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Optical aberrations have detrimental effects in multiphoton microscopy. These effects can be curtailed by
implementing model-based wavefront sensorless adaptive optics, which only requires the addition of a wavefront
shaping device, such as a deformable mirror (DM) to an existing microscope. The aberration correction is achieved
by maximizing a suitable image quality metric. We implement a model-based aberration correction algorithm in a
second-harmonic microscope. The tip, tilt, and defocus aberrations are removed from the basis functions used for
the control of the DM, as these aberrations induce distortions in the acquired images. We compute the parameters
of a quadratic polynomial that is used to model the image quality metric directly from experimental input–output
measurements. Finally, we apply the aberration correction by maximizing the image quality metric using the
least-squares estimate of the unknown aberration. © 2014 Optical Society of America

OCIS codes: (010.1080) Active or adaptive optics; (010.7350) Wave-front sensing; (220.1000) Aberration

compensation; (110.0113) Imaging through turbid media; (180.5810) Scanning microscopy; (180.4315) Nonlinear

microscopy.
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1. INTRODUCTION

Multiphoton microscopy techniques, such as two-photon fluo-

rescence microscopy [1] and second-harmonic microscopy

[2], are commonly employed to image biological specimens.

Exploiting the image sectioning properties of these processes,

one can create high-resolution 3D reconstructions that are

invaluable for biomedical research. One limiting factor is the

presence of specimen-induced aberrations. Because the index

of refraction is not homogeneous within the specimen, aber-

rations affect both the resolution and the maximum depth of

penetration [3]. Using adaptive optics [4], these detrimental

effects can be minimized by reducing the phase aberrations.

A phase aberration can be introduced in the excitation beam

by means of a deformable mirror (DM), for example. Chosen

correctly, such a phase aberration can suppress some amount

of the specimen-induced aberrations.

Direct measurement of the specimen-induced aberrations

is challenging. One solution involves measuring the aberra-

tions of the excitation light that is back-scattered from the

specimen [5–10]. In this case, the difficulty arises in excluding

the light that is reflected from the out-of-focus layers of the

specimen [5,6]. Additionally, these measurements are weakly

sensitive to odd aberrations [5], due to the double-pass effect

[11]. In another solution, instead, the emission from a point

source inside the specimen is used to perform Shack–

Hartmann wavefront sensing [12–16]. Here, the difficulty

stems from the lack of such reference point sources within

the specimen and from the limited number of photons avail-

able in the emission signal.

An alternative, indirect approach involves deducing the

specimen-induced aberrations solely by examining the emis-

sion signal. This approach only requires the addition of a DM

into the excitation path of an existing microscope. A solution

that is based on the segmentation of the pupil has been pro-

posed [17,18]. Other solutions are based on the optimization of

an image quality metric, which attains its global maximum

when the residual aberration is maximally suppressed. In

practice, different trial aberrations are sequentially applied

with the DM until the image quality metric attains its

maximum.

General optimization algorithms can be used to maximize

the image quality metric [19–24]. However, because these

algorithms have no prior knowledge about the metric, a large

number of trial aberrations must be evaluated before the

metric is maximized [3,25,26]. Reducing the number of trial

aberrations is critical in achieving short image acquisition

times and in limiting side effects, such as photobleaching

and phototoxicity. For small aberrations, the response of

the image quality metric can be approximated using a simple

model, such as a quadratic polynomial [25–35]. Model-based

aberration correction algorithms [25–38] exploit the knowl-

edge about the model of the metric to quicken the aberration

correction, thus curtailing the aforementioned side effects.

In this paper, we investigate applying a model-based

wavefront sensorless aberration correction algorithm to a

second-harmonic microscope.

The paper is organized as follows. In Section 2, we discuss

the definition of the basis functions for the control of the
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DM. In Section 3, we outline our proposed algorithm for the

aberration correction. In Section 4, we report the experimen-

tal results. The conclusions are drawn in Section 5.

2. DEFINITION OF THE BASIS FUNCTIONS
FOR THE CONTROL OF THE DEFORMABLE
MIRROR

The basis functions should satisfy two different requirements.

In scanning microscopy, the aberration correction should not

introduce x-tilt, y-tilt, and defocus Zernike aberrations [39].

These aberrations do not affect the image quality. Instead,

they affect the position of the focal point within the specimen

and they induce translations or distortions in the acquired

images [31,32,40]. For this reason, a first requirement is that

the basis functions be orthogonal to the x-tilt, y-tilt, and defo-

cus aberrations.

A second requirement is that the basis functions express

the capabilities of the DM in an accurate and concise form,

by taking into account the mechanical limitations of the

mirror and the misalignment in the optical system as much

as possible. This requirement is not satisfied when using

Zernike polynomials as the basis functions since a DM with

Na actuations cannot accurately induce a set of Na Zernike

polynomials.

We now discuss a simple procedure to define a new set of

basis functions that satisfy the two requirements discussed so

far. This procedure is based on the singular value decompo-

sition (SVD) of a matrix H that approximately describes a lin-

ear relationship between the control signals of the DM and a

set of Zernike coefficients. For completeness, we first report

how H can be computed from input–output measurements.

