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Abstract

A procedure to design a structure for minimum
sensitivity to uncertainties in problem parameters is
described. The approach is to directly minimize the
sensitivity derivatives of the optimum design with
respect to fixed design parameters using a nested
optimization procedure. The procedure is demonstrated
for the design of a bimetallic beam for minimum

weight with insensitivity to uncertainties in structural
properties. The beam is modeled with finite elements
based on two dimensional beam analysis. A sequential
quadratic programming procedure used as the optimizer
supplies the Lagrange multipliers that are used to
calculate the optimum sensitivity derivatives. The
procedure is validated by comparing the optimization
results to parametric studies.

Parameters are characteristics of an optimization
problem that are held constant during the optimization
process in which the design variables are changing. In
practical design situations the exact values of the
parameters may not be known (e.g., loads, material
properties, manufacturing errors, etc.). Uncertainties in
parameters may cause variations in the outcome of the
design process; for example, uncertainties in the
constraints may cause the design to be unacceptable.
Unfortunately, in many cases the uncertainties are very
difficult and costly to control. It would be
advantageous to approach the