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Timothy Wisniewski‡

Stephen J. Wright§

Abstract. We describe several of the case studies in the NEOS Guide, a site on the World Wide Web
that contains informational and educational material about optimization. These studies
show how optimization relates to practical applications. They guide the user through
relevant details of the application, formulation, solution, and interpretation of the results.
The studies use interactivity to build intuition, allowing users to define their own problems
and examine the corresponding solutions. The studies can be used for assignments in
optimization and operations research courses and as small self-guided units equivalent to
one or two lecture classes.
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1. Introduction. The point of applied mathematics is that the theoretical and
algorithmic developments at the core of the subject are relevant to important applica-
tions in the real world. In studying the subject, we learn the usefulness of abstracting
individual problem characteristics to a mathematical level. The connection to appli-
cations motivates us to tackle many of the conceptual difficulties that arise in our
study of the mathematics.

In optimization and operations research, case studies have proved to be an effec-
tive way to make the connection between theory and algorithms on the one hand and
applications on the other. The typical case study encompasses problem description,
mathematical formulation, use of algorithms to obtain a solution, and interpretation
of the results. The NEOS Guide case studies described in this paper have these fea-
tures, with the addition of some extra ingredients made possible by the World Wide
Web: accessibility and interactivity. Accessibility means simply that the studies can

∗Received by the editors February 14, 1998; accepted for publication (in revised form) August
2, 1998; published electronically January 22, 1999. This work was supported by the Mathematical,
Information, and Computational Sciences Division subprogram of the Office of Computational and
Technology Research, U.S. Department of Energy, under contract W-31-109-Eng-38. This work was
performed by an employee of the U.S. Government or under U.S. Government contract. The U.S.
Government retains a nonexclusive, royalty-free license to publish or reproduce the published form
of this contribution, or allow others to do so, for U.S. Government purposes. Copyright is owned by
SIAM to the extent not limited by these rights.

http://www.siam.org/journals/sirev/41-1/33487.html
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be accessed in seconds (via a few keystrokes and mouse clicks) by anyone with a con-
nection to the Web. The advantage of such an access mode over obvious alternatives
(such as obtaining and loading a piece of software from a diskette) may not seem
significant, but it can be critical in an age when people have little time to waste.
Indeed, the instantaneous nature of access to the Web has been a key element in its
success. Interactivity gives users the power to define their own problems, within the
framework of the case study in question. By relating the performance of the algorithm
and properties of the solution to their choice of problem and data, they build intuition
about the capabilities and limitations of the algorithm and formulation. Interactivity
makes the process active rather than passive, and therefore more fully educational.

Each NEOS case study illustrates one of the standard optimization paradigms:
linear programming, convex quadratic programming, integer linear programming, and
so on. Each study starts with a brief description of the application and its background
and proceeds to the mathematical formulation of the problem. In some cases, we
display the formulation explicitly in terms of AMPL, a mathematical modeling lan-
guage specifically tailored to optimization problems, which can serve as an interface
to many different software packages (see Fourer, Gay, and Kernighan [5]). Next, there
is a menu or table that allows the users to interact with the case study, for example,
by indicating the foods they are prepared to eat (in the case of the diet problem) or
by defining their risk tolerance (in the case of portfolio optimization). The solution
of the user-defined problem is then computed and displayed, and its significance is
explained in terms of the original application. The study concludes with pointers to
additional information about the underlying optimization paradigm, algorithm, and
software, much of which is found in other areas of the NEOS Guide.

All the case studies can be accessed from the following URL:
http://www.mcs.anl.gov/otc/Guide/CaseStudies/

They are frequently used for class assignments. In some cases, particularly for the
simplex applet described in section 2, they could be used during a lecture or tutorial.
Some could even be developed into self-contained course units, the equivalent of one
or two classes.

The NEOS case studies are built from a number of tools, including HTML files
for the web pages, perl scripts to drive the interactive aspects, AMPL to interface
to optimization software, the graphics package gd 1.2 (a freely available product of
Cold Spring Harbor Labs) to display the results, and Adobe Photoshop to add some
(strictly nonprofessional) graphic design touches to the web pages. The underlying
solvers include standard optimization packages such as IBM’s OSL, together with
customized solvers programmed by us in Java.