A. Computation of Matrix H from Input–Output
Measurements
Let Na be the number of actuators of the DM. Assuming that

the DM is a linear device, the phase aberrationΦ�ξ� is given by

the superposition of the influence functions [41,42] ψ i�ξ� of

each actuator, where ξ is the spatial coordinate in the pupil

and ui is the control signal of the ith actuator:

Φ�ξ� �
X

Na

i�1

uiψ i�ξ�: (1)

For a suitable number Nz of Zernike polynomials Zj�ξ�, the

phase aberration is approximated by

Φ�ξ� ≈
X

1�Nz

j�2

zjZj�ξ�; (2)

where zj is the jth Zernike coefficient. We neglect the piston

mode Z1 since this does not affect the image and assume that

Φ�ξ� and ψ i�ξ� have zero mean value over the pupil.

The coefficients ui and zj are collected, respectively, into

vectors u ∈ RNa and z ∈ RNz . By considering a grid defined in

the pupil, Nc samples of Φ�ξ� are collected into a vector

ϕ ∈ RNc . Similarly, we evaluate ψ i�ξ� and Zj�ξ� over the grid

and define two matrices Ψ ∈ RNc×Na and Z ∈ RNc×Nz . Using

Eqs. (1) and (2), we find ϕ � Ψu and ϕ ≈ Zz.

We would like to recover a matrix H which maps an

actuation vector u into the corresponding vector of Zernike

coefficients z, i.e., z ≈ Hu. H can be computed using input–

output measurements, so that the misalignment in the optical

system is accounted for. Using a Shack–Hartmann wavefront

sensor or interferometric methods [42–45] one can collect a

set of measurements of the phase ϕ1;…;ϕD corresponding

to different settings of the DM u1;…; uD.

We compute H by minimizing the following criterion:

min
H

X

D

i�1

‖ϕi − ZHui‖
2: (3)

Setting the derivative with respect to H to zero leads to the

following normal equation:

ZTZH

�

X

D

i�1

uiu
T
i

�

� ZT

�

X

D

i�1

ϕiu
T
i

�

; (4)

which can be solved by multiplying from the left and from the

right by the inverse matrices of ZTZ and
P

D
i�1 uiu

T
i . For a

properly defined grid, the inverse of ZTZ exists, since Z is full

column rank due to the orthogonality property of the Zernike

polynomials. Additionally, vectors ui can be selected so that
P

D
i�1 uiu

T
i is full rank.

In our system we have Na � 17 and Nc � 75912. We per-

formed D � 4Na measurements of the phase ϕ1;…;ϕ4Na
. In

each measurement, a single actuator is poked while the other

actuators are at rest. We empirically chose D � 4Na, other

choices are possible provided D ≥ Na. The choice of Nz is

more critical. With a poor choice of Nz, the accuracy require-

ment discussed at the beginning of Section 2 may not be

fulfilled and the approximation z ≈ Hu may be too rough.

We chose Nz � 35 by evaluating the error in approximating

the phase measurements ϕi using an increasing number of

Zernike polynomials.

B. SVD-Based Removal of the x-Tilt, y-Tilt, and
Defocus Aberrations
From the previous section, we conclude that, in our system,

the Na � 17 influence functions approximately span a

subspace of the space spanned by the first Nz � 35 Zernike

polynomials. Because rank�H� < Nz, there exist nonzero

vectors z that do not belong to the range of H and the Zernike

polynomials should not be used as the basis functions for the

control of the DM.

We can split vector z and matrix H so that z ≈ Hu is

partitioned as

�

zl
zh

�

≈

�

H l

Hh

�

u; (5)

where the x-tilt, y-tilt, and defocus coefficients are collected

into zl � �z2; z3; z4�
T . The SVD of H l is

H l � U l�Σl 0 �

�

VT
l1

VT
l2

�

; (6)

where Σl has dimensions 3 × 3, V l1 has dimensions Na × 3, and

V l2 has dimensions Na × Np with Np � Na − 3. The required

constraint that zl ≈ 0 is enforced if we choose u such that

H lu � 0. This is achieved by parametrizing u using the
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columns of V l2, i.e., letting u � V l2p, where p ∈ RNp . There-

fore, the phase aberration is

Φ�ξ� �
X

Na

i�1

uiψ i�ξ�; s:t: u � V l2p (7)

or equivalently

Φ�ξ� �
X

Np

i�1

piωi�ξ�; (8)

where ωi�ξ� are the new basis functions. These functions are

defined byωi�ξ� �
PNa

j�1 �V l2�jiψ j�ξ�, where �V l2�ji denotes the

element of V l2 at position �j; i�. For a given vector p, we can

compute the control signals of the actuators with u � V l2p.

Similarly, for a given p, the Zernike analysis of the induced

wavefront aberration is given by z ≈ HV l2p.

In our experiments, we also applied regularization [46] by

truncating the SVD of HV l2 to U1Σ1V
T
1 . Using no more than

80% of the sum of the singular values, Σ1 was a 7 × 7 matrix

and the DM was controlled with a vector r ∈ RN , where

N � 7. For a given r, the control signals of the actuators of

the DM are computed using u � V l2V1r. The Zernike analysis

of the induced wavefront aberration is computed using zh ≈

HhV l2V1r and the rms of the phase profile is given by comput-

ing the 2-norm, i.e., ‖zh‖. This is equivalent to applying an-

other parametrization to Eq. (8). We remark that in this

way, no pseudoinverse is ever computed or used to control

the DM, differently from what is done in [41], for example.

