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Abstract

This thesis deals with the development of a new set of tools and techniques for the

optimal design of nonlinear circuits, such as power electronic systems. The incentive for

this work arises from the fact that currently used design procedures show liule practical

capability in modern nonlinear design problems, where several parameters have to be

optimally selected.

The new tools are based on interfacing an optimization algorithm with a transient

simulation program. The former is used to súategically select parameter sets, while the

performance of the system is evaluated using the latter. The thesis describes the methods

adopted to interface the parts and also reviews some representative optimization

algorithms that are interfaced with the simulation program PSCADÆMTDC. Advanced

issues such as inclusion of robustness into the design procedure as well as interfacing

gradient-based optimization algorithms are also investigated. The proposed tools are very

efficient even when no explicit mathematical objective function is available.

The proposed tools are used to design several nonlinear and switching circuits with

different design specifications. The results confirm that the developed tools are orders of

magnitude faster than the conventional methods in converging to the optimal parameter

set while producing results of much higher accuracy.
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Chapter

Introduction

1.1 Power System Simulation Tools

Modern electric power networks, which carry out the tasks of generation, transmission

and distribution of electric energy, are large-scale, nonlinear systems that exhibit

complicated dynamic behavior. This arises from the fact that such systems usually

contain a large number of both linear and nonlinear elements, different types and layers

of controls, and in an increasing number of cases, power electronic equipment used for

purposes such as real and reactive poìrver control and voltage regulation. Analysis, design

and operation of such complex systems require various types of advanced tools and

techniques to be employed.

Power system simulation software consists of tools that can be used for both the

analysis and design of power networks. ln these tools, mathematical equations of the

system are formed and solved using analytical or numerical methods, and thereby they

provide a sound understanding of the behavior of the system without necessarily recorrse

to costly or even destructive laboratory or field experiments. The type of the

mathematical formulation and solution methods used in various types of simulation tools

differ depending on the type of the studies to be ca¡ried out. The level of detail



considered in modeling power system apparatus is also different and depends on the

nature of the problem(s) under consideration, mathematical modeling complexities and of

coruse the simulation platform(s) available U,321.

1.2 Electromagnetic Transient Simulation Programs

Electromagnetic transients simulation programs, also referred to as emþ-type

programs, form an important category of power system simulation tools, and are used to

precisely describe the short term transient behavior of a power system. In these tools,

time domain differential equations of the system, including individual elements, contols,

semiconductor switches, etc., are set up and solved using numerical integration methods,

such as the trapezoidal rule [2].

Emþ-type programs are used in a wide range of applications such as tuning of power

system controls, study of stress on components during transients, harmonic anaþsis and

power quality studies, etc.13,4,5,6]. Since the level of detail used in themodeling of

components is very high, emtp programs are usually computationally demanding and

completion of simulations, even for a relatively short period of time, can be quite time-

consuming. Using larger simulation time steps can speed up the process, however it will

decrease the accuracy of the results and in case inappropriate integration methods are

used, will even result in numerical instability of the solution.

Since emþ-type programs can provide a detailed description of the transient behavior

of a power system, they are extensively used in design problems, where it is necessary to

accurately study the performance of a designed component, and to examine its impact on

and its interactions with the rest of the network. For example, in a contoller tuning

problem, a transients simulation program can precisely simulate the behavior of the



conholled variable for a given set of controller gains, and provide the designer with an

accurate estimation of the perfonnance of the designed controller. Such detailed analysis

of a design can provide a high degree of confidence in its proper operation when it is

actually implemented.

1.3 Traditional Approaches to the Design Using Simulation Tools

The major concern associated with the use of emþ-type programs in design problems

is that the design process is often accompanied with a large amount of trial and error. The

designer often has to simulate the system several times before reaching the desired set of

design parameters so that design specifications and constraints are best met. With the

increasing complexity of power systems, their design issues are becoming more

challenging and often include multi-objective, multi-variable problems. Many such

design problems require repeated application of transients simulation to ensure that all the

details and interactions are effectively considered; but this on the other'hand, causes the

computational bu¡den to become overwhelmingly large.

Two traditional approaches widely used in simulation tools are Monte Carlo analysis

and the multiple-run approach. The Monte Carlo method, which is a branch of

experimental mathematics, is based on experiments with random numbers and has

numerous applications in various fields of engineering. This type of analysis is used to

study the behavior of both stochastic and deterministic systems and usually requires

several simulation runs to be conducted [7]. Another attempt to simpliS the design

process using emþ-type programs is an automated search engine called'multiple-run',

which has been added to some of the simulation programs [8]. In the method of multiple-

run, design parameters are varied on a user-specified basis, e.g. in linear, logarithmic or



even random steps, and for every parameter set so obtained, a simulation run is

conducted. At the end of each mn, an index is assigned to the parameter set used, which

shows the conformity of its performance to the design objectives set by the user. At the

end of the whole search process, the best parameter set is chosen simply by selecting the

one that has the best figure of merit for its performance.

The method of multiple-run, which is usually used in emtp-t)æe programs, is

obviously inefficient in searching for the optimal value of design parameters; firstly

because it deploys no intelligence in the way it spans the search space. The search

process can become very lengthy and may include regions of the space that do not

contain the optimum. The pre-specified method for varying the parameters to span the

desired range, e.g. linear or logarithmic, searches the areas that could have been

otherwise identified and eliminated if better search algorithms could be used.

The second major drawback of the multiple-run approach is the pooç accuracy of its

results, caused by the discrete nature of the steps taken dwing the search process. While

taking large steps can decrease the total search time, it will result in poor approximations

of the optimum. Finer searching by reducing the increments of design variables produces

results of better accuracy, but at the cost of increased computer search time.

1.4 Research Objectives of the Thesis

The inefficiency of the method of multiple-run is a direct consequence of its search

philosophy. Advanced optimization algorithms, on the other hand, provide a powerfrrl

optimum-seeking means. In an optimization algorithm, an Objective Function (OF),

which is a figure of merit for a point (parameter set) and measures the conforrnity of the

performance of the point with the user-specified objectives, is tested for a number of trial



points (parameter sets). The ultimate goal of an optimization algorithm is to find a point

that has the best (optimal) OF value [9]. The parameter sets to be tested are strategically

chosen by the optimization algorithm, and hence the optimal parameter set can be

determined with less computation.

The combination of a transient simulation program with an optimization algorithm has

the potential to be an extremely powerful design tool. Development of this new tool,

studying the performance of the new design approach in real-world design problems, and

investigating the opportunities unlocked by such a tool are the main objectives of this

thesis.

The objective of this study is to use transient simulation as an engine for evaluating

the objective function, which is optimized using an external optimization algorithrn.

Since in this tool, the search will be done through a dedicated algorithm, the entire design

process can be completed in a number of runs that is orders of magnitu$e smaller than

what is possible with the method of multiple-run. The accuracy of the results can also

considerably be improved and it is determined by the convergence (search termination)

criteria in the optimization algorithm. The true power of the new tool will be in providing

the capability of optimally designing a nonlinear system where no explicit formula for the

design objective function in terms of the design parameters is available.

Alleviation of the undesirable features of the multiple-run approach boosts the

applicability of transient simulation programs in design problems by not only speeding up

the design process but also increasing the accuracy of the results.



1.5 Thesis Organization

As stated above, the thesis aims at development of a new design tool based on

interfacing electromagnetic transient simulation programs with optimization algorithms.

The thesis is thus organized in such away to provide a thorough understanding of the

methods and techniques deployed and also to demonstrate the power of the new tool in

solving real-life design problems.

Following the introduction given in this chapter, chapter 2 presents an overview of the

electromagnetic transient simulation programs, which are one of the two building blocks

of the new tool. The chapter reviews the general basic theory of transient simulation of

power systems, and in particular describes the mechanics of the PSCAD/EMTDC

simulation tool, which is a widely-used electromagnetic transients simulation pro$am

[8]. PSCADÆMTDC is the simulation software that is used in this research for

interfacing with optimizationalgorithms. The chapter will also examinç the design

procedure using PSCADiEMTDC and will demonstrate the shortcomings of the

conventional methods currently used. Later in chapter two, the applicability of

optimization algorithms in overcoming these drawbacks will be investigated. Statement

of design specifications in the form of an optimization problen¡ which in fact is the key

to the application of optimization methods in power system design problems, will

conclude chapter two.

Chapter 3 focuses on the development of the interface between transient simulation

and optimization. This chapter will discuss some representative methods for inclusion of

design specifications into optimization objective fi.rnctions; these methods will later be

used in the design of a number of example cases.



In chapter 4, a number of representative optimization algorithms, namely Simplex

method of Nelder and Mead, Hooke-Jeeves optimization method, Genetic Algorithms

and Golden Section optimization method will be discussed. These methods are used for

interfacing with PSCAD/EMTDC in this research. This chapter will discuss the reasons

why non-gradient-based methods are generally prefened for interfacing with simulation

programs.

Chapter 5 will present a number of design examples tackled with the new tool. It will

address not only different types of design problems and objectives, but also the

applicability of various non-gradient-based algorithms. The results will be presented

along a discussion of their significance where necessary.

ln chapter 6, mote advanced design issues will be discussed. Specifically the methods

and techniques required for inclusion of robustness into the optimal design procedure are

considered. A modified interface between optimization and transient sþulation,

developed to include robustness, will be presented in this chapter. Examples of the

application of this modified tool are also given.

Chapter 7 is devoted to the application of gradienrbased methods in the design using

transient simulation tools. The chapter will discuss, among other things, the limitations

and computational complexities of such algorithms. A number of example cases of the

application of these methods will be presented in this chapter.

Chapter 8 will provide a summarizing overview of the entire thesis and will also

signiry the thesis contributions and will provide recommendations for future research on

the topic.

A list of references cited throughout the thesis will conclude the thesis.
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2.1 General Structure of an Electromagnetic Transient Simulation Tool -

PSCADÆMTDC

Simulation of the behavior of power systems is an inevitable task in their analysis,

design and operation. This is because an accurate simulation can greatly reduce the need

for laboratory or field experiments that are usually expensive, time-consuming and in

some cases even destructive. /

As mentioned earlier, the type of modeling and the level of detail considered in power

system simulation tools depend largely on the type of phenomena to be studied. For

example, while steady-state phasor models can adequately describe a power system for

load flow studies, transient simulation of the same system requires detailed modeling of

individual components considering the dynamics of all the elements involved.

The focus throughout the rest of this chapter will be on a class of power system

simulation tools, namely electromagnetic transients simulation progmrns (hereinafter also

refened to as emþ-type programs). These programs a¡e used to study the short-term

transient behavior of power systems of virtually any complexity. In the following, we

will mainly focus on the general sfucture of PSCADÆMTDC simulation tool.

E I e ctro m a gn eti c Tr ans ient
Simulation Tools



Developed originally in early-80's by Dennis Woodford at Manitoba Hydro with input

from the University of Manitoba, EMTDC was primarily a tool for simulating transient

phenomena in HVDC systems [8]. Later versions of the program were expanded to

include ac systems, control circuiûry, transmission lines, machines, etc. [10]. Currently

EMTDC is capable of simulating electromagnetic and electromechanical transients in

both ac and dc power systems, including systems with switching devices such as power

electronic converters. Besides a graphical user interface (PSCAD) enhances the interface

of the user with the program through a graphical draft on which the circuit elements are

placed and connections are made [8].

The internal structure of EMTDC follows the method originally introduced by

Dommel [2] and is based on time domain equations of individual network elements,

which are subsequently formed into the admittance matrix (Y-matrix) of the network.

Sources and electric machines are modeled as current injections to the qodes. Control

signals are also interfaced with the electrical network during the simulation.

The solution method used in EMTDC is the trapezoidal integration rule [2]. The most

important feature of this integration rule is its stability-preservation in linear systems, i.e.

large time steps will not cause numerical instability in the solution, although they may

deteriorate the accuracv ofthe results.

2.2 Applications of EMTDC

Transient simulation programs, such as PSCADiEMTDC, are used in a wide variety of

power system analysis and design problems [8,10,11]. Their ability to provide a detailed

description of the short-term transient behavior of complex systems is a major advantage



that can be used to increase the functionality and reliability of a new design. Some typical

applications of PSCAD/EMTDC are as follows:

o Control systems design and coordination of power system controls;

o Power electronic applications in power systems and HVDC;

o Filter design and harmonic analysis;

o Over-voltage studies in power systems due to lighhing and other disturbances;

o Transient behavior of power transformers, etc.

An important feature of PSCADÆMTDC is that it allows forrelatively easy

connection to user-defined components. Using this feature, users can design their own

components and interface them with EMTDC and in this way, the program can be used in

cases other than what is possible using its standard master library of components. This

feature makes PSCADÆMTDC an ideal host for extemal pro$ams to be interfaced.

2.3 EMTDC Structure

ln order to understand the interfacing mechanism to the extemally designed

optimization algorithms, it is important to know the internal structure of the EMTDC.

Fig. 2.1 shows a simplified flowchart of the main body of EMTDC [8]. The subroutines

DSDYN (master dynamics subroutine) and DSOUT (ouþut definition subroutine) are the

main sections where user-defined codes can be placed and interfaced with the program.

Besides hosting user-defured code segments, these subroutines handle the dynamics of

the circuit and generate the ouþut signals to be displayed or saved. It is also clear that

multiple-run is an integrated part of the main body of the program that can be enabled if

so needed.

l0



System
dynamics

Fig. 2.1 General structure of PSCADÆMTDC

The connections to external programs are made through either of DSDYN or DSOUT

subroutines depending on the type of the extemal progËm. Ouþut plocessing proglams

are usually interfaced using DSOUT, while other programs such as optimization are

linked through DSDYN. The process of interfacing external programs may sometimes

have programming complexities and require extensive coding to ensure that variables are

properly stored and retrieved, and that the external code does not interfere with the main

body of EMTDC.

Multiple-Run

ll



2.4 Conventional Design Procedures Using EMTDC

As mentioned earlier, the capability of EMTDC in providing a detailed description of

the transient as well as the steady-state behavior of complex systems, is a major incentive

for its application in design of such systems. Transient simulation of a network for a

given set of design parameters yields an accurate measure of the closeness of the system

performance to the pre-specified design objectives. The question challenging the designer

is how to deter¡nine the optimum set of design parameters such that design objectives are

satisfied as closely as possible. One can think of the design procedure as a search

problem, in which a number of parameters (design parameters) are to be determined.

Multiple-run (MR) and random-based search methods, e.g. Monte-Carlo (MC), are the

major approaches conventionally used in transient simulation programs. ln the following

we review these two methods and give an example of their application in a simple design

problem. The example will not only show how these methods are practically used, but

also serves to pinpoint the major drawbacks of these methods. Developing methods to

remedy these shortcomings is the main incentive for this research.

2.4.1 Multiple-Run(MR)

ln the method of multiple-run, design parameters are varied in a discrete user-specified

m¿tnner, e.g. linear or logarithmic, to span a feasible range of variation for each of them.

For a design parameter xr, a number of samples equal to n, are chosen (in linear or

logarithmic steps, for example) from the interval lx¡(min) , x¡(max)f.ln an N-parameter

design problem, where the set of design parameters is x = (x¡,r2,'..,xru), the total number

of sets generated using the above discrete method will be

(2.r)M =r\xnzx"'xnN

t2



For example, in a 2-parameter design problem, where x1 and x2have nt and nz

samples, respectively, the total number of sets of design parameters þoints in the form of

(n¡ù) will becoma n[12, and they will form aZ-D gnd of points in the x1-x2 plane, as

shown in Fig. 2.2,which shows the gdd points as well as the contour plot of the

respective objective fi.rnction. Note that the contour plot is not known a-priori, and it is

shown in Fig. 2.2 merely to facilitate the description of the method of MR.

