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Abstract: In rice–wheat rotation areas of China, traditional wheat seeders have severe blockage, low
working efficiency and poor seeding quality. In this study, a pneumatic shooting technology was
designed, consisting mainly of a nozzle, shell and acceleration tube. To improve the sowing depth of
the pneumatic shooting device, the response-surface methodology of structure parameters and CFD
simulation technology was adopted in this work. The effects of working pressure, acceleration-tube
diameter and throat distance on the steady airflow length (SAL) and steady airflow velocity (SAV)
were studied by airflow field analysis, and the response-surface method was introduced to obtain the
optimal parameter combination of the pneumatic shooting device for wheat. The optimal parameter
combination was working pressure 686 kPa, acceleration tube diameter 8 mm and throat distance
20 mm. The simulation result showed that the optimized device of pneumatic shooting performs
faster and has more stable airflow field characteristics in comparison to the initial device. The field
test demonstrated that the optimized device has about 68% higher seeding depth than the initial
device. The average field-seeding depth of the optimized device was 19.95 mm, which is about
68% higher than the initial device. The emergence rate for the optimized device was about 88.7%
without obvious reduction. CFD and response-surface methods positively affect the optimization of
pneumatic wheat-shooting devices, and the significance was also confirmed.

Keywords: wheat; pneumatic shooting; simulation; response surface experiment; airflow field

1. Introduction

As one of the three major grain crops in China, wheat plays a vital role in ensuring
national food security. According to the National Bureau of Statistics data, wheat yield in
China will be 131.68 million tons in 2020 [1], accounting for about 17% of the world wheat
production. Rice–wheat rotation areas located in the Yangtze River Basin are reported as
the primary grain-production bases in China, accounting for more than 37% of total wheat-
planting areas [2]. Due to the sticky clay soil texture and serious wet damage of the fields in
this area, there is a severe blockage, low working efficiency and poor seeding quality for the
existing rice-stubble wheat seeders [3–6]. Therefore, it is essential to innovate mechanized
sowing technology and improve wheat-sowing quality in rice–wheat rotation areas.

Different from traditional seeding equipment, wheat-shooting technology is not in
direct contact with the soil [7]. It has the advantages of no adhesion and blockage, minor
soil disturbance and high operation efficiency [8,9]. Wheat-shooting technology includes
two types: mechanical shooting and pneumatic shooting. Because of accurate operation
and good acceleration effect, the pneumatic wheat-shooting technology is more suitable
for wheat sowing in rice-stubble fields. Current research mainly focuses on the wheat
soil-ripping parameters of pneumatic wheat shooting under different conditions [10], but
there is little study on the internal airflow field analysis and performance improvement of
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it. As a reliable flow-field-analysis technology, computational fluid dynamics (CFD) has a
wide application in the design and research of wheat seeding [11–13]. Zhao Xiaoshun et al.
developed a vacuum-precision, seed-metering device for wheat to improve seed-metering
uniformity [14]. With the pressure and velocity simulation of the air chamber by CFD, the
structural parameters of the seed-metering device were optimized. And tests showed that
the seeding qualified rate of seedlings was 86.66%, and the unqualified rate of seedlings
was 5.09%, which meets wheat-precision drilling requirements. Liu Junxiao et al. analyzed
the pneumatic loss caused by narrow, long characteristics, and bending of the pinhole-
tube wheat uniform-seeding mechanism [15]. The Fluent software was applied to study
the airflow pressure variation of different parameter combinations under the orthogonal
simulation test, and the principle and types of pneumatic loss were clarified. Test results
proved the reliability of the numerical analysis. With the assistance of the fluid-dynamics
software, Cheng Xiupei et al. simulated the impacts of different diameters of suction holes
on the airflow field of the precision seed-metering device for wheat and thereby produced
the optimal diameter parameters of suction holes ranging from 1.4 mm to 1.8 mm [16].