In the remainder of the paper, we briefly describe three of the NEOS Guide case
studies, including the real-world application and the optimization tools (mathematical
and computational) that are used to solve it. We show how the user interacts with
the studies, illustrating our results with a few screen shots. For more details of the
examples we discuss in this paper, see the website

http://www.mcs.anl.gov/otc/Guide/SIREV/

Section 2 describes the diet problem, a case study of a general linear programming
problem, and mentions our applet implementation of the simplex method. In section 3,
we discuss the portfolio optimization problem, a case study for convex quadratic
programming; and in section 4, we describe the cutting-stock problem, a particular
type of integer linear program.
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2. The Diet Problem. Soon after the end of World War II, the U.S. Army com-
missioned its mathematicians to find a one-day ration for its personnel that met their
nutritional requirements while minimizing cost. We know this problem as the diet
problem, and it is still in use today as a classic case study for linear programming in
many first courses in operations research.

The arrival of optimization as a distinct discipline is usually dated from the late
1940s, when George Dantzig invented the simplex algorithm for linear programming.
This enormously successful algorithm, still the most widely used algorithm for linear
programming, provided economists with a new tool for solving problems previously
thought of as intractable. Moreover, it was an ideal application for that newly invented
wonder, the electronic digital computer. We mention a Java implementation of the
simplex method later in this section.

Linear programming is the problem of minimizing a linear function of real vari-
ables over a set of linear constraints. It can be stated algebraically as follows:

min
x∈Rn

cT x subject to Ax = b, x ≥ 0,(1)

where c ∈ Rn is known as the cost vector, A ∈ Rm×n is the constraint matrix, and
b ∈ Rm is known as the dual cost vector. The particular formulation of the problem
in (1) is by no means the only one possible, but it is a useful one for developing
theory and algorithms and is referred to as the standard form. Any optimization
problem with a linear objective and linear constraints (linear inequality constraints,
linear equality constraints, bounds) can be reformulated equivalently as a standard-
form problem by a series of simple algebraic manipulations, including the insertion
of “slack” and “surplus” variables. Texts on linear programming abound; see, for
example, Chvátal [2].

In the diet problem, the variable xi represents the number of servings of food i to
be eaten in a single day. The corresponding cost vector component ci represents the
cost per serving of food i. The bound constraints x ≥ 0 enforce the obvious condition
that the quantities of each food to be eaten must be nonnegative. (The alternative
does not bear thinking about.) The constraints arise from nutritional considerations,
and possibly also matters of taste and digestibility. For example, if QA

i denotes the
amount of Vitamin A per serving of food i, then the total Vitamin A consumed in
one day would be

∑n
i=1 QA

i xi. A requirement that this quantity be at least equal to
some value qA

i is modeled as the following inequality constraint:

n∑
i=1

QA
i xi ≥ qA

i .(2)

To fit this constraint into the standard form (1) (where all constraints with the ex-
ception of the bounds x ≥ 0 are equality constraints), we define a slack variable sA

to be the amount by which the left-hand side in (2) exceeds the right-hand side. The
formula (2) can then be stated equivalently as

n∑
i=1

QA
i xi − sA = qA

i , sA ≥ 0.(3)

Other nutritional constraints also enter the problem, including upper and lower limits
on the intake of other vitamins, salt, calories, and fat. The objective function is
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simply the total cost of the day’s ration, which is

n∑
i=1

cixi,(4)

where ci is the cost per unit of food i.
The diet problem case study is accessible at

http://www.mcs.anl.gov/otc/Guide/CaseStudies/diet/
In this case study, users select from a large menu of possible food choices the items
they are prepared to include in their diet. The number of items they choose determines
the number of variables n in the problem. (Because of the use of slack variables, the
value of n in the actual problem formulation usually is larger than the number of items
chosen.) Information on the nutritional content of each item was gleaned from the
U.S. Department of Agriculture website. Prices per unit serving (that is, components
of the cost vector c) were in most cases obtained from the same source, though we
visited the local supermarket to obtain some of the prices. Government pricing for
some items (most notably, butter) is curiously low, leading to a prevalence of these
items in many of the calculated diets.