Having formed the i/-dimensional grid of candidate sets of design parameters, a

simulation run is conducted for each of them. At the end of each simulation, a numerical

value indicating the conformity of the performance of the system under the current

parameter set to the design objectives will be assigned to the parameter set. In this thesis

the assignment of this numerical index is such that a low value of the index shows a high

level of conformity, i.e. a desirable design. The ultimate objective will naturally be to

find a set of design parameters with as low of index value as possible. Selection of the

best performing parameter set is done upon completion of simulations for the entire set of

parameter sets in the grid.

The method of multiple-run can provide an insight into the performance of the system

for a range of variations of the design parameters. This can later on lead to a finer sea¡ch

over a region, where the best set of parameters is most likely located. One appealing

feature of this method is that, the chance of estimating global optimum is quite high

provided that the original search region includes the global optimum.

13
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Fig.2.2 Grid established for an MR design of a two-variable problem

The most severe drawback of this method, however, is that the completion of the

simulations for the entire points in a grid, even for a very coarse grid, c?n be extensively

time-consuming. Taking into consideration the fact that most design problems involve

several design parameters, it is evident from (2.1) that even with a few samples for each

of the parameters, the resulting gnd will contain an excessively large number of points.

For example, in a four variable design problem, where each of the parameters takes on

only 10 values, the resulting gnd will contain 10,000 points, for each of which a

simulation run has to be carried out. Also note that with such a co¿rse grid, the final

optimal solution may be a coarse approximation of the true optimum. For example, the

MR design for the case shown in Fig. 2.2 results in the selection of one of the four points

surrounding the optimum denoted by X.

These two shortcomings, namely extensive simulations required and limited accuracy

of the results, limit the application of this method in most of the modern day design

t4



problems. Later in this chapter, these issues will be illusfrated through a simple design

problem.

2.4.2 Random-Based Methods

Random-based search methods form a large category of design and analysis tools, and

are especially used in sensitivity analysis of complex designs. These methods are often

classif,red under the general theme of Monte Carlo (MC) analysis [7].

In EMTDC a random search can be carried using the core engine of the multiple-run;

however, instead of the systematic, grid-based method of generating points in the search

space used in MR, candidate points are generated using a random number generator. This

type of analysis can be very useful in deterrnining the statistical properties of a design. In

such an approach, each of the design parameters is allowed to vary in a specified range,

which shows the tolerance band of that parameter around its nominal value. Extensive

simulations are carried out while design parameters are varied randomly (based on a

given probability density function such as normal or uniform) in their respective ranges.

The behavior of the design is finally expressed in terms of the statistical properties (e.g.

mean and variance) of the variables of interest. The results can reveal sensitivity of the

design with respect to the variations of the design parameters in their allowable tolerance

bands.

Although the above description mostly applies to a case where design parameters are

already selected, the same approach can be used to find the appropriate set of design

parameters as well. To do so, one can speciff permissible ranges for the pararneters and

using uniform distribution for each of them, caÍÍy out the random search. The setting of
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parameters that has the most favorable performance can be singled out at the end of the

simulations.

An important feature, shared by both the random search methods and the method of

M& is that each of the design parameters is searched in its own respective range and

there is no need to introduce further constraints or scale factors. We will show that these

overhead manipulations are unavoidable companions to most of the optimization methods

described in later chapters of the thesis.

2.5 An Example of Design Using EMTDC

In this section, we demonstrate the use of conventional design procedures, the method

of MR and random-based search strategies, in a simple design problem. The problem

considers design of a proportional-integral (PI) controller for a dc-dc converter, as shown

in Fig. 2.3, rn which the proportional gain (Kp) and integral time constant (7) are to be

selected.

(b) Load current control system

Fig.2.3 Schematic diagram of the circuit and its control system

DoI¿
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The objective of the design is to obtain the optimum dynamic response of the load

curent to a specified step change in the reference current, in terms of the following

specifications.

1. The load current should follow the step change as fast as possible;

2. Dynamic response of the load current should have minimum overshoot;

3. Steady-state error between the actual and reference currents should be minimized.

The above objectives can be quantitatively incorporated into an optimization objective

function as given below.

T,

ISE(KD,T)= 
'l 
ç-Jt¡zat Q.2)J. Ir"f,

t=7,

where Zr and Tparc the step time and final simulation time, respectively. In this problem

Zr and Trare equal to 0.1 sec and 1.0 sec, respectively. The reference current is setto 30

A. Note that under situations where the actual and reference currents clgsely match, the

Integral Square Enor (/SE") objective function defined above will have a small value. Its

minimum possible value of zero occurs when the two currents exactly match at every

instant of time. The objective of the search will therefore be to find a pair of (Ç, Z) such

that /.SE attains as small a numerical value as possible.

Table 2.1 shows the summary of the design procedure carried out using the method of

MR as well as a random search method. Fig.2.4 shows the contour plot of the

optimization objective function, which is obtained using the results of the MR simulation.

Fig. 2.5 shows the results of the random search method. The trial points generated

through the MR and random search are marked in the figures.
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Fig.2.4 Grid of points and the contour plot generated by MR

2 2.5

Kp

Fig. 2.5 Points generated by the random search method

It is seen that the design, even for a two-variable case, can require extensive

simulations. One other point is that the success of the design using these methods

depends on the optimum being in the search area. In cases where no such a-priori
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knowledge is available, an overly large search area should be selected to ensure the

optimum is encapsulated. This will, in its turn, exacerbate the intensity of the simulation

burden.

This example is later reconsidered in chapter 5, and an alternative design procedure

will be presented, which not only improves the speed of the design but also generates

results of much higher accuracy.

Table 2.1 Summary of design for the dc-dc converter

2.6 Statement of Design Specifications as an Optimization Problem

As mentioned earlier, a given design problem involves selection of tí" settings of a

number of parameters in such away that the design objectives are met as closely as

possible. The conventional methods of design using transient simulation progrrims,

namely the method of MR and the random search, essentially seek to solve this problem

by searching for a parameter set, for which the performance of the system satisfies the

design specifications.

Further examination of the setup of a design problem reveals that the process of design

is in fact very similar to that of an optimizattonproblem. Generally speaking a design

problem can be stated as follows.

Desien usine MR
Search interval for Ko

lstart : increment : endl
Search interval for 7¡

lstart : increment : end]
Optimal

DÍIrameter set
Number of

simulations
ISE

loptimum)
[0.0:0.1 :5.0] I t0.001 :0.005 :0.11 | tr.S.O.OO6l I lozr I O.oOrzz

Desipn using random search
Search interval for Ko Search interval for 7¡ PDF Optimal

Darameter set

Number of
simulations

ISE
ootimum)

f0.0.5.01. 50 samnles 1t0.001.0.11. 20 samoles Uniform t2.09.0.00581 1 1000 10.00177
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Find x = (x¡,x2,...,xy)

such that

design specification l, design specification 2,..., design specification M, 
e.3)

afe met,

subject to

constraints

We note that, design specifications are expressed in terms of measurable quantities of

the system under consideration. For example, a design may speciry the maximum

overvoltage on a busbar to be less SYo, or the steady state error of a closed loop system to

be less than2%o, etc. A well-performing set of design parameters is identified by how

close the corresponding actual performance of the system will be to the design objectives.

Therefore, one may state the design problem in the following equivalent form.

Find x = (x¡,x2,...,xy)

such that

llactual performance of the system - design specificationsll (2.4)
is minimized,

subject to

constraints

where ll ll it u suitably defined nonn. The above statement of the design problem is

apparently a classic optimization problem, in which the actual performance of the system

is a function of the design parameter set x, and its solution yields the optimal x resulting

in the closest match between the actual and specifred performances.

We note that in the design using transient simulation prograrns, the perforrnance of the

system for a given parameter set is evaluated using ftansient simulation of the network

under consideration. Using the formulation in (2.4),itis apparent that should an

optimization problem be properly linked to the transient simulation program, the search

for the optimal parameter set can be significantly enhanced. This is because the theory of
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nonlinear optimization provides an abundance of elegant methods that can be used to

optimize complicated objective functions.

The above potential is the main incentive behind this research. The following chapter

provides details of the methods deployed to link optimization algorithms with

PSCADÆMTDC.
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Interfacing between
E I ectromagnetic Trans ient S imul ation
and Optimization Algorithms

3.1 Introduction and Chapter Overview

This chapter discusses the methods of coupling optimization algorithms with transient

simulation programs. As mentioned in the previous chapter, design of power systems

using transient simulation of the network can be enhanced by formulating the design

objectives as an optimizationproblem. An optimization algorithm can be used to

strategically select the parameter sets to be tested, while the actual evaluation of the

performance of the system for a selected parameter set is carried out through transient

simulation of the network.

The above constitutes the basic interface between transient simulation and

optimization; however, the mechanics of how to invoke hansient simulation within an

optimization algorithm can be designed according to the type of the problem to be

handled. Two different t'?es of such mechanisms are addressed in this thesis.

One other important issue in all optimization problems is the design of objective

functions, which provide a quantitative approach to the evaluation of the norm of the

difference between the actual and specified performances (see (2.4)). A meaningful, well-
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designed objective function can contribute to the well-posed-ness of the optimization

problem under consideration and can increase the chance of finding a solution.

This chapter reviews some of the methods used in this research for designing objective

functions. It is however important to note that an objective function should be custom-

designed for an optimization problem to include its specific features and objectives, and

as such, the methods presented in this chapter can only serve as guidelines that can be

useful in designing other objective functions as well.

3.2 Basic Interface between Transient Simulation and Optimization - An

Alternative Approach to Multiple-Run [22,231

The basic interface between transient simulation and optimization is intended to

alleviate the two major drawbacks, namely the blind search approach and the poor

accuracy of the results, of the conventional method of multiple-run (both in its

deterministic and random forms). /

Fig. 3.1 shows the basic interface between transient simulation and optimization. As

shown, the evaluation of the objective function is done through transient simulation of the

network, while nonlinear optimization steers the selection of the candidate points to be

tested.

It is stressed that the proposed interface is general in the sense that it can actually be

used to link transient simulation to virtually any optimization algorithms, as long as the

objective function derivatives are not required (non-gradient-based optimization

algorithms). We defer the study of some such algorithms to the next chapter. Gradient-

based optimization methods require a modified interface, which will be introduced in

chapter 7.
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As shown in Fig. 3.1, the simulation runs are successively carried out until the

optimization convergence criteria are met. Conesponding to every point þarameter set)

x, a simulation run is conducted and at the end of each simulation, an objective function

evaluation (Of(x) is assigned to the point. The objective function is set up so that

smaller values indicate a better fit of the objective (recall Q.Ð);hence the algorithm aims

to minimize the OF. The process continues until successive evaluations of the objective

function are essentially unchanged, indicating convergence to at least a local minimum.

Fig. 3.1 Basic interface between optimization and transient simulation

: OBJECTIVE !
FUNCTION ! Yes

TRANSIENTi
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The choice of optimization algorithms to be used is partially dependent on the problem

and partially on the simulation techniques and facilities. A number of algorithms that

have been used in this research are reviewed in chapter 4.

By enhancing the optimum-seeking method, this interface serves as a powerful tool in

the design process of complex power systems. A number of sample case studies using

this tool are given in chapter 5.

Some of the areas where the new design tool can be used are as follows.

o Determination of the optimum setting of control system parameters;

o Determination of the optimum values of power system components;

. Optimum operating conditions of power elechonic converters to minimize the

harmonic content of generated waveforms, etc.

3.3 Inclusion of Design Objectives into Optimization Objective Functions

Previously in chapter 2, we formulated the design problem as an optímization

problem, in which the norm of the difference between the actual performance of a system

with the objectives specified is to be minimized to yield the optimal parameter set. The

interface developed in this chapter serves this purpose. The question however remains as

how to effectively incorporate the design objectives into the optimization objective

function, and also what kind of norm should be used.

3.3.1 Design of Objective Functions

Objective functions are cenfral to optimization problems. The mathematical OF must

be carefully selected so that it is an accurate measure of the conformity of the response to

the requirements specified by the user. ln a conhol system design for example, it may be

required that the controlled variable closely matches the specified order in the steady
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state, and also has a good transient response. Fig.3.2 shows a typical system response for

the controlled variable x(l). Design objectives require that the response should reach the

ordered value within the rise time I,., have a peak overshoot less than Moand settle within

a steady state error tolerance.E, close to the desired steady-state set point for r >Zr. In

graphical terms, this means that the response should lie within the white (unshaded)

regions.

T, T" t þec) ,

Fig.3.2 Design of objective functions to meet specific performance measures

A single mathematical OF that attempts to embody all the above requirements can be

generated based on the well-known Integral Square Enor (ISE) measwe popular in

conüol systems. The OF selected in (3.1) has three components, one for each of the

regions [0, z,), lr,, Tr] and (zr,oo). In any of these regions, the closer the response x(l) is

to the desired, the smaller the value of the OF.

{r)

OF=ISE=K,Í(,; â I I,,, (/) - Eo )' dt +K, 
l sb(t), Eo, Mr)dt + \ l s@G), Eo, Es)dt

0TrTs

where

(3. 1)
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g(x,81,E2)-[{'-r)' if lr-41>r' Q,2)| 0 otherwise

Multi-objecriu. op,itoiration problems often converge to a solution that is a

compromise between the objectives. For example in a control system design problem as

stated above, the requirement for a fast rise-time may conflict with the need for a low

overshoot. The factors Kr, Kzand K3 can be used to give selective importance to the th¡ee

different regions, depending on which objective is more important to the designer.

Selecting parameters in the simulation that minimize ISE thus provide the best fit of

the desired objectives. Note that the selected OF is implicitly a function of the design

variables, although it may be very difficult or even impossible to explicitly show the

relationship. This captures the true power of the simulation-based optimization, where it

is possible to optimize a design without an explicit formula for the relationship between

the objective function and the design parameters. 
,

For example, if a powet converter, whose response is to be optimized, has a

proportional-integral (PI) controller with proportional gain and integral time constant Ko

and K¡, respectively (such as the example presented in the previous chapter), the

corresponding optimization problem can be stated as follows.

Minimize OF(Kp,Ti)

subject toKo>o,4 >o (3'3)

3.3.2 Weighting Components of Combined Objective Functions

It is sometimes necessary to include various measures into a single objective function.

This may happen for instance when the monetary cost of a given system as well as its

dynamic performance is included in the objective function. Such sub-measures take on

values that can be significantly different from one another. Should one of the sub-
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measlues have numerical values that are considerably larger than those of the others, it

will force the optimization to focus only on this sub-measure. In a well-defined objective

function, different measures should have comparable numerical values and this can be

achieved by properly weighting individual measures before they are combined into the

OF. Such an objective function will therefore have the following form.

OF(x) =Zw,.M¡(x) (3.4)

where x and OF(x) are the candidate point (parameter set) and its corresponding overall

objective function evaluation and l'[/¡ is the weighting given to the i-th performance

measure M{x). Proper selection of weighting factors can result in comparable

contribution of various measures to the overall objective function.

More details on this vital subject will be provided when the simulation results are

presented in chapter 5.

3.3.3 Scaling and Constrained Optimization

Optimization parameters often need to be constrained to meet physical or design

limitations (see (2.3) or (2.4)). For example, in a control system design problem, time

constants of integrators need to be nonzero or gains may need to be only positive. As

mentioned earlier in chapter 2, the method of MR and also the random search methods

conventionally used in design using transient simulation programs, inherently address the

issues of scaling and constraints. However, several optimization algorithms are originally

unconstrained methods, and therefore their application in constrained optimization

problems needs some external considerations.

One way to impose constraints is to externally limit the coordinates of the candidate

point to their specified limits. This can be done by hard limiting or by inroducing
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auxiliary variables. For example if a certain optimization variable.r needs to be limited

between la,bl, one may define an auxiliary variabley where y,=(b+a)r2+(b-a)/2sin(y) .

The optimization algorithm will generate the unconstrained variabley; however, the

actual design variable x that is obtained from the above equation is automatically

constrained to be in the interval [a,å]. Other methods such as use of absolute values or

squaring the variable can also be used to ensure positive-ness of the variables.