Improving the sowing depth of the pneumatic shooting device is important to ensure
wheat-sowing quality. In this paper, CFD is used to study the airflow field of the pneumatic
wheat-shooting device (PWSD), aiming at improving acceleration performance. For this
purpose, much work was carried out by the kinematic and simulation analysis for the
response-surface optimization experiment. We established simulation models based on
kinematic analysis of the pneumatic shooting process and acquired the best parameters’
combination via the response-surface experiment. Finally, field-test verification of the
optimized PWSD was conducted.

2. Materials and Methods
2.1. Structure and Working Principle of the PWSD

Figure 1a displays the overall structure of the PWSD [17], and the device is mainly
composed of nozzle, shell and acceleration tube. The nozzle and acceleration tube were
arranged on the interior and bottom of the shell, respectively.
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The pneumatic wheat-shooting principle is shown in Figure 1b. Before sowing, the
ground distance from the bottom of the acceleration tube to the soil surface is 100 mm.
After the high-pressure airflow enters the pneumatic wheat-shooting device, a supersonic
jet-flow field is formed in its internal cavity. Firstly, the high-pressure airflow enters the
nozzle and is compressed to form a compressed airflow. The compressed airflow is ejected
from the nozzle to form a jet flow after that. Then the jet flow enters the acceleration tube
to develop a positive-pressure acceleration zone. Meanwhile, a vacuum-pressure zone
is produced in the shell. Wheat is inhaled into the shell under the entrainment of the
vacuum-pressure zone [18,19], and then it is continuously accelerated under the action of
the positive-pressure acceleration zone in the acceleration tube. Finally, the wheat with
high kinetic energy is shot out from the acceleration tube and is lodged into the soil to
complete wheat seeding. With the forward thrust of the seeder, a sowing belt composed of
single wheat-seed holes is formed in the soil. Table 1 displays the geometric information of
the PWSD.

Table 1. Geometric information of the PWSD.

Parameter Definition Value (mm)

D1 Shell width 96
D2 Nozzle inlet diameter 13
D3 Nozzle outlet diameter 6
D4 Seed inlet diameter 12.5
D5 Cone diameter 40
X2 Acceleration tube diameter 10
X3 Throat length 10
L1 Total length 390
L2 Acceleration tube length 300

2.2. Optimization of PWSD Based on Airflow Simulation

To improve the performance of the PWSD, both a computational analysis and an
optimization experimental study were carried out [20,21]. The optimization experiment
was designed by a response-surface method, and the internal airflow-field characteristics
were acquired by CFD.

2.2.1. Experimental Design

The response-surface optimization experiment of the three factors and three levels,
based on the single-factor test results [22], was conducted by Box-Behnken central compos-
ite design [23–25]. The influence of the working pressure X1, the acceleration tube diameter
X2 and the throat distance X3 on SAV Y1 and SAL (length of the region with steady air-
flow velocity) Y2 were analyzed under the different parameter combinations. There were
17 experimental groups in the response-surface experiment scheme. After the experiment,
the velocity curve of the central airflow field of the PWSD was extracted, followed by two
kinds of analysis: multiple regression fitting analysis and variance analysis. The optimal
combination parameters of the PWSD were predicted. The coding of factor levels is shown
in Table 2.

Table 2. Factor level coding.

Levels
Factors

X1 (kPa) X2 (mm) X3 (mm)

−1 300 8 10
0 500 10 15
1 700 12 20
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2.2.2. Construction of Simulation Model
Grid Model

The grid features and extraction of the computational domain are crucial and deter-
mine the results of the flow-field analysis [26,27]. SolidWorks 2016 software was adopted
to construct the various three-dimensional PWSD models. Then the internal cavity was ex-
tracted as the computational domain using SpaceClaim 18.2 software, as shown in Figure 2a.
The pressure inlet boundary was given on inlet 1 based on the working pressure of the
experiment design scheme, and on inlet 2 with the relative pressure value of 0 kPa. The
pressure outlet boundary was given on outlet 1 with the relative pressure value of 0 kPa.
All the walls were no-slip wall boundaries. CFD cells of computational domain meshed
by Fluent 18.2 software were employed as shown in Figure 2b. According to the structure
size of the computational domain in globally scoped sizing, the minimum element size
and the maximum element size of the mesh models were 0.2 mm and 30 mm, respectively.
The growth rate was 1.2, and the grid type was polyhedral mesh. In addition, curvature
function was selected for object faces, and edges and the normal angle was set at 15◦; cells
per gap was set at 10 in proximity for the edge zone to increase local mesh density, which
is because the gas expansion at the nozzle outlet leads to drastic changes in the airflow
velocity [28,29]. According to the wall function requirement of the turbulence model, five
boundary layers were set near the wall. Statistical data pointed out that the maximum
aspect ratio, the y+, and the minimum orthogonal quality of all simulation models were
controlled in the range of 19–27, 30–280, and 0.5–0.62, respectively.
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Figure 2. (a) Computational region of the PWSD. (b) Grids of the computational region.

