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Abstract. This paper discusses optimization of quality measures over
first order Delaunay triangulations. Unlike most previous work, our mea-
sures relate to edge-adjacent or vertex-adjacent triangles instead of only
to single triangles. We give efficient algorithms to optimize certain mea-
sures, whereas other measures are shown to be NP-hard. For two of the
NP-hard maximization problems we provide for any constant ε > 0, fac-

tor (1−ε) approximation algorithms that run in 2O(1/ε) ·n and 2O(1/ε2) ·n
time (when the Delaunay triangulation is given). For a third NP-hard
problem the NP-hardness proof provides an inapproximability result.
Our results are presented for the class of first-order Delaunay triangula-
tions, but also apply to triangulations where every triangle has at most
one flippable edge. One of the approximation results is also extended to
k-th order Delaunay triangulations.

1 Introduction

Triangulation is a well-studied topic in computational geometry. The input is
a point set or planar straight line graph in the plane, and the objective is to
generate a subdivision where all faces are triangles, except for the outer face. In
some cases extra points are allowed, in which case we speak of a Steiner trian-
gulation. Since a point set (or planar straight line graph) allows many different
triangulations, one can try to compute one that optimizes a criterion. For exam-
ple, one could maximize the minimum angle used in any triangle, or minimize
the total edge length (minimum weight triangulation). The former optimization
is solved with the Delaunay triangulation in O(n log n) time for n points. The
latter optimization is NP-hard [18].

Several other optimization measures exist. In finite element methods, trian-
gular meshes with various quality constraints are used, and Steiner points may
be used to achieve this; Bern and Plassmann [4] give a survey. Other optimiza-
tion measures arise if the triangulation represents a terrain (called a polyhedral
terrain in computational geometry): all vertices have a specified height, and the
height of points on edges and on triangles is obtained by linear interpolation.
Such a terrain representation is common in GIS and is called a TIN [6, 22].
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Fig. 1. (a) Delaunay triangulation (zero-th order). (b) Second order Delaunay trian-
gulation (light grey triangles are first order, darker triangles are second order). (c) For
first order Delaunay triangulations, one of every pair of dotted edges must be chosen.

Bern et al. [3] show that measures like maxmin triangle height, minmax slope,
and minmax eccentricity of any triangle can be optimized with a technique called
edge insertion in O(n3) or O(n2 log n) time. Other measures such as minmax an-
gle [9] and minmax edge length can also be optimized in polynomial time [8].
Interestingly, the Delaunay triangulation optimizes several measures simulta-
neously: maxmin angle, minmax circumscribed circle, minmax enclosing circle,
and minimum integral of the gradient squared (e.g. [3]). For terrain modeling in
GIS, Steiner points cannot be used because their elevation would not be known.
Terrain modeling leads to a number of optimization criteria, both to yield good
rendering of the terrain for visualization, and to make it suitable for modeling
processes like water runoff and erosion [13, 17]. Slope characteristics are espe-
cially important. Furthermore, local minima and artificial dams, which may be
artifacts due to the creation of the triangulation, should be avoided [7, 14, 21].

The Delaunay triangulation of a set P of points is defined as the triangulation
where all vertices are points of P and the circumcircle of the three vertices of any
triangle does not contain any other point of P . If no four points of P are cocircu-
lar, then the Delaunay triangulation is uniquely defined. Gudmundsson et al. [10]
generalize this to higher order Delaunay triangulations. A triangulation is k-th
order Delaunay if the circumcircle of the three vertices of any triangle contains
at most k other points (see Figure 1). For higher order Delaunay triangulations,
fewer results are known. Minimizing local minima in a terrain becomes NP-hard
for orders higher than nε, for constant ε. Experiments showed that low order
Delaunay triangulations can reduce the number of local minima significantly [7].

First order Delaunay triangulations have a special structure. All edges that
are in any first order Delaunay triangulation form a subdivision that only has
triangles and convex quadrilaterals (see Figure 1(c)). In the quadrilaterals, both
diagonals are possible to obtain a first order Delaunay triangulation. We call
these quadrilaterals and diagonals flippable. Due to this structure, measures like
the number of local minima or extrema can be minimized in O(n log n) time.
The same holds for minimizing the maximum area triangle, minimizing the total
edge length, and various other measures [10]. On the other hand, minimizing the
maximum vertex degree was only approximated by a factor of roughly 3/2.



