
ARGONNE NATIONAL LABORATORY

9700 South C a s Avenue

Argonne, Illinois 60439

OPTIMIZATION ENVIRONMENTS AND THE NEOS SERVER

William Gropp and Jorge J . More

Mat hematics and Computer Science Division

Preprint MCS-P654-0397

March 1997

This work was supported by the Mathematical, Information, and Computational Sciences

Division subprogram of the Office of Computational and Technology Research, U S . Depart-

ment of Energy, under Contract W-31-109-Eng-38, by a grant of Northwestern University

to the Optimization Technology Center, and by the National Science Foundation, through

the Center for Research on Parallel Computation, under Cooperative Agreement No. CCR-

9 120008.
The submitted manuscript has been created

by the University of Chicago as Operator of
Argonne National Laboratory ("Argonne")

under Contract No. W-31-109-ENG-38 with

the US. Department of Energy. The U.S.
Government retains for itself, and others act-

ing on its behalf, a paid-up. nonexclusive.
irrevocable worldwide license in said article

to reproduce, prepare derivative works, dis-

tributecopies to the public, and perform pub-

licly and display publicly, by or on behalf of

the Government.

DISCLAMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not nccessarily constitute or imply its endorsement, recorn-
mendktion, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

OPTIMIZATION ENVIRONMENTS AND THE NEOS SERVER

William Gropp and Jorge J. Mor&*

1 Introduction

In an ideal computational environment the user would formulate the optimization problem

and obtain results without worrying about computational resources. Unfortunately this

ideal environment is not possible because if sufficient care is not given t o the formulation,

a reasonable problem may become untractable. Even with an appropriate formulation,

obtaining the solution of difficult optimization problems requires sophisticated optimization

software and access t o large-scale computational resources. Modeling three-dimensional

physical processes by systems of differential equations gives rise t o optimization problems

that require access t o substantial computational resources. Discrete and global optimization

problems are also in this category.

We are interested in the development of problem-solving environments tha t simplify the

formulation of optimization problems, and the access t o computational resources. Once

the problem has been formulated, the first step in solving an optimization problem in

a typical computational environment is t o identify and obtain the appropriate piece of

optimization software. The software may be available from a mathematical software library,

or may need t o be bought and installed. In some cases the software is public domain, and

available from a site on the Internet. Once the software has been installed and tested in

the local environment, the user must read the documentation and write code t o define the

optimization problem in the manner required by the software. Typically, Fortran or C code

must be written t o define the problem, compute function values and derivatives, and specify

sparsity patterns. Finally, the user must debug, compile, link, and execute the code.

The Ketwork-Enabled Optimization System (NEOS) is an Internet-based service for

optimization providing information, software, and problem-solving services for optimization.

The main components of NEOS are the NEOS Guide and the NEOS Server. Additional

information on the various services provided by NEOS can be obtained from the home page

of the Optimization Technology Center

http://www.mcs.anl.gov/home/otc/

*Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439-4844.
This work was supported by the Mathematical, Information, and Computational Sciences Division subpro-
gram of the Office of Computational and Technology Research, U S . Department of Energy, under Contract

W-31-109-Eng-38, by a grant of Northwestern University to the Optimization Technology Center, and by the
National Science Foundation, through the Center for Research on Parallel Computation, under Cooperative
Agreement KO. CCR-9120008.

1

http://www.mcs.anl.gov/home/otc

,

The NEOS (Network-Enabled Optimization System) Server [ll] is a novel environment

for the solution of optimization problems tha t allows users t o solve optimization problems

over the Internet while requiring only that the user provide a specification of the problem.

There is no need to download an optimization solver, write code t o link the optimization

solver with the optimization problem, or compute derivatives. Moreover, the NEOS Server

provides an interface that is problem oriented and independent of the computing resources

offered by NEOS. As long as there is an efficient way to describe the problem, the NEOS

Server can provide xcess t o a wide variety of computational services, from small clusters

of workstations to any number of participating supercomputer centers.