Computational Model

Due to the supersonic speed of airflow in the PWSD, this study defined the airflow as a
continuous compressible phase. The following three equations expressed the basic control
equations in the CFD simulations represented by the mass and momentum conservation
equation and the energy equation [30]:

∂(ρui)

∂xi
= 0 (1)
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∂p
∂xi

=
µ

3
∂

∂xi
(

∂uk
∂xk

) + µ
∂2ui

∂xj∂xj
+ ρFi (2)

∂(ρE + pui)

∂xi
=

∂(ujτij)

∂xi
− ∂qi

∂xi
(3)

where xi, xj, and xk are the components of Cartesian coordinates; ui, uj, and uk are the mean
airflow-velocity components; τij is the stress tensor of airflow; ρ is the density of airflow;
qi is the heat flux; µ is the viscosity of airflow; p is the mean airflow pressure; Fi is the
body-force of airflow; E is the total airflow energy.

Taking the jet-flow characteristics of narrow and long pipes into consideration, the
RNG k-ε model was used in this study. The follow two equations displayed the turbulent
kinetic energy and turbulent dissipation:

∂(ρk)
∂t

+ ui
∂(ρk)

∂xi
=

∂

∂xj

(
αkuc

∂k
∂xj

)
+ Gv − ρε (4)

∂(ρε)

∂t
+ ui

∂(ρε)

∂xi
=

C1εε

k
Gv − C2ε

ρε2

k
+

∂

∂xj

(
αεuc

∂ε

∂xj

)
(5)

where k is the turbulent kinetic energy; ε is the turbulent dissipation rate; µc is the equivalent
coefficient; αk and αε are the airflow Prandtl numbers; Gv is the velocity gradient; C1ε and
C2ε are the empirical constants.

The SIMPLE algorithm was adopted to access the pressure–velocity coupling in the
simulation [31]. The turbulent kinetic energy was solved by using the second order upwind
and finally to improve the computational accuracy. The simulation converges after the
RMS residual were less than 1 × 10−4 and airflow velocity of inlet 1 reached steady state.

3. Results and Analysis

Table 3 presents the response-surface experiment combinations and results.

Table 3. Experiment combinations and results.

No. X1 (kPa) X2 (mm) X3 (mm)
Response Values

Y1 (m·s−1) Y2 (mm)

1 0 0 0 517 172
2 −1 0 −1 416 184
3 1 1 0 536 149
4 0 −1 1 581 196
5 0 −1 −1 583 182
6 1 0 −1 633 173
7 −1 −1 0 461 198
8 0 0 0 516 177
9 1 0 1 614 162

10 0 0 0 518 169
11 −1 0 1 394 178
12 0 1 −1 520 176
13 −1 1 0 367 161
14 0 0 0 533 180
15 1 −1 0 718 183
16 0 1 1 422 152
17 0 0 0 524 186

Figure 3 shows the velocity variation regularity of the central airflow field (y-axis) for
each group after simulation.
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Overall, the central airflow velocity showed a sharp increase to a maximum value
when y was 23–75 mm, because the high-pressure airflow was compressed [32] as it passed
through the nozzle. The airflow velocity presented a gradual decrease trend in the y range
of 75–220 mm, and the reason is that the airflow was ejected from the nozzle to produce an
air-expansion effect [33]. Finally, the airflow velocity remained relatively constant in the
acceleration tube. The steady airflow velocity was between the maximum airflow velocity
and the high-pressure airflow velocity for each experiment. The higher the high-pressure
airflow velocity, the greater the maximum airflow velocity. Table 3 lists the response values
of Y1 and Y2 that were measured based on Figure 3, and the interaction law between Y1, Y2
and X1, X2, X3 was analyzed.