Another issue of importance in optimization problems is proper scaling of variables.

It is generally unfavorable if numerical values of the optimization variables are

considerably different from one another. For example in a case where the value of a

resistor and a capacitor are to be determined, the values may be orders of magnitude

different (tO3 (ohms) and l0-6 (farads) for example). To avoid numerical complexities,

optimization variables within the algorithm should be properly scaled ('per-unitized') to

have comparable magnitudes. Subsequently, they can externally be scaled back to their

original ranges before being submiffed for objective function evaluation.

In the next chapter, we discuss some non-gradient-based algorithms that have been

used in conjunction with PSCAD/EMTDC in the proposed design tool. Advanced design

issues, such as inclusion of robustress, as well as interfacing gradient-based methods are

presented in chapters 6 and7, respectively.
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Cllar'or

Optimiz ation AI gorithms

This chapter presents four representative optimization algorithms that have been used

in this thesis for interfacing with PSCADÆMTDC. The methods discussed are only

typical examples of non-gradient-based optimization algorithms and are presented to

provide an insight into the behavior of optimization algorithms. They also provide a

flavor of how different optimization algorithms select new parameter sets dwing their

sea¡ch process.

It should be noted that the interfacing method described in chapter 3 is not limited to

the following algorithms, and can actually be used to interface any non-gradient-based

optimization method. Gradient-based methods are presented in chapter 7.

4.1 An Overview of Optimization Algorithms

An optimization algorithm is basically a specialized search algorithm that carries out

two major tasks, namely generation of new trial points þarameter sets), and processing

of optimization objective functions (OF) [9]. An objective function is a quantitative

measure of the performance of a trial point in meeting the objectives set by the user. In a

minimization problem for instance, parameter sets that have better fits to the specif,red

objectives, will have lower objective fi¡nction evaluations; the ultimate goal of a
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minimization problem will therefore be to find a parameter set that has the lowest (at

least locally) OF evaluation.

The differentiating feature between various optimization methods is the manner in

which they select new trial points based on the current point(s). Generally speaking,

optimization algorithms can be classified into th¡ee large categories: analytical, geometric

(heuristic) and random-based. In analytical algorithms, such as the gradient-based

methods, an anal¡ical formulation for direction of the steepest descent, establishes the

basis on which current point(s) are manipulated to generate new candidates [9]. It is often

possible to analytically investigate the convergence of such algorithms. Geometric

methods, on the other hand, use intuitive geometric considerations as their search basis.

Test of convergence in these algorithms is more difficult and is often limited to special

cases. It should be noted that although these algorithms are geometry-based, they often

imitate the same gradient-based search scheme as in analytical algorithrns. ln the last

class of optimization algorithms, the random-based methods, search for the óptimum

involves some random movements that are somehow supervised by the algorithm

[12,13]. The main feature of these algorithms is their higher chance of converging to the

global optima, which occurs at a much higher simulation burden.

Fig.4'1 shows the schematic diagram of a generic optimization algorithm. The

variable x denotes the current trial point þarameter set). In general, x is a vector of N

elements (in an N-variable optimization problem), each of which is an optimization

variable. The goal of the algorithm is to find the point xoo¡ whose elements represent the

best values for the optimization va¡iables.
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Objective Function
Evaluation

or(x)

Fig. 4.1 Schematic diagram of a generic optimization algorithm

The block for objective function evaluation returns a f,rgure of merit for the

performance OF(x) of the current trial point. It is important to note that OF evaluation is

not necessarily a task to be done by the optimization algorithm itself. Depending on the

type of the problem under consideration, calculation of the OF(x) can be as simple as

evaluating an explicit mathematical function for x, or may on the other hand need

extensive laboratory experiments. ln our case, it is done through transient simulation of a

power network using PSCADÆMTDC.

Before proceeding any further, another underlying difference between various

optimization algorithms should be mentioned, and that is the type of information they

require in order to generate new candidate points. While various gradient-based methods

require first and higher order derivatives of the objective function, a large category of

optimization algorithms merely rely on function evaluations in the process of selecting

new parameter sets.
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Most of the time in complicated optimization problems, such as ones encor¡ntered in

the design of power systems, an explicit mathematical expression of the objective

function in terms of design parameters is extremely hard or even impossible to obtain. In

such cases, lack of the ability to calculate the derivatives, limits the application of

gradient-based methods and the natural choice is to use the latter class of optimization

algorithms, which only require function evaluations.

Based on the above observation, the initial focus in this thesis is on non-gradient-

based class of algorithms. In the following sections, four nonlinear optimization

algorithms of this kind are considered for interfacing with PSCADÆMTDC. Each of

these algorithms has a certain domain of application, which is referred to in the

following.

A single variable optimization method is first presented followed by two nonlinear

multi-variable methods, and finally a mixed-integer optimization method (Genetic

Algorithms) concludes the chapter.

4.2 
^single-variable 

optimization Method - Gorden section Method

Single-variable optimization techniques comprise a fundamental part of optimization

algorithms. This is because there are numerous applications in which single-variable

optimization problems arise. These problems can be more efliciently solved using

techniques specifically tailored for single-variable cases. Besides, there are several multi-

variable optimization algorithms inherently based on single-variable methods. In these

methods, single-variable routines are successively carried out for each of the variables.

An important assumption that many single-variable optimization techniques are based

on is the unimodality of the objective function concerned. Consider an interval fa,bl and,
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suppose that the objective functionfix) has an optimumx' in this interval. The function is

called unimodal if it is monotonic on either side ofx*. Obviously the function should be

monotonically increasing on one side and monotonically decreasing on the other side.

Fig. 4.2 shows a monotonic function with a minimum in the interval [-0.5,1.5]. It is seen

that the function is monotonically decreasing on the interval [-0.5¡'] and monotonically

increasing on the interval [x',1.5].

Unimodality is an essential assumption in region-elimination methods such as Golden

Section,Interval Halving, Fibonacci, etc. Suppose that functionfix) is unimodal over

[a,ä] with a minimum.r* occurring in the interval, and x1 and xzare points within the

interval such that we have a 1 xt 1 x, < b. Comparing function evaluations at x1 and x2,

we may infer:

If,¡{xr) >.flx2), then x" does not lie in the interval Ía, xtl:this region can therefore be

eliminated. /

If flxù>.fuù,then¡* does not lie in the interval lxz,bf;this region can therefore be

eliminated.

Region elimination can be continued with a new pair ofxr and xz until the search

interval is sufficiently small. The main question however is how to choose the

intermediate points. Golden Section is a method for choosing intermediate points ï¡ and

xz.It can be proved that it is the most efficient region elimination method [9].
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Fig.4.2 Unimodality

To apply the Golden Section method, one should fust find a bracketing interval

around the minimum. Consider a minimum bracketing interval la,bf as shown in Fig. 4.3

(a)' Also consider two intermediate points x1 and x2thatare located at distances (b-a)

and (1-r)(å-ø) from a, respectively. Note that there is symmetry in the way the

intermediate points are positioned between the two end points, i.e. ãrt ø =Çt ø .rne

idea is now to select rso that the symmetry is retained following the elimination of a

subinterval, e.E.lxz, ól as shown in Fig. 4.3 (b).

For that reason, rshould satisfu the equation r-r = e.r ; therefore we will have

-r +^Ã
r =#. The feasible solution e:0.618 is used and it is known as the Golden ratio.

roflo*ilg the deletion of a sub-interval, only one new point is inserted with the

appropriate distance and the new confîguration of the points will still retain its Golden

ratio. Successive operation of interval elimination and interrnediate point insertion will
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ultimately result in a minimum bracketing interval that is smaller than a pre-specified

value and the search can be stopped. More details about bracketing methods and interval

elimination techniques can be found in [9].

Each of the methods discussed above obviously has its own strengths and drawbacks;

appropriate use of any of them therefore requires careful examination of their features

and potentials along with those of the optimization problem under consideration. The

discussion in this chapter covered only those aspects that are deemed necessary to

provide a basic understanding of the methods interfaced with pSCADÆMTDC.

(a) Original placement of points

c(b-a)-1

- 
1t-r) (b-a)-Þ

(b) Preservation of symmetry

Fig.4.3 Golden section method

4.3 Simplex Optimization Method of Netder and Mead [9,14]

Simplex optimization method is a geometry-based, non-linear optimization algorithm,

and is therefore classified as a heuristic method. This optimizationmethod is usually very

suitable for cases where the number of variables is limited to twenty or less. This method

is based on successive intuitive re-shaping of an object called simplex. ln N-dimensional

space, a simplex is a geometric object comprising N*l vertices. Should the distance

between any two vertices be equal, the simplex is called a regular simplex. In two- and

three-dimensional spaces, the simplex will be a triangle and a tehahedron, respectively.

To understand the underlying idea of the Simplex optimization method, consider a
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triangle (simplex) in a two-dimensional space, as shown in Fig. a.4 @).The nodes are

labeled high (¡Ð to low (z) according to their corresponding objective function

evaluation. The idea is to move away from the high point. To do so, the high point (/1) is

reflected through the centroid of the face of simplex right across from it to generate a

(hopefully) better point ffi). This operation is called reflection (Fig. 4.a @)). Should the

newly generated point be better than the current low point (I) (i.e. with a lower objective

fi'nction evaluation in a minimizationproblem), an even larger step is taken in the same

direction. This operation is called expansion (Fig. a.a (c)). If the reflected point is worse

than the second highest point (rty'), a contraction occurs (Fig. a.4 (d)). one other type of

contraction is carried out when the reflection fails to generate a better point than the

current high point (I{). In that case, a contraction without reflection is perforrned, as

shown in Fig. a.a @). Successive operations of reflection, expansion and contraction wilt

cause the original simplex to move towards points with better objective function

evaluations. More details about this optimization method can be found in [9,14].

It is important to note that in this method the data pertinent to a simplex should always

be available to the optimizationalgorithm, i.e. N+l point (vertex) coordinates plus their

corresponding objective function evaluations.

The most attractive feature of Simplex method is the simplicity of its underlying idea,

which has made the method easy, yet powerful and reliable, to apply to optimization

problems. However, it should be mentioned that Simplex method is not guaranteed to

find the global optima, and depending on the initial simplex it might move towards and

converge to local optima. It has been suggested that in such cases it may be a good idea

JI



to restart the algorithm with a new side length when

method to search for other optima as well.

it reaches an optimum. It causes the

(a) Initial simplex

(c) Expansion (Xn< L) (d) Contraction (Xp> M) (e) Conhacion (XÂ> ¡Ð

Fig.4.4 Fundamental operations on a simplex

Since Simplex is a heuristic method based on geometric interpretations, it is

interesting to note how the geometry of a simplex evolves in a simple optimization

problem. Consider a two-variable function as defined below:

f (x,xr) = (x, -1)2 +(xr-t)z + (sinx,)z.xi fq.¡

The function has a minimum of 0.38 at (0.79,0.69), as indicated by the low-density

area of the associated contour map in Fig. 4.5. The simplex in this case is a triangle as the

space has two dimensions. The initial simplex vertices have OF values of 9.3, I2.4 and

19.8, respectively.

(b) Reflection
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Fig. 4.5 Simplex evolution

In the first step, the highest vertex (19.8) is discarded and replaced with the reflected

vertex (I) with the OF value 5.5. This vertex is even smaller (in OF value) than the

smallest of the original simplex and thus indicates a favorable direction for movement,

causing an expansion to a new vertex (II) with value 4.0. The procedure is continued, and

generates successive vertices III, IV, V...and so on. Sometimes the reflácted vertex has to

be discarded and a contraction called for (i.e., vertex III is dropped in favor of IV as its

function value was higher than at any of the vertices of the ¡eflection centroid). The

process continues until the function evaluations at the vertices differ bv an amount

smaller than the convergence criterion.

Since the Simplex optimization method is merely based on OF evaluations and does

not require first or higher order derivatives, it is quite suitable for problems where it is

not possible to explicitly evaluate derivatives, or when the objective function is not

smooth and differentiable. Since in power system optimization problems, no a-priori

knowledge of the nature of the optimization surface is usually available, derivative-

independent method such as Simplex are very favorable.
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4.4 Hooke-Jeeves Optimization Method

The Hooke-Jeeves (HJ) method is a nonlinear, multi-variable optimization method

that, similar to the method of Simplex, is a heuristic method. Due to this fact, it comes in

a variety of forms; however, the variations are essentially based on successive single

variable sea¡ches along a set of di¡ections. It is interesting to recall that even in Simplex

method, the underlying idea is to find a path towards an optimum, and the re-shaping of

the simplex is in fact a methodology to do so.

The HJ search method is comprised of ¡'vo distinct parts, namely the Exploratory

Search and the Pattern Move. ln the former, search is started around a pattern point along

some directions. The directions should be chosen such that the whole optimization space

can be spanned. Therefore, it is reasonable for example to choose coordinate directions as

the search directions. The directions are searched one at a time to find points with better

objective function evaluations. Should the search in a certain direction fail, it is replaced

with a search in the opposite direction. Once all the di¡ections are searched, the

exploratory search about the current pattern point is over. The resulting point is called a

base point.

Pattern Move is the process of moving the current pattern point to a new one along the

line from the current pattem point to the current base point. This is essentially a move in

the direction that decreases the objective function evaluation (considering a minimization

problem). The new pattern point is obtained from the following formula [9].

xr(t*t) - *(t) 41r(r) _ *(r-r) ¡ (4.2)

where x(t) and x(È-l) are current and previous base points, respectively. The new pattem

point is accepted only if it results in a better function evaluation that the current base
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point; otherwise the search is returned to the current base point, but with a smaller step

size. The search continues until the step size becomes smaller than a pre-specified value.

The whole procedure is better illustrated with an example. Consider the two-variable

function of (a.1). The problem is to f,rnd its minimum starting from the initial point x(0):

[4,3]. In order to use the HJ method, the following parameters are assumed:

lnitial step length, A = 1.0

Step reduction factor, a=2.0

The exploratory search is started around the point x(0), which is currently both the base

and the pattern point. We first notice thatfix{o)¡ : 1 8. 15. The search should therefore look

for points with lower function evaluations. The result of the search is summarized in

Table 4.1.

A better point ([3,3]) is found. The exploratory search is therefore successful. We will

now have x(l) = [3,3], x(0) = [4,3]. The new temporary pattem point will therefore be xo(l)

= x(r) + (x(l) - x(0) :12,31. The exploratory search is now performed around xr(t). The

results are given in Table 4.2.

Since the search around xo(l) has resulted in a better point than x(t), we will have x(2) =

12,21and a new pattem move should take place as xr(z) - *(z) -. 1*(z) - r(t)¡ : [1,1]. The

search should now be carried out around xr(t). Ifthe search around a pattem point fails to

Table 4.1 Exploratory search around x(0)

Test Point lx) Í4.41 t4.21 l"s,3l 13.3.l

fx) 27.16 12.29 28.28 8.l8

Table 4.2 Exploratory search around x,(r)

Test Point (x) 12,41 12,21 13.31 I r.3l
/tx) 23.23 5.31 8.18 10.37
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result in a base point with lower objective function evaluation than the current base point,

the exploratory search is deemed unsuccessful. The search is then re-started with the

cuûent base point and a new step size equal to the current step size divided by the step

reduction factor, i.e. Ln* = Lotd lq, .

Fig. 4.6 shows the contour map of the functionfxr¡z) and the f,ust few points

obt¿ined by HJ method.

It should be noted that HJ is essentially an optimizationmethod suitable for finding

local optima and does not necessarily converge to global optima. It is also interesting to

note that it generally goes towards the optima fairly fast, but it may not converge to the

exact optimavery rapidly. There are a number of variations to HJ method that each focus

on some aspects of the algorithm to improve its performance; however, they are beyond

the scope of this research and will therefore be avoided.