3. LEAST-SQUARES ESTIMATION OF
THE UNKNOWN ABERRATION

In this section we discuss the aberration correction algorithm.

In [32,34,35], the authors show that, for small aberrations, the

image quality metric can be modeled using a quadratic poly-

nomial. We denote a measurement of the image quality metric

at time instant k with ~yk, so that

~yk � c0 − �x� rk�
TQ�x� rk� � ϵk; (9)

where c0 and Q are the parameters of the quadratic polyno-

mial. Matrix Q is a positive semi-definite matrix, i.e., Q⪰0

[26]. Vector x represents the unknown aberration whereas

rk accounts for the aberration induced by the DM. The term

ϵk is a placeholder that collects both the uncertainty in mod-

eling the image quality metric and the measurement noise, and

as such it cannot be measured by definition. By including this

term, a measurement ~yk can be set equal to the right-hand side

of Eq. (9). Excluding εk, the right-hand side of Eq. (9) is re-

ferred to as the approximate image quality metric in [26].

The parameters c0 and Q can be computed using the input–

output measurements recorded in a calibration experiment

described in Subsection 4.C or using the methods described

in [31,47].

A. Definition of the Least-Squares Problem
The aberration correction is achieved by maximizing the

image quality metric, i.e., by letting rk � −x in Eq. (9). For this

reason, we must first estimate the unknown vector x. This can

be done by applying m ≥ N � 1 trial aberrations r1;…; rm

with the DM and by taking the corresponding measurements
~y1;…; ~ym.

Collect ϵ1;…; ϵm into a vector ϵ and ~y1;…; ~ym into a vector

~y. By stacking m instances of Eq. (9), we can define a vector-

valued function g,

g�x� �

2

6

6

4

c0 − �x� r1�
TQ�x� r1�

..

.

c0 − �x� rm�
TQ�x� rm�

3

7

7

5

; (10)

such that

~y � g�x� � ϵ: (11)

The least-squares estimate of x is obtained by minimizing

‖ϵ‖2, i.e., by solving

min
x

f �x�; (12)

where

f �x� � ‖~y − g�x�‖2: (13)

We note that if vector ϵ follows a multivariate normal distri-

bution with zero mean and covariance proportional to the

identity matrix, solving Eq. (12) provides the maximum like-

lihood [48] estimate of x.

B. Analysis of the Least-Squares Problem
Finding the global minimum of f �x� appears to be nontrivial

as f �x� may be nonconvex. This is illustrated with a two-

dimensional example in Fig. 1. Here, the contour plot of

Eq. (13) is shown, when m > N � 1 measurements of ~y are

taken. The measurement noise is zero, i.e., ϵ � 0. Never-

theless, f �x� is not convex and exhibits two critical points.

In addition to the least-squares solution xls of Eq. (12), which

is the global minimum and for which f �xls� � 0, a local mini-

mum xloc is present. In case one uses rk � −xloc to perform the

aberration correction, then the residual aberration is not zero

and the image quality metric is not maximized.

0

20

40

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Fig. 1. Contour plot of Eq. (13). In this example, f �x� is not convex
and exhibits a local minimum. The parameters are c0 � 100 and

Q � � 1.25
0.433

0.433
1.25

�. Four measurements of ~y, taken at r1 � �0; 0�T ,

r2 � �1; 0�T , r3 � �0; 1�T , and r4 � �0;−1�T are marked with × symbols.

The global minimum xls � �−1.2; 1.2�T and the local minimum xloc ≈

�1.2582;−0.3421�T are indicated with � symbols. Isolines with an eleva-
tion greater than 70 have been removed for clarity. A cross
section along the dashed line is reported in the plot in the bottom.
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Because the convexity property is not satisfied in general, it

is unclear how xls can be computed. For example, a gradient-

based method applied to solve Eq. (12) may fail to compute

xls. Alternatively, more sophisticated algorithms may be

unsuitable to meet the requirements of a real-time implemen-

tation. Nevertheless, the global solution of Eq. (12) can be

computed efficiently even when f �x� is not convex, as is out-

lined in the following section.

C. Efficient Computation of xls

In [49], an efficient algorithm to find the global solution of a

possibly nonconvex optimization similar to Eq. (12) was

developed, in the context of localization problems. In this

section we show how the solution proposed in [49] can be

applied to our problem. For the remaining part of the paper

we assume that Q is strictly positive definite. This assumption

is reasonable since if there are aberrations that do not

affect the image quality metric then these cannot be corrected

and they should be neglected during the aberration correc-

tion [26].

Introducing an additional scalar variable α, we can

reformulate Eq. (12) into the following equivalent constrained

optimization:

min
x;α

X

m

k�1

�−α − 2rTkQx� c0 − rTkQrk − ~yk�
2

s:t: α � xTQx: (14)

Problem (14) is written concisely in matrix form as

min
w

‖Aw − b‖2 s:t: wTDw� 2fTw � 0; (15)

where

wT � � xT α �; R � � r1 … rm �;

A � �−2RTQ −1 �; b �

2

6

6

6

4

rT1Qr1 � ~y1 − c0

..