After selecting the food items they are prepared to eat, users are offered the
opportunity to modify the nutritional constraints and to impose their own constraints.
This process implicitly modifies the problem data (A, b, and the value of m) in (1).
For instance, a user may decide that they are not prepared to eat more than two
bananas per day, or may decide that at least one tomato per day should be included
in their diet. They could also decide to dispense altogether with the upper limit on
fat intake—a useful feature for ice-cream fans! This constraint adjustment process
implicitly modifies the problem data (A, b, and the value of m) in (1).

The user now clicks a “solve” button. The next web page now displays either the
optimal diet, or else a message indicating that the selection of foods provided by the
user was insufficient to generate a feasible diet. In the latter case, the selection of
foods and/or the constraints imposed are such that no combination of food quantities
meets all the constraints. In this situation, the case study suggests some food items
that can be added to the roster of possibilities to yield a feasible diet. The user can
then go back to the menu selection page, click on these foods (or some others), and
try again.

If the optimal diet was found, a table indicates the quantities and costs of each
food item and the total cost. Usually, not all foods chosen by the user appear in
the final diet; some of the variables xi in the model (1) are zero at the solution. In
addition, there are graphical depictions (in the form of pie charts, constructed with
the graphics utility package gd 1.2) of the contributions of each food in the optimal
diet to the nutritional constraints: the amount of Vitamin C, the total fat intake, and
so on. Finally, there is a page of sensitivity information obtained from the solution of
the dual problem.

Often, the optimal diet is not particularly appetizing. The user may not find
10 servings of wheat bread per day an exciting prospect, for instance. A few clicks
of the “back” button on the web browser takes one back to the constraints page,
where the upper bounds and lower bounds on the food items may be modified and a
new optimal diet calculated. This process of adjusting the model and reoptimizing is
itself instructive, since it mirrors the way in which optimization software is used in
real-world problem solving.
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Fig. 1 Sample output: Calorie breakdown for optimal diet when the first 25 items from the menu
are selected.

Figure 1 shows sample output for a diet problem trial in which we selected the
first 25 foods from column 1 of the roster as foods that we are prepared to include in
our diet. Four of these 25 are selected in the optimal diet, which has a daily cost of
$1.04. The figure shows the calories attributable to each of these foods. For further
details on the solution of this sample problem, see the website mentioned earlier.

Duality. The problem (1) gives rise to a rich body of theory, which derives mainly
from two sources: the relationship between the algebraic and geometric properties of
the problem (1) and the algorithms for solving it, and the relationship between the
problem (1) and another linear program known as the dual. The dual takes the data
objects A, b, and c that define (1) and uses them to define a new linear program as
follows:

max
π∈Rm

bT π subject to AT π ≤ c.(5)

An alternative (and equivalent) statement of the dual is obtained by introducing slack
variables s for the constraints AT π ≤ c and writing

max
π∈Rm,s∈Rn

bT π subject to AT π + s = c, s ≥ 0.(6)
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The duality theory of linear programming shows, among other things, that the optimal
values of the primal and dual problems are the same. That is, if x∗ solves (1) and π∗

solves (5), we have

cT x∗ = bT π∗.(7)

Further, when x is any vector satisfying Ax = b, x ≥ 0, and π is any vector such that
AT π ≤ c, we have that

cT x ≥ cT x∗ = bT π∗ ≥ bT π.

The solution of the dual problem (5) is easily recovered once the solution to (1) is
known, and vice versa. The dual solution is not just of academic interest; it provides
the modeler with important information about the original problem (1). Specifically,
it quantifies the sensitivity of the optimal objective value to changes in the elements
bi of the right-hand side of the constraint vector b. If φ(A, b, c) denotes the optimal
objective value cT x∗ for (1), we have that

∂φ(A, b, c)
∂bi

= π∗
i ,

where π∗
i is the ith component of the optimal dual vector π∗.