Optimization for First Order Delaunay Triangulations 3

Table 1. Optimization problems and complexity results for first order Delaunay tri-
angulations. d is the maximum vertex degree in the Delaunay triangulation.

Triangles Opt. worst local measure Result Opt. # occurrences Result
incident to (minmax)

edge area ratio O(n log n) max #convex edges NP-hard
angle of outward normals O(n log n)

vertex area ratio O(nd log n) max #convex vertices O(n log n)
angle of outward normals O(nd log n) min #local minima O(n log n) [10]
vertex degree NP-hard min #mixed vertices NP-hard

Many of the measures mentioned above are measures for single triangles.
Exceptions are total edge length, number of local minima or extrema, and maxi-
mum vertex degree. In this paper, we consider measures that depend on pairs of
triangles that are edge-adjacent, and measures that depend on groups of triangles
that are vertex-adjacent. Note that a single flip in a first order Delaunay trian-
gulation influences five pairs of edge-adjacent triangles and four vertex-adjacent
groups. We consider objectives of the maxmin or minmax type, and objectives
where the number of undesirable situations must be minimized. Examples of
minmax objectives for edge-adjacent triangles include minimizing the maximum
ratio of edge-adjacent triangle areas, which is relevant for numerical methods
on meshes, or minimizing the maximum spatial angle of the normals of edge-
adjacent triangles in polyhedral terrains, which is important for flow modeling.
Geomorphologists classify parts of mountains or hills as footslopes, hillslopes,
valley heads, etc. [13]. If we know that a part of a terrain is a valley head, we
should maximize the number of convex edges or convex vertices in that part. A
vertex of a polyhedral terrain is convex if there is a plane through that vertex
such that all of its neighbors are on or below that plane, and at least one strictly
below. A vertex is mixed if every plane containing it has neighbors strictly above
and below the plane. We study maximization of convex edges, maximization of
convex vertices, and minimization of mixed vertices.

Given a planar point set P with or without elevation, we study the com-
plexity of optimizing measures over all first order Delaunay triangulations. Mea-
sures we consider and results are shown classified in Table 1. The optimization
of other worst local measures for edge-adjacent triangles can also be solved in
O(n log n) time with the same technique, like minimizing the largest minimum
enclosing circle of any two edge-adjacent triangles. Our proof of NP-hardness
of minimizing the maximum vertex degree justifies the factor 3/2 approxima-
tion algorithm given before in [10]. The proof yields inapproximability beyond a
constant greater than 1 in polynomial time unless P=NP. It was already known
that triangulating a biconnected planar graph while minimizing the maximum
degree is NP-hard [15]. The NP-hard problems of maximizing convex edges and
maximizing non-mixed vertices can be approximated within a factor 1 − ε in
2O(1/ε) · n and 2O(1/ε2) · n time, if the Delaunay triangulation is given. The NP-
hardness results show that, despite the simple structure of first order Delaunay
triangulations, optimization of various measures is hard.
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2 Exact algorithms

We start this section with a problem that turns out to be surprisingly easy to
solve, namely, maximizing the number of convex vertices over all possible first
order Delaunay triangulations. Let P be a set of n points in the plane, where
each point has a height value. As observed before, if we take the Delaunay
triangulation T of P , it has a number of edges that are in any first order Delaunay
triangulation, and a number of flippable edges, and no two flippable edges bound
the same Delaunay triangle [10]. The Delaunay triangulation and its flippable
edges can be determined in O(n log n) time.

For any flippable quadrilateral, one diagonal is reflex and the other diagonal
is convex in 3-dimensional space, unless the four vertices of the quadrilateral
are co-planar. Consider a convex vertex v in T . If it is incident to a flippable
quadrilateral where the convex diagonal is present, then v will remain convex if
we use the reflex diagonal instead (regardless of which diagonal is incident to v).
In other words: using only reflex edges in flippable quadrilaterals does not cause
any vertex to become non-convex. At the same time, it may turn non-convex
vertices into convex ones. It follows that the maximization problem on the given
point set P can be solved in O(n log n) time.