The current version of the NEOS Server is described in Section 2. We emphasize non-

linear optimization problems, but NEOS does handle linear and nonlinearly constrained

optimization problems, and solvers for optimization problems subject t o integer variables

are being added.

Performance issues are examined in Section 3. In particular, we provide evidence that

the NEOS Server is able to solve large nonlinear optimization problems in time comparable

t o software with hand-coded gradients. We do not discuss the design and implementation

of the Server because these issues are covered by Czyzyk, Mesnier, and Mor6 [ll].

In Section 4 we begin to explore possible extensions t o the NEOS Server by discussing

the addition of solvers for global optimization problems. Section 5 discusses how a remote

procedure call (RPC) interface t o NEOS addresses some of the limitations of NEOS in the

areas of security and usability. The detailed implementation of such an interface raises

a number of questions, such as exactly how the RPC is implemented, what security or

authentication approaches are used, and what techniques are used to improve the efficiency

of the communication. These questions are not discussed here. Instead, we outline some of

the issues in network computing that arise from the emerging style of computing used by

NEOS.

2 The NEOS Server

The NEOS Server provides Internet access to a library of optimization solvers with user

interfaces tha t shield the user from the optimization software. The user needs only to

describe the optimization problem; all additional information required by the optimization

solver is determined automatically.

The NEOS approach offers considerable advantages over a conventional environment for

solving optimization problems. Consider, for example, how NEOS solves an optimization

problem of the form

min {f(z) : z E R") ,

.

2

where f : R" -+ R is partially separable, tha t is, f can be written as

where each element function f; only depends on a few components of z, and nf is the number

of element functions. Algorithms and software that take advantage of partial separability

have been developed for various problems (for example, [23, 24, 25, 26, 9]), but this software

requires tha t the user provide the gradient o f f and the partial separability structure (a list

of the dependent variables for each element function f;).

The NEOS solvers for partially separable problems require tha t the user specify the

number of variables n, a subroutine initpt(n,x) that defines the starting point, and a

subroutine fcn(n,x,nf ,fvec) that evaluates the element functions. Since there is no need

t o provide the gradient or the partial separability structure, the user can concentrate on

the specification of the problem. Changes t o the fcn subroutine can be made and tested

immediately; the advantages in terms of ease of use are considerable.

The NEOS solvers for the bound constrained problem

min { f (z) : x1 5 z 5 z,}

and the nonlinearly constrained optimization problem

also make use of partial separability. The bound constrained problem is specified by a

subroutine tha t specifies the bounds XI and z,, while for the nonlinearly constrained problem

we also need to specify a subroutine that specifies the constraint bounds cl and c,, and the

nonlinear function c : R" e R". Specifying this information is done with additional

subroutines. The bounds zl and z, are specified with the subroutine xbound(n,xl,xu),

the constraint bounds cl and c, are specified with the subroutine cbound(m,cl,cu), and

the nonlinear function c : R" e HL" is specified by cfcn(m,x,c).

We have mentioned nonlinear optimization solvers, but NEOS contains solvers in other

areas. At present we have solvers in the following areas:

Unconstrained optimization

Bound constrained optimization

Nonlinearly constrained optimization

Complementarity problems

Linear network optimization

Linear programming

Stochastic linear programming

3

The addition of solvers in other areas is not difficult; indeed, NEOS was designed so that

solvers in a wide variety of optimization areas could be added easily.

We provide Internet users the choice of three interfaces for submitting problems: e-mail,

the NEOS Submission tool. and the NEOS Server Web interface. The interfaces are designed

so that problem submission is intuitiye and requires the minimal amount of information.

The interfaces differ only in the wajr tha t information is specified and passed t o the NEOS

Server.