The Simplex Applet. As mentioned above, the simplex method has for many
years been the standard tool for solving linear programming problems. For many
people, particularly in the financial and economics fields, the simplex method is the
only optimization algorithm to which they are ever exposed during their educational
and professional lives. Even optimization specialists tend to learn about linear pro-
gramming and the simplex method well in advance of hearing about other problem
classes or algorithms in optimization. Indeed, the ideas behind the simplex method
and the techniques used to implement it have had a significant influence on the de-
velopment of algorithms for nonlinear constrained optimization problems.

The NEOS Guide contains a Java implementation of the simplex method, avail-
able as an applet at

http://www.mcs.anl.gov/otc/Guide/CaseStudies/simplex/
Users can enter a small linear program and follow the progress of the algorithm in
detail via windows that appear on their PC or workstation. The various steps of
the algorithm—conversion to standard form, pricing, pivoting, and selection of the
entering variable—can be viewed individually. The user may even select the variable
to enter the basis at each iteration if desired. The main window illustrates current
values of the basis components, basis matrix, multipliers, reduced costs, and so on;
see Figure 2.

For information about the simplex algorithm, follow the pointers from the Sim-
plex Applet web page, or consult one of the many texts in the area (for example,
Chvátal [2]).

3. The Portfolio Optimization Problem. Given a wide range of possible invest-
ments, with their (possibly correlated) risks and rewards, how does an investor go
about selecting a portfolio that maximizes the expected return while meeting an ac-
ceptable standard of risk? Alternatively, what is the portfolio that meets a certain
target level of return while minimizing risk? Questions like these are asked daily by
both individual and institutional investors, and they lie at the heart of the burgeon-
ing investment advice industry. They were first formulated quantitatively in 1952 by
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Fig. 2. Main window of the simplex tool.

Markowitz [8], also known to computational mathematicians as the inventor of the
Markowitz pivot criterion for sparse matrix factorization.

Today’s investor can choose from a huge range of possible securities—bills and
notes from the U.S. Treasury, corporate and municipal bonds, individual stocks from
exchanges around the world, mutual funds, and so on—each of which has its own
potential risks and rewards. The returns on some securities are unspectacular but
steady, while the returns on others are higher over the long term but are subject to
wild fluctuations. Moreover, the returns on different securities are often correlated,
positively or negatively. For instance, the stock prices of gold mining companies and
of gold itself tend to increase and decrease more or less synchronously; that is, they
are positively correlated. On the other hand, returns on gold investments may be neg-
atively correlated for some reason with returns on the stock of paper manufacturers.
By taking advantage of these correlations and of the expected average returns and
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fluctuations associated with each individual security, we can often design portfolios
that achieve expected returns competitive with the best individual securities, but at
a lower level of risk.

To see how a portfolio can reduce risk, consider the simple case of two securities—
call them A and B—for which the fluctuations on return are negatively correlated.
Both investments tend to be profitable over time, but the return on A usually increases
whenever the return on B decreases, and vice versa. It is easy to perceive that the
returns on a portfolio that mixes A and B will tend to fluctuate less than the returns
on an investment in A and B alone. The individual fluctuations in the returns on
A and B will tend to cancel each other out, while the long-term average return on
the mixed portfolio will (if the mix is chosen properly) be competitive with the long-
term average return on both A and B individually. In other words, by mixing A and
B appropriately, we can reduce the risk appreciably without affecting the expected
return.

More generally, suppose that we have n securities, labeled by the index i =
1, 2, . . . , n, and let Xi be a random variable that represents the return on this se-
curity during the next month. Naturally, we have no hope of solving the portfolio
optimization problem without some information about each Xi, so we assume that
each Xi is normally distributed and that values of the expected return µi = E[Xi]
and the variance σ2

i = E[(Xi −µi)2] are available for each security i. (The variance is
a measure of risk, since it quantifies the fluctuation of the random variable about its
expected value.) Moreover, we assume that values of the correlations between each
pair of securities, defined by

ρij
def=

E[(Xi − µi)(Xj − µj)]
σiσj

, i, j = 1, 2, . . . , n,

are also given. (Note that ρii = 1 for all i.) We return in a moment to the question
of how the µi, σi, and ρij , i, j = 1, 2, . . . , n, are determined in practice.