2.1 Measures on edge-adjacent triangles

In this section we show how to optimize a measure function M defined for a
triangulation T , over all first order Delaunay triangulations of P . The func-
tion M should be of the shape M(T ) = maxq∈T µ(q) for q a (not necessarily
flippable) quadrilateral, and we wish to minimize M(T ) over all first order De-
launay triangulations T . We also use µ(e) for any edge e in a triangulation to
denote µ(q), where e is the diagonal of q. A first order Delaunay triangulation
has four types of edges: between two fixed triangles, between a fixed triangle
and a flippable quadrilateral, between two flippable quadrilaterals, and flippable
edges. As a consequence, there are only O(n) possible values for M(T ), and we
can determine and sort them in O(n log n) time.

We solve the min M(T ) problem by transforming it into a series of 2-SAT
instances. We will use 2-SAT to answer the following question: Is there a first
order Delaunay triangulation T such that M(T ) ≤ µ0? Since there are O(n)
interesting values for µ0, we can apply binary search to find the smallest one.

Let S be the subdivision that is the Delaunay triangulation of P with all
flippable edges removed, and let µ0 be given. For every edge e of S between a
triangle and a quadrilateral, decide which of the two diagonals of the quadrilat-
eral has µ(e) > µ0. If neither does, then we can answer the question immediately
with “no”. If only one diagonal has µ(e) > µ0, then we fix the other diagonal in
S. Otherwise, we continue with the next edge between a triangle and a quadri-
lateral. This step may have made flippable quadrilaterals into two fixed triangles
in S. Next we test the possible diagonals of each quadrilateral of S. If both di-
agonals give µ(.) > µ0, then we answer with “no” again. If only one diagonal
gives µ(.) > µ0, then we fix the other diagonal to make two new triangles in S.
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Next we test all edges of S between adjacent triangles. If any such edge does not
satisfy µ(e) > µ0, then we answer the question with “no” again.

It remains to solve the problem for edges between quadrilaterals of S. For
every quadrilateral q we introduce a Boolean variable xq, and let one diagonal
choice represent true and the other false. Let e be an edge of S between
two quadrilaterals q and r. For each choice of diagonals in q and r that gives
µ(e) > µ0, for example the one with true in q and false in r, we make a clause
(¬xq ∨xr). We get at most four clauses for any edge between two quadrilaterals,
so O(n) clauses overall. The conjunction of all clauses is a 2-SAT instance, which
we can solve in linear time with the algorithm of Aspvall et al. [1]. The binary
search must try O(log n) values for µ0 until we find the one minimizing M(T ).
Hence, the whole algorithm takes O(n log n) time.

2.2 Measures on vertex-adjacent triangles

The algorithm described in the previous section can easily be extended to mini-
mize measure functions of the form M(T ) = maxt,t′∈T µ(t, t′) for t and t′ trian-
gles in T with a common vertex. The set of possible values of M(T ) induced by

pairs of triangles incident to a vertex v is
(

d(v)
2

)

, where d(v) denotes the degree
of v. Since the sum of the degrees of all vertices is O(n), the total number of
possible values of M(T ) is at most

∑

v∈T d(v)2 = d ·
∑

v∈T d(v) = O(dn), where
d is the maximum degree of any vertex in the triangulation.

Theorem 1. A first order Delaunay triangulation that minimizes the maximum
area ratio of edge adjacent triangles can be computed in O(n log n) time. If the
triangulation represents a polyhedral terrain, the same result holds for minimiz-
ing the maximum angle of outward normals. If we consider these ratio measures
over pairs of vertex adjacent triangles, the algorithms take O(nd log n) time,
where d is the maximum vertex degree in the Delaunay triangulation.

3 NP-hardness results

We show NP-hardness for three different optimization problems on first order
Delaunay triangulations. The proof for the first problem, minimization of the
number of mixed vertices in a terrain, is treated in detail. The other two NP-
hardness results are only stated; the proofs can be found in the full paper [23].

3.1 Mixed vertices

In a terrain, we call a vertex mixed if every plane through it has neighboring
vertices above and below the plane. In some types of terrains, such vertices are
uncommon, so we may want to minimize their number. Given a set of points with
height information, we study the problem of constructing a first order Delaunay
triangulation of this point set such that the number of mixed vertices is minimal.
This problem is NP-hard. We prove this by reduction from planar 3-SAT [16].
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Fig. 2. (a) A fan. (b) One of the solutions: a left-turning fan. Similarly a right-turning
fan is possible. (c) An inverter gadget. (d) One of the two solutions.