The e-mail interface is relatively primitive, but useful because most users have easy

access to e-mail. Information on the available services and on the format used to submit

problems via e-mail can be obtained by sending the mail message help t o

neosQmcs.anl.gov

Users interested in the Web interface should visit the URL

http://www.mcs.anl.gov/home/otc/Server/

This URL has links to all the solvers in the library, as well as pointers t o other NEOS

information, in particular, the NEOS Guide. In the remainder of this section we examine

the NEOS Submission tool.

The NEOS Submission tool provides a high-speed link to the NEOS Server via sockets.

Once this tool is installed. the user has access t o all the services provided by the NEOS

Server. Users may download the Submission tooi from the URL

http://www.mcs.anl.gov/otc/Server/submission_tool.html/

Installation of the Submission tool is immediate provided tha t Perl [28] has been installed

properly. If the installation fails, the usual remedy is to run the Perl h2ph script that

changes C header files into Perl header files. Running the h2ph script is simple but must

be done by the installer of Perl, which is usually the system administrator.

Submission of problems via the NEOS Submission tool is simple. The user must first

choose the type of optimization problem. Once an area is selected, the user must choose

a solver. This selection process is done via drop-down menus typical of well-designed user

inter faces.

The optimization problem is specified via a submission form. For example, Figure 2.1

shows the 9EOS Submission form for the vmlm solver of unconstrained optimization prob-

lems. Solvers in each area have a submission form tha t is appropriate for tha t area.

For the vmlm solver the user needs t o specify the language used t o submit the problem

(Fortran or C), the number of variables n, the number of partially separable functions n j ,

and the files for the initial point and function evaluation subroutines. Browse buttons are

available to ease the specification of the various files. An advantage of this interface is that ,

4

http://neosQmcs.anl.gov
http://www.mcs.anl.gov/home/otc/Server
http://www.mcs.anl.gov/otc/Server/submission_tool.html

Figure 2.1: The NEOS submission form for vrnlrn

unlike the Web interface, the subroutines can be in files that reside in the user’s local file

space.

The general philosophy of the NEOS solvers is tha t problem submission should be in-

tuitive and require only essential information. Parameters that affect the progress of the

algorithm are not required but can be specified, for example, by a specification file. The

vmlrn solver allows the user a choice of tolerances, but for most problems the defaults pro-

vided are adequate. The form also has room for comments, which can be used to identify

the problem submission.

Once the problem is specified, the problem is submitted via the submission button at

the bottom of the form (see Figure 2.1). A variety of computers, even a massively parallel

processor: could be used to solve the problem; the only restriction is that the computer

must run UNIX with support for TCP/IP. At present these computers are workstations

that reside at Argonne National Laboratory, Northwestern University, and the University

of Wisconsin.

For a typical submission, the user receives information on the progress of the submis-

sion, and the solution. Figure 2.2 shows part of the output received when the problem

in Figure 2.1 is submitted t o NEOS. This output shows tha t NEOS contacts an available

workstation and transfers all of the user’s da t a t o the workstation. The solver (in this case

vmlm) checks the da t a and compiles the user’s code. If any errors are found at this stage,

the compiler error messages are returned to the user, and execution terminates.

If the user’s code compiles correctly, automatic differentiation tools (ADIFOR [4, 31 for

Fortran code) are used to generate the gradient. Once the gradient is obtained, the user’s

5

Figure 2.2: Output from the NEOS Submission tool

code is linked with the software library, and execution begins. Results are returned in the

window generated by the NEOS Submission tool.

Interesting issues arise during the processing of the job submission that are pertinent t o

the development of optimization software and problem-solving environments. For example,

high-quality software should check the input data , but in this case the da ta are the Fortran

programs initpt and fcn. In general, it is not possible t o check that this da ta is correct. At

present we check only tha t the user function does not create any system exceptions during

the evaluation of the function at the starting point. Although simple, this test catches many

errors on the part of the user.

Submitting a problem to the NEOS Server does not guarantee success, but NEOS users

are able t o solve difficult optimization problems without worrying about many of the details

that are typical in a computing environment. Even if the user has suitable optimization

software, the user would need to read the documentation, write code to interface his problem

with the optimization software, and then debug this code. The user would also have to write

code for the gradient, and debug that code-a nontrivial undertaking in most cases.