Suppose that we construct a portfolio by allocating a fraction wi of the available
resources to security i, for each i. Suppose too that we disallow short-selling (which
is the practice of selling a stock that you don’t currently hold, in the hope of buying
it some time later at a lower price). Under these assumptions, the value of wi must
lie in the range [0, 1], with

∑n
i=1 wi = 1. The expected return on this portfolio is

E

[
n∑

i=1

wiXi

]
=

n∑
i=1

wiE[Xi] = wT µ,(8)

where w = (w1, w2, . . . , wn)T and µ = (µ1, µ2, . . . , µn)T . The variance for the portfolio
is

n∑
i=1

n∑
j=1

wiwjσiσjρij = wT Qw,(9)

where Q is the matrix whose (i, j) element is

Qij = ρijσiσj .

In general, we want to choose the allocation vector w so as to keep the expected return
(8) large while keeping the variance (9) small. Exactly how these two objectives should
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be traded off is a matter for the investor to decide. Those with a high tolerance for risk
will weight the expected return more heavily, while more conservative investors will
be more concerned with minimizing variance. We define a “risk tolerance parameter”
κ to quantify the relative weighting of the two aims, and we define our optimization
problem as follows:

min
w

κ

2
wT Qw − µT w, subject to eT w = 1, w ≥ 0.(10)

Here, e is the vector (1, 1, . . . , 1)T , so that the constraint eT w = 1 simply means
that the sum of the fractions is 1, as discussed earlier. Risk-tolerant investors would
typically choose κ near zero, while conservative investors would choose some larger
positive value for this parameter.

The portfolio optimization problem can be derived from other perspectives as
well. For instance, this “balanced” problem is closely related to two other types of
portfolio optimization: one that minimizes risk for a given level of return, that is,

min
w

1
2wT Qw subject to µT w ≥ µ∗, w ≥ 0, eT w = 1,(11)

and another that maximizes return for a given level of risk, that is,

max
w

µT w subject to wT Qw ≤ σ2
∗, w ≥ 0, eT w = 1.(12)

In (11), µ∗ is the minimum acceptable return, while in (12), σ2
∗ is the maximum

acceptable variance. When the optimality conditions for (11) and (12) are formu-
lated, one can derive interesting relationships between the Lagrange multipliers for
the constraints µT w ≥ µ∗ and wT Qw ≤ σ2

∗, and the parameter κ. Another interesting
concept is the “efficient frontier,” which is the set of allocation vectors such that there
exists no other vector with a higher return for equivalent variance, or lower variance
for an equivalent return. In many cases, the efficient frontier is simply the set of
minimizers of (10), for each value of κ in the range [0,∞). For additional details, see
the case study website, whose address is listed below.

We now return to a critical issue: How do we choose the data for the expected
returns, variances, and covariances? Possibly the most important source of informa-
tion is historical data. If we know the monthly performance of each security for some
time past—the return on security i in month t was xit, for t = 1, 2, . . . , N—then we
can set

µi =
N∑

t=1

xit/N, σ2
i =

N∑
t=1

(xit − µi)2/N, ρij =
N∑

t=1

(xit − µi)(xjt − µj)/(Nσiσj).

Use of historical data to set the parameters makes the implicit assumption that the
random variables Xi will continue to behave in much the same way as they did in
the past—an assumption that is shaky, to say the least. Some investment advisors
weight the historical data to emphasize data points that were collected at points in
past business cycles that correspond to current conditions. In addition, there is plenty
of room for subjective input—investors that expect 2% monthly growth in the price
of a particular stock with 3% variance can set the data in their models accordingly.
As in all other areas of modeling and prediction, the rule of “garbage in, garbage out”
applies.

The portfolio optimization case study can be found at
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http://www.mcs.anl.gov/otc/Guide/CaseStudies/port/
Our set of securities consists of the 30 stocks that make up the Dow Jones Industrial
Average (as of mid-1996), together with a U.S. Treasury bill. The latter is assumed
to be a risk-free investment, so that σi = 0 and all entries in the corresponding row
and column of Q are zero. We obtained data on monthly total returns (including
stock price changes and dividends) for the period 1/1/86–12/31/91 from the CRISPA
database at the University of Chicago, and we based our model parameters on this
historical data alone.