We represent the variables of a 3-SAT instance by fan gadgets, see Figure 2(a).
A fan gadget consists of 25 points with elevations. In the figure, all possible first
order Delaunay edges are shown. Solid edges are in every first order Delaunay
triangulation; dashed and dotted edges are flippable. The square nodes and the
dotted edges are the most important part. We observe that a square vertex is
mixed if and only if both incident dotted edges are in the triangulation.

We construct the gadget in such a way that the state of the round vertices
does not depend on any of the dotted edges. The white round vertices are al-
ways non-mixed, even if all incident edges would be in the triangulation; the
grey round vertices are always mixed, already if only the fixed edges are in the
triangulation. Hence the number of mixed vertices is only affected by square ver-
tices, and can only be minimal if there are never two dotted edges at the same
square vertex. A fan gadget therefore has two possible states, see Figure 2(b).

We can connect fans together to form larger chains that are all in the same
state, see Figure 3(a). We turn two more vertices into squares, and if the left
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Fig. 3. (a) Connecting variables. (b) Three variables come together in a clause.
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Fig. 4. A coating to shield the construction from the outside.

fan is left-turning, the right fan must also be left-turning and the other way
around. We can connect up to three fans to an existing fan, so chains can also
split. We also make negations in chains using the inverter gadget in Figure 2(c).
Here, if the leftmost square has its positive sloping diagonal in the triangulation,
the rightmost square must have its negative sloping diagonal and the other way
around, see Figure 2(d). We use an inverter gadget in a chain to negate a variable.

We represent the clauses occurring in the 3-SAT instance by a special clause
vertex, see Figure 3(b). Here three fan chains come together at one square vertex
in a darker shade of grey. This vertex has a slightly different property than the
other square vertices. A clause vertex is mixed if and only if all three incident
dotted edges are in the triangulation.

So, the clause can be satisfied if at least one of the three fans is not right-
turning, and by including inverters at the appropriate places this can represent
any Boolean clause of a 3-SAT formula. With these gadgets we can build the
whole planar 3-SAT instance. Finally, we need to triangulate the remaining gaps,
so we need to ensure that the vertices on the boundary really have a fixed value.
We add an extra layer of sufficiently high vertices (labeled ∞ in Figure 4). These
vertices are all non-mixed, and the properties of the vertices that are not on the
boundary can be checked locally.

Theorem 2. Minimizing the number of mixed vertices over all first order De-
launay triangulations is NP-hard.

3.2 Maximum vertex degree and convex edges

In the full paper [23] we also give NP-hardness proofs for minimizing the maxi-
mum vertex degree and maximizing the number of convex edges in a polyhedral
terrain. The reductions are from planar 3-SAT and planar MAX-2-SAT [11].
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Theorem 3. The problems of minimizing the maximum vertex degree and max-
imizing the number of convex edges over all first order Delaunay triangulations
are NP-hard.

4 Approximation algorithms

The problems of optimizing the number of convex edges or mixed vertices and
minimizing the maximum vertex degree were shown NP-hard; hence it is of
interest to develop approximation algorithms for them. For the last problem
there is already a 1.5-approximation [10], and our NP-hardness proof shows that
no polynomial time approximation scheme exists unless P=NP. For the other two
problems we present polynomial time approximation schemes. We also sketch an
extension to k-th order Delaunay triangulations for maximizing convex edges.

The general idea is as follows. First we transform the problem into a graph
problem on some planar graph that can be obtained from the Delaunay trian-
gulation without flippable edges. The resulting graph is partitioned into layers
of outerplanarity at most λ. For each choice of i, where 0 ≤ i < λ, we delete
every (jλ + i)-th layer of vertices, where j = 0, 1, 2, . . .. The resulting “thick”
layers are independent. For each thick layer, we compute a tree decomposition
of width at most 3λ− 1 and solve the problem optimally on this decomposition
in 2O(λ)n time, using dynamic programming. Finally, the union of the solutions
of all the thick layers for a given i yields a solution to the original problem. We
simply choose i such that the size of the solution is the maximal, and return
the corresponding triangulation as output. Such an approach gives a (1 − ε)-
approximation if λ is chosen suitably, depending on the problem and ε [2, 12].