.

rTmQrm � ~ym − c0

3

7

7

7

5

;

D �

�

Q 0

0 0

�

; fT � � 0 −1∕2 �T (16)

and 1 and 0 denote vectors of appropriate dimensions where

all components are, respectively, ones and zeros. The authors

in [49] note that Eq. (15) is a generalized trust region subpro-

blem [50]. Such problems, although nonconvex in general,

have necessary and sufficient optimality conditions [50]. In

particular, from [49,50], we know that w is a global minimizer

of Eq. (15) if and only if there exist a Lagrange multiplier ν

such that

�ATA� νD�w � ATb − νf

wTDw� 2fTw � 0

ATA� νD⪰0 : (17)

We assume that matrix A is full column rank, which in turn

implies that m ≥ N � 1. This assumption on A is by no means

restrictive. Because Q≻0, it can be factored Q � VΔVT ,

where Δ is diagonal and full rank. Choose R � �V; 0�, where

0 is a vector of zeros, then A is full column rank. We further

assume that the optimal Lagrange multiplier ν� is such that

ATA� ν�D is strictly positive definite. The authors in [49]

point out that this more restrictive assumption could be re-

moved with a more refined analysis. However, the case where

ν� is such that ATA� ν�D is not strictly positive definite is

unlikely to occur both in theory and in practice [49].

Under these assumptions, one can compute

w�ν� � �ATA� νD�−1�ATb − νf� (18)

for a fixed value of ν. By replacing w in the second equation

in Eq. (17) with the right-hand side of Eq. (18), one finds a

univariate rational polynomial equation in ν:

w�ν�TDw�ν� � 2fTw�ν� � 0: (19)

The optimal Lagrange multiplier ν� can be found examining

the solutions of Eq. (19). From the assumption ATA� νD≻0,

it can be derived [49,50] that νmust be in the interval �I l;�∞�,

where I l � −1∕λmax�Δ
−1∕2
A VT

ADVAΔ
−1∕2
A �, and we used the fac-

torization ATA � VAΔAV
T
A . In addition, it is known [49,50] that

Eq. (19) is strictly decreasing in ν within the considered inter-

val. Therefore, the desired root ν� of Eq. (19) can be found

efficiently, for example via a bisection algorithm [49]. Once

ν� is found, the estimate of x is extracted from the first N com-

ponents of w�ν��.

The aberration correction algorithm is therefore applied in

the following manner. First, the data collection step takes

place, whereby the m ≥ N � 1 trial aberrations are applied

and the corresponding measurements ~y1;…; ~ym are taken.

Then, ν� is computed by finding the root of Eq. (19) within

�I l;�∞�. The estimate xls of the aberration is found in the first

N components ofw�ν��. The second step involves applying the

aberration correction with the DM, by letting r � −xls. These

steps can be repeated in the following time instants by includ-

ing more than m measurements to achieve a refined correc-

tion. We note that in [26], the least-squares estimate of x was

not computed since the quadratic constraint in Eq. (14) was

neglected to obtain a linear least-squares problem.

4. EXPERIMENTAL RESULTS

We implemented the model-based wavefront sensorless

algorithm and report the experimental results in this section.

Following [33], we employ the mean image intensity as a met-

ric to correct aberrations in our second-harmonic microscope.

Our experiments show successful aberration correction using

this metric (see Subsection 4.G).

Our first purpose is to validate a previously proposed

method [26] to compute the parameters c0 and Q of Eq. (9)

using input–output measurements. This validation has not

been previously done in a realistic setting, since in [26] no

microscope and no specimen were involved. Additionally,

we intend to validate the aberration correction algorithm

described in Subsection 3.C. We report our results in the

following sections.

A. Description of the Experimental Setup
A schematic of the experimental setup is shown in Fig. 2. The

source is a Coherent Chameleon Ultra II Ti:Sa 140 fs pulsed,
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near-infrared laser, with a beam diameter of 1.2 mm. This

beam is expanded to a 14 mm wide beam by lenses L1 and L2.

The beam is stopped down to 9.5 mm (AP) before it is

reflected under an angle of about 10° by the DM (Okotech,

17-channel micromachined DM with tip-tilt stage). The DM

is reimaged one-to-one onto the objective back-aperture by

lenses L3 and L4 (focal lengths, 300 mm). Because the DM

can only introduce negative deflection, we bias the mirror

so that we can apply positive and negative deflections to cor-

rect the wavefront (see [42]). In addition, the relationship be-

tween the control signal ui of each actuator of the DM and the

voltage applied to the corresponding electrode is quadratic, so

that a linear displacement of the membrane is expected [42].

Due to this bias, the collimated beam coming from L2 is con-

verging after being reflected by the DM. We corrected this by

using lenses L4 and L3, so that a collimated beam is fed into the

objective.

The sample is mounted on an xyz-piezo stage (XYZ; PI,

Nanocube P-611.3S). The second-harmonic signal from the

specimen is collected by the objective and split off by a

705 nm cut-off dichroic beam splitter (DBS; Semrock,

FF705-Di01-25×36). This light is focused onto a 600 μm multi-

mode fiber that is connected to a photomultiplier tube (PMT;

Hamamatsu, GaAsP photocathode H7422P-40). The objective

used (OBJ) is a 40 × ∕0.9 NA Nikon air objective with spheri-

cal correction collar. We manually adjusted the collar to cor-

rect for the spherical aberration due to the cover glass and the

specimen at the selected depth.