3.1. Regression Model Construction

The two-factor interactive (2FI) regression model presenting the interactive influences
of X1, X2, X3 on Y1, Y2 was established based on Table 3. The regression equations are
expressed as:

Y1 = 520.76 + 107.87X1 − 62.25X2 − 17.63X3 − 22X1X2 + 0.75X1X3 − 24X2X3 (6)

Y2 = 175.18− 6.75X1 − 15.13X2 − 3.38X3 + 0.75X1X2 − 1.25X1X3 − 9.5X2X3 (7)

Table 4 reveals the variance analysis of the regression equations. There was a highly
significant level (p < 0.001) for the 2FI regression model of Y1, Y2. The significant level
(p > 0.05) of the lack of fit for all 2FI regression models implies a relatively good fitting
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degree in the range of the experimental parameters. Therefore, by using the 2FI regression
model of Y1 and Y2, the working and structural parameters of the PWSD can be analyzed
and predicted.

Table 4. Variance analysis of 2FI regression equation.

Source
Y1 (m·s−1) Y2 (mm)

Sum of
Squares Freedom F Value Significant

Level p
Sum of
Squares Freedom F Value Significant

Level p

Model 1.308 × 105 6 165.05 <0.0001 ** 2655.25 6 15.41 0.0002 **
X1 93,096.13 1 704.71 <0.0001 ** 364.50 1 12.69 0.0052 *
X2 31,000.50 1 234.66 <0.0001 ** 1830.13 1 63.72 <0.0001 **
X3 2485.13 1 18.81 0.0015 * 91.13 1 3.17 0.1052

X1X2 1936.00 1 14.65 0.0033 * 2.25 1 0.078 0.7853
X1X3 2.25 1 0.017 0.8988 6.25 1 0.22 0.6509
X2X3 2304.00 1 17.44 0.0019 * 361.00 1 12.57 0.0053 *

Residual 1321.06 10 287.22 10
Lack of Fit 1119.86 6 3.71 0.1125 108.42 6 0.40 0.8458
Pure Error 201.20 4 178.80 4
Cor Total 1.321 × 105 16 2942.47 16

** p < 0.001, highly significant; * p < 0.05, significant.

On the angle of the main effect, X1, X2 and X3 had highly significant effects on Y1,
while X1 and X2 significantly affected Y2. On the angle of the interaction effects, the
interactive factor X1X2 performed a highly significant effect on Y1, and X2X3 displayed
a highly significant effect on Y1 and Y2. However, X1X3 displayed no significant effect
on Y1 and Y2. Consequently, the 2FI regression models were optimized to remove the
insignificant items on the conditions if p < 0.01 for the model and p > 0.05 for the lack of fit
(Equations (8) and (9)).

Y1 = 520.76 + 107.87X1 − 62.25X2 − 17.63X3 − 22X1X2 − 24X2X3 (8)

Y2 = 175.18− 6.75X1 − 15.13X2 − 9.5X2X3 (9)

3.2. Influences of the Interactive Factors on Indexes

Based on the significance analysis results (Table 4), this study separately analyzed the
influences of the interactive factors X1X2, X1X3 and X2X3 on Y1 and Y2. The interaction
of X1 and X2 on Y1 with X3 = 15 mm is shown in Figure 4a. X1 and X2 were all positively
correlated with Y1. Increasing X1 and reducing X2 was conducive to improving Y1. The
reason is that the initial airflow of high-pressure airflow increased as X1 increased, and the
airflow was compressed with the decreasing of X2, which resulted in an improvement in Y1.
The interaction of X2 and X3 on Y1 with X1 = 500 kPa is shown in Figure 4b. Y1 gradually
increased with X1 under the same X3 level. X3 had a positive correlation with Y1 when X2
was 8–8.6 mm, but a negative correlation when X2 was 8.6–12 mm. This is because there
was an optimal X3 value, so the final section of jet flow was equal to X2 [34,35], and then
the optimal airflow field could be obtained. Therefore, an optimal parameter combination
of X1, X2 and X3 maximized Y1.