2

.t

1
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4.5 Genetic Agorithms [29,31]

Genetic Algorithms (GA) are a fairly new class of optimization methods. GAs along

with some other optimizationmethods such as Particle Swarm, Simulated Annealing, erc.

are considered to be parts of what is called Evolutionary Computing [13]. The main areas

of the application of GAs in power system design problems are cases that involve mixed-

integer optimization, i.e. cases where some of the variables take on real values and others

take on integer or or/off values. The coding procedure used in GAs (see below) can

easily address such cases.

Similar to Simplex method, GAs are also based on intuitive interpretations rather than

formal mathematics. The underlying idea of GAs is to approximate the natural evolution

and selection of biological organisms. It is believed by some that biological organs are

evolving towards generations of higher fitness, intelligence, physical capability, etc. It is

done through the generation of new genes from the old ones that hopefully carry traits of

higher fitness F2,13,15]. GAs are in fact attempting to mathematically capture the

complicated process of evolution in nature.

Generally, the process of optimization with GAs comprises the following steps:

o Coding the optimization variable into genes and chromosomes,

c Generation of the initial population,

o objective function (f,rtress) evaluation and natural selection,

o pairing,

¡ Mating,

¡ Mutations,
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A brief overview of the above steps will be given here; however, more details can be

found in [12].

4.5.1 Coding

The first step in solving problems using GAs is coding. By coding we mean an

arrangement of optimization variables in an ordered way, which is usually referred to as a

chromosome. The coding may be either binary or real, and the resulting GA is called

binary-valued (binary-coded) or real-valued (real-coded), respectively. It is possible to

solve real-valued optimizationproblems using a binary-coded GA; howeve¡ this requires

representation of real variables with binary codes. The number of bits used to code each

variable determines the quantization error. While it is possible to decrease the

quantization error by using larger number of bits, the memory storage problems become

more difficult as ttre ch¡omosome length increases. Fig.4.7 shows a schematic diagram

of binary- and real-coded chromosomes. For mixed-integer optimization problems, which

is the main intended use of GAs in this research, each chromosome consists of a number

of binary-coded as well as some real-coded genes. In addition some single-bit variables,

called switching (or/off) variables are also incorporated.

Bn I Bu | "' | 4,r I Bn I Bzz l "' I B,,z 1... | 4u I Bzu 
1 ".| B,uu 

I

Gz Gu

(a) Binary-coded chromosome

(b) Real-coded chromosome

Fig.4.7 Coding

G1

Gt G2 t... Gy
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. An Example of Coding

To provide a better understanding of the coding process, a real-valued optimization

problem with binary-coding is considered. Suppose one of the optimization parameters

varies over the interval [0,1]. The optimal value of this parameter will therefore lie in this

range. It is possible to code this parameter into a binary gene (for example e nFig.4.7

(a)) using an appropriate number of bits. Suppose that three bits are used for coding of

this parameter. The following table shows the quantization bands and their respective

binary equivalents.

Table 4.3 Coding a real parameter

Real range Binary representation
I0.l/81 000

(r/8.2/81 001
Q/8.3/81 0r0
(3/8,4/81 011
(4t8.s/81 100
(s/8,6i81 l0l
rc18.7181 110
(7/8.r1 lll

It is clear that each interval is 1/8 unit wide and the binary coding introduces a

maximum error of 1/16 unit. It is possible to decrease the quantizationerror by using a

larger number of bits, at the expense of larger memory storage and more intensive

computations.

Successive genes G2 and G3 , etc. are used for the remaining optimization parameters.

Note that there may be integer as well as switching parameters in an optimization

problem. Integer variables are coded using exactly the same procedure as outlined above

except for the fact that the coding for these variables does not involve any

approximations. Switching variables, which represent on/off states for example, are

coded using single bits.
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4.5.2 Initial Population and Natural Selection

The initial population comprises a fairly large number of chromosomes that are

usually randomly initialized. The large number of chromosomes and their ¡andom

initialization cause the GA to start the search at widely separated points in the search

space' Therefore, the chance of finding global optima using GAs is potentially higher,

although it is not guaranteed.

With a larger initial population, the likelihood of the optimization space being

searched evenly increases. The population of the next generations is usually less than the

initial population, i.e. from i/,¡op initial chromosomes, a numbe r Nooo are chosen to form

the next generation. Noo, isusually kept constant for the rest of the process. It is therefore

possible to discard a number of bad performers to prevent them from passing their traits

to the next generations. Natural selection is the process of choosing a number of

chromosomes of better performance to form the next generation. There are basically two

ways to choose the winning ch¡omosomes; one is to randomly choose Nooo ones from the

initial population, and the other is to choose the top Nooo chromosomes when the initial

population members are sorted in descending order according to their fitness. Although

the random approach is very easy to implement, it obviously has no control on the

passing of the bad performing chromosomes to the next generation. In this research, the

sorting method has been adopted.

4.5.3 Pairing

In each of the generations following the initiat orral Ngoodch¡omosomes are singled out

to form the mating pool. Each couple of mating ch¡omosomes usually produces two

offspring. The total number of ofßpring should be equal to Npop- Nroodtokeep the
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population of the generation constant. There are several methods for selecting mating

ch¡omosomes. A number of these methods are addressed in the following.

o Top to Bottom

Once the chromosomes in the current population are sorted in descend.ing order

according to their fitness, the mating pairs can be chosen two by two from top to bottom;

i.e. (1,2), (3,4), etc. This is a very simple approach to the mating process and is obviously

very straightforward to implement.

o Random

In random pairing method, Npop - Nsoodrandom numbers between ! and Nrooa are

generated. Ch¡omosomes coffesponding to the numbers generated are mated two by two.

So if the sequence of random numbers is {2,3,4,6,1,g}, the mating pairs will be (2,3),

(4,6) and (1,8).

o Rank lleighting 
,

Rank weighting and cost weighting methods, which will be introduced afterwards. a¡e

computationally more demanding than the methods already discussed.

Suppose that the sorted population is available. Each of the top Ngooachromosomes is

assigned a unique number based on its rank n in the list as.

N-^^, -n+lD_6ww

":Ç;{*;;;r,, (4'3)

cumulative probabilities for each chromosome are then calculated as.

(cP), =in (4.4)

Note that the cumulative probability of the top Nsooach¡omosomes will be less than or

equal to one. To select the mating pairs, Npop - Ngooarandom numbers between zero and
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one are generated. Each of the random numbers is then compared with the cumulative

probabilities of the chromosomes from top to bottom of the list. The fust chromosome

with a cumulative probability greater than the random number under consideration will

become a parent.

o Cost l{eighting

In this approach, the normalized cost for each of the top Nsooa chromosomes is

calculated as follows.

Cn = (Fitness), -(Fitness),v,_,*r (4.5)

where n is the rank of the chromosome.

Individual probabilities are then calculated as,

(4.6)

Cumulative probabilities for the chromosomes are calculated as (4.4). Np"p - Ngood

random numbers between zero and one are then generated and using the same process as

in rank weighting, mating pairs are selected.

The weighting methods outlined above are usually referred to as roulette wheel

weighting methods.

o Tournament

This approach is quite similar to the mating process in nature. In this approach, two

random numbers between one and Ngood e¡lê generated at a time. The chromosomes

corresponding to these numbers are picked up, and their fitress is compared. The fitter

chromosome will be a parent. The same process goes on until the required number of

mating pairs are selected.
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The methods outlined above obviously result in different sets of mating pairs and

therefore the properties of the generations produced by them are not similar. Random

nature of the GAs also conbibutes to this fact.

4.5.4 Mating

Mating is the process by which a number of offspring (usually two) are produced by a

mating pair. The idea is to generate more ch¡omosomes with (hopefully) better

performance. The fundamental procedure used in mating is crossover. The simplest form

of this operation is single-point crossover, which is described below. There are multi-

point crossover alternatives as well. Crossover is slightly different for binary and real

coded chromosomes. Both variations will be addressed here.

Consider two binary coded parent chromosomes as shown in Fig. a.8 (a). A crossover

point between the fust and last bit is selected randomly. The two offspring are produced

as shown in Fig.4.8 (b).

Father (Part 1) | Father (Part 2) Father (Part I) | Mother (Part 2)

Mother @art I) | Father @art2)

(4, Maung palrs (b) Otrspring

Fig. 4.8 Binary crossover

Crossover in real coded ch¡omosomes comes in many variations. The method adopted

in this research is a fairly simple approach; however, other crossover methods can be

easily incorporated.

Consider two real-coded mating ch¡omosomes as follows:

Mother = fmr,m2,...,fr c,...,m ¡tf
Father =1."fr,.fr,.,.,.f",...,.f*l (4'7)

Crossover point

(a) Mating pairs
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where subscripts 'c' denotes the crossover point. A randomly generated constant þ (from

[0,1]) is also chosen. The offspring can be obtained as follows:

Chil4 = lm * m 2,. 
.,, m 

"_1, 
x n"*¡, .f "*r,. 

. ., .f ,f
C hild z = l fp fr,. . ., .f 

"-1, 
x o"*r, tlt 

" 
*1,, 

. ., ffi y7

where

xn*t=m"- þ(m"-.f")
x,*z=1"+þ(m"-f")

(4.8)

(4.e)

As mentioned earlier, there are other crossover methods that employ other blending

shategies. An overview of these methods can be found in [12].

4.5.5 lVlutations

Using crossover, it is possible to produce new chromosomes that have (hopefully)

inherited good traits from thei¡ parents. The offsprin g cafiy fraits that are more or less

similar to those of their parents. From an optimization point of view, crossover is simila¡

to searching around local optima when it is found. Therefore, although the spread of a

GA's initial population is a promising feature in search for global optima, GA's relying on

merely crossover operations can easily cause it to get stuck in local optima.

Mutations are the remedies proposed to overcome this problem. During mutations, a

parameter in a ch¡omosome is replaced with a totally random value of the same size. A

user-specified mutation probability or rate determines the number of ch¡omosomes taking

part in mutation. It should be noted that choosing a suitable value for mutation

probability is an essential factor in the performance of GAs. Should the rate be low, very

few chromosomes are mutated and the chance of finding global optima decreases, while

with high mutation rates, the possibility of losing ch¡omosomes with high fibress

increases and the good naits already accumulated in the population can be deteriorated.
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The architecture of a GA approach to problem solving is very flexible and there are

different variations to implement them. As mentioned, there are several methods

proposed for each of the basic operations outlined above. Besides, the structural

parameters of the method, such as the initial population, the surviving population, the

number of mating pairs, the mutation rate, etc. also affect the performance of the

algorithm. Further details can be found in [12,15].

4.5.6 Optimization Using Genetic Algorithms - An Example

In this section we use GA to solve a two-variable optimization problem similar to the

one we discussed in section 4.3. Although solution with Simplex and other optimization

methods is quite shaightforward to obtain, and there is little serious incentive to use GAs,

this example serves to demonstrate the principles of the GA in a comprehensible way.

The coding for the problem involves using two genes in each ch¡omosome, where

each gene is a real number representing one of the optimization parameters (see Fig. 4.7).

A ch¡omosome contains a pair of such genes.

The initial population, number of surviving population and the number of mating pool

members arc N¡*o= 100, Npop:50 and Ngood:30, respectively. ln other words, the

search starts with randomly generating 100 instances of the 2-genech¡omosomes

described above; following the evaluation of the fiüress of these 100 initial candidates,

the top 50 ones are selected to form the next generation. The top 30 chromosomes are

maintained and form the mating pool.

optimization variables, x1 and x2 à1ê varied over the range (-5,5). cost weighting

method is used to select the mating pool members and the mutation rate is chosen to be

10%. Fig. 4.9 shows the distribution of the points over the x¡-x2 plane for the initial
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population as well as the first two successive generations. Distribution for the sixth

generation is also shown.

3 4sri

(a) Initial population

(c) Third generation (d) Sixth generation

Fig. 4.9 Distribution of points in various generations

It is seen that the initial population is randomly scattered all over the search space.

The second generation consists of a smaller number of points, which are closer to the

minimum. Subsequent generations contain the same number of points, however the
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points are mostly concentrated around the minimum. In each generation, there are points

that are farther from the minimum. These points are mostly generated through the

mutations and are used to ensure the hend of evolutions is not confined to a local

minimum.

It is observed that the GA has managed to move its search region to an area quite close

to the minimum. Since the minimum is not known before hand, the procedure should be

terminated when most of the candidate points are within a sufficiently small area.

4.6 Gradient-Based Optimization Methods

Earlier in this chapter it was mentioned that the original focus in this research was on

the application of non-gradient-based optimization algorithms. This was mainly because

of the fact the design problems in power systems often involve cases where explicit

representation of optimization objective functions in terms of design variables is not

readily available' And therefore, optimization algorithms that do not require derivatives

(of any order) are generally preferable. The optimization methods described above all fall

in this category.

Later on, experiments were carried out with numerical implementation of gradient-

based algorithms, for cases with and without explicitly represented objective functions. It

was found that under certain ci¡cumstances, derivatives can be numerically

approximated, and that the gradient-based methods even with approximate derivatives

can be successfully implemented.

The results of these studies are separately reported in chapter 7, which add¡esses the

numerical calculation of derivatives, general structure of gradient-based methods.
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algorithms used for the adjusûnent of step lengths, and also a number of example cases

tackled with this type of optimizationalgorithms.
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Application of Optimiz ation-
Based Simulation
Power Electronic Design Problems

5.1 Chapter Overview

In this chapter, a number of examples are presented, in which the developed tools are

used for different types of designs. The discussion is initially started with revisiting the

two-variable dc-dc converter example of chapter 2, andthe optimal design tool is used to

find the parameters of the conhol system. Laïer a comprehensive design of a dc-dc

converter is presented, in which not only control system parameters, buf also power

circuit elements and the switching frequency of the converter are also optimally selected.

The next example will address optimal pulse-width modulation multilevel converters

under practical condition where the dc bus voltage has ripple components of arbihary

frequency and amplitude. A mixed-integer optimization example is also presented.

5.2 Optimal Control System Design for a Dc-Dc Converter

The main purpose of this example is to provide an inhoduction to the issue of optimal

design using the tools and techniques developed in chapter 3. Although the case is quite

simple and even an exhaustive search (such as MR or random as reported in chapter 2)

yields the optimal solution with an affordable simulation effort, it is instructive to do the

design using the optimization-enabled simulation.



5.2.1 Operating Principles of Dc-Dc Converters

Dc-dc converters are used to produce conhollable dc voltage from a fixed dc source.

Fig. 5.1 (a) schematically shows the operation of a step-down dc-dc converter, which

generates a controlled voltage Z¿ through switching of the semiconductor switch S.

Capacitive and inductive filter elements are usually added to the input to provide a

smooth input side voltage and also to prevent ac currents from flowing through the dc

source E. Turning the switch ON and OFF results in voltages E and zero to appear across

the load. Proper selection of ON and OFF intervals contols the average ouþut voltage

across the load.

The switching usually happens at a constant frequency (1/7). The ON/OFF intervals of

the switch are determined by comparing a reference waveform with a triangular

waveform as shown in Fig. 5.1 (b). The duty cycle of the switch is determined using the

following formula I I 6].

D =ToY
T

(s.1)

where Zo¡u is the length of the ON interval of the switch within the switching period. It

can be shown that for a given duty cycle (D), the average ouþut voltage is as follows.

(ru\= n.r (s.2)

Reference

Time (sec)

f

VL

r - - -l
Filter elements

(a) Schematic diagram of a
dc-dc converter

O T 2T3T
(b) Firing pulse generation and

output voltage

Fig. 5.1 Principles of the operation of a step-down converter
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As shown in Fig. 5.2, the input side voltage is usually obtained through a rectifier; a

closed loop control system is usually used to determine the duty cycle to regulate the load

curent (or voløge).

1.0 c)

5.0 o

.02H

IL

-----------t
DC Filter

I¿ Do

(b) Load current control system

Fig. 5.2 Schematic diagram ofthe dc-dc converter and its contol system

5.2.2 Optimal Design Setup

Dynamic response of the load cunent depends, among other things, on the control

system parameters. Design of the confrol system for a dc-dc converter should therefore

take into account the desirable perforrnance characteristics specified for the load current

dynamics.

