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OPTIMIZATION ENVIRONMENTS AND THE NEOS SERVER 

William Gropp and Jorge J. Mor&* 

1 Introduction 

In an ideal computational environment the user would formulate the optimization problem 

and obtain results without worrying about computational resources. Unfortunately this 

ideal environment is not possible because if sufficient care is not given t o  the formulation, 

a reasonable problem may become untractable. Even with an appropriate formulation, 

obtaining the solution of difficult optimization problems requires sophisticated optimization 

software and access t o  large-scale computational resources. Modeling three-dimensional 

physical processes by systems of differential equations gives rise t o  optimization problems 

that require access t o  substantial computational resources. Discrete and global optimization 

problems are also in this category. 

We are interested in the development of problem-solving environments tha t  simplify the 

formulation of optimization problems, and the access t o  computational resources. Once 

the problem has been formulated, the first step in solving an optimization problem in 

a typical computational environment is t o  identify and obtain the appropriate piece of 

optimization software. The software may be available from a mathematical software library, 

or may need t o  be bought and installed. In some cases the software is public domain, and 

available from a site on the Internet. Once the software has been installed and tested in 

the local environment, the user must read the documentation and write code t o  define the 

optimization problem in the manner required by the software. Typically, Fortran or C code 

must be written t o  define the problem, compute function values and derivatives, and specify 

sparsity patterns. Finally, the user must debug, compile, link, and execute the code. 

The Ketwork-Enabled Optimization System (NEOS) is an Internet-based service for 

optimization providing information, software, and problem-solving services for optimization. 

The main components of NEOS are the NEOS Guide and the NEOS Server. Additional 

information on the various services provided by NEOS can be obtained from the home page 

of the Optimization Technology Center 

http://www.mcs.anl.gov/home/otc/ 
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The NEOS (Network-Enabled Optimization System) Server [ll] is a novel environment 

for the solution of optimization problems tha t  allows users t o  solve optimization problems 

over the Internet while requiring only that the user provide a specification of the problem. 

There is no need to download an optimization solver, write code t o  link the optimization 

solver with the optimization problem, or compute derivatives. Moreover, the NEOS Server 

provides an interface that  is problem oriented and independent of the computing resources 

offered by NEOS. As long as there is an efficient way to describe the problem, the NEOS 

Server can provide xcess  t o  a wide variety of computational services, from small clusters 

of workstations to any number of participating supercomputer centers. 

The current version of the NEOS Server is described in Section 2. We emphasize non- 

linear optimization problems, but NEOS does handle linear and nonlinearly constrained 

optimization problems, and solvers for optimization problems subject t o  integer variables 

are being added. 

Performance issues are examined in Section 3. In particular, we provide evidence that  

the NEOS Server is able to solve large nonlinear optimization problems in time comparable 

t o  software with hand-coded gradients. We do not discuss the design and implementation 

of the Server because these issues are covered by Czyzyk, Mesnier, and Mor6 [ll]. 

In Section 4 we begin to explore possible extensions t o  the NEOS Server by discussing 

the addition of solvers for global optimization problems. Section 5 discusses how a remote 

procedure call (RPC) interface t o  NEOS addresses some of the limitations of NEOS in the 

areas of security and usability. The detailed implementation of such an interface raises 

a number of questions, such as exactly how the RPC is implemented, what security or 

authentication approaches are used, and what techniques are used to  improve the efficiency 

of the communication. These questions are not discussed here. Instead, we outline some of 

the issues in network computing that  arise from the emerging style of computing used by 

NEOS. 

2 The NEOS Server 

The NEOS Server provides Internet access to a library of optimization solvers with user 

interfaces tha t  shield the user from the optimization software. The user needs only to  

describe the optimization problem; all additional information required by the optimization 

solver is determined automatically. 