The interaction of X2 and X3 on Y2 with X1 = 500 kPa is shown in Figure 4c. Y2
decreased with the increase of X2 under the same X3 level. In addition, there was a negative
correlation between X3 and Y2 as X2 was 8–9.5 mm and a positive correlation with X2 was
9.5–12 mm. Hence, an optimal parameter combination of X1, X2 and X3 maximized Y2.
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4. Optimization and Verification
4.1. Optimization

Combined with restraint conditions, a response-surface optimization method was
applied to obtain the maximum Y1 and Y2. The restraint condition is given as:

maxY1
maxY2

300 ≤ X1 ≤ 700
8 ≤ X2 ≤ 12

10 ≤ X3 ≤ 20

(10)

Equations (8)–(10) are solved, and the optimal parameter combination is displayed
below: X1 is 686 kPa, X2 is 8 mm and X3 is 20 mm, while Y1 is 718 m·s−1 and Y2 is 188 mm
according to the 2FI regression model.

4.2. Simulation Comparison

The velocity airflow field was evaluated for the PWSD with the initial combination of
parameters (X1 = 500 kPa, X2 = 10 mm, X3 = 10 mm) and the optimized combination of
parameters (X1 = 686 kPa, X2 = 8 mm, X3 = 20 mm), as shown in Figure 5. The optimized
device displayed superior performance of faster and more stable airflow field in relation
to the initial device in general. The initial device obtained parameters of Y1 and Y2 of
524 m·s−1 and 176 mm, respectively, whereas the optimized device performance was
718 m·s−1 and 188 mm, respectively (Figure 5). After improvement of the PWSD, Y1
significantly increased by 34.5% while Y2 increased by 9.1%. Furthermore, a comparative
analysis between the optimized simulation results and the predicted results of the 2FI
regression model shows that there is little difference because the errors of Y1 and Y2 are
1.8% and 2.1% for the initial and optimized device, indicating that a good accuracy of the
model for parameter optimization.

4.3. Field-Test Verification

Field-test verification of the initial and optimized devices was carried out with the
pneumatic wheat-shooting principle prototype. The principle prototype comprises a rack,
air compressor, air tube and PWSD, as shown in Figure 6a. We set the working pressure
of the air compressor to provide continuous and stable high-pressure airflow, and the
high-pressure airflow was input to the pneumatic wheat-shooting device through the
air tube.
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The PWSD conducts seeding on the no-till soil between the rows of rice stubble, as
shown in Figure 6b. The rice-stubble height was 200–350 mm; the coverage of rice straw
was about 608 g·m−2; Zhengmai 9023, which is a large-scale planted variety of wheat
in Hubei Province, was used for this test. Perennial rice–wheat rotation is conducted in
this test plot, and the soil type is clayey paddy soil with heavy texture and high moisture
content. The soil moisture content was 40.3%, and the soil compactness was 35–70 kPa
within the soil depth of 0–50 mm.
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4.3.1. Test Method

In accordance with the China National Standard GB/T 20865-2017 “No-till and less
till fertilization planter” and GB/T 6973-2005 “Testing methods of single seeding drills
(precision drills)”, the pneumatic wheat-shooting test was conducted. Shooting depth was
measured to reflect the operating performance of the initial and optimized device.

Field Seeding Depth

The vertical distance from the bottom of the wheat seed hole to the ground surface
was measured with an electronic vernier caliper, and a total of 50 seeding points were
counted. A total of 5 measuring sites were selected every 5 m along the working direction,
and 10 seeding-depth values were randomly measured in each measuring site. The field
seeding depth and stability coefficient equations can be calculated as follows:

HQS = 1
n

n
∑

i=1
HQSi

SQS = 1√
n−1

√
n
∑

i=1
(HQSi − HQS)

CQS = 1− SQS
HQS
× 100%

(11)

where HQS is field-seeding depth; HQSi is field-seeding depth of point i; SQS is the standard
deviation of field-seeding depth; CQSV is the stability coefficient of the field-seeding depth.