Users of the case study select the stocks they are willing to include in their
portfolio. (They can examine the six-year performance of each stock for background
information.) They also input the current annual return on short-term U.S. Treasury
bills, and choose the value of their risk parameter κ. The case study returns an output
page that indicates the optimal portfolio (in tabular and graphical form), together
with its expected return and variance. The user can then experiment with other
values of κ to see how the optimal portfolio changes in response to changes in this
parameter.

The underlying optimization problem is a convex quadratic program. By defini-
tion, the matrix Q in (10) is positive semidefinite and the feasible region is bounded,
so the problem certainly has a solution, though not necessarily a uniquely defined
one.

For additional information on portfolio optimization, see the books by Markowitz
[9, 10] and the article by Perold [12]. A number of enhancements to the basic problem
(10) have been proposed by various researchers and practitioners. For one thing,
constraints on the allocation vector may be desirable; we may want to limit our
exposure to technology stocks to 25% of our portfolio, for example. We can allow
short-selling of some securities in the model by moving the lower bound from 0 to
some negative number. We may want to limit the number of different securities
in our final portfolio to a reasonable number (10 or 20, say), since a solution that
requires us to invest in 500 different financial instruments is not of much practical
use. We may also want to include transaction costs in the objective function, or to
impose a minimum balance on any securities that are included in the final portfolio.
Some of these requirements increase the complexity of the problem considerably (see
Bienstock [1]) and, in particular, may necessitate the use of integer programming
algorithms.

Figure 3 shows the composition of the optimal portfolio when we choose 29 of the
30 stocks as possible investments—all except Philip Morris—and set the bond interest
rate to 5.0% and the risk tolerance parameter κ to 15. The optimal portfolio is quite
conservative; it suggests 43% of assets in bonds. However, its predicted annual return
of about 23% is high, while the conservative nature of the bond investment makes the
standard deviation of the portfolio less than half the deviations of any of the three
stocks represented in the portfolio.

4. The Cutting-Stock Problem. The cutting-stock problem is a classic linear
programming problem, with important applications, that can be solved efficiently
with a technique known as column generation. In fact, it is an integer linear program:
all components of the solution are required to be integers.

An excellent description of the problem and its history is given by Chvátal [2,
Chapter 13]; we present just a brief summary here. The problem originated in paper
and textile mills that manufacture rolls of material in fixed widths, called “raws.”
Customers place orders for quantities of rolls with various widths, which are referred
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Fig. 3 Sample output: Stocks in optimal portfolio when bond rate is 5% and risk tolerance parameter
is κ = 15.

Table 1. Cutting-stock example input.

Order number (i) 1 2 3 4

Order width (Wi) 43 36 29 13
Number ordered (bi) 297 713 147 301

to as “finals.” Each raw is sliced (with a knife) into one or more finals according to
some pattern. Typically, after one or more finals are cut from a raw, a piece is left over
and discarded as waste. The optimization problem is to find a scheme for satisfying
all customer orders while using the minimum number of raws. In other words, we
look for the mix of slicing patterns, and the number of times each pattern is applied,
that minimizes the total number of raws used.

We describe the problem by studying the following specific example from [2].
Suppose that the raws are 110 inches wide and that 4 orders for finals of different
widths have been received. The quantities of each width are shown in Table 1. To
meet these orders, each 110-inch roll is cut into one of a number of possible patterns.
One pattern would consist of two 43-inch widths and a 13-inch width, leaving an
11-inch remainder that is discarded, since it is too narrow to be used for other finals.
A second pattern would consist of two 29-inch widths and a 43-inch width, leaving
a 9-inch strip of waste. Numerous other patterns are possible. We can model this
problem as a linear program in which m is the number of distinct order widths, while
p is the number of the possible patterns. The entry Aij of the m×p constraint matrix
A would be the number of times that the order width Wi is represented in pattern j.
For instance, if the two patterns discussed in the previous paragraph give rise to the
first two columns of A, we would have

A =

⎡
⎢⎢⎣

2 1 . . .
0 0 . . .
0 2 . . .
1 0 . . .