For characterization of the DM, we interfere a tilted refer-

ence beam with a sample beam deflected off the DM to create

fringes that encode the wavefront deformation. To allow this,

a 50∕50 beam splitter (BS1; Thorlabs, BS016) splits off part of

the light into a reference arm beam, which is relayed onto the

camera (CCD; AVT, Guppy Pro F-033b) by mirrors M3, M4,

and M5. The sample arm beam is deflected by the DM once

before flip mirror FM1 directs the light into the calibration

arm. Lenses L6 and L7 reimage the DM onto a camera. For

this calibration we use the alignment laser, which is a continu-

ous wave. We used the method described in [6] to decode the

wavefront from the fringe patterns.

The piezo stage is controlled with a data acquisition board

(National Instruments, PCI-e 6259) on a Windows computer

running LabView. The DM is controlled through a PCI DAC

card on a Linux computer running MATLAB and custom

C code.

In the aberration correction experiments we imaged colla-

gen fiber extracted from rat tail washed four times in distilled

water. Following fixation in 4% paraformaldehyde, the fiber

was washed in phosphate buffer saline and then embedded

in 3% agarose (Sigma-Aldrich chemie GmbH) in a 35 mm glass

bottom dish (MatTek Corporation). We used 900 nm excita-

tion light to generate the second-harmonic signal.

B. Preparation of the Experiments
We first imaged a 20 μm × 20 μm region, approximately 33 μm

deep into the collagen fiber. The region is labeled with A in

Fig. 3. The influence of the size of the region used for the

aberration correction has been studied elsewhere [35]. For

a certain setting of the DM r, the region is scanned using

the xyz stage. The corresponding value of the image quality

metric ~y is measured as the mean image intensity [32–35],

i.e., the mean pixel value recorded over the region. The pixel

dwell time is 0.5 ms and the sampling is 24 pixels × 24 pixels.

With these settings, the xyz stage does not reach the full 20 μm

distance in the x scanning direction, which is the fast axis.

This was not an issue since such a coarse sampling was only

used to perform the aberration correction in a short time [34].

The final images taken after the aberration correction were

recorded with a higher sampling. The image deformation

due to both the nonlinearity and nonuniform speed of the

xyz stage were removed from the final images, using interpo-

lation and the signals recorded with the position sensors of

the xyz stage.

First, the static aberrations in the system due to misalign-

ment and imperfections in the optical components were

corrected. We used the nonzero initial aberration that was

found during the calibration of the DM in Section 2 (about

Fig. 2. Illustration of the optical setup. The components in black are
used throughout the aberration correction experiments. The compo-
nents in gray are used only for the initial characterization of the DM.
A pulsed laser beam is expanded with lenses L1 and L2, clipped by
aperture AP, and reflected by flat mirror M1 onto the DM. The DM
is in an image of the back aperture of the microscope objective
(OBJ), using lenses L3 and L4. The DM is illuminated under an angle
of about 10° using the flat mirrors M1 and M2. The microscope objec-
tive (OBJ) focuses the light onto the specimen, which is supported by
an xyz stage (XYZ). The second-harmonic signal emitted from the
focal point inside the specimen is collected with the objective and sep-
arated from the illumination beam using a dichroic beam splitter
(DBS). The emitted signal is focused by lens L5 onto a photomultiplier
tube (PMT). For characterizing the DM, the surface of the DM is
reimaged onto a CCD camera (CCD) using the flip mirror FM1, flat
mirror M6, and lenses L6 and L7. A reference arm is created using
beam splitter BS1, flat mirrors M3, M4, M5, and beam splitter BS2.
A coherence-gated fringe analysis method described elsewhere [6]
is applied to the fringe pattern generated onto the CCD.

Fig. 3. Cross sections of rat tail collagen fiber used in our experi-
ments. The smaller image on the right-hand side is an xz cross section
(50 μm × 50 μm, 128 pixels × 128 pixels). The dashed line denotes
an xy cross section (80 μm × 80 μm, 256 pixels × 256 pixels) approx-
imately 33 μmdeep, which is shown on the left-hand side. Three differ-
ent 20 μm × 20 μm regions are marked.
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0.79 rms rad at 900 nm, mostly astigmatism). At this point the

Nelder–Mead algorithm [51] was executed four times to find a

value r that maximizes ~y. Unfortunately, this led to the satu-

ration of two actuators, indicating that the stroke of the DM

may be insufficient to completely suppress the aberration in

this region. We selected a slightly suboptimal vector r from the

vectors generated by the Nelder–Mead algorithm. For the se-

lected vector, the maximum normalized voltage of the actua-

tors was 0.72, i.e., ‖u‖
∞
≤ 0.72, ~y improved by 3% and a total

aberration of about 0.18 rms rad was suppressed. This state

was used as the new initial condition for the rest of the experi-

ments, i.e., r � 0 is mapped to this setting of the DM. In the

following sections, all the units in rad are referenced to the

900 nm excitation laser light.

