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ABSTRACT 
Nearly optimal solutions to many combinatorial problems can be 

found using stochastic simulated annealing. This paper extends 

the concept of simulated annealing from its original formulation 

as a Markov process to a new formulation based on mean field 

theory. Mean field annealing essentially replaces the discrete de­

grees of freedom in simulated annealing with their average values 

as computed by the mean field approximation. The net result is 

that equilibrium at a given temperature is achieved 1-2 orders of 

magnitude faster than with simulated annealing. A general frame­

work for the mean field annealing algorithm is derived, and its re­

lationship to Hopfield networks is shown. The behavior of MFA is 

examined both analytically and experimentally for a generic combi­

natorial optimization problem: graph bipartitioning. This analysis 

indicates the presence of critical temperatures which could be im­

portant in improving the performance of neural networks. 

STOCHASTIC VERSUS MEAN FIELD 

In combinatorial optimization problems, an objective function or Hamiltonian, 

H(s), is presented which depends on a vector of interacting 3pim, S = {81," .,8N}, 

in some complex nonlinear way. Stochastic simulated annealing (SSA) (S. Kirk­

patrick, C. Gelatt, and M. Vecchi (1983)) finds a global minimum of H by com­

bining gradient descent with a random process. This combination allows, under 

certain conditions, choices of s which actually increa3e H, thus providing SSA with 

a mechanism for escaping from local minima. The frequency and severity of these 

uphill moves is reduced by slowly decreasing a parameter T (often referred to as 

the temperature) such that the system settles into a global optimum. 

Two conceptual operationo; are involved in simulated annealing: a thermodatic op­

eration which schedules decreases in the temperature, and a relazation operation 
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which iteratively finds the equilibrium solution at the new temperature using the 

final state of the system at the previous temperature as a starting point. In SSA, re­

laxation occurs by randomly altering components of s with a probability determined 

by both T and the change in H caused by each such operation. This corresponds to 

probabilistic transitions in a Markov chain. In mean field annealing (MFA), some 

aspects of the optimization problem are replaced with their means or averages from 

the underlying Markov chain (e.g. s is replaced with its average, (s)). As the tem­

perature is decreased, the MFA algorithm updates these averages based on their 

values at the previous temperature. Because computation using the means attains 

equilibrium faster than using the corresponding Markov chain, MFA relaxes to a 

solution at each temperature much faster than does SSA, which leads to an overall 

decrease in computational effort. 

In this paper, we present the MFA formulation in the context of the familiar Ising 

Hamiltonian and discuss its relationship to Hopfield neural networks. Then the 

application of MFA to the problem of graph bipartitioning is discussed, where we 

have analytically and experimentally investigated the affect of temperature on the 

behavior of MFA and observed speedups of 50:1 over SSA. 

MFA AND HOPFIELD NETWORKS 

Optimization theory, like physics, often concerns itself with systems possessing a 

large number ofinteracting degrees offreedom. Physicists often simplify their prob­

lems by using the mean field approzimation: a simple analytic approximation of the 

behavior of systems of particles or spins in thermal equilibrium. In a correspond­

ing manner, arbitrary functions can be optimized by using an analytic version of 

stochastic simulated annealing based on a technique analogous to the mean field 

approximation. The derivation of MFA presented here uses the naive mean field 

(D. J. Thouless, P.W. Anderson, and R.G. Palmer (1977)) and starts with a simple 

Ising Hamiltonian of N spins coupled by a product interaction: 

L L ""' { Vi· = V.·i symmetry 
H(s) = ~Si + L..J'Vi;si s; where 'E {O '1} . t . s, , an eger spans. 

, i ;i:' 

Factoring H(s) shows the interaction between a spin s, and the rest of the system: 

H(s) = Si . (~ + 2 L Vi;S;) + L h"s" + L L V";s,,s; . (1) 

;~, "i:' "i:i ;i:".' 

The mean or effective field affecting s, is the average of its coefficient in (1): 

w, = (h, + 2 E;i:i Vi;s;) = ~ + 2 L Vi; (s;) = HI(Si)=l - HI(s,}=o' (2) 
; I-i 

The last part of (2) shows that I for the Ising case, the mean field can be simply 

calculated from the difference in the Hamiltonian caused by changing (s,) from zero 
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1. Initialize spin averages and add noise: 8i = 1/2 + 6 Vi. 