⎤
⎥⎥⎦ .

If we let xj denote the number of raws that are cut into pattern j, we find that the
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ith order is satisfied provided that

p∑
j=1

Aijxj ≥ bi.

The total number of raws used in this process is simply
∑p

j=1 xj , which we can write as
eT x, where e is the vector (1, 1, . . . , 1)T . Moreover, common sense dictates that each
xj must be an integer and that it cannot be negative. In summary, the cutting-stock
problem can be written as follows:

min
∑

j

xj = eT x, subject to Ax ≥ b, x ≥ 0,(13a)

where each element of x is an integer.(13b)

One difficulty in solving the problem (13) is the requirement of integrality of
the solution components. In general, optimization problems that contain discrete
variables (such as integers) are much more time-consuming to solve than those in
which all variables are real numbers. In this particular case, however, solutions of
good quality often can be obtained by simply ignoring the integrality requirement
(13b) and adjusting the real numbers obtained by solving (13a) by small amounts to
ensure that the orders are met.

The second, more significant difficulty is that there are usually a huge number of
different ways to slice a raw into a collection of finals. That is, the number of different
patterns—the dimension p in the problem (13)—may be enormous. It is known from
the theory of linear programming that a solution x∗ of (13a) need have no more than
m nonzero components, and in our case m is much smaller than p. It seems wasteful,
then, to go to the trouble of actually figuring out all the different patterns, since such
a small proportion of them have any impact on the solution. In fact, it is not necessary
to do so. The column generation approach, due to Gilmore and Gomory [6, 7], does
a good job of identifying the “useful” patterns—the ones most likely to contribute
to the solution—while verifying that all the patterns not explicitly calculated are not
relevant to the solution. We include a brief description of column generation in the
subsection that follows.

The NEOS cutting stock case study can be found at
http://www.mcs.anl.gov/otc/Guide/CaseStudies/cutting/

In the demonstration, users select the number of distinct widths in their proposed
order (m, in the notation above) and then enter the widths Wi, the required quantities
of each width bi, and the raw width L. NEOS then solves the problem and responds
with the following information (see Figure 4):

— A table showing the patterns considered in generating the final result. These
include the initial patterns and the patterns that come from the use of column
generation.

— Graphics illustrating the patterns chosen in the final solution and the quantity
of each pattern needed to meet the customer orders.

— The proportion of waste generated in the final pattern.
The user can also examine the AMPL formulation of the column generation procedure.
As with most AMPL models, this one is simple and intuitive.

Column Generation. To outline the column generation approach, we need to
mention a few points from the duality theory of linear programming (see section 2).
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Fig. 4. Output from the cutting-stock case study.

Recalling (5), and accounting for the slightly different form of (13a), we can write its
dual as

max bT π, subject to AT π ≤ e, π ≥ 0.(14)

Recall from section 2 that if x is feasible for (13a) while π is feasible for (14), we have
eT x ≥ bT π, and that equality of these two objectives is attained at optimality.

Column generation starts by choosing a few patterns, which together correspond
to a column submatrix of A. Denoting this submatrix by Ā, and using x̄ to denote the
corresponding subvector of x, we then solve the following reduced version of (13a):

min
x̄

ēT x̄, subject to Āx̄ ≥ b, x̄ ≥ 0,(15)

for which the dual problem is

max
π

bT π, subject to ĀT π ≤ ē, π ≥ 0.(16)
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(The vector ē also contains all 1s, but has smaller dimension than the vector e in
(13a) and (14).) Denoting the solutions of (15) and (16) by x̄∗ and π∗, respectively,
we have from the duality theorem that ēT x̄∗ = bT π∗. We now ask the question: Can
the solution to the reduced problem be extended to a solution of the original problem
(13a) merely by padding out the vector x̄∗ with zeros, or must we add some columns
to Ā to make it a closer match to the original problem? In the latter case, how do we
determine the column to add?