Design objectives in this example are identical to those specified in chapter 2, and

hence the design problem can be stated as follows.

Find x = (Kp,T,)

such that load current dynamic response

1) has minimum overshoot,

2) follows the step reference as fast as possible,

3) has minimum steady state error

(5.3)

I
I

----l

(a) Dc-Dc converter
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These objectives have to be embedded into a suitably defined objective function. This

objective function quantitatively measures the closeness of the actual response to the

specified goals. The Integral Square Enor (ISE) objective function given below serves

such a purpose.

T.'' 
-!¿)zat (5'4)ISE(Kp,Ti)= 

J_Q- r,d
t=Tt

We note that when the actual load current closely matches the reference current at

every point, the ISE objective function attains a low value (exact match at every instant

of time causes ISE to attain its lowest possible value of zero). Therefore, the problem can

be re-stated in the form of an optimization problem as follows.

Minimize lSE(x), x=(Ko,T¡) (5.5)

The time interval over which the ISE is evaluated should be long enough to allow

steady state to be reached. To ensure positive-ness of the conholler gain and time

constant, the outputs of the optimization are squared, and the results are used as the actual

gain and time constant. Table 5.1 summarizes the design procedure.

Table 5.1 Summary of the design using optimization-enabled fransient simulation

Reference
cunent (A)

T1

(sec)
Tp

(sec)
Initial

parameter set
(K".7;t

Optimized
Parameter set

(K^.Tì

Total number of
simulations

Optimal
ISE

30 0.1 0.5 10.16.0.1r 1.75.0.50E-021 5t 0.00175

The optimization method used for this design is the nonlinear simplex method of

Nelder and Mead. Fig. 5.3 shows the dynamic response of the load current for the initial

and optimized parameter sets listed above.
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(a) Initial parameter set
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þ) Optimized parameter set

0.50.40.30.20.1

Time (sec)

Fig. 5.3 Dynamic response of the load curent

The entire design is carried out in a considerably lower number of slmulations, than

what was obtained using the conventional methods of MR or random search presented in

chapter 2 (over 1000 runs in both approaches). This constitutes the major benefit of

combining optimization algorithms with the power of transient simulation in the design

process.

5.3 A Comprehensive Design of a Dc-Dc Converter

This example demonstrates the use of optimizationbased simulation to do a composite

design of a dc-dc converter. In this exercise, the electrical components such as inductors

and capacitors, ¿ts well as control system parameters are simultaneously optimized. The

circuit under consideration is shown in Fig. 5.2 (a). The 300 y, 60 Hzthree phase ac

supply is rectified and produces the input side dc supply V¿". Capacitive and inductive
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filter elements are used to provide smooth dc voltage and rectifier dc current. The

performance of the system is not only a function of control system parameters but also a

function of filter element components and the switching frequency. The design problem

of this converter can be stated as given in (5.6).

Find x = (K o,T¡, L¿",C ¿r,.frn)
such that we obtain

1) A good steady state load current with
minimal harmonic ripple,

2) A good transient response, with the

specified rise time, without excessive overshoot,

3) Minimum ripple voltage V¿" onthe input capacitor (5.6)
and ripple current on the dc current 1¿", (the latter is

to prevent rectifier current chopping related stresses),

4) As low a switching frequency as possible, in order

to limit the losses.

subject to

Kp,Ti, Ld", Cd" andf* being positive

Note that the objective (4) conflicts with (1), as a lower switching frequency results in

a larger harmonic ripple. Therefore, the process of optimal design is a compromise

between competing objectives, whose importance is determined through the design of

objective functions.

. Design of the Objective Function

In this problem, the OF contains several terms, each of which may have different units

or scales. For example, the term representing the penalty for a higher switching frequency

is quite different from the term penalizrngalarge steady-state ripple. In order to make a

meaningful OF, these different measures have to be combined using suitable weighting

functions, as shown below.

oF(x)=lw, u,1x¡ (5.7)
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where x and OF(x) are the candidate point and its overall function evaluation and ll¡ ts

the weighting given to the Ëth performance measure M¡(x).

The objective function given below is chosen to embed the design objectives as

specified in (5.6). The reference load current for this design is 45 A.

OF(Kp,Ki, fr*,L¿",C¿") =Wt'ISEI *Wz' frn +W|'ISE, (5.8)

o Design of Individual Measures of Perþrmance

The first term in (5.8) contains the sub-measr¡re.I^9Er for the performance of the

control system, which is identical to (3.1) with ¡ replaced by I¿and addresses objectives

(1) and (2) of (5.6). The 'desired'maximum permissible overshoot (M) as well as rise

and settling times (Ç,I") are as shown in Table 5.2. The weightings given to the three

parts of .l^SEt (Kt, Kz and K3 in (3.1)) are equal to unity. Note that there is no guarantee

that the final optimal design has all the above characteristics; fulfillment of the design

specifications in some cases may not be possible due to the fact the selepted structure of

the control system (PI in this case) is not capable of meeting the objectives. The optimal

design procedure however, tries to determine the parameters of the specified structure so

that the best possible performance is obtained. It is also possible to penalize deviations in

more critical factors by using larger relative weights.

The second term trz'f* penalizes a high switching frequency. The third term with

1,SEz satisfies objective (3) by taking into account the smoothness of the input side

voltage and current waveforms, and has the following form.

TF
a,

ISE, = I (At(I a" - (t o"lf + Ar(vo" - (vo")¡z '¡at

Tr

(s.e)
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where Zr is the initial time of 1^SËz calculation and. Tr is the final simulation time. Ir is

chosen such that to ensure only steady state ripple of the voltage and current wavefonns

are taken into account. h and Az are the weightings given to the two parts to ensure thei¡

comparable contribution to ISEz. The quantities (rr") and (vo"l represent the average

steady state values of the input dc current I¿¿, and, voltage V¿r, Íespectively. Since (rr")

(:337.5 V) is approximately 11 times larger than (rr")(:30 A), the weighting factors l¡

andA2are selected to be 1 and l/112, respectively.

o Constraints

In this problem, it is necessary to scale the search variables themselves. For example,

the inductance, capacitance, and switching frequency all have different units, and hence

different numerical value ranges, i.e.,/* is in the range of 1000 Hz, L¿"inthe range of

mH (10-3) and C¿,in the range of 100 pF (104). In order to improve the efficiency of the

search, it is desirable to scale (or per-unitize) the search variable. Note ftrat the scaling

only applies to the points generated in the optimization algorithm; they must be re-scaled

to their original system of units and ranges when used in the EMTDC simulation.

Optimization literature indicates a variety of approaches that can be used to ensure that

the optimization program does not select candidate points in a non-feasible range [9].

Simply assigning a fxed large value to the OF for such points is not recommended, as it

makes the function discontinuous at the boundaries and degrades the numerical

performance of the search. Sometimes the constraints can be eliminated by a variable

substitution. In this example we have used squaring of the internal variables to ensure

positive-ness of the actual optimization parameters.
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o Numerical Results

Each of these objectives in (5.8) is given a weight (lYu Wz and W) according to their

relative importance (as judged by the user). The weights selected here are shown in Table

5.2, which also shows the optimization parameters, the starting points given and final

solution obtained.

Fig. 5.4 shows the load current, and steady state dc link voltage and current

waveforms for initial and optimized values of the parameters, respectively.

It is observed that significant improvement in the perfornance of the system is

obtained, while switching frequency is reduced more than half of its initial value and

therefore switching losses are also considerably lowered.

Table 5.2 Optimization parameters and results for the dc-dc converter design

Overall obiective function
14/t % líl"
1.5 0.005 5.0

ISEI
Kt I K, I Kt I r, (sec) | ?". (sec) l M"----T E,r.o L r.o I l.o I o.oz I o.os lffi

ISE2
?"r (sec) | 1r (sec) At At

0.4 0.5 1.0 0.0083
Optimization initial zuess

K, KO/T) f*(Hz) ¿d. (mH) C¿ (ttF)
2.0 90.0 2000 50.0 150

Optimization final results
K, KO/T) l*Grz) Là" (rnII) C¿nhtF\

1.83 101.3 819.9 5.5 r72.4
Variable scale factors

For K- ForK¡ (l/Z¡) For f-, fHz) ForI,+ (mH) For C¿" (uF)
0.02 1.0 100 0.001 1.0
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Fig. 5.4 Pre-optimized (left) and optimized (right) performance of the system for the 45 A
operating point

It is interesting to note that using the conventional multiple-run approach, the same

optimization problem with only 10 steps for each of the 5 variables would requfue

100,000 (:105) runs. The accuracy of the solution would also be limited by this relatively

coarse search grid. With optimization-enabled emþ simulation the final solution is

obtained in less than 300 runs and provides a considerably higher level of accuracy as

well.

0 0.1 0.2 0.3 0.4
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5.4 Optimal Pulse'Width Modulation for Multi-Level Converters

ln this section, we use optimization based transient simulation to calculate the

switching angles of a pulse-width modulated @WM) voltage sourced converter (VSC) in

order to improve the harmonic quality of its ouþut waveform.

5.4.1 Principles of OPWM

Optimal PWM, also known as Selective Harmonic Elimination (SHE), is a method for

generating switching patterns for VSCs. Unlike ordinary PWM scheme, which require

high switching frequencies to shift undesirable harmonics to higher frequency bands [16],

OPWM operates based on a few chopping angles per quarter cycle, which are optimally

selected to shape the harmonic spectrum of the ouþut voltage [17]. The main advantage

of SHE over ordinary PWM is its lower switching losses. The disadvantage lies in fact

that SHE is inherently an offline method and the chopping angles should be pre-

calculated for a wide range of operating points and stored in a memory [l8].

Fig. 5.5 shows an idealized waveform for the three-level VSC of Fig. 5.6. Through the

switching of the appropriate semiconductor switches, a waveform with three levels (.8, 0,

-8"), where E is the dc bus voltage, can be applied to the load.

v(0)

E

I

I
d3

ø"2

0(rad)

0 nl2 r 3nt2 2n

Fig. 5.5 A t)¡pical th¡ee-level waveform
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0.1 H

Fig. 5.6 Th¡ee-level voltage-sourced converter in a back-to-back anangement

Of course, it should be noted that the waveform is idealized, in that the dc bus voltage

is actually the ouþut of a rectifier and has additional ripple, which is not shown. The

number of switchings in a quarter cycle is controlled by the N (N:3 in Fig. 5.5) switching

angles dt, d2, ..., dN.

These N angles can be optimally selected to achieve N different objectives, such as the

elimination offf-l specified harmonics and the regulation of the fundamental voltage.

For the ideal case of constant dc link voltage, the analytical expression for the amplitude

of the fr+h harmonic of the voltage waveform in terms of the chopping angles is as

follows [19]:

,- N

vo =?)iel)t cos(Èu,) , N: odd, k=\,5,7,11,13,...
tclr Ã

(s.10)

where E is half of the dc link voltage. Setting V¡V¡¿¡and V¡:0 for i in the list of N-l

harmonics targeted for removal, it is possible to solve (5.10) to analytically obtain

solutions for a1, d2, . . ., ø,v. However due to the fact that in reality the dc voltage is not

constant and has ripple on it, the angles calculated from (5.10) are only approximate'

There has been research on developing techniques for the reduction ofac side

harmonics in the presence of dc side ripple. Techniques based on variable modulating
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functions [20] and correction of the OPWM pattems [21] are proposed; however these

methods mostly require a precise knowledge of the amplitude and phase angle of the

ripple component, which is usually not known. ln conftast, nonlinear optimization based

EMTDC simulation can be used to determine the true chopping angles under such

conditions.

5.4.2 Optimal PWM under practical Situations

In the example discussed here the 20 kV(ac, l-l), 60 Hz dc-link fed 3-level VSC in Fig.

5.6 is controlled with three chops per quarter cycle. The resulting three degrees of

freedom are used to regulate the magnitude of the fundamental component and to

eliminate the two most problematic lowest order harmonics in the line voltage waveform,

namely the 5th and the 7th. The diode bridge rectifier results in an average nominal dc

link voltage of 27 kY.

The oF used for this problem is an ordinary ISE function as follows.

oF(ar,ør,a3l = 
J_,, 

tt", -vr,"¡)' +r?, +rfi¡at (s.11)

where v1, v5 ârd v7 ãrë magnitudes of the fundamental, 5ú and 7ú components of the ac

phase voltage, and v1o"¡ is the reference fundamental voltage. r and t6 are total

simulation time and start time of ISE calculation, which in this case are set to 0.4 sec and

0.1 sec, respectively. Note that if all objectives i.e.,v1:V1_,r¡and v5=v7:0 are met, the OF

in (5.11) achieves its minimum possible value of zero.

o Optimization Results

Table 5'3 shows the optimization results for this case, when the fundamental phase

voltage is regulated to 10 kV (rms). Chopping angles from (5.10) (calculated with the

assumption of constant dc bus voltage) as well as the starting and converged values from
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optimization are shown. The system is simurated with a 10 ps time step. The
interpolation function of PSCADÆMTDC is active, for further reducing time-step reratedjitter in the implemenrarion of the firing angles [2gJ.

The results show that the method is indeed able to achieve the desired objectives andthat the presence of ripple in this case makes a very marginar difference from the sorution
obtained analytically assuming constant dc link voltage. As an additional confírmation,
simulation with the dc link replaced by a dc source yierded exactly the same sorution asthe anal¡ical one.

Fig' 5'7 shows the steady state phase voltage and current as weil as the bus voltage
across the upper capacitor, which crearry shows the ripple imposed on ií. n . crurent
waveform is shown for both initial and optimized angres. Due to the erimination of lowerorder harmonics, the converged waveform is smoother.

Fig' 5.8 shows the harmonic spectrum of the vortage waveform before and after
optimization' It is observed that the opûmization process yields the desired fundamental
voltage (10 kÐ and reduces the targeted 5û and 7û harmonics to near zero. Higher o¡derharmonics not targeted for elimination, are however amplified- a wer_known property ofPWM converters' Nevertheless, they have a smater impact due to the natura'y higher

impedance of the ac system at these higher frequencies.

Table 5.3 Optimization results for the voltage sou¡ced converter

mization inliìãi
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Phase a current for the initial

\o

\o

Time (sec)

Fig' 5'7 voltage and current waveforms before and after optimization

Fig' 5'8 Spectrum of the ac voltage waveform before and after optimization
(white bars: initial guess angles; black bars: optimized angles)

The variation of the oF (ISE) versus run number is shown in Fig. 5.9, which shows

the evolution of the optimization process. successive trial points essentially show a

monotonic decrease, with onry a few jumps due to the search process. using the

taditional approach of sequential or multiple-nrns on the other hand would not have

Ø
F

0.)

Phase a curent for the optimized angles

Voltage waveforms for the optimized angles
(solid: phase a voltage, dashed: dc bus vol-tage)
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resulted in such a monotonic decrease. This demonstrates that the trial points selected

through optimization are better at consistently lowering the objective function, and hence

result in a much smaller number of runs.

The same simulation case can be easily modified to study related problems such as

harmonic elimination solutions for ac system unbalances, unequal parameters in each

phase, the presence of non-characteristic harmonics and so on.

Fig. 5.9 ISE variation versus run number

5'5 oPwM with DC Bus vortage Rippre - Further Investigations

The optimization results of the previous section show that under practical situations

where the dc bus capacitance is large enough (hence the ripple is reasonably small), the

optimized angles are very close to those obtained from idealized analysis (see (5.10)). In

other words, the ideally calculated angles continue to function satisfactorily under

practical situations as long as the ripple on the dc bus voltage is kept small.

In this section we investigate this issue in more depth by considering the three-level

converter of the previous section with a non-ideal dc bus, which can contain various

amounts of har¡nonics of different orders.