3 Performance

The NEOS solvers for partially separable problems are able t o solve large-scale nonlinear

optimization problems while requiring only that the user provide code for the function

evaluation. This ability was considered unrealistic until recently. The major obstacle was

the computation of the gradient. For small-scale problems we can approximate the gradient

by differences of function values, for example,

6

where hi is the difference parameter and ei is the i th unit vector, but this approximation

is prohibitive for large-scale problems because i t requires n function evaluations for each

gradient. Approximating a gradient by differences is not only expensive but also increases

the unreliability of the optimization code, since a poor choice for hi may cause premature

termination of the optimization algorithm far away from the solution.

The NEOS solvers for nonlinear optimization problems use automatic differentiation

tools to compute the gradients, Jacobians, and sparsity patterns required by the solvers.

At present, we rely on ADIFOR [4, 31 to process Fortran code and on ADOL-C [15] t o

process C code.

We demonstrate the ability of NEOS to solve large-scale nonlinear optimization problems

with an optimal design problem formulated by Goodman, Kohn, and Reyna [14]. This

optimal design problem requires determining the placement of two elastic materials in the

cross section of a rod with maximal torsional rigidity. The mathematical formulation is to

minimize a functional of the form

over a domain 2) in R2, where : R c) R is a piecewise quadratic. The formulation

of the optimal design problem with finite elements leads naturally to a partially separable

optimization problem in n = nxny variables, where nx and ny are the number of interior grid

points in the coordinate directions, respectively. We use the formulation in the MINPACK-2

test problem collection [l]. Additional details on the problem formulation are not important

t o our discussion. We need to know only that in our numerical results we consider the

problem of minimizing fx for a fixed value of A; in this case X = 0.008.

From a computational viewpoint, the most interesting feature of the code to evaluate fx

is that the number of floating-point operations required to evaluate fx grows linearly with

n. Ideally. we would like t o solve the problem in time proportional to n.

We solve the optimal design problem by developing code to evaluate fx. In our formu-

lation the vector x contains the values of the piecewise linear finite element approximation,

and the subroutine

dodc(nx,ny,x,nf,fvec,lambda)

evaluates the components of the partially separable function fx as a function of the number

of grid point and A. The components of the partially separable function are stored in the

array fvec of length nf. In this formulation nf is the number of elements in the finite

element triangulation.

Ths subroutine dodc does not have the desired form for submission to NEOS, but i t is

quite easy t o write a wrapper. For example, the results in this section were obtained with

a subroutine of the form

7

fcn(n,x,nf,fvec)

that sets nx and ny t o n1I2 and X t o 0.008. With this formulation we can quickly submit a

series of problems t o NEOS for various values of n.

Submission of the optimal design problem with the NEOS Submission tool is quite easy.

Figure 2.1 shows the form tha t was used to submit the optimal design problem. In Figure 2.1

we were using n = 2500, but the form can be used for other values of n by changing the

number of variables and the number of elements functions.

Table 3.1 shows the timings (in seconds) and the number of function evaluations needed

to solve an optimal design problem with the vmlm solver. We provide information for the

case when the user only provides the function in partially separable form and for the case

when the user provides the function and gradient. These results were obtained on a Sparc 10

with 96MB of memory.

Table 3.1: Performance of the NEOS solver vmlm

Function Function and Gradient

There are two important points t o notice in the results in Table 3.1. The main point

is that these results show that the time per function evaluation increases linearly with n.

This is t o be expected for this problem when the user provides both the function and the

gradient, but it is remarkable that this also holds for the case when the user only provides

the function. The techniques [a] used to achieve these results make essential use of the

partial separability of the function.