C. Computation of the Parameters of the Quadratic
Polynomial Using Input–Output Measurements
We executed the computation of the parameters of the quad-

ratic polynomial used for modeling the image quality metric

multiple times. Each time, the sequence of input vectors con-

sisted of two subsequences. The first subsequence contained

random vectors r1;…; r250 and was used for the validation and

the cross-validation. The second subsequence contained 70

fixed vectors (each vector having a single nonzero compo-

nent). The second subsequence was included because the

250 random vectors may be insufficient to uniformly sample

the N -dimensional space of the inputs. In [26], 3750 random

vectors were used, but this was impractical here, due to the

time necessary to move the xyz stage. The maximum rms rad

of the input aberrations did not exceed 0.81. This value was

empirically tuned by examining the goodness of fit as a func-

tion of the maximum rms [26].

For each input vector in the sequence, we measured the

corresponding output of ~y. The resulting input–output data,

i.e., collections ~y1;…; ~y320 and r1;…; r320 were used to formu-

late the following optimization problem [26]:

min
~x
‖ ~A ~x−~b‖ s:t:

~A �

2

6

6

4

1 rT1 −rT1 ⊗ rT1

..

. ..
. ..

.

1 rT320 −rT320 ⊗ rT320

3

7

7

5

;

~b � � ~y1 … ~y320 �
T ;

~x � � c0 cT1 vec�Q�T �T ;

Q⪰0; (20)

where vec�·� denotes the vectorization operation and ⊗ the

Kronecker product. This program was solved using CVXOPT

[52] (see [53] for further details).

D. Validation and Cross-Validation of the Computed
Parameters
The results of applying Eq. (20) in region A marked in Fig. 3

are shown in Fig. 4. The computation of the parameters was

repeated six times. Each time, a new input–output dataset was

acquired, D1;…;D6. For each input–output dataset, optimiza-

tion (20) was solved generating six sets of parameters, each

set comprising c0, c1, and Q. The sets are denoted as

M1;…;M6. We quantified the goodness of fit for all combi-

nations of D and M by means of the R2 indicator. Using the

random input subsequence of Di and Mj , we computed

the predicted output ô ∈ R250 of the image quality metric.

The input–output data points obtained from the deterministic

input subsequence of 70 vectors were discarded and were not

included in the computation of the R2 indicator, which is

obtained using the following equations:

R2 � 1 − Sr∕St; Sr � ‖o − ô‖2;

St � ‖o − ō1‖2; ō � �1∕250�1To; (21)

where o is the measured output of Di. An R2 � 1 implies a

perfect fit of the experimental data.

Figure 4 reports R2 indicators that are close to one, imply-

ing a good fit of the experimental data. A good fit is also found

for the combinations that are off the main diagonal. Here the

parameters c0, c1, and Q allow to accurately predict cross-

validation output data. Similar results were found for the other

two regions marked in Fig. 3.

E. Correction of the Residual Aberration
In this section we apply the aberration correction algorithm

described in Subsection 3.C. First, we attempt to further re-

duce the residual aberration in region A, which is marked

in Fig. 3. Some aberration may not have been completely sup-

pressed by the Nelder–Mead algorithm, which was applied to

region A in Subsection 4.B. We therefore expect no improve-

ment or a small improvement in region A. Second, we apply

the aberration correction to regions B and C, where the

Nelder–Mead algorithm was not applied. Here, we expect

some improvement, provided that the aberrations found in

regions B and C are different from the aberration found in

region A.

We take the parameters c0, c1, and Q that were computed

using D6 in Subsection 4.D. In order to apply the algorithm,

the following modified parameters need to be used, i.e.,

c00 � c0 � �1∕4�cT1Q
−1c1, c

0
1 � 0, and Q0 � Q. This modification

is necessary since, for simplicity, in Section 3 we

neglected the linear term c1. This term corresponds to the

aberration that is present when computing the parameters

of the quadratic polynomial, see [26] for further details.

The aberration correction experiment is applied in the three

Fig. 4. Validations and cross-validations of the computation of c0, c1,
and Q using Eq. (20). The computation has been performed six times
in regionA in Fig. 3.Di denotes the input–output data taken during the
ith time. Mi denotes the set of parameters [c0, c1, and Q in Eq. (20)]
computed from Di. For each combinationMi and Dj , the ith random
input subsequence and Mj are used to compute the predicted output
ô ∈ R250. Each rectangle reports the goodness of fit [R2, see Eq. (21)]
computed comparing ô with the corresponding measured output o ∈
R

250 of Dj . A value of one for the goodness of fit indicates that the
model fits the data without error. High values of the goodness of
fit are reported in all combinations, showing that Eq. (20) is a robust
method to compute the parameters.
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regions using the corresponding parameters for each region.

A summary of the results is given in Fig. 5.

In Fig. 5(a), the normalized measurements of the image

quality metric are reported for region A (curve with ∘ mark-

ers), region B (curve with □ markers), and region C (curve

with ⋆ markers). The measurements are normalized using

the corresponding maximum recorded measurement ~ymax in

each region. The initial value of ~y is reported at sample time

k � 0. This measurement is not supplied to the aberration cor-

rection algorithm. The data collection step is performed be-

tween time k � 1 and k � 8 inclusive, where N � 1 � 8

trial aberrations are applied. From time k � 9 onward, the

aberration correction step is applied.