15 20
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Nonlinear optimization is used to find three chopping angles required for regulating

the fundamental component of the phase voltage as well as eliminating 5ù and 7ft order

harrnonics, when the dc bus voltage has a given harmonic content.

Three sets of test are carried out on the system: (l) ideal dc bus voltage, i.e. dc bus

voltage is constant at 13 kV, (2) 5% of the 6ù order harmonic is present on the dc bus

voltage, (3) 5% of the 5ú order harmonic is present on the dc bus voltage.

Note that for balanced three-phase operation, (2) and (3) represent characteristic and

non-cha¡acteristic harmonics, respectively.

For each of the above cases, the fundamental is varied from 6.0 kV to 10.5 kV, and the

angles are calculated using the optimization-enabled transient simulation. The results are

shown on Fig. 5.10.
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Fig. 5.10 Variation of angles versus fundamental ouþgt voltage
Solid line: ideal case, *: 5o/o of 6ù harmonic, o: 5% of 56 harmonic
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The results, even with 5o/o of characteristic and non-characteristic harmonics on the dc

bus, are close to those of the ideal case. Further investigations have shown that the ideally

calculated angles still eliminate the target harmonics as long as the amount of the ripple

or system unbalance is reasonably small [24].

5.6 Mixed-Integer Optimization Using Genetic Algorithms - A Demonstrative

Example

So far, the examples presented involved problems in which real-valued variables were

to be optimized. The choice of the optimization method to use was also based on this

essential fact.

ln this section an optimization problem of a different nature is considered. The

problem consists of selecting the proper structure as well as component values for a load

that absorbs maximum power from an ac source. The problem of choosing the proper

structure among a given number of load structures is an integer-valued optimization,

whereas selecting the optimal value of parameters involves real variables, hence a mixed-

integer problem.

A simple problem with known analytical solution has been chosen for the

demonstrative example, as then the validity of the GA-based method can be readily

established.

5.6.1 Problem Setup and the Analytical Solution

Fig. 5.11 shows the ac network as well as two different structures for the load, being

an RL and an RC one. The solution can be easily found using the maximum power

tansfer theorem. According to this theorem to absorb mæ<imum power from the source,

the load impedance should be the complex conjugate of the source impedance at the
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frequency of operation,i.e., Z"= Z, . fo be able to compensate for the inductive

imaginary part of the source impedance, the load should be an.RC one; therefore, the load

structure that can absorb maximum power from the soruce is the.RC combination (Load

2), and the component values will be as follows.

.Rr=R"=5ç¡

c" =-!-=-j--- ^ =7.036 aF- @"Ls (2160)"1

The GA solution will essentially demonshate the capability of the algorithm in finding

the appropriate load structure as well determination of parameter values.

5.0 o 1.0 H

l0 kv
60Hz

Fig. 5.1 I Maximum power transfer theorem using GA

5.6.2 GA Optimization Setup and Results

The GA solution to the above problem starts with the coding of the parameters into a

ch¡omosome. The ch¡omosome includes a switching (on/off) variable for the state of

breaker 1 (the switches have complementary states), and four real variables being the

values of lh (O), Zr (H), Àz (O) and Cz (pF), respectively. Therefore the encoded

variables form a chromosome as shown in Fig. 5.12.

Brk¡l Rrl Ltl Rzl C2

Fig. 5. 12 Ch¡omosome structure
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The solution \ryas started with 100 initial population instances of the chromosomes;

subsequent generations each had 50 chromosomes and the mating pool was comprised of

the top 30 chromosomes in each generation. The mutation rate for the switching and the

real sections of the ch¡omosomes \¡/ere set to 5% and20Yo, respectively. For the pairing

of ch¡omosomes the tournament method was used. Table 5.4 shows the summary of the

GA solution.

Table 5.4 GA solution to the maximum power transfer problem

With the specified numbers of the initial and surviving populations, the solution is

obviously found in the 17ù generation following the initial generation. It is also

instructive to see the average fitness of the generations as the evolution of generation

proceeds. Fig. 5.13 shows the average fibress of the generations as a fuáction of the

generation number. The fitness is a measure of the average power delivered to the load in

the steady state. The graph shows that the successive generations are evolved so that the

load absorbs more po\¡/er from the source.

As a general conclusion, one may observe that the solution using GAs is intensive in

terms of computational effort, and requires several simulations before the solution is

found. However, in cases where multiple optima exist or optimization variables take on

integer as well as real values, the GA solution is more justified as it increases the chance

of finding the global optimum and also provides a simple method for mixed-integer

problem solving.

Number of
simulations

Optimal state
of switch I

Optimized R1

lo)
Optimized tr¡

fi)
Optimized R2

to)
Optimized C2

lzf)
900 OTI 6.93

(inelevant)
0.053

(inelevant)
4.998 7.039
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Fig. 5.13 Average fitness ofgenerations

It is important to note that the GA approach shows a high level of parallelism.

Evaluation of the fibress of the members of a certain generation is essentially a parallel

task and can be assigued to a number of processors. In this sense, the GA solution in the

above example essentially requires 17 steps, each representing a generítion.

In a parallel implementation of a GA-based approach, the main processor can be used

to generate the ch¡omosomes in a generation and assign the fitness evaluation to

individual processors working in parallel.
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Inclusion of the Robustness
into the Design Procedure

6.1 Introduction and Chapter Overview

Throughout the previous chapters, a general framework was established for interfacing

nonlinear optimization algorithms with elecfromagnetic transient simulation programs

with the aim of developing a powerful tool for the optimal design of complicated

nonlinear systems, such as power electronic converte¡s. Methods were proposed for

incorporating design objectives into meaningful, well-defined objective,functions, and

later on they were used along with the optimal design tool for the design of some

nonlinear, switching systems. The proposed tool proved to be significantly more efficient

than the conventional design methods, e.g. MR and random search methods, in terms of

computer resources and accuracy ofthe results.

It is important to note that power systems and components are usually nonlinear

dynamical systems that can show significantly different behavior under different

operating points or configurations. Therefore, due to these non-linearities inherent in any

large power network, the optimized parameter set, obtained using the basic interface

described previously, may be sub-optimal or even inappropriate for other system

operating conditions. In other words, the process of optimal design, as described so far, is
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operating point dependent and the optimal parameter set so obtained does not necessarily

guarantee optimal performance for operating points other than its designated one.

This chapter will introduce a modified interface between transient simulation and

optimization to enable robust optimal design. Example cases for the application of the

new tool will also be presented.

6.2 Robust Optimal Design Interface [25]

The main reason why the optimal setting of parameters as obtained by using the basic

interface is not robust to the changes in the operating point is that the process of

optimization in that case only considers a single operating point or configuration. The

performance of the system for a given parameter set under other operating points was not

incorporated into the design.

This section introduces a modified interface between hansient simulation and an

optimization algorithm, which enhances the design of optimal systems by searching for a

parameter set that has the best overall performance over a range of operating points and

hence remains robust to operating point variations. ln this tool the performance of a

parameter set is evaluated not merely at one operating point (like the original interface),

but over a range of such points, resulting in a cumulative or aggregate objective function.

The nonlinear optimization algorithm then adjusts the candidate set of design parameters

based on how well it minimizes this cumulative OF. The optimized parameter set will

thus be the best performer for the entire range of operating points considered and its

optimal performance will therefore remain robust.
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It is important to note that the parameter set optimized with such a view will not

necessarily be the best performer for any of the operating points, if considered

individually, but will have the best overall performance.

Fig. 6.1 shows the proposed schematic diagram of the robust optimal design tool.

Fig. 6.1 Robust optimal design interface

As it is shown, the objective function evaluation block now consists of a number of

transient simulation runs, each corresponding to the same trial point þarameter set) but

for a different operating point or condition (state). The aggregate objective function

(OF(x)) is the weighted sum of the individual objective functions of(x) (referred to as

'þartial objective functions") for each run (note lowercase letters). Obviously optimizing

the parameter set x to minimize OF(x) gives a solution that is optimized to the aggregate,

but is not necessarily optimal for any of the individual operating conditions (respectively,

with objective functions oÍ(x)).

ofz?) t oÍNG

Simulate
state 2

Simulate
state N

Select new
candidate
point x

OF(x)=lw,of,(x)
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The weights w¡ âr€ chosen to weight the individual runs differently if so desired. They

can be used to emphasize the importance of one or some of the operating points or

conditions.

Design of partial objective functions corresponding to individual operating conditions

follows the same general rules as outlined in the previous sections. Their aggregation into

the cumulative OF(x), however determines the nature of the compromise the optimization

algorithm has to make in order to minimize the aggregate OF. Similar to a conventional

optimization problem, the robust optimal design is also a compromise between competing

factors not only within the partial objective functions, but also within the aggregate one.

Larger gains or weights generally show a more important index, and therefore the focus

of the compromise will be towards the indices with larger weights.

6.3 Basic Interface versus Robust Optimal Design

We mentioned that the basic interface of Fig. 3.1 can be used to determine the optimal

setting of design parameters for a given operating condition, and that its results are

usually sensitive to the changes in the operating point. The process of inclusion of

robustness into the design was done through the modified interface of Fig. 6.1.

A question that can logically be asked is whether the basic interface can be of any use

when a seemingly more powerful tool is also available. The answer to this question is

affrmative. Indeed, the robust optimal design tool cannot replace the basic tool in all

design problems.

We firstly re-assert that, the solution obtained by the robust optimal design tool is the

best performer overall and is not necessarily optimal for any single operating point within

the range. This can potentially be undesirable, because it is possible to achieve better
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performance for a given operating point if a specific design is ca¡ried out for that point

using the basic interface. With the decreasing cost of memory storage, it is easily possible

to design the optimum parameter sets for a wide range of operating points and store them

in a large table. A higher level control can adaptively exüact the optimum parameter set

(from the table) corresponding to the current operating point so that for each operating

point the best perfiorrnance is attained (a simple example of this approach is the method

of gain scheduling that finds numerous applications in control systems).

The second point is that there are some applications where robustness is not an issue

of concern at all. An example of this case is the optimal pulse-width modulation of power

electronic converters, in which optimal angles have to be specifically designed for each

operating point and robusbress is out of question. In this case, a single set of chopping

angles designed with a robustness view will deteriorate the essential assumptions of

OPWM.

Altogether, it can be inferred that the design tools introduced in chapter 3 and this

chapter, are complementary and their application in various design problems should be

done with careful examination of the problem under consideration as well as the goals

sought after through the design.

6.4 Example Cases

6.4.1 Dc Power Supply

The schematic diagram of a dc-dc converter with its closed loop load current control

system was shown in Fig. 5.2(a) and 5.2(b) [16]. Unlike the design presented in section

5.2,inthis section we consider a robust optimal design of the converter. The design
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objectives are listed below. The switching frequency is kept constant at 1800 Hz and is

therefore omitted from the list of design parameters.

Find x = (K o,T¡, L¿",C ¿")

such that we obtain

l) A good steady state load cunent with

minimal harmonic ripple,

2) A good transient response, with the

specified rise time, without excessive overshoot

3) Minimum ripple voltage V¿" onthe input capacitor (6.1)

and ripple current on the dc current /¿", (the latter is

to prevent rectifier cunent chopping related stresses),

4) Robust operation, i.e. the above objectives should be

maintained when operating at large, medium or small load currents,

subject to

K o, T¡, L¿", and, C¿" being positive

The desired objectives listed above can be encapsulated into a partial objective

function for each of the operating conditions as follows:

of (x)= MrxISEI+ MrxISE,

where x = (K o, K¡, L¿",C¿")r , (6.2)

where /^Sðr and ISEzarc the performance indices for the load current dynamic response

and dc bus voltage and curent steady state ripple, respectively. Mt and M2are weighting

factors given to the indices to ensure that they conkibute evenly to the objective function.

The performance measures used are defined below.

T-'- Í
lsq = 111---!!-¡2at

í t L-ref';,, _, (6.3)
'rl l. ^ V. ^l

/.S82 = llr,tt-*12 +Kr1t--!3s-,,, ,¡2ldtí,L \ra"l \Ya"l I

where (¡r") an¿ (vo") are the average values of the steady state dc bus voltage and

current. Weighting factors K¡ and Kz determine the contribution of voltage and current

ripple to Is4z,respectively. Notice that if the perfonnance is ideal, i.e., the reference and
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actual values match everywhere and there is no ripple voltage or current, the objective

function of (6.2) reduces to its minimum possible value of zero.

In order to demonstrate why a robust procedure is necessary, the following sub-

section f,nst shows that optimizing the parameters for one operating point can often lead

to a poor response for other operating points. In the subsequent sub-section, the robust

method is used to rectiff this problem.

A. Design for a Single Operating Point - Lack of Robustness

Table 6.1 summarizes the results obtained from optimal design for the single operating

condition correspondingto 1,"¡:10 A (a step waveform applied at 0.1 sec), which is

considered as a "small" load cunent.

Table 6.1 Optimization parameters and results for the operation at l0 A

Fig. 6.2(a) and (b) show the step response of the dc load current as well as steady state

values of the rectif,rer side dc current and voltage with the initial and optimized

parameters respectively. It is evident that the optimized parameters result in a much

improved transient step response as well as in significant reduction in ripple (of = 0.78) as

compared with the pre-optimized results (of :83.6).

lSEr
M' T¡ T,

ls0 0.1 sec 0.5 sec

ISEz

M T, Kt Kz
1000 I 0.4 sec 1.69 l.69

Initial zuess
Ko T¡ = llK¡ (sec) L*(H) C¿"(uF\ oÍ

2.08 0.48e-2 0.11 23.4 83.6
Ootimized results

K, 7j = l/l(¡ (sec) L¿.(H) C,+ (uF) of
t.27 0.40e-2 0.13 29.8 0.78
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Although the performance with l0 A dc current is very good, the design is not robust

as seen from the exftemely poor dynamic response shown in Fig. 6.3 for the "medium"

(30 A) and "large" (50 A) values of load current. The next section describes a solution

that overcomes this serious drawback with the proposed robust optimization method.

(a) Pre-optimized parameter (b) Optimized parameter

set set

Fig.6.2 Optimal design for the operating point conesponding to 1,"¡: l0 A

Time (sec) Time (sec)

(a) I,a= 30 A O) /,"/: 50 A

Fig. 6.3 Dynamic response of the system for two other operating points

B. Development of the Robust Optimal Design

As it was pointed out earlier, the robust optimization method requires the optimization

of an aggregate objective function over several operating points. In this particular

example we have selected three points that span the operating range, namely 10 A (low

cu:ent),30 A (medium current) and 50 A (high current).

{g\'

*\-

*\-

*\-

.{

Time (sec) Time (sec)
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The individual objective functions of¡(x) are calculated exactly as mentioned above

according to (6.2) and (6.3). The respective values of the average steady state current

(rr") and voltage (zr") used in (6.3) for these cases are shown in Table 6.2.The

aggregate OF is calculated as shown in Fig. 6.1, with equal weights 'w¡: 1.0, where Í :

1,2,3 corresponds to the operating points at 104, 30 A and 50 A, respectively. This

weight disfribution indicates that the performance at all these operating points is

considered to be equally important. If desired, other weights can be chosen; for example,

the operation at 10 A may happen very infrequently and may be assigned a relatively

smaller weight.

Table 6.2 Steady state quantities for the dc-dc converter circuit

The aggregate objective function OF(x) thus calculated is optimized and the optimal

parameters so obtained are shown in Table 6.3. Note that they are quite different from the

ones calculated earlier without consideration of robustness as shown in Table 6.1. The

final results from the non-robust optimization (Table 6.1) were used as the starting point

for the parameter set x. The convergence to the robust parameter set took 231

simulations. The results for the response of the load current are shown in the second

column of Fig. 6.4. Note that as the starting point for the robust optimization was the

earlier non-robust parameter set, comparison with the left hand column of Fig. 6.4 shows

the improvement innoduced by the robust algorithm. Notice that the performance at 30 A

and 50 A is now significantly improved. The response for the 10 A case is also good,

although it has a larger rise time compared to the earlier case, which was optimized for

Operating point (/¿) Fo"l (vo")

l0A 1.3 A 400 v
304 11.7 A 384 V
50A' J /.) 333 V
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l0 A (the partial objective function is 1.43 as opposed to 0.78 obtained earlier). This

shows that the new result is slightly less optimal for the 10 A condition, but is superior

overall.