Another important point about the results in Table 3.1 is that there is a factor of

six penalty in the timings when only providing the function. If we had used a standard

difference approximation to the gradient, there would have been a performance penalty of

about n, which is prohibitive €or these problems. We also note tha t for these results, vmlm

used ADIFOR with the sparse option. This strategy is far from optimal; with the hybrid

strategy of Bouaricha and Mor6 [7] the performance penalty is reduced to a factor of two.

Finally, we note that the number of function evaluations needed t o solve the problem

grows as a function of n1I2. However, this is all that can be expected from a limited-memory

variable metric method.

The main point that should be drawn from the results in Table 3.1 is tha t the NEOS

Server combines an intuitive user interface, automatic differentiation tools, and optimization

algorithms into a powerful problem-solving tool. We want to improve the NEOS Server by

extending the range of problems that can be solved, but we also want to improve the

interface. These issues will be examined in the next two sections.

a

4 Global Optimization Problems

We want to extend the XEOS Server capabilities to global optimization problems. In

general, these problems are attacked by algorithms tha t require a large number of loosely

coupled processors. We are interested, in particular, in problems that arise in connection

with the determination of protein structures. As a specific instance of the type of problem

under consideration, we consider distance geometry problems.

Distance geometry problems for the determination of protein structures are specified by

a subset S of all atom pairs and by the distances between atoms i and j for (ilj) E S.

In practice, lower and upper bounds on the distances are given instead of precise values.

The distance geometry problem with lower and upper bounds is t o find a set of positions

X I , . . . , x, in Et3 such t h a t

where 1 ; j and u;,j are lower and upper bounds on the distances) respectively. Recent reviews

of the application of distance geometry problems t o protein structure determination can be

found in Havel [17, 181, Torda and van Gunsteren [27], Kuntz, Thomason, and Oshiro [19],

Briinger and Nilges [8], and Blaney and Dixon [5].

A standard formulation of the distance geometry problem (4.1), suggested by Crippen

and Havel [lo], is to find the global minimum of the function

f (4 = Pi&; - Zj),

i , j d

where the pairwise function pa,j : R" I-+ IR is defined by

Clearly, x = (2 1 , . . . , x,} solves the distance geometry problem if and only if 2 is a global

minimizer of f and f (x) = 0.

Distance geometry problems can be specified by a small amount of data. A reasonable

specification is t o provide the number of atoms m, the size of the set S, and the vectors

In a practical setting this d a t a would be accompanied by additional information (for exam-

ple, the type of atoms)) but for our purposes we would need only (4.2).

Finding a global minimizer of f for the distance geometry problem is NP-hard even in

the special case where l ; j = u;,j. Finding approximate minimizers is also NP-hard; that

is, the decision problem of finding x E R" such that f (x) 5 E for given E > 0 is NP-

hard. At a more practical level, we note that the function f has a large number of distinct

9

advantages. Solving global optimization problems in a large-scale computing center would

force the user to learn scheduling policies, job submission methods, and installation-specific

software libraries. To some extent, such requirements are unavoidable; each center repre-

sents a significant investment and often must serve a particular user community. Even for

users who must use these centers, the significant effort involved in learning the idiosyn-

crasies of each facility often limit the ability t o switch between centers. In contrast, the

NEOS Submission tool provides an interface tha t is problem oriented and independent of

the computing resources tha t are offered by the NEOS Server.

5 Distributed Computing

The NEOS Server is first and foremost a network resource for optimization services. The

current system provides convenient access to the facilities of NEOS, and, as described

in Section 4, additional capabilities can be added easily. The current version has some

limitations, however, in the area of of security and usability for computing in a distributed

environment. Because the potential solutions t o these problems are related, we discuss them

together.

In any networked or distributed computing system, two important questions must be

answered: How does the system protect itself from malicious or careless users (and these

users from each other), and how does it present itself to the users? The first issue is one

of security: the second is one of ease of use. NEOS currently has only rudimentary security

features, and the interfaces do not allow access from a user program. A more traditional

but more flexible and powerful method for accessing numerical capabilities is the procedural

(subroutine) interface. The network analogue t o this interface, the remote procedure call

(RPC) [6]! is useful for some parts of the security question as well. To better understand

the security issues, we first outline the problem.