As expected, a marginal improvement is found in region A

(curve with ∘markers), where an aberration of about 0.38 rms

rad is corrected. The rms of each aberration is estimated using

‖HhV l2V 1x
ls‖, adjusted for the 900 nm excitation light. Also in

region B (curve with □ markers), a small aberration of about

0.37 rms rad is corrected. In region C (curve with⋆markers),

an estimated 1.27 rms rad aberration is corrected, leading to

an improvement of 20% of the image quality metric. Never-

theless, two actuators of the DM are saturated.

Two 256 pixels × 256 pixels images of region C are

reported in Figs. 5(b) and 5(c). These images are recorded

before [k � 0, Fig. 5(b)] and after [k � 24, Fig. 5(c)] the aber-

ration correction. The cross sections marked in the images are

reported in a single graph in Fig. 5(d). The image taken at time

k � 24 is 18% brighter and shows finer detail in the bottom and

right parts. Here some structure of the fiber was not visible at

time k � 0. The improvement is less clear when examining the

left and top parts of the region. One possible reason for the

variability of the improvement is that the aberration is not spa-

tially invariant over the considered region. We also note that

the applied correction was not optimal, due to the saturation

of two actuators of the DM. We conclude by observing that

this improvement after the aberration correction is compat-

ible with what was achieved by running four iterations of

the Nelder–Mead algorithm in Subsection 4.B.

F. Validation of the Aberration Correction Algorithm
To assess whether the aberration correction algorithm is

effectively removing aberration we performed a different kind

of experiment. First, we introduce a known amount of

aberration using the DM. We then apply the aberration correc-

tion algorithm to suppress this aberration. The algorithm is

not supplied with any information about the known aberra-

tion. Finally, we evaluate the residual aberration by compar-

ing the estimate of the aberration provided by the algorithm

with the known aberration. This experiment is commonly

employed in the literature to assess the effectiveness of the

aberration correction [26,29,34,35].

Figure 6 reports a summary of the correction of 20 random

aberrations introduced with the DM in region A. The

upper plot in Fig. 6 shows some statistical indicators of the

normalized measurements of the image quality metric.

Fig. 5. Summary of three aberration correction experiments. (a) Evolution of the normalized image quality metric. The experiments were per-
formed in region A (curve with○markers), B (curve with□markers), and C (curve with⋆markers), which are marked in Fig. 3. For each region,
the corresponding parameters computed by solving Eq. (20) were used. ~ymax is the maximum measurement of ~y in each region. The estimated rms
rad of each aberration is 0.38 for region A, 0.37 for region B, and 1.27 for region C. (b) 256 pixels × 256 pixels image of region C at sample time
k � 0. (c) 256 pixels × 256 pixels image of regionC at sample time k � 24. (d) cross sections taken along the arrowsmarked in (b) and (c), black for
(b) and gray for (c).

Fig. 6. Summary of the correction of 20 random aberrations induced
by the DM in region A, which is marked in Fig. 3. The upper plot re-
ports the normalized measurements of the image quality metric. The
measurements are normalized using the maximum measurement ~ymax

that is recorded throughout the 20 experiments. At time k � 0 the ini-
tial value of ~y is reported; this data point is not supplied to the aber-
ration correction algorithm. Between time k � 1 and k � 8, the data
collection step is executed. From time k � 9 onward, the aberration
correction step is applied. A statistical analysis is made at each time
instant using the function boxplot from MATLAB. The tops and
bottoms of the rectangles denote the 25th and 75th percentiles, the
horizontal lines in the middle of the rectangles denote the medians,
and the whiskers extend to the furthest measurements not considered
as outliers. The� symbols denote single outliers. The same statistical
analysis is performed for the residual aberration, and the results are
shown in the lower plot.
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The measurements have been normalized using the maximum

measurement of the metric ~ymax that is recorded throughout

the 20 experiments. The median, 25th, and 75th percentiles

are computed in each time instant, see the caption of Fig. 6

for a detailed legend. The same analysis has been made for

the residual aberration and is reported in the lower plot in

Fig. 6. The rms of the residual aberration is computed as

the rms of the difference between the known aberration intro-

duced by the DM and the respective estimate provided by the

algorithm. From this figure, we conclude that the image qual-

ity metric is consistently maximized, as the median is close to

1 after the aberration correction is applied from sample time

k � 9 onward. This is consistent with the reduction in the

residual aberration reported in the lower plot.

The same experiments were performed in regions B and C.

In both cases we used the corresponding modified parame-

ters, computed using D6 in Subsection 4.D. The results are

reported in Figs. 7 and 8. Whereas, the results for region C

are similar to the results obtained in region A, the results

in region B do not show a good performance, since the medi-

ans of the residual aberration are comparable with the initial

aberration before the correction.

Out of the 20 trials in region B, we report, respectively, the

ones that resulted in the maximum and in the minimum

improvement of ~y in Fig. 9. In Fig. 9(a), some fine structure

of the fiber is more visible after the correction, which is com-

patible with a successful aberration correction. On the other

hand, in Fig. 9(b), the aberration correction failed, as both the

image after the correction is visually worse and the intensity is

slightly decreased.

The experiments resulting in the maximum and in the mini-

mum improvement of ~y in region C are also reported in Fig. 10.

In Fig. 10(a), a successful aberration correction is shown, with

a clear maximization of ~y and a noticeable improvement in the

contrast of the image after the correction. In Fig. 10(b), the

improvement is more marginal.