The NEOS approach offers considerable advantages over a conventional environment for 

solving optimization problems. Consider, for example, how NEOS solves an optimization 

problem of the form 

min {f(z) : z E R") , 

. 
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where f : R" -+ R is partially separable, tha t  is, f can be written as 

where each element function f; only depends on a few components of z, and nf is the number 

of element functions. Algorithms and software that  take advantage of partial separability 

have been developed for various problems (for example, [23, 24, 25, 26, 9]), but this software 

requires tha t  the user provide the gradient o f f  and the partial separability structure (a list 

of the dependent variables for each element function f;). 

The NEOS solvers for partially separable problems require tha t  the user specify the 

number of variables n, a subroutine initpt(n,x) that  defines the starting point, and a 

subroutine fcn(n,x,nf ,fvec) that  evaluates the element functions. Since there is no need 

t o  provide the gradient or the partial separability structure, the user can concentrate on 

the specification of the problem. Changes t o  the fcn subroutine can be made and tested 

immediately; the advantages in terms of ease of use are considerable. 

The NEOS solvers for the bound constrained problem 

min { f (z) : x1 5 z 5 z,} 

and the nonlinearly constrained optimization problem 

also make use of partial separability. The bound constrained problem is specified by a 

subroutine tha t  specifies the bounds XI and z,, while for the nonlinearly constrained problem 

we also need to specify a subroutine that specifies the constraint bounds cl and c,, and the 

nonlinear function c : R" e R". Specifying this information is done with additional 

subroutines. The bounds zl and z, are specified with the subroutine xbound(n,xl,xu), 

the constraint bounds cl and c,  are specified with the subroutine cbound(m,cl,cu), and 

the nonlinear function c : R" e HL" is specified by cfcn(m,x,c). 

We have mentioned nonlinear optimization solvers, but NEOS contains solvers in other 

areas. At present we have solvers in the following areas: 

Unconstrained optimization 

Bound constrained optimization 

Nonlinearly constrained optimization 

Complementarity problems 

Linear network optimization 

Linear programming 

Stochastic linear programming 
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The addition of solvers in other areas is not difficult; indeed, NEOS was designed so that  

solvers in a wide variety of optimization areas could be added easily. 

We provide Internet users the choice of three interfaces for submitting problems: e-mail, 

the NEOS Submission tool. and the NEOS Server Web interface. The interfaces are designed 

so that problem submission is intuitiye and requires the minimal amount of information. 

The interfaces differ only in the wajr tha t  information is specified and passed t o  the NEOS 

Server. 

The e-mail interface is relatively primitive, but  useful because most users have easy 

access to e-mail. Information on the available services and on the format used to submit 

problems via e-mail can be obtained by sending the mail message help t o  

neosQmcs.anl.gov 

Users interested in the Web interface should visit the URL 

http://www.mcs.anl.gov/home/otc/Server/ 

This URL has links to all the solvers in the library, as well as pointers t o  other NEOS 

information, in particular, the NEOS Guide. In the remainder of this section we examine 

the NEOS Submission tool. 

The NEOS Submission tool provides a high-speed link to the NEOS Server via sockets. 

Once this  tool is installed. the user has access t o  all the  services provided by the NEOS 

Server. Users may download the Submission tooi from the URL 

http://www.mcs.anl.gov/otc/Server/submission_tool.html/ 

Installation of the Submission tool is immediate provided tha t  Perl [28] has been installed 

properly. If the installation fails, the usual remedy is to run the Perl h2ph script that  

changes C header files into Perl header files. Running the h2ph script is simple but must 

be done by the installer of Perl, which is usually the system administrator. 

Submission of problems via the NEOS Submission tool is simple. The user must first 

choose the type of optimization problem. Once an area is selected, the user must choose 

a solver. This selection process is done via drop-down menus typical of well-designed user 

inter faces. 

The optimization problem is specified via a submission form. For example, Figure 2.1 

shows the 9EOS Submission form for the vmlm solver of unconstrained optimization prob- 

lems. Solvers in each area have a submission form tha t  is appropriate for tha t  area. 

For the vmlm solver the  user needs t o  specify the language used t o  submit the problem 

(Fortran or C), the  number of variables n, the number of partially separable functions n j ,  

and the files for the  initial point and function evaluation subroutines. Browse buttons are 

available to ease the specification of the various files. An advantage of this interface is that ,  
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Figure 2.1: The NEOS submission form for vrnlrn 

unlike the Web interface, the subroutines can be in files that  reside in the user’s local file 

space. 