Table 6.3 Robust optimization results for the dc-dc converter

1,re l0 (A)

1d= 30 (A)

I,{:50 ( )
60

3oo
r{ 20

^+-0 0.1 0.2 0.3 0.4

Time (sec) Time (sec)

(a) Pre-optimized parameter (b) Optimized parameter

set

Fig. 6.4 Robust optimal design

The robust optimization procedure only allows a f,rnite number of operating points

(104, 30 A and 50 A in the example) to be considered. Fig. 6.5 shows the response for

Iu¡:20 A and 40 A respectively; which were not explicitþ included in the objective

function. The figure shows that the parameter set still gives acceptable results.

It should be pointed out that it is not at all necessary to use the non-robust optimized

parameters as the seed parameters for the robust optimization procedure. If one starts

Optimization final results

Ko ?i = lirK¡ (sec) L¿"(H) CafuF) of
t.5l I 0.769e-2 0.415e-1 491.8 3.06
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from the same starting point as in Table 6.1, the robust point is obtained lr;,228 runs. Note

that this number is still orders of magnitude smaller than what would be required with a

multiple-run search. For example, with just 10 equally spaced trial values for each of the

four search parameters there would be a total of 104=10,000 runs.

.{.{

Time (sec)

(a) 1,"¡= 20 (lt)
Time (sec)

O) 1,"/= 40 (A)

Fig. 6.5 Dynamic response of the robust optimal parameter set for two other operating points

6.4.2 HVDC Control System Design

This example demonstrates the effectiveness of the robust optimization approach in

the design of a much larger system. The system under consideration is a monopolar

representation of a high voltage direct current (HVDC) transmission system, with a

relatively detailed representation of the converters, conhols and the sending/receiving

end ac networks. The variables to be optimized are the conholler gains, which are four in

number. In the previous example the performance of the system was optimized to be

uniformly good at different operating points. On the other hand, in this example the

controls are optimized to provide uniformly good performance with different receiving

end ac networks.

Fig. 6.6 shows schematic diagram of an HVDC system and converter controls, which

is based on the First CIGRE HVDC benchmark system [27], with network data as shown

in Table 6.4. The l2-pulse inverter and the rectifier are each rated at 500 kV a¡d 2 kA.

The ac systems on both sides are represented using Thevenin equivalent circuits. The ac

system at the rectifier side has a short circuit ratio (SCR) of 2.5.
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NY ACz
Variable SCR

Filters and
fixed

capacitors

(a) CIGRE HVDC benchmark model

(b) Converter conhol system

Fig. 6.6 Schematic diagram of CIGRE HVDC benchmark model

Table 6.4Data pertinent to the CIGRE HVDC benchmark moáel

The nominal SCR on the inverter side is 2.5; however, in this study, th¡ee different

SCR values are used conesponding to the possible variations in the receiving end

network stengths (SCR:2.0 for a "weak" network, SCR:3.0 for a "medium strength"

K¡+l/sÎ1

K2+ I/sT2

Rectifier side
Ac svstem Transformers (each)

373.3 kV. SCR = 2.5284" 600 MVA, 211.31345 kV, l8%
Inverter side

Ac system Transformers (each)

218.2kv,SCR=2.0275"
222.3kV, SCR= 3.0.280'
226.3kV- SCR= 5.0.Z85'

600 MVA
206.51230kV

r8%
Filters and fixed caoacitors IMVAR) lfor both sides)

l1-th harmonic l3{h harmonic Fixed caoacitors

250 250 ls0
Dc link

Dc line resistance Rated dc voltase (rectifier side) Rated dc current

5c¡ 500 kv 2kA

8',1



network, and SCR:5.0 for a "strong" networþ. Such variations in short circuit levels can

occur in real HVDC systems for several reasons, such as reconfigurations of the ac

network due to the switching of transmission lines and changes in the number of

synchronous compensators on the ac busbar.

A. Selection of the Objective Function

The four parameters to be set for robust performance are the proportional gain (K"l)

and integral time constant (f,l) on the rectifier side current controller, and proportional

gain (Kn) and integral time constant(T¡2) of the inverter extinction angle controller.

The objective of the design is to select values of these parameters so that the deviation

between the actual dc current I¿ and the current order l¿,"¡is as small as possible, when

changes are made to the current order. The design should be robust, i.e., the performance

should be good even with changes in the strengfh of the receiving end ac network. To

meet the above requirements, the objective function in (6.4) is selected,.which penalizes

differences between 1¿ and I¿,r¡.

T-'î't-Jl-,,2¿,
of,(x)= /.SE(x)= J(: Id,"¡

¡0
(6.4)

x= (K¡,Tr¡,K¡2,T¡2)

The test comprises of a -20Yo step change in the current order from 1 pu to 0.8 pu,

followed by another +20yo change to bring the set point back to 1'0 pu.

The form of the aggregate objective function OF(x) shown in Fig. 6.1, permits the

assignment of different weights to each of the partial objectives of{x). In this example,

the weights w¡ ãle selected as shown in (6.5). The reason for this choice is that the system

is more susceptible to commutation failure at the lower short ci¡cuit ratios, if the current

overshoot is too large. Hence the weights (wr :1, w2=l) assigned to the lower short
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circuit ratio systems with SCR:2.0 and SCR: 3.0 respectively is twice that of the weight

(w3: 0.5) assigned to the higher short circuit system with SCR=5.0.

oF(x) = 1.0 x ofr (x) + !¡Q xofr(x) +O.Sxoft(x) (6.5)
wt w2 w3

B. Optimization Results

The above form of the objective function causes the optimization to search for

parameter sets that are more specifically designed for weak and medium strength ac

system, which are naturally more difficult to control.

Table 6.5 shows the initial and optimal parameters as well as the corresponding partial

and aggregate objective values. The corresponding time-domain simulation plots for the

dc current are shown in Fig. 6.7.

Table 6.5 HVDC conhol system optimization results

The pre-optimized simulations show an extremely poor response with repeated

occrurences of commutation failure. The converged parameter set demonshates a

significantly improved response. This is also quantitatively evident from the objective

function tabulations in Table 6.5. The pre-optimization OF= 763 is reduced to3.44.

It is interesting to compare this result with the parameters that are obtained when the

weights in (6.5) are all selected to be equal. The optimized parameters, together with the

numerical OF values are shown in Table 6.6. It can be seen that the partial objective

function oS (conesponding to SCR:S) is smaller (1.28) in comparison with the value

(1.36) reported in Table 6.5. On the other hand, the values for ofl and ofz are now larger.

Initial zuess

K¡ T^ Kn Tn ort of'¿ of^ OF
8.1 0.0r 2.5 0.04 453 148 324 763

Optimized results (wr : wz: l, w¡ = 0.5)

K¡ T,I Kn T" of, of, oft OF
t5.92 0.0091 0.215 0.075 1.56 t.2 r.36 3.44
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,{{

0.5 11.522.5

Time (sec)

(a) Initial parameter set

Time (sec)

(b) Optimized parameter set

SCR: 2.0
f .'l

^,|S o.t

{ o.a

0.7

SCR = 3.0

.{

SCR = 5.0

Fig.6.7 Dc cunent dynamic response (with unequal weights)

This means that imposing a more stringent weight orrort, does indeed improve the

response for this operating condition; however it does so at the expense of the response at

the other two conditions. Robust optimization is a compromise berweeí the competing

partial objectives. Hence it becomes important to promote those objectives which a¡e

vital while assigning smaller relative weights to the non-critical objectives. As argued

above, the vulnerability of the system for the SCR:5 condition was expected to be less

severe in comparison with the smaller SCR systems; therefore a smaller weight was

selected for w3.

Table 6.6 Optimization results with equal weights

The above quantitative results can also be visualized with the aid of Fig. 6.8, which

shows the simulation results with optimized parameter settings obtained using equal

Optimized results (wr = 1r? : r4r1 : 1.0)

Ka Tu Kn Tn of, oft ofi OF
t4.54 0.0103 0.23 0.031 1.65 1.44 1.28 4.37
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weights side by side with the earlier results þresented in Fig. 6.7) obtained using unequal

weights. It is evident that the dc current for SCR:2.0,3.0 shows larger deviations from

the reference for the equal weights, as compared with the waveforms with unequal

weights. On the other hand, the results for the SCR=5 case are closer with the equal

weights.

SCR = 2.0
1.1

1

0.9

0.8

o.7 2 2.5

SCR = 3.0
1.1

-.\ I
S o.n.{\ 0.8

0.7
2.5

SCR =

.{
I 1.5 2 2.5

Time (sec)

(a) Optimized parameter set (b) Optimized parameter set

with equal weights with unequal weights

Fig. 6.8 Optimized system performance with equal and unequal weights

C. Discussion of the Results

This section demonstrated that the design of robust systems is essentially a

compromise between competing performance measures. Assignment of weights to these

factors before aggregation into the overall objective function shows their relative

importance and determines their relative strength in diverting the design towards

measures of higher importance (denoted by higher weights). It is therefore important to

decide on the relative importance of different operating points or system conditions

.{ \*

.{

.{

1.1

0

1

5.0

Time (sec)

9T



before assigning weights so that the frnal aggregate OF is a balanced combination of all

system conditions.

The same argument can be repeated for the design of partial (individual) objective

flrnctions when they are composed of a number of performance indices. The weights

assigned to individual measures show their relative significance and therefore they should

be carefully chosen to avoid unnecessarily overemphasized factors.
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Applic ation of Gradient- B as ed
Optimiz ation Al gorithms

7.1 Chapter Overview

Irr chapter four, general principles of optimization algorithms were reviewed and it

was noted that they are divided into two categories based on the type of information they

need to generate new candidate points. It was also mentioned that in gradient-based

optimization methods first or higher order derivatives are required as well as objective

function evaluations

Consideration of the gradient-based methods was deferred to this chapter, because

computational complexities associated with numerical implementation of these methods

are usually quite high and therefore they are not usually prime choices for being

interfaced with transient simulation programs.

This chapter deals with the methods and techniques required for this purpose. It will

be shown that the process of optimal design using gradient-based optimization algorithms

can be divided into two successive parts, namely numerical evaluation of the gradient and

determination of the step length. It will be shown that the former has a significant

potential for parallel processing, which is the key motivation for the application of these

methods on parallel processors.
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7.2 Gradient-Based Optimization Algorithms

ln gradient-based optimization methods, selection of a new parameter set is carried out

based on objective function evaluation at the curent parameter set as well as first and/or

higher order derivatives. In general, the iteration forrnula for obtaining the new trial

parameter set in gradient-based methods is as follows [9].

x(k+l) -,(r) a o(t)r1*(t)¡ (7.1)

where x(É) and x(þt) are current and new parameter sets, respectively. s(x(È)) is the search

direction in the .ð/-dimensional space, and, ék) is the length of the step in that direction.

The search direction s1x(ft)¡ is determined using gradient information at the current point

x(É), and depends on the type of the information required by the algorithm. The most

straightforward approach to choose the search direction is to use the direction of the

largest descent based on the local information at x(Ë), which is the opposite of the gradient

of the objective function at x(¿). The iteration formula will therefore become.

x(k+r) - *(r) - o(t)y¡1*(t) ¡

following formula.

vf =taf af ôf tr- -A\ Axz AxN'

(7.2)

where V7{x{e)¡ is the gradient of the objective function at x(ft), and it is obtained from the

(7.3)

The above formula is known as Cauchy optimization method [9]. The algorithm can

be stopped when the gradient (derivative) becomes smaller than a pre-specified threshold

(e).

Further examination of (7.2) reveals that the movement towards the optimum becomes

slow as the search gets close enough to the optimum. The reason is that the gradient of
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the objective function is small a¡ound the optimum, therefore the new point x(tsfl) will be

marginally different from the current point x(t). Modifications are introduced to the

Cauchy method to improve its behavior at regions both far from and close to the

optimum. These include use of second order as well as frst order derivatives [30];

however due to the lack of an explicit objective function, these methods are not used in

this thesis.

The step length parameter le) is usually chosen to minimize the objective function at

the new point x(tstl). Should the explicit representation of the objective function in terms

of design parameters be available, the parameters s(x(É)) and dk) can be obtained using

partial derivatives and a single variable optimization, respectively (see below for details).

However, in most of the design (optimization) problems, such as those encountered in

power system transient simulation, this explicit mathematical representation is not

available, and so the only feasible approach is to use numerical techniques to determine

search direction and step length. Lack of this vital information was the main reason why

non-gradient-based optimization methods were originally chosen in this research.

In the following, the interfacing method developed to link transient simulation with

the Cauchy optimization method is presented. The interface developed handles the

numerical calculation of derivatives as well as the single variable optimization needed to

determine the optimum step length at each iteration.

7.3 Interfacing EMTDC and Cauchy Optimization Method [26]

Fig. 7.1 shows the schematic diagram of the interface between transient simulation

and the Cauchy optimization algorithm. As mentioned above, lack of an explicit

representation of the objective function in terms of individual design parameters, leaves
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us \¡/ith no choice other than numerically finding the partial derivatives and the

appropriate step length, as shown in blocks (2) and (3) in the diagram of Fig. 7.1.

In the following two subsections, we will present the numerical algorithm used for

gradient calculation as well as the method for determining the step length. Although Fig.

7.1 shows only one explicit objective function evaluation (block (l)), the following

discussion reveals that several more intermediate objective function evaluations are also

required.

Initialization

Objective function
evaluation at the
current point x(k)

(using EMTDC)

Calculate the
derivative at x(¿)

Determine the

appropriate step length

Update the parameter
set using (6.2)

k
I

onverg€

'es 
I

Þ

End

Block (l)

Block (2)
(2Nadditional

OF evaluations) /

Block (3)

Fig. 7.1 Interface befween Cauchy optimization and transient
simulation
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7.3.1 Calculation of Partial I)erivatives

The gradient vector given in (7.3) can be formed by evaluating partial derivatives of

the objective function at the current point þarameter set). Numerical partial derivatives

can be evaluated using the following formula.

ôf ,,rorr_ /(x(k) +lr)-/(x(e) -h;)
ar, ''- ' 2h

where å is an adequately small increment, and the vector h¡ is defined as follows.

t'lh,=lo oh o...ol
t- 

-l

L I toi-l i+l to lú Jrxlv

(7.4)

(7.s)

Note that the formula n(7.4) practically yields the average of the right and left partial

derivatives of the function at the point x(e). Technically, the increment l¿ has to be as

small as possible; however, to avoid numerical errors, we may choose å to be a fraction

of the correspondin g rlk), e.g. 5Yo of rr.(o), which of course is not necessarily extremely

small and will therefore result in an approximation of the actual partial derivative.

We note that each of the partial derivatives in (7.3) can be calculated using (7.4) and

each will require two objective function evaluations (in our case, using

PSCAD/EMTDC). Therefore for anN-variable optimization problem, calculation of the

gradient will require 2Nobjective function evaluations.

7.3.2 Determination of Appropriate Step Length

The step length factor n(7.2) determines how far the new point (parameter set) will

be from the original point (in the direction specif,red by slx(e))¡. ln a minimization

problem, it is obviously desirable to have /(x(t*tlr..f(r(u)). Since x(t+r) - rtt) -o(t)y¡1*(t)¡,

one could argue that ;(r(*t) is a function of dk),i.e.flx(þt)¡ = gçolk)¡. Therefore, the best
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choice for ék) is to find it such that¡x(*r tl¡ is minimized. Normally single variable

optimization methods are used to determine ék) ineach iteration. The algorithm used in

this work is given below.