To make the discussion concrete, we consider the case of determining a minimizer of a

function f : Rn e R. The most precise description of this problem is often the code that

implements f . This code most likely contains loops and array accesses, and possibly func-

tion calls. If the NEOS Server simply accepts arbitrary code t o describe the optimization

problem, the systems running NEOS are subject to some security risks.

The most common security risk occurs if the user is not trusted. Lack of trust does

not mean tha t the user is malicious, just that the work they send cannot be trusted not to

cause problems. In this case we identify two issues: rogue programs and denial-of-service

attacks.

Rogue programs are a security issue because the description of the optimization problem

may crash the Server or even compromise the system. For problems (for example, linear

programming or distance geometry) that are described by relatively simple data , it is easy

to check that the d a t a is valid. For programs, such checking is much harder. Our current

11

system applies a number of techniques to reduce the chance for harm to the system. For

example, the NEOS Server runs as a separate user with no special privileges. However,

since the user can submit Fortran or C programs, it is possible that a programming error

or a deliberate subterfuge could harm NEOS or, through some unplugged security problem,

compromise the entire system. Solutions t o this problem range from provably safe problem

descriptions (either a specialized modeling language or strongly typed languages such as

Java) to provably safe interfaces, with user code and NEOS code running on different

systems.

Another security issue arises, even with well-meaning users, when programs use large

amounts of computing-more than their fair share. When this is done maliciously, i t is

called a denial-of-service attack. The amount of time used by a single request is relatively

easily controlled, and most scheduling systems provide this service. Harder to contain are

floods of requests, each generating a separate request. The NEOS Server may need t o

maintain records of use as well as interacting with the scheduling system t o ensure that the

Server does not make excessive demands on the system.

A security risk also occurs if the user is trusted but the connection is not, because

there may be eavesdroppers. This requires merely that some secure transaction service be

used. Such services are becoming commonplace on the Web (for example, for credit card

transactions), though usually for small amounts of data.

Providing both a more secure execution environment for NEOS and a more flexible

interface makes use of the same technique: the remote procedure call. Conventionally,

programmers of scientific applications call library routines from their Fortran or C program

t o perform some service, such as minimizing a function. For example, the user may call a

procedure of the form

c a l l uco(f c n , x, ... 1

to find a minimizer o f f . A remote procedure call looks just like a regular procedure call to

the user; the implementation, however, makes contact with a remote server (NEOS in our

case) and passes to the server the arguments of the call. The implementation may look like

ca l l neos-uco(' f c n . f ' , x, . . . 1

where ' f c n . f ' is the name of the file containing the code that defines the function f .

A remote procedure call interface would be a significant improvement over the interface

provided by the NEOS Submission tool because such an interface would make it possible to

incorporate NEOS capabilities into existing code. The remote procedure call interface is a

relatively simple addition to the existing NEOS services that is secure and easy to use for

those optimization problems that are completely described by simple data, such as linear

programming problems. The da ta can be checked for validity by the server; encryption can

12

be used if necessary t o keep the da ta safe from eavesdroppers. If the da ta is Fortran or C

code, however, checking for validity is far more difficult. If the user is not trusted, we can

use a reverse communication approach or a provably safe form of code.

In the reverse communication approach, the user’s function is executed on the user’s

machine. T h e RPC mechanism is used to request information from the user and t o return

information to the Server. For example, the user could be requested t o evaluate the function

f at the current iterate 2 and return f (x) to the Server. This maintains the security against

rogue code by executing the user’s code on the user’s machine and the optimization code

on the NEOS-provided machine.

A drawback of this approach is that the cost of each of these remote procedure calls

can be large. Just the delay from speed-of-light propagation can amount to milliseconds in

a widely distributed network. In view of this limitation, this approach would be suitable

only for problems in which the function evaluations requires considerable computing power

so that the cost of the remote procedure call is insignificant.