2. Perform this relaxation step until a fixed-point is found: 

a. Select a spin average (8,) at random from (s). 

h. Compute the mean field ~i = 14 + 2 E;;ti 'Vi; (8;). 

c. Compute the new spin average (8i) = {I + exp (~dT)} -1. 

3. Decrease T and repeat step 2 until freezing occurs. 

Figure 1. The Mean Field Annealing Algorithm 

to one while holding the other spin averages constant. By taking the Boltzmann­

weighted average of the state values, the spin average is found to be 

(3) 

Equilibrium is established at a given temperature when equations (2) and (3) hold 

for each spin. The MFA algorithm (Figure 1) begins at a high temperature where 

this fized-point is easy to determine. The fixed-point is tracked as T is lowered by 

iterating a relaxation step which uses the spin averages to calculate a new mean 

field that is then used to update the spin averages. As the temperature is lowered, 

the optimum solution is found as the limit of this sequence of fixed-points. 

The relationship of Hopfield neural networks to MFA becomes apparent if the re­

laxation step in Figure 1 is recast in a parallel form in which the entire mean field 

vector partially moves towards its new state, 

and then all the spin averages are updated using ~nc1ll. As'Y -t 0, these difference 

equations become non-linear differential equations, 

dip, = h. + 2 ~ 11:'{8') - ip. 'Vi · 
dt ' L.,;'" , I 

; 

which are equivaleut to the equations of motion for the Hopfield network (J. J. 

Hopfield and D. W. Tank (1985», 

Vi, 
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provided we make Gi = Pi = 1 and use a sigmoidal transfer function 

1 
f( ui) = -1 -+-ex-p"""( u-i /-:-T-"') • 

Thus, the evolution of a solution in a Hopfield network is a special case of the 

relaxation toward an equilibrium state effected by the MFA algorithm at a fixed 

temperature. 

THE GRAPH BIPARTITIONING PROBLEM 

Formally, a graph consists of a set of N nodes such that nodes 11i and n; are con­

nected by an edge with weight ~; (which could be zero). The graph bipartitioning 

problem involves equally distributing the graph nodes across two bins, bo and bl , 

while minimizing the combined weight of the edges with endpoints in opposite bins. 

These two sub-objectives tend to frustrate one another in that the first goal is sat­

isfied when the nodes are equally divided between the bins, but the second goal is 

met (trivially) by assigning all the nodes to a single bin. 

MEAN FIELD FORMULATION 

An optimal solution for the bipartitioning problem minimizes the Hamiltonian 

In the first term, each edge attracts adjacent nodes into the same bin with a force 

proportional to its weight. Counter balancing this attraction is .,., an amorphous 

repulsive force between all of the nodes which discourages them from clustering 

together. The average spin of a node 11i can be determined from its mean field: 

C)i = L)Vi; -.,.) 
;¢i 

EXPERIl\1ENTAL RESULTS 

L 2(Vi; - "')(8;} . 
;¢i 

Table 1 compares the performance of the MFA algorithm of Figure 1 with SSA 

in terms of total optimization and computational effort for 100 trials on each of 

three example graphs. While the bipartitions found by SSA and MFA are nearly 

equivalent, MFA required as little as 2% of the number of iterations needed by SSA. 

The effect of the decrease in temperature upon the spin averages is depicted in 

Figure 2. At high tempera.tures the graph bipartition is maximally disordered, (i.e. 

(8i) R: i Vi), but as the system is cooled past a critical temperature, Te , each node 
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TABLE 1. Comparison of SSA and MFA on Graph Bipartitioning 

G1 G1 G1 

Nodes/Edges 83/115 100/200 100/400 

Solution Value (HMFA/ HSSA 0.762 1.078 1.030 

RelaxatIOn Iterations (1M F A/ Iss A 0.187 0.063 0.019 
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Figure 2. The Effect of Decreasing Temperature on Spin Averages 

begins to move predominantly into one or the other of the two bins (as evidenced 

by the drift of the spin averages towards 1 or 0). The changes in the spin averages 

cause H to decrease rapidly in the vicinty of Te. 