The basic idea in this algorithm is to find a value for the current step length so that

/(xG+tl¡ <,f1xttlr. Since the OF evaluation at the new point is essentially a function of the

step length (see above), it is technically possible to find the optimum value of the step

length such that the new point has the lowest possible OF evaluation. This however

requires a single variable'optimization'in terms of the step length, which in turn will

require several intermediate steps (OF evaluations) before the optimal step length is

obtained. Besides most of the single variable optimization methods require a pre-

specified interval over which the objective function is unimodal (see section 4.5). Such

an interval is not usually known a-priori, and this also leaves little incentive for using a

single variable optimization method to find the optimal step length. It ivasserted that use

of single variable optimization methods is quite possible, but it is not investigated in this

research.

Unlike an optimization algorithm, the following algorithm merely tries to find a value

for the step length such that the next point has a lower OF evaluation (not necessarily the

lowest possible).

Algorithm for determination of an appropriate step length

I q(k) - qo

2 \,o,t = ¡(r) -o{t)Y¡1*(t)¡
3 r f(xøt).,f(*(o))
4 t,urz = x(&) -t.5aß)v¡1x(t)¡ , it is a good direction, so we can increase ttre step lengfh

5 m f (xø,2).,f(*(o))
6 a(k) =1.5oG), we choose the elongated step lenglh
7 ELSE
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8 dG) - a(k) ,the original step length is good enough

9 END
l0 ELSE, the original step lengfh is too large
1l xtætz =*(t) -9.5o(t)y¡1*(t)¡
12 lF f (x,o,).,f(*(o))
13 o&) - g.5ouc), the halved step length works well
14 ELSE
15 o&) =ç.25o(k) , the shortened step length is sfill too large
16 GOTO 2
17 END
18 END

7.4 Example Cases

7.4.1 A Simple Two-Variable Example

In this section we study the performance of the proposed method in finding the

minimum of a simple function of two variables, as given below. Since the mathematical

expression of the function is available, its contour plot can be easily generated using

mathematical software, such as MATLAB.
/

f(xr,xr)=(x, -1)2 +(xr-l)z +(sinx,)zxi g.A>

Note that since the function is explicitly defined, it is possible to find the gradient and

the optimal step length analytically, but here we intentionally use the numerical

derivatives and the algorithm given above to demonstrate the procedure that will later on

be used for objective functions of arbitrary structure.
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:1 o1'*r345

Fig.7.2 Contour plot of the function in (7.6)

The arrows on the contour plot of the function (Fig.7.2) show the direction of the

gradient at each point. The function attains its minimum of 0.38 at the point

*e(0.79,0.69). The optimization method follows the general outline of the Fig. 7.1,

except for the fact that objective function evaluation does not require simulation, and so

the block (1) in Fig. 7.1 is simply reduced to evaluating(7.6) for a given (xttz).

The algorithm is executed using the following parameters.

Table 7.1 Parameters used in the aleorithm

Fig. 7.3 shows the f,rrst few iterations of the algorithm. It is seen that firstly the

numerical gradient of the objective function at (2,3) (Point 1) is calculated, and then an

appropriate step is taken at the direction of the steepest descent, which is correctly

computed to be in the opposite direction of the local gradient. The objective function

evaluation at the st¿rtingpontfl2,3), is equal to 12.44. Following the first step, a new

Startine ooint Initial step leneth la) Termination criteria lâ) Increment (å)
(2.3) 0.1 0.05 2%
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point (2.18,2.11) (Point 2) is obtained with an OF evaluation of 5.08. Since the new point

has a lower OF evaluation than the starting point, the step length adjusÍnent algorithm

takes a larger step in the same direction, which results in a new pont (2.72,1.65) (Point 3)

with an OF evaluation equal to 3.85, which again is lower than the previous point. This

point is adopted as the current base point and gradient is calculated to determine the

appropriate direction for the movement starting form this point.

:j,2

:1

2.fl

2.6

2.4
(\¡x 2.2

2

1.,9

1.6

1.4

2 2.2 2-4 2.6 2.8 :l
x..l

Fig. 7.3 The first few iterations of the Cauchy method

1.$

The entire optimization is carried out in 154 objective function evaluations. Note that

this number is not the number of iterations required by the gradient-based algorithm,

because it also contains all the objective function evaluations that are necessary for

gradient evaluation and also for finding the appropriate step length as well.

7.4.2 Control Design for an HVDC System [271

In this section we present the results of the optimal design of the HVDC control

system (see 6.4.2). The design is carried out for a single tenninating ac system strength of

"oEJj
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SCR = 3.0. Schematic diagram of the system as well as its control system layout is shown

in Fig. 6.6 (a) and (b). Table 6.4 summarizes the data for the system.

A. Design Speci{ïcations and the Objective Function

The objective of the design is to find four control system parameters, K,r and T¡ for

the rectifier side current contuoller, and Kn and T¡z for the inverter extinction angle

controller, so that the dynamic response of the dc link current around its nominal value

becomes as smooth as possible. The objective function given below is used as a measure

of the deviation between the actual and the reference dc link currents.

3.0

IsE = rooo [O- ,Jt-l'at
0.9 'dre|

(7.7)

The OF is a function of conhol system parameters and penalizes any inst¿ntaneous

difference between these two quantities. Therefore minimizing this OF yields a set of

control system parameters for which the actual dc link current is closest to the reference

ctuÏent.

B. OptimizationResults

Table 7.2 shows the pre-optimized parameter set as well as the optimized parameter

set obtained using the proposed tool. The corresponding dynamic responses of the dc

cuüent are shown in Fis. 7.4.

Table'1 .2 Optimization results

Initial pa¡ameter set
K¡ Tn Ka T, /,s¿'
8.1 0.01 2.5 0.04 t24.86

Optimized Darameter set
K¡ T,I Kn Tn ISE
1.33 0.0029 0.67 0.027 0.88
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It is seen that the pre-optimized parameter set results in severe sustained current

fluctuations (commutation failure), whereas the optimized parameter set causes a smooth

tracking of the current reference with minimal overshoot and excellent steady state match

between the actual and the reference current.

The entire design is done in 430 simulation runs. We again compare the design with a

conventional MR design for a 4-variable case, which with only 10 steps in each direction,

would require lOa simulations. As in the previous example, we also note that the 430

simulations in this case is not the actual number of iterations done by the gradient-based

method. It contains all the intermediate simulations required for the numerical calculation

of the derivatives as well as those carried out for the determination of the appropriate step

length at each point.

Time (sec)

Fig.7 .4 Dynamic response of the system

7.5 Potential for Parallel Processing

Earlier in this thesis, we mentioned that non-gradient-based optimization methods, i.e.

those which require only function evaluations, are generally easier to be interfaced with

transient simulation programs due to the fact that they do not require any numerical

l¿
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derivatives. However, generally superior performance of the gradient-based algorithms is

a strong enough justif,rcation to consider them for interfacing too.

The treatment of the subject presented throughout this chapter shows that this

perception is indeed valid and these algorithms do perform satisfactorily in practice.

However, further examination of the routines used for numerical calculation of

derivatives and also determination of appropriate step length reveals that a large number

of intermediate simulations are to be carried out to find the gradient as well the

appropriate step length merely to enable finding a neryv parameter set (see equation (7.2)).

Although gradient-based algorithms are generally expected to be able to find the

optimum in a fewer number of iterations than non-gradient-based algorithms, these

intermediate simulations, which are necessitated by the absence of an explicit

representation of the objective function in terms of design variables, can severely impact

the performance of these algorithms. For example a gradient-based algo¡ithm may be

able to f,rnd the optimum of a function in handful of iterations as in (7.Z),but we note that

in a 5-variable optimization problem for instance, each of the iterations will require 10

simulations to f,rnd the gradient as well as a number of simulations to determine the step

length required.

The combined number of simulations may become so large that they degrade the

performance of gradient-based algorithms to below that of non-gradient-based ones.

However, it is easy to note that the numerical evaluation of derivatives as presented in

(7.a) is an inherently parallel procedure, because it involves independent function

evaluations that can be carried out on different processors. Therefore, in an N-

dimensional problem, for which 2Nobjective function evaluations are required to
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calculate the gradient, each ofthese evaluations can be assigned to a different processor

and the final results are sent back to the main processor, which does the job of calculating

the partial derivatives and forming the gradient. Exploiting this inherent parallelism can

significantly speed up the process of optimization and therefore enhances the design loop

by lowering the burden on the main processor.
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Conclusions and Future Work

This thesis dealt with the development of a new tool for the optimal design of complex

linear and nonlinear circuits. The new tool is based on the combination of an optimization

algorithm with an electromagnetic transient simulation program (PSCAD/EMTDC in this

case). The former is used to strategically select candidate parameter sets and steer the

design towards optimality, while the latter evaluates the respective objective function by

accurately simulating the time domain behavior of the system

This chapter summarizes the major contributions of the thesis and also identifies some

other related areas where further research may be carried out.

8.1 Thesis Contributions

The contributions of the thesis can be categorized into two sections being (1) the

development of the new tool and (2) the applications investigated.

8.1.1 Development of the New Tool

The new tool was developed recognizing a significant need for a versatile platform for

the optimal design of complex power networks. Modem networks are becoming

increasingly complex and the introduction and proliferation of switching devices has

intensified this issue even more.
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Design in modern power networks usually includes multi-variable, multi-objective

problems. Taking into account the complexity of the system, it is nearly impossible in

many such cases to obtain an explicit mathematical representation of the design objective

function in terms of the design parameters. This limits the application of many fraditional

design approaches, and leaves the designer with the only choice of recourse to numerical

methods.

Conventional methods of Multiple-Run and Random Search are found to be extremely

inefficient in terms of computer resources and accuracy of the results when the number of

design parameters or complexity of the system increases.

The new design tool developed in this thesis not only improves the accuracy of results

but also expedites the design process by orders of magnitude.

The distinguishing feature of the new design tool is the ability of optimally designing

a nonlinear system of virtually any complexily even when no explicit mqthematical

representation ofthe interdependence ofthe designvariables and the objectivefunction

is available.

8.1.2 Development of the Robust Optimal Design Tool

Robustiress of the optimal design obtained by the developed tool was also investigated

in the thesis. It was shown that the nonlinear nature of the power systems causes the

optimal design to be dependent on the operating point or condition and therefore the

optimal pararneter set obtained for a given condition may be sub-optimal or even

inappropriate for other operating points or conditions.

A modified interface between transient simulation and optimization algorithms was

developed to include robustness into the design procedure. The robust optimal design tool
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evaluates the performance of the system for a given parameter set over a range of

operating points and attempts to optimize the overall performance of the system by

minimizing the cumulative objective function. The parameter set so optimized is the best

overall performer and retains robusbress to the changes in the operating point \¡/ithin the

range considered.

The robust optimal design tool also benefits from the main feature of the proposec

optimal design scheme in not relying on an explicit representation of the objective

function in terms of the desisn variables.

8.1.3 Applications

The thesis also investigated a fairly large number of applications of the developed

tools.

The developed tools were applied to optimally design dc-dc converters under various

scenarios such as design of the control system, overall design includingthe controls and

the electrical components, and design including robusbress.

Investigations were done into the optimal design of switching patterns for voltage

sourced converters to eliminate harmonics from their ouþut voltage while keeping the

switching rate as low as possible to limit the associated losses.

The studies included both ideal and non-ideal cases where the dc bus voltage is fxed

or has certain amounts of characteristic and non-characteristic harmonic components.

While it is possible to analytically formulate and solve the problem under the ideal

situations, the analytical solution of the problem for the non-ideal case is virtually

impossible to obtain if exact information of the nature of the ripple is not available. The

optimal design tool provides a method for the solution of the non-ideal problem where no
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such information is known. The results surprisingly showed that angles calculated under

the idealized assumption of fixed dc bus voltage perform satisfactorily even under dc bus

voltage fluctuations as long as the amplitudes of the ripple components are reasonably

small.

Other applications such as the design of control systems for FIVDC systems were also

investigated.

The studies carried out in the thesis reconfirmed that the anticipated improvements of

higher accuracy of the results and faster convergence to the optimal parameter set are

actually achieved by using the developed tool.

8.2 Recommended Future Directions

The tools and techniques developed in this thesis show gteat potentials for further

resea¡ch in this area both in the development of more advanced tools and the

applications. /

5.2.1 Development of a Mathematical Framework for Handling Constraints

Constrained optimization forms an important category of optimal design problems.

This arises from the fact most engineering design applications are accompanied by

several (usually stringent) constraints imposed by physical or confractual limitations.

As it was mentioned earlier, evaluation of the objective function is not necessarily

done through simulation and may also require tests to be carried out on the actual system.

These tests are carried out on the system using the parameters specified by the

optimization algorithm. The process of optimization, on the other hand, requires several

experiments with intermediate candidate points before the optimal setting of parameters

is determined. It is worth noting that the process of supervised trial and error conducted
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by an optimization algoritbm may involve parameter sets that are inappropriate for the

system and may for example cause instability of the system.

Research can be done into devising methods for consfraining variables to regions

where certain perforrnance criteria such as the stability are preserved. This may be easy

in case where controller gains are to be optimized, but it is generally an open problem for

cases where severe nonlinearities exist. The research in this area targets development of

the mathematical framework for identifuing'safe'regions of operation and development

of methods so that the optimization steers the optimal design process through such

regions only.

8.2.2 Application in the Design of Neural Networks (NN)

Neural networks have attracted much attention in various applications in power

systems. They can be used to mimic a highly nonlinear mapping using nonlinear neurons

interconnected through adjustable weights.

The process of training of a neural network is essentially an optimizationproblem, in

which the weights are adjusted so that the average error between the actual ouþuts of the

network and the target ouþuts in the training set is minimized. Commonly used training

algorithms such as the back propagation method use gradient-based optimization methods

and propagate the error between the actual ouþuts of the NN and the targets through the

layers of the network and compute the necessary adjustments to the weights (see Fig. 8.1

(a)).

There are cases however, where the target ouþuts are not expressed directly as the

ouþuts of the NN. This situation happens for example when the NN is part of a larger
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system and the measurements are done at the actual ouþuts of the combined system,

which are not necessarily those of the NN (see Fig. 8.1 (b)).

(a) Targets correspond to the actual NN ouþuts (b) Targets do not conespond to the
actual NN outputs

Fig. 8. I Training of a neural network

ln such cases, the back propagation algorithm has to be modified, as it is not possible

to directly calculate the error and propagate it through the layers. Methods such as

approximating the corresponding target ouþuts of the NN or inverting the nonlinear

function have been proposed.

The optimal design tool proposed in this thesis can be used in such cases without

recourse to approximate methods or trying to invert nonlinear functions. The main idea is

to use alternative optimization methods such as those presented in this thesis to find the

optimal setting of the weights so that the average error between the actual and target

ouþuts is minimized. Since in the proposed method, no explicit mathematical expression

of the objective function in terms of the design parameters is required, it is possible to

train the network in its original setting within the combined system.

As an example of an NN-based system for which the above method can be used, one

may consider an OPWM-based active filter, whose inputs a¡e the settings of the
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harrnonics and the fundamental voltage and whose ouþuts are the firing angles necessary

to yield the specified spectrum.

NN-based control systems may also be investigated under the same category.

8.2.3 Expansion to Other Optimization Algorithms

The algorithms used in this research are only representatives of a wide range of

optimization algorithms. This can be expanded to interface more optimization algorithms

with transient simulation in order to provide the user with more choices for specific

problem solving requirements.

8.2.4 Implementation on Parallel Processors

As mentioned in previous chapters, genetic algorithms and gradient-based

optimization show very promising features for parallel processing. Implementation of

these methods on parallel computing platforms extensively facilitates their computational

efficiency by reducing the burden on a single processor. Development of the appropriate

protocols for the communication between the processors and the main supervisor as well

as investigating the potentials of the parallel tools can be pursued as an extension to the

current research.
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