G. Analysis of the Experimental Results
We computed the correlation among different quantities to

concisely assess the results of the 60 aberration correction

experiments reported in Figs. 6, 7, and 8. Considering the last

time instant k � 24, we set up a saturation indicator variable

s1;…; s60 that is 1 if saturation of some actuators of the DM

occurred and −1 otherwise.

We computed a correlation of −0.2477 between the normal-

ized measurement of the image quality metric and the satura-

tion indicator variable. These two quantities are slightly

inversely correlated, meaning that saturation of some actua-

tors negatively affected the final value of the image quality

metric. The correlation between the final rms of the residual

aberration and the saturation indicator variable was 0.3457.

This positive correlation shows that a larger amount of

residual aberration was found when the stroke of the DM

was exhausted. Finally, we computed a correlation of

−0.7388 between the normalized measurement of the image

quality metric and the rms of the residual aberration, which

confirms that some aberration is removed by maximizing

the image quality metric. We conclude that saturation of

the DM was an issue that hampered the results in our exper-

imental validation.

H. Variations of the Parameters over the Field of View
We report spatial variations in the parameters c0, c1, and Q.

The parameters differed when computed, respectively, in re-

gions A, B, and C in Fig. 3. Due to the variations, we were not

able to apply the aberration correction algorithm using a

single set of parameters, e.g., by correcting aberrations in

regions B and C using the parameters computed from

region A. Variations in the parameters represent a challenge

for model-based aberration correction algorithms, since the

parameters are computed once only using a calibration

experiment [25–37].

Parameter c1 depends on the nonzero aberration that is

present when collecting the input–output measurements used

in Eq. (20). This parameter can be removed by applying the

aberration correction algorithm as done in Subsection 4.E. In-

stead, c0 is dependent on the maximum value of the image

quality metric, which differed in the three regions. We found

variations in Q. For example, the largest eigenvalue of Q var-

ied by about 30% in region B and by about 22% in region C with

Fig. 7. Summary of the correction of 20 random aberrations induced
by the DM in region B. See the caption of Fig. 6 for a legend of the
plots.

Fig. 8. Summary of the correction of 20 random aberrations induced
by the DM in region C. See the caption of Fig. 6 for a legend of the
plots.
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respect to its value in region A. The eigenvectors of Q were

also affected. For instance, the eigenvector corresponding to

the second largest eigenvalue of Q was rotated by about 7° in

region B and by about 21° in region C with respect to its ori-

entation in region A.

From Subsections 4.E and 4.F we conclude that the mini-

mum number of measurements necessary to apply the aber-

ration correction when c0 and Q are known is N � 1, as also

found in [25,26,30]. If the parameters c0 and Q vary during the

acquisition of different regions of the specimen, then addi-

tional measurements are necessary to update the parameters

before the aberration correction can be applied. This is con-

sistent with [29,31–35], where algorithms that use a minimum

of 2N � 1 measurements were employed. By approximating

the solution of Eq. (12), these algorithms use the additional

N measurements to estimate all the eigenvalues of Q each

time the aberration correction is applied (see Section 4

in [26]). Nevertheless, variations in the orientations of the

eigenvectors, such as the ones detected during our experi-

ments, are not accounted for and affect the accuracy of the

aberration correction (see Section 3 in [34]). For these rea-

sons, detecting variations and updating the parameters of

the model as different regions of the specimen are acquired

is an open research challenge.

5. CONCLUSIONS

In this paper we present a procedure to define a new set of

basis functions for the control of the deformable mirror

(DM). The new basis functions can be made approximately

orthogonal to a set of Zernike polynomials. This is necessary

for applying aberration correction in scanning microscopy

applications, where the DM must not induce the x-tilt, y-tilt,

and defocus aberrations.

The second contribution concerns the algorithm used

for the aberration correction. We consider computing the

least-squares estimate of the unknown aberration. Although

this problem is nonconvex in general, the least-squares

Fig. 9. Two aberration correction experiments from the set of experiments reported in Fig. 7. These two experiments resulted, respectively, in (a)
the maximum and (b) the minimum improvement of ~y. In both (a) and (b), a 256 pixels × 256 pixels image is taken before (on the left, k � 0) and
after (on the right, k � 24) the aberration correction. The graphs in the bottom of (a) and (b) show, respectively, the evolution of the normalized
metric (on the left) and the cross sections indicated by the arrows in the images (on the right). In the cross section graphs, the dark and the light
lines correspond, respectively, to k � 0 and k � 24.

Fig. 10. Two aberration correction experiments from the set of experiments reported in Fig. 8. These two experiments resulted, respectively, in (a)
the maximum and (b) the minimum improvement of ~y. Refer to the caption of Fig. 9 for a detailed legend.
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estimate can be computed efficiently by exploiting results al-

ready applied in the solution of localization problems [49].

Once the estimate is computed, the aberration correction is

applied by maximizing the image quality metric.

We implement the aberration correction algorithm in a

second-harmonic microscope. First, we are able to compute

the parameters of the quadratic polynomial used to model the

image quality metric directly from input–output measure-

ments, using a previously proposed method [26]. Second,

we validate the aberration correction algorithm discussed

in this paper. We also report the measurement of variations

in the parameters of the quadratic polynomial over the field

of view.
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