4.1 Maximizing the number of convex edges

We build a graph G that has a vertex (called q-vertex) for each flippable quadri-
lateral, and an edge between two q-vertices if and only if their corresponding
quadrilaterals share an edge. The rest of the input (all the fixed triangles) are
not explicitly represented, see Figure 5(b). Each q-vertex has two possible states,
convex or reflex, depending on the choice of the diagonal. It also has a value that
depends on its state and represents the number of convex edges among the flip-
pable edge and any edges that the quadrilateral shares with fixed triangles when
the q-vertex is in that state (from 0 to 5). Furthermore, every edge in G has
a value that depends on the states of both incident q-vertices. The goal of the
algorithm is to find a state for each q-vertex such that the sum of the values
(total number of convex edges) is maximized.

To create the independent thick layers from the graph we will remove the
edges that connect two consecutive layers jλ + i and jλ + i + 1 in G, where
j = 0, 1, 2, . . ., for all choices of 0 ≤ i < λ. The layers created after removing
one set of layers of edges are independent, so if we optimize them separately and
then join them by adding the removed edges, the number of convex edges after
the join cannot decrease. Some edges are not considered for every i, but only in
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Fig. 5. (a) Initial triangulation (solid edges are fixed). (b) Graph (in gray) where each
vertex represents a flippable quadrilateral. (c) The same graph showing the outerpla-
narity layers.

λ − 1 out of λ solutions. We get a (1 − ε)-approximation algorithm by taking
λ = d 1

εe, due to the pigeonhole principle [2, 12].

Once we have the thick layers, each layer is solved optimally by using a
tree decomposition approach. Since each layer is a λ-outerplanar graph, a tree
decomposition with treewidth at most 3λ− 1 can be computed in time linear in
the number of nodes of the graph [5]. Once we have this decomposition we can
apply one of the standard techniques to deal with problems on graphs of small
treewidth. The technique consists of building tables of partial solutions in the
nodes of the tree decomposition [5, 19].

Definition 1. (from [19], originally in [20]) Let G = (V,E) be a graph. A tree
decomposition of G is a pair 〈{Xi|i ∈ I}, T 〉 where each Xi is a subset of V ,
called a bag, and T is a tree with the elements of I as nodes. The following three
properties must hold:

1.
⋃

i∈I Xi = V ;
2. for every edge {u, v} ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi; and
3. for all i, j, k ∈ I, if j is on the path between i and k in T then Xi∩Xk ⊆ Xj.

The width of 〈{Xi|i ∈ I}, T 〉 equals max{|Xi| | i ∈ I} − 1. The treewidth of G
is the minimum ω such that G has a tree decomposition of width ω.

We will make T rooted by choosing any node to be the root. For each bag Xi,
we will store a table Ai (i ∈ I). Tables will be created in a bottom up fashion as
follows. For each bag Xi, the table Ai has 2ni rows and ni + 1 columns, where
ni = |Xi|. Each row represents a coloring, which is an assignment of a state
(reflex/convex ) to each q-vertex (flippable quadrilateral) in Xi. All the different
possible colorings for the bag are represented in the table. Furthermore, for each
coloring Cj an extra value mi(Cj) is stored, containing the number of convex
edges in an optimal triangulation of the point set induced by the subtree rooted
at Xi that includes the current coloring as a subset. The details on how to
compute these values are presented below.

Step 1: Table initialization. For every table Ai and each coloring Cj , we
set mi(Cj) to the number of convex edges for that assignment: The sum of the
values of each q-vertex (that will vary according to its state), plus 1 for each edge
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with both incident q-vertices in Xi if their states define a convex edge between
the corresponding quadrilaterals (with diagonals chosen).

Step 2: Table update. Next the tree is traversed, starting from the leaves,
finishing at the root. For each node, the column mi of Ai is updated based on
its children. Let i be the parent of node j. Bags Xi and Xj have some q-vertices
in common. We sort both tables first by the columns of the shared q-vertices,
and second by mi. Then we scan Ai row by row, and for each coloring Cl we
update mi(Cl) based on the highest value that mj() has for that combination of
the shared q-vertices. For later reconstruction of the triangulation we also store
a pointer to the corresponding row in Aj . When a node Xi has several children,
we update Ai against each child, one at a time, in the same way. Once the root
node is updated, the number of convex edges in an optimal triangulation will be
in the last column of one of the rows of its table. The final triangulation can be
computed by following the pointers in the tables.