To analyze the effect of temperature on the spin averages, the behavior of a cluster 

C of spins is idealized with the assumptions: 

1. The repulsive force which balances the bin contents is negligible within C 

(7' = 0) compared to the attractive forces arising from the graph edgesj 

2. The attractive force exerted by each edge is replaced with an average attractive 

force V = E, E; Vi; / E where E is the number of non-zero weighted edgesj 

3. On average, each graph node is adjacent to e = 2E/N neighboring nodesj ( 

4. The movement of the nodes in a cluster can be uniformly described by some 

deviation, u, such that (") = (1 + u)/2. 
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Using this model, a cluster moves according to 

(4) 

The solution to (4) is a fixed point with (1' = 0 when T is high. This fixed point 

becomes unstable and the spins diverge from 1/2 when the temperature is lowered 

to the point where 

Solving shows that Tc = Ve/2, which agrees with our experiments and is within 

±20% of those observed in (C. Peterson and J. R. Anderson (1987)). 

The point at which the nodes freeze into their respective bins can be found using 

(4) and assuming a worst-case situation in which a node is attracted by a single 

edge (i.e. e = 1). In this case, the spin deviation will cross an arbitrary threshold, 

(1', (usually set ±0.9), when 

V(1' 
Tf = . 

In(1 + (1't) - In(1 - (1't) 

A cooling scpedule is now needed which prescribes how many relaxation iterations, 

la, are required at each temperature to reach equilibrium as the system is annealed 

from Tc to Tf. Further analysis of (4) shows that Ia ex ITc/(Tc - T)I. Thus, 

more iterations are required to reach equilibrium around Tc than anywhere else, 

which agrees with observations made during our experiments. ,The affect of using 

fewer iterations at various temperatures was empirically studied using the following 

procedure: 

1. Each spin average was initialized to 1/2 and a small amount of noise was 

added to break the symmetry of the problem. 

2. An initial temperature Ti was imposed, and the mean field equations were 

iterated I times for each node. 

3. After completing the iterations at 11, the temperature was quenched to near 

zero and the mean field equations were again iterated I times to saturate each 

node at one or zero. 

The results of applying this procedure to one of our example graphs with different 

values ofT, and I are shown in Figure 3. Selecting an initial temperature near Tc and 

performing sufficient iterations of the mean field equations (I ~ 40 in this case) gives 

final bipartitions that are usually near-opt'imum, while performing an insufficient 

number of iterations (I = 5 or I = 20) leads to poor solutions. However, even a 

large number of iterations will not compensate if T, is set so low that the initial 

convergence causes the graph to abruptly freeze into a local minimum. The highest 
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Figure 3. The Effect of Initial Temperature and Iterations on the Solution 

quality solutions are found when T, ~ Tc and a sufficient number of relaxations 

are performed, as shown in the traces for I = 40 and I = 90. This seems to 

perform as well as slow cooling and requires much less effort. Obviously, much of 

the structure of the optimal solution must be present after equilibrating at Te. Due 

to the equivalence we have shown between Hopfleld networks and MFA, this fact 

may be useful in tuning the gains in Hopfield networks to get better performance. 

CONCLUSIONS 

The concept of mean field annealing (MFA) has been introduced and compared to 

stochastic simulated annealing (SSA) which it closely resembles in both derivation 

and implementation. In the graph bipartitioning application, we saw the level 

of optimization achieved by MFA was comparable to that achieved by SSA, but 

1-2 orders of magnitude fewer relaxation iterations were required. This speedup 

is achieved because the average values of the discrete degrees of freedom used by 

MFA relax to their equilibrium values much faster than the corresponding Markov 

chain employed in SSA. We have seen similar results when applying MFA to a other 

problems including N-way graph partitioning (D. E. Van den Bout and T. K. Miller 

III (1988)), restoration of range and luminance images (Griff Bilbro and Wesley 

Snyder (1988)), and image half toning (T. K. Miller III and D. E. Van den Bout 

(1989)). As was shown, the MFA algorithm can be formulated as a parallel iterative 

procedure, so it should also perform well in parallel processing environments. This 

has been verified by successfully porting MFA to a ZIP array processor, a 64-node 
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NCUBE hypercube computer, and a 10-processor Sequent Balance shared-memory 

multiprocessor with near-linear speedups in each case. 

In addition to the speed advantages of MFA, the fact that the system state is 

represented by continuous variables allows the use of simple analytic techniques 

to characterize the system dynamics. The dynamics of the MFA algorithm were 

examined for the problem of graph bipartitioning, revealing the existence of a critical 

temperature, Te , at which optimization begins to occur. It was also experimentally 

determined that MFA found better solutions when annealing began near Tc rather 

than at some lower temperature. Due to the correspondence shown between MFA 

and Hopfield networks, the critical temperature may be of use in setting the neural 

gains so that better solutions are found. 
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