Emergence Rate

Five test areas were randomly selected, and the wheat emergence rate was determined
by the 5-point sampling method. The emergence rate equations can be calculated as follows:

CQSM =
1

AQS

n

∑
i=1

ai (12)

where CQSM is the emergence rate; ai is the number of wheat seedlings per row; n is the
measurement number; AQS is theoretical sowing rate.

4.3.2. Test Results and Analysis

Under the field experimental conditions, the seeding operation of the pneumatic
wheat-shooting principle prototype was relatively stable. The wheat was lodged into the
soil and formed a single seed hole in the soil, and there was no broken strip of seed belt
after pneumatic wheat shooting, as shown in Figure 7a.

Test results of pneumatic wheat seeding are shown in Table 5. The field seeding depth
for the initial and optimized device was 9.96–13.12 mm and 16.24–23.74 mm, respectively.
The total stability coefficients for both the initial and optimized device were more significant
than 90%, which meets the requirements of Chinese national standards. The average field
seeding depth of the optimized device was 19.95 mm, which was about 68% higher than
the initial device, indicating that the acceleration performance of the airflow field was
improved after optimization design so that wheat achieved a deeper field seeding depth
with higher velocity.

Meanwhile, wheat realized a good emergence result, as shown in Figure 7b. The
emergence rate for the optimized device and initial device was about 88.7% and 88.4%,
respectively. The emergence rate of the optimized device was much higher than 69.8% of
the traditional artificial sowing method, and there was little difference compared with 88.3%
of the shallow rotary-tillage seeding technology [36,37]. The above simulation optimization
design scheme and model are relatively reliable and can optimize a PWSD.
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Table 5. Field seeding depth for initial and optimized pneumatic wheat-shooting device.

Test Item

Field Seeding Depth (mm)

Initial Optimized

Range Average
Value

Stability
Coefficient Range Average

Value
Stability

Coefficient

Number of
measure-

ment
site

1 10.56~12.84 12.02 93% 16.24~21.93 18.95 91%
2 10.25~12.68 11.71 94% 19.31~23.74 21.07 94%
3 9.96~12.85 11.62 92% 17.74~21.36 19.78 93%
4 10.83~13.12 12.13 94% 18.66~21.59 20.11 95%
5 10.48~12.93 11.73 93% 17.64~22.84 19.83 91%

Total average value 11.84 19.95
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5. Conclusions

(1) In this paper, the optimization of a PWSD was performed. There was a positive
correlation between wheat velocity and airflow velocity for the pneumatic shooting
process, and shooting depth was related to wheat velocity and soil properties. The
shooting depth showed a positive correlation with the wheat velocity under the same
soil environment. For the PWSD, the response-surface method and CFD simulation
were utilized to maximize SAV and SAL, by which wheat can be sown deeper;

(2) The central airflow velocity of the pneumatic wheat-shooting device showed a sharp
increase to a maximum value, then presented a gradual decrease trend, and finally
remained relatively constant by simulation analysis. The steady airflow velocity was
between the maximum airflow velocity and the high-pressure airflow velocity for
each experiment. The higher the high-pressure airflow velocity, the greater was the
maximum airflow velocity;

(3) Through the response-surface optimization and CFD simulation analysis, the optimal
parameter combination of working pressure 686 kPa, acceleration tube diameter 8 mm
and throat distance 20 mm was obtained, and the simulation result of SAV and SAL
was 718 m·s−1 and 188 mm, respectively. The optimized device had a faster and
more stable airflow field than the initial one in general. After optimization, the steady
airflow velocity significantly increased by 34.5%, and the SAL increased by 9.1%. The
field test showed that the average field seeding depth of the optimized device was
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about 68% higher than the initial device, and the emergence rate for the optimized
device was about 88.7% without obvious reduction, which meets the requirements of
Chinese national standards.
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