The correctness of the method follows from the definition and properties of
tree decompositions, and the arguments are identical to the ones that hold for
other well-known problems where the same technique has been used, such as
vertex cover or dominating set (see [19]).

The running time is dominated by the computation and merging of the tables.
The sorting of each table can be done in time O(2ωω) (because all but one column
have only two states). The time for updating a table based on another one is
linear in the size of the largest one, so O(2ω). The number of tables is linear in
the number of nodes |I| of tree T , hence the total running time is O(2ωω · |I|).
Since the graph is λ-outerplanar we can compute a tree decomposition of width
ω ≤ 3λ − 1 and |I| = O(n) nodes [5, 19]. We apply this algorithm to the λ
different values of i to get an approximation scheme, so the worst-case running
time is O(λ2ωω · |I|) = O(λ28λ · n) = O( 1

ε2 8
1
ε · n) = 2O(1/ε) · n.

Theorem 4. For any ε > 0, a (1− ε)-approximation algorithm for maximizing
the number of convex edges over all first order Delaunay triangulations exists
that takes 2O(1/ε) · n time (if the Delaunay triangulation is given).

4.2 Maximizing the number of non-mixed vertices

Using a similar approach as above, we can also maximize the number of non-
mixed vertices of a terrain. Because the mixed/non-mixed state of a vertex is
determined by a large (possibly non-constant) number of neighboring quadrilat-
erals, several adaptations are needed. We now construct a graph with vertices for
both the vertices and the quadrilaterals of the terrain. We remove the graph ver-
tices that represent terrain vertices that have a fixed state, a high degree, or that
can always be satisfied without disturbing the others. Of the remaining graph,
we create λ-thick layers again, and we compute a tree decomposition of every
layer, which we blow up such that every vertex contains all its neighbors in some
bag. We solve the problem in each layer optimally by dynamic programming.
More details are in the full paper [23]. We achieve:
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Theorem 5. For any ε > 0, a (1− ε)-approximation algorithm for maximizing
the number of non-mixed vertices over all first order Delaunay triangulations
exists that takes 2O(1/ε2) · n time (if the Delaunay triangulation is given).

4.3 Maximizing the number of convex edges, k-th order

The approximation algorithm for maximizing convex edges extends to k-th order
Delaunay triangulations. To assure that every k-order Delaunay edge with its
incident triangles is considered as a potentially convex edge in enough subprob-
lems, we need layers with thickness proportional to k/ε. To use tree decompo-
sitions with bounded treewidth for maximizing convex edges, we also need to
assure that the four vertices involved in two adjacent k-order Delaunay triangles
appear in some bag of the tree decomposition. We show in the full paper [23]:

Lemma 1. If 〈{Xi|i ∈ I}, T 〉 is a tree decomposition of the Delaunay trian-
gulation of a set of points with width ω, then a tree decomposition of width at
most 2O(k)ω2 exists where every pair of adjacent k-th order Delaunay triangles
appears in some bag.

The number of states of a bag is exponential in the treewidth, and combining
two bags takes time nearly linear in their number of states. This leads to:

Theorem 6. For any ε > 0, a (1− ε)-approximation algorithm for maximizing
the number of convex edges over all k-th order Delaunay triangulations exists

that takes 22O(k)/ε2

· n time (if the Delaunay triangulation is given).

5 Discussion

We analyzed the algorithmic complexity of optimizing various measures that
apply to triangulations, and terrains represented by triangulations. The class of
triangulations over which optimization is done is the first order Delaunay tri-
angulations. We gave efficient algorithms for four measures, NP-hardness proofs
for three other measures, and polynomial time approximation schemes for two
measures that were shown NP-hard. One approximation algorithm could be ex-
tended to k-th order Delaunay triangulations.

Other measures related to terrain modeling in GIS may be of interest to
optimize. Also, certain measures that have efficient, optimal algorithms for first
order Delaunay triangulations may become harder for second and higher order
Delaunay triangulations. These are interesting topics for further research. It is
also unknown how to generalize the approximation algorithm for maximizing
non-mixed vertices to higher order Delaunay triangulations. Finally, improving
on the doubly-exponential dependency on the order k in the approximation
algorithm for maximizing convex edges is worthwhile.

Acknowledgements. The authors thank Hans Bodlaender and René van Oost-
rum for helpful discussions.
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