The  general philosophy of the NEOS solvers is tha t  problem submission should be in- 

tuitive and require only essential information. Parameters that  affect the progress of the 

algorithm are not required but can be specified, for example, by a specification file. The 

vmlrn solver allows the user a choice of tolerances, but for most problems the defaults pro- 

vided are adequate. The  form also has room for comments, which can be used to  identify 

the problem submission. 

Once the problem is specified, the problem is submitted via the submission button at 

the bottom of the form (see Figure 2.1). A variety of computers, even a massively parallel 

processor: could be used to  solve the problem; the only restriction is that the computer 

must run UNIX with support for TCP/IP. At  present these computers are workstations 

that reside at Argonne National Laboratory, Northwestern University, and the University 

of Wisconsin. 

For a typical submission, the user receives information on the progress of the submis- 

sion, and the solution. Figure 2.2 shows part  of the output received when the problem 

in Figure 2.1 is submitted t o  NEOS. This output shows tha t  NEOS contacts an available 

workstation and transfers all of the user’s da t a  t o  the workstation. The solver (in this case 

vmlm) checks the da t a  and compiles the user’s code. If any errors are found at this stage, 

the compiler error messages are returned to the user, and execution terminates. 

If the user’s code compiles correctly, automatic differentiation tools (ADIFOR [4, 31 for 

Fortran code) are used to generate the gradient. Once the gradient is obtained, the user’s 
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Figure 2.2: Output from the NEOS Submission tool 

code is linked with the software library, and execution begins. Results are returned in the 

window generated by the NEOS Submission tool. 

Interesting issues arise during the processing of the job submission that  are pertinent t o  

the development of optimization software and problem-solving environments. For example, 

high-quality software should check the input data ,  but in this case the da ta  are the Fortran 

programs initpt and fcn. In general, it is not possible t o  check that  this da ta  is correct. At 

present we check only tha t  the user function does not create any system exceptions during 

the evaluation of the  function at the starting point. Although simple, this test catches many 

errors on the part of the user. 

Submitting a problem to  the NEOS Server does not guarantee success, but NEOS users 

are able t o  solve difficult optimization problems without worrying about many of the details 

that  are typical in a computing environment. Even if the user has suitable optimization 

software, the  user would need to  read the documentation, write code to  interface his problem 

with the optimization software, and then debug this code. The user would also have to  write 

code for the gradient, and debug that code-a nontrivial undertaking in most cases. 

3 Performance 

The NEOS solvers for partially separable problems are able t o  solve large-scale nonlinear 

optimization problems while requiring only that  the user provide code for the function 

evaluation. This ability was considered unrealistic until recently. The major obstacle was 

the computation of the gradient. For small-scale problems we can approximate the gradient 

by differences of function values, for example, 
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where hi is the difference parameter and ei is the i th unit vector, but this approximation 

is prohibitive for large-scale problems because i t  requires n function evaluations for each 

gradient. Approximating a gradient by differences is not only expensive but also increases 

the unreliability of the optimization code, since a poor choice for hi may cause premature 

termination of the optimization algorithm far away from the solution. 

The  NEOS solvers for nonlinear optimization problems use automatic differentiation 

tools to compute the gradients, Jacobians, and sparsity patterns required by the solvers. 

At present, we rely on ADIFOR [4, 31 to  process Fortran code and on ADOL-C [15] t o  

process C code. 

We demonstrate the ability of NEOS to  solve large-scale nonlinear optimization problems 

with an optimal design problem formulated by Goodman, Kohn, and Reyna [14]. This 

optimal design problem requires determining the placement of two elastic materials in the 

cross section of a rod with maximal torsional rigidity. The mathematical formulation is to 

minimize a functional of the form 

over a domain 2) in R2, where : R c) R is a piecewise quadratic. The  formulation 

of the optimal design problem with finite elements leads naturally to a partially separable 

optimization problem in n = nxny variables, where nx and ny are the number of interior grid 

points in the coordinate directions, respectively. We use the formulation in the MINPACK-2 

test problem collection [l]. Additional details on the problem formulation are not important 

t o  our discussion. We need to  know only that in our numerical results we consider the 

problem of minimizing fx for a fixed value of A; in this case X = 0.008. 