The column generation approach answers these questions by looking for a new
pattern that violates the dual feasibility condition AT π∗ ≤ e. That is, it seeks a
column of A (which we denote by z ∈ Rm and which is not currently represented in
the reduced matrix Ā) such that zT π∗ > 1. To be a valid pattern, the components of
z must of course be nonnegative integers and must satisfy the constraint

m∑
i=1

Wizi ≤ L.

In other words, the total width of the finals in this pattern do not exceed the width
of the raw. To seek the column z of A that actually maximizes the violation of the
dual feasibility condition, we solve the following problem:

max
z

zT π∗, subject to
∑m

i=1 Wizi ≤ L, each zi a nonnegative integer,(17)

which is known as a knapsack problem. If the solution z of this problem satisfies
zT π∗ ≤ 1, we conclude that the dual feasibility condition AT π∗ ≤ e is satisfied by
the original problem. In this case, the reduced solution x̄∗ yields (after padding with
zeros) a solution of the original problem (13a). Otherwise, when zT π∗ > 1, the
vector z represents the “most troublesome” pattern, that is, the one whose omission
is most responsible for the reduced problem (15) being an inadequate substitute for
the full problem (13a). We respond by adding this column z to the matrix Ā (thereby
increasing the dimension of the reduced problem by 1), and then repeat the process
of solving (15) followed by (17).

The knapsack problem (17) can be solved by a specialized branch-and-bound
procedure; see Chvátal [2] for details. The final step in the process is to add the
integrality constraints (13b) to the solution of the continuous problem (13a) that
arises from the column generation procedure. It usually suffices to make some ad-hoc
adjustments, that is, rounding noninteger components of the solution x∗ up to the
next integer. In the NEOS Guide, we use the more rigorous approach of solving an
integer version of the final reduced problem (15), in which the restriction of integrality
is included. This problem is much smaller than the full problem (13) (since just a
small proportion of the p columns of A are represented in the final Ā) and so is not
too time-consuming to solve.

5. Other Features of NEOS. Apart from the case studies, the NEOS Guide con-
tains comprehensive information about optimization software and algorithms. The
Software Guide area describes about 120 codes, packages, and modeling languages,
outlining their algorithmic capabilities and hardware requirements and giving web
pointers and contact information for the authors and vendors of the software. Classi-
fication by problem area makes it easier for users to find the codes with just the right
combination of capabilities that they need. (The material in the Software Guide was
originally drawn from the 1993 book of Moré and Wright [11], but has been augmented
and enhanced.)
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Another NEOS Guide feature, the Optimization Tree, contains thumbnail sketches
of different areas of optimization. The “leaves” of the tree contain descriptions of a
particular problem class, along with a sketch of the main algorithms and pointers
to the relevant software packages in the Software Guide. The FAQs for linear and
nonlinear programming, maintained for some years by John Gregory on Usenet, are
now maintained in the NEOS Guide by Bob Fourer. A repository of test problems is
in the early stages of preparation.

The NEOS Guide remains under continuous development. We intend for it to be a
community resource for optimization, and we always solicit input from our colleagues
to help fill the many gaps that remain in our coverage. The Guide can be accessed at

http://www.mcs.anl.gov/otc/Guide/

Another branch of NEOS, the NEOS Server, is a facility for solving optimiza-
tion problems remotely over the Internet. The Server now supports solvers for many
classes of problems, including linear and nonlinear constrained optimization, uncon-
strained and bound-constrained optimization, nonlinear complementarity, and linear
network optimization. Users communicate with the Server via email, the web, or a
Tcl/Tk tool running on their own workstation. They submit data and code (written
in Fortran, C, or AMPL) that define their optimization problem, and in some cases
choose algorithmic parameters for the particular code they are using. The Server then
schedules their job for execution on one of the workstations in its roster, and finally
transmits the results to the user.

For more information on the NEOS Server, visit its web page at
http://www.mcs.anl.gov/otc/Server/

or see the reports of Czyżyk, Mesnier, and Moré [3] and Ferris, Mesnier, and Moré [4].
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