The option t o use a provably safe form of the code has attracted attention because of

Java, a language related t o C++ that contains a number of features and restrictions t o

allow programs written in Java t o be executed without fearing that the system running

them could be compromised. Many of the restrictions are irrelevant to most numerical

code; for example, Java has no function pointers and restricts the kinds of routines (other

than those provided by the user) that can be called.

In the most obvious approach, the user writes their code in Java instead of Fortran

or C, and the Java code is uploaded into the NEOS Server by the remote procedure call.

There is another option; the optimization code provided by NEOS could be downloaded

directly into the user’s running application (as long as that application is running in a Java

environment). The interface would be the same; only the source of the cycles used to run

the optimization code would be different. In this model, the procedure interface is a sort of

automatic download-and-install operation that would be suitable only for small problems,

and would n o t provide access t o large-scale computing resources.

Java is not the only choice; a suitable subset of Fortran could be constructed by re-

stricting some features of the language and performing strict compile and runtime checking.

Such a network-safe version of Fortran could provide easy and reliable access t o distributed

services to existing programs.

Acknowledgments

The ideas discussed in this paper have evolved during the development of the NEOS Server.

Many have contributed t o this effort, but Michael Mesnier deserves special credit. Other

researchers tha t have contributed to these ideas are Joe Czyzyk, Michael Ferris, Jorge

Nocedal, and Steve Wright.

13

References

[l] B. M. AVERICK, R. G. CARTER, J. J. MORE, A N D G.-L. XUE, The MINPACK-2

test problem collection, Preprint MCS-P153-0694, Mathematics and Computer Science

Division, Argonne National Laboratory, 1992.

[2] C. BISCHOF, A. BOUARICHA, P. KHADEMI, AND J. J. MOR^, Computing gradients

in large-scale optimization using automutic differentiation, Preprint MCS-P488-0195,

Argonne National Laboratory, Argonne, Illinois, 1995. To appear in INFORMS Journal

on Computing.

[3] C. BISCHOF, A. CARLE, AND P. KHADEMI, Fortran 77 interface specification to the

SparsLinC library, Technical Report ANL/MCS-TM-196, Argonne National Labora-

tory, Argonne, Illinois, 1994.

[4] C. BISCHOF, A. CARLE, P. KHADEMI, AND A, MAUER, The ADIFOR 2.U system for

the automatic differentiation of Fortran 77 programs, Preprint MCS-P381-1194, Ar-

gonne National Laboratory, Argonne, Illinois, 1994. Also available as CRPC-TR94491,

Center for Research on Parallel Computation, Rice University.

[5] J. M. BLANEY AND J. S. DIXON, Distance geometrg in molecular modeling, in Reviews

in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd, eds., vol. 5, VCH

Publishers, 1994, pp. 299-335.

[6] J. BLOOMER, Power Programming with RPC, O’Reilly & Associates, Inc., 1992.

[7] A. BOUARICHA A N D J. J. MORE, Impact of partial separability on large-scale opti-

mization, Preprint MCS-P487-0195, Argonne National Laboratory, Argonne, Illinois,

1995. -Accepted for publication in Computational Optimization and Applications.

[8] A. T. BRUNGER A N D M. NILGES, Computational challenges for macromolecular struc-

ture determination b y X-ray crystallography and solution NMR-spectroscopy, Q. Rev.

Biophys., 26 (1993), pp. 49-125.

[9] A. R. CONN, N. I. M. GOULD, A N D P. L. TOINT, LANCELOT, Springer Series in

Computational Mathematics, Springer-Verlag, 1992.

[lo] G. M. CRIPPEN AND T. F. HAVEL, Distance Geometry and Molecular Conformation,

John IYiley & Sons, 1988.

[ll] J . C Z U Z Y K , M. P. MESNIER, A N D J. J . MOR^, The Network-Enabled Optimization

System (NEOS) Server, Preprint MCS-P615-0996, Argonne National Laboratory, Ar-

gonne! Illinois, 1996.

14

[12] M. C. FERRIS, M. P. MESNIER, AND J. J. MOR^, The NEOSServerfor complemen-

tarity problems: PATH, Technical Report 96-08, University of Wisconsin, Madison,

Wisconsin, 1996. Also available as MCS-P616-1096, Mathematics and Computer Sci-

ence Division, Argonne National Laboratory.

[13] I. FOSTER AND C. KESSELMAN, Globus: A metacomputing infrastructure toolkit, In-

ternational Journal of Supercomputer Applications, (1997). To appear.

[14] J. GOODMAN, R. KOHN, AND L. REYNA, Numerical study of a relaxed varia-

tional problem from optimal design, Comput. Methods Appl. Mech. Engrg., 57 (1986),

pp. 107-127.

[15] A. GRIEWANK, D. JUEDES, AND J. UTKE, ADOL-C: A package for the automatic dif-

ferentiation of algorithms written in C/C++, ACM Trans. Math. Software, 22 (1996),

pp. 131-167.

[16] A. GRINSHAW AND W. WOLF, Legion - A view from 50,000 feet, in Proceedings of

the 5th IEEE Symposium on High Performance Distributed Computing, Los Alamitos,

California, 1996, IEEE Computer Society Press, pp. 89-99.

[17] T. F. HAVEL, A n evaluation of computational strategies for use in the determination

of protein structure from distance geometry constraints obtained by nuclear magnetic

resonance, Prog. Biophys. Mol. Biol., 56 (1991), pp. 43-78.

[I81 ~ . Distance geometry, in Encyclopedia of Nuclear Magnetic Resonance, D. M. Grant

and R. K. Harris, eds., John Wiley & Sons, 1995, pp. 1701-1710.

[19] I. D. KUNTZ, J. F. THOMASON, A N D C. M. OSHIRO, Distance geometry, in Methods

in Enzymology, N. J. Oppenheimer and T. L. James, eds., vol. 177, Academic Press,

1993, pp. 159-204.

[20] M. J. LITZKOW, M. LIVNY, A N D M. W. MUTKA, Condor - A hunter of idle work-

stations, in Proceedings of the 8th International Conference on Distributed Comput-

ing Systems, Washington, District of Columbia, 1988, IEEE Computer Society Press,

pp. 108-111.

[21] J. J. MOR^ A N D Z. WU, &-optimal solutions to distance geometry problems via global

continuation, in Global Minimization of Nonconvex Energy Functions: Molecular Con-

formation and Protein Folding, P. M. Pardalos, D. Shalloway, and G. Xue, eds., Amer-

ican Slathematical Society, 1995, pp. 151-168.

[22] - , Distance geometry optimization for protein structures, Preprint MCS-P628-1296,

Argonne National Laboratory, Argonne, Illinois, 1996.

15

[23] P. L. TOINT, Numerical solution of large sets of algebraic nonlinear equations, Math.

Comp., 46 (1986), pp. 175-189.

~ 4 1 - , On large scale nonlinear least squares calculations, SIAM J. Sci. Statist. Comput.,

8 (1987), pp. 416-435.

[25] P. L. TOINT AND D. TUYTTENS, On large-scale nonlinear network optimization,

Math. Programming, 48 (1990), pp. 125-159.

[261 - , LSNNO: A Fortran subroutine for solving large-scale nonlinear network optimi-

zation problems, AChd Trans. Math. Software, 18 (1992), pp. 308-328.

[27] A. E. TORDA A N D W. F. VAN GUNSTEREN, Molecular modeling using nuclear mag-

netic resonance data, in Reviews in Computational Chemistry, K. B. Lipkowitz and

D. B. Boyd, eds., vol. 3, VCH Publishers, 1992, pp. 143-172.

[28] L. WALL, T. CHRISTIANSEN, AND R. L. SCHWARTZ, Programming Perl, O’Reilly &

Associates, Inc., second ed., 1996.

16