From a computational viewpoint, the most interesting feature of the code to evaluate fx 

is that  the number of floating-point operations required to evaluate fx grows linearly with 

n. Ideally. we would like t o  solve the problem in time proportional to  n. 

We solve the optimal design problem by developing code to  evaluate fx. In our formu- 

lation the vector x contains the values of the piecewise linear finite element approximation, 

and the subroutine 

dodc(nx,ny,x,nf,fvec,lambda) 

evaluates the components of the partially separable function fx as a function of the number 

of grid point and A.  The components of the partially separable function are stored in the 

array fvec of length nf. In this formulation nf is the number of elements in the finite 

element triangulation. 

Ths subroutine dodc does not have the desired form for submission to  NEOS, but i t  is 

quite easy t o  write a wrapper. For example, the results in this section were obtained with 

a subroutine of the form 
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fcn(n,x,nf,fvec) 

that  sets nx and ny t o  n1I2 and X t o  0.008. With this formulation we can quickly submit a 

series of problems t o  NEOS for various values of n. 

Submission of the optimal design problem with the NEOS Submission tool is quite easy. 

Figure 2.1 shows the  form tha t  was used to submit the optimal design problem. In Figure 2.1 

we were using n = 2500, but the form can be used for other values of n by changing the 

number of variables and the number of elements functions. 

Table 3.1 shows the timings (in seconds) and the number of function evaluations needed 

to  solve an optimal design problem with the vmlm solver. We provide information for the 

case when the user only provides the function in partially separable form and for the case 

when the user provides the function and gradient. These results were obtained on a Sparc 10 

with 96MB of memory. 

Table 3.1: Performance of the NEOS solver vmlm 

Function Function and Gradient 

There are two important points t o  notice in the results in Table 3.1. The main point 

is that  these results show that  the time per function evaluation increases linearly with n. 

This is t o  be expected for this problem when the user provides both the function and the 

gradient, but it is remarkable that this also holds for the case when the user only provides 

the function. The techniques [a] used to achieve these results make essential use of the 

partial separability of the function. 

Another important point about the results in Table 3.1 is that  there is a factor of 

six penalty in the timings when only providing the function. If we had used a standard 

difference approximation to the gradient, there would have been a performance penalty of 

about n, which is prohibitive €or these problems. We also note tha t  for these results, vmlm 

used ADIFOR with the sparse option. This strategy is far from optimal; with the hybrid 

strategy of Bouaricha and Mor6 [7] the performance penalty is reduced to  a factor of two. 

Finally, we note that  the number of function evaluations needed t o  solve the problem 

grows as a function of n1I2. However, this is all that  can be expected from a limited-memory 

variable metric method. 

The main point that should be drawn from the results in Table 3.1 is tha t  the NEOS 

Server combines an intuitive user interface, automatic differentiation tools, and optimization 

algorithms into a powerful problem-solving tool. We want to  improve the NEOS Server by 

extending the range of problems that  can be solved, but we also want to improve the 

interface. These issues will be examined in the next two sections. 
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4 Global Optimization Problems 

We want to extend the XEOS Server capabilities to global optimization problems. In 

general, these problems are attacked by algorithms tha t  require a large number of loosely 

coupled processors. We are interested, in particular, in problems that  arise in connection 

with the determination of protein structures. As a specific instance of the type of problem 

under consideration, we consider distance geometry problems. 

Distance geometry problems for the  determination of protein structures are specified by 

a subset S of all atom pairs and by the distances between atoms i and j for (ilj) E S. 

In practice, lower and upper bounds on the distances are given instead of precise values. 

