〉 ≤ 0 ∀y ∈ Y (43)

Let us denotey(λ1) andy(λ2) by ỹ1 andỹ2, respectively.
Then, from (43), it follows that

〈∇U(ỹ1)−A
Tλ1, ỹ2 − ỹ1〉 ≤ 0

〈∇U(ỹ2)−A
Tλ2, ỹ1 − ỹ2〉 ≤ 0
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From the above two inequalities, we obtain

〈∇U(ỹ1)−∇U(ỹ2), ỹ1 − ỹ2〉

≥ 〈AT (λ1 − λ2), ỹ1 − ỹ2〉 (44)

Note thatU
′′

j (yj) ≤ −γ̄ for all yj ∈ Yj, for all j ∈ J̃ .
Using this fact, we can easily derive the following relation

〈∇U(ỹ1)−∇U(ỹ2), ỹ1 − ỹ2〉 ≤ −γ̄||ỹ1 − ỹ2||
2 (45)

From (44) and (45)

||ỹ1 − ỹ2||
2 ≤ −

1

γ̄
〈AT (λ1 − λ2), ỹ1 − ỹ2〉

≤
1

γ̄
||AT (λ1 − λ2)|| ||ỹ1 − ỹ2||

and therefore,

||ỹ1 − ỹ2|| ≤
1

γ̄
||AT (λ1 − λ2)|| (46)

Using the fact that the elements ofA are1, 0 or −1, it is
easy to show that

||AT (λ1 − λ2)|| ≤
√
s̄
√
t̄ ||λ1 − λ2|| (47)

Similarly,

||A(ỹ1 − ỹ2)|| ≤
√
s̄
√
t̄ ||ỹ1 − ỹ2|| (48)

From (46) and (47),

||ỹ1 − ỹ2|| ≤
1

γ̄

√
s̄t̄ ||λ1 − λ2|| (49)

From (41) and (48),

||∇D(λ1)−∇D(λ2)|| ≤
√
s̄t̄ ||ỹ1 − ỹ2|| (50)

From (49) and (50), the result of Lemma 2 follows. 2
Proof of Theorem 4: Let Λ∗ be the set of optimal prices
for the problemP

′′
. The arguments that we follow next

are similar to those used in the proof of Theorem 1 of [10].
From Proposition 2.3.2 of [2], and using Lemma 2, it fol-
lows that if the step-sizeα satisfies0 < α < 2γ̄

s̄t̄ , then
every limit point of the sequence{λ(n) = (p(n), q(n))} is
a dual optimal solution.

Note that from Assumption 1 and the non-negativity
contraints on the prices, it follows thatΛ∗ is bounded.
Thus the level set̃Λ = {λ ≥ 0,D(λ) ≤ D(λ(0)} is com-
pact. Moreover, for0 < α < 2γ̄

s̄t̄
, D(λ(n)) decreases with

n, and thereforeλ(n) remains withinΛ̃ for all n. There-
fore, the sequence{λ(n)} must have at least one limit
point.

Let ỹ∗ be the unique optimal solution ofP
′′
. Let

{λ(n)}n∈N be a subsequence converging toλ∗ ∈ Λ∗.
Note, y(λ∗) = ỹ∗. Also note thaty(λ) is a continuous
function of λ. Sincelimn→∞,n∈N λ(n) = λ∗, therefore
limn→∞,n∈N y

(n) = y(λ∗) = ỹ∗. The result of Theorem 4
follows. 2