The distance geometry problem with lower and upper bounds is t o  find a set of positions 

X I ,  . . . , x, in Et3 such t h a t  

where 1 ; j  and u;,j are lower and upper bounds on the distances) respectively. Recent reviews 

of the application of distance geometry problems t o  protein structure determination can be 

found in Havel [17, 181, Torda and van Gunsteren [27], Kuntz, Thomason, and Oshiro [19], 

Briinger and Nilges [8], and Blaney and Dixon [5].  

A standard formulation of the distance geometry problem (4.1), suggested by Crippen 

and Havel [lo], is to find the global minimum of the function 

f ( 4  = Pi&; - Zj), 

i , j d  

where the pairwise function pa,j : R" I-+ IR is defined by 

Clearly, x = ( 2 1 , .  . . , x,} solves the distance geometry problem if and only if 2 is a global 

minimizer of f  and f ( x )  = 0. 

Distance geometry problems can be specified by a small amount of data. A reasonable 

specification is t o  provide the number of atoms m, the size of the set S, and the vectors 

In a practical setting this d a t a  would be accompanied by additional information (for exam- 

ple, the type of atoms)) but for our purposes we would need only (4.2). 

Finding a global minimizer of f for the distance geometry problem is NP-hard even in 

the special case where l ; j  = u;,j. Finding approximate minimizers is also NP-hard; that 

is, the decision problem of finding x E R" such that  f (x)  5 E for given E > 0 is NP- 

hard. At a more practical level, we note that  the function f has a large number of distinct 
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advantages. Solving global optimization problems in a large-scale computing center would 

force the user to learn scheduling policies, job submission methods, and installation-specific 

software libraries. To some extent, such requirements are unavoidable; each center repre- 

sents a significant investment and often must serve a particular user community. Even for 

users who must use these centers, the significant effort involved in learning the idiosyn- 

crasies of each facility often limit the ability t o  switch between centers. In contrast, the 

NEOS Submission tool provides an interface tha t  is problem oriented and independent of 

the computing resources tha t  are offered by the  NEOS Server. 

5 Distributed Computing 

The  NEOS Server is first and foremost a network resource for optimization services. The 

current system provides convenient access to the facilities of NEOS, and, as described 

in Section 4, additional capabilities can be added easily. The current version has some 

limitations, however, in the  area of of security and usability for computing in a distributed 

environment. Because the potential solutions t o  these problems are related, we discuss them 

together. 

In any networked or distributed computing system, two important questions must be 

answered: How does the system protect itself from malicious or careless users (and these 

users from each other), and how does it present itself to  the users? The first issue is one 

of security: the second is one of ease of use. NEOS currently has only rudimentary security 

features, and the interfaces do not allow access from a user program. A more traditional 

but more flexible and powerful method for accessing numerical capabilities is the procedural 

(subroutine) interface. The  network analogue t o  this interface, the remote procedure call 

(RPC) [6]! is useful for some parts of the security question as well. To better understand 

the security issues, we first outline the problem. 

To make the discussion concrete, we consider the case of determining a minimizer of a 

function f : Rn e R. The most precise description of this problem is often the code that  

implements f .  This code most likely contains loops and array accesses, and possibly func- 

tion calls. If the NEOS Server simply accepts arbitrary code t o  describe the optimization 

problem, the  systems running NEOS are subject to some security risks. 

The most common security risk occurs if the user is not trusted. Lack of trust  does 

not mean tha t  the user is malicious, just that the work they send cannot be trusted not to  

cause problems. In this case we identify two issues: rogue programs and denial-of-service 

attacks. 

Rogue programs are a security issue because the description of the optimization problem 

may crash the  Server or even compromise the system. For problems (for example, linear 

programming or distance geometry) that  are described by relatively simple data ,  it is easy 

to  check that the d a t a  is valid. For programs, such checking is much harder. Our current 
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system applies a number of techniques to  reduce the chance for harm to the  system. For 

example, the NEOS Server runs as a separate user with no special privileges. However, 

since the user can submit Fortran or C programs, it is possible that  a programming error 

or a deliberate subterfuge could harm NEOS or, through some unplugged security problem, 

compromise the entire system. Solutions t o  this problem range from provably safe problem 

descriptions (either a specialized modeling language or strongly typed languages such as 

Java) to provably safe interfaces, with user code and NEOS code running on different 

systems. 

Another security issue arises, even with well-meaning users, when programs use large 

amounts of computing-more than their fair share. When this is done maliciously, i t  is 

called a denial-of-service attack. The amount of time used by a single request is relatively 

easily controlled, and most scheduling systems provide this service. Harder to contain are 

floods of requests, each generating a separate request. The NEOS Server may need t o  

maintain records of use as well as interacting with the scheduling system t o  ensure that the 

Server does not make excessive demands on the system. 

A security risk also occurs if the user is trusted but the connection is not, because 

there may be eavesdroppers. This requires merely that some secure transaction service be 

used. Such services are becoming commonplace on the Web (for example, for credit card 

transactions), though usually for small amounts of data. 

Providing both a more secure execution environment for NEOS and a more flexible 

interface makes use of the same technique: the remote procedure call. Conventionally, 

programmers of scientific applications call library routines from their Fortran or C program 

t o  perform some service, such as minimizing a function. For example, the user may call a 

procedure of the form 

c a l l  uco( f c n ,  x, ... 1 

to find a minimizer o f f .  A remote procedure call looks just like a regular procedure call to 

the user; the implementation, however, makes contact with a remote server (NEOS in our  

case) and passes to the  server the arguments of the call. The implementation may look like 

ca l l  neos-uco( ' f c n . f ' ,  x, . . .  1 

where ' f c n . f '  is the name of the file containing the code that  defines the function f .  

A remote procedure call interface would be a significant improvement over the interface 

provided by the  NEOS Submission tool because such an interface would make it  possible to  

incorporate NEOS capabilities into existing code. The remote procedure call interface is a 

relatively simple addition to the existing NEOS services that is secure and easy to  use for 

those optimization problems that are completely described by simple data, such as linear 

programming problems. The  da ta  can be checked for validity by the server; encryption can 
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be used if necessary t o  keep the da ta  safe from eavesdroppers. If the da ta  is Fortran or C 

code, however, checking for validity is far more difficult. If the user is not trusted, we can 

use a reverse communication approach or a provably safe form of code. 

In the reverse communication approach, the user’s function is executed on the user’s 

machine. T h e  RPC mechanism is used to  request information from the user and t o  return 

information to the Server. For example, the user could be requested t o  evaluate the function 

f at the current iterate 2 and return f (x)  to the Server. This maintains the security against 

rogue code by executing the user’s code on the user’s machine and the optimization code 

on the NEOS-provided machine. 

A drawback of this approach is that  the cost of each of these remote procedure calls 

can be large. Just the delay from speed-of-light propagation can amount to  milliseconds in 

a widely distributed network. In view of this limitation, this approach would be suitable 

only for problems in which the function evaluations requires considerable computing power 

so that  the  cost of the  remote procedure call is insignificant. 

The option t o  use a provably safe form of the code has attracted attention because of 

Java, a language related t o  C++ that  contains a number of features and restrictions t o  

allow programs written in Java t o  be executed without fearing that the system running 

them could be compromised. Many of the restrictions are irrelevant to  most numerical 

code; for example, Java has no function pointers and restricts the kinds of routines (other 

than those provided by the user) that  can be called. 

In the most obvious approach, the user writes their code in Java instead of Fortran 

or C, and the Java code is uploaded into the NEOS Server by the remote procedure call. 

There is another option; the optimization code provided by NEOS could be downloaded 

directly into the user’s running application (as long as that  application is running in a Java 

environment). The interface would be the same; only the source of the cycles used to  run 

the optimization code would be different. In this model, the procedure interface is a sort of 

automatic download-and-install operation that  would be suitable only for small problems, 

and would n o t  provide access t o  large-scale computing resources. 

Java is not the only choice; a suitable subset of Fortran could be constructed by re- 

stricting some features of the language and performing strict compile and runtime checking. 

Such a network-safe version of Fortran could provide easy and reliable access t o  distributed 

services to existing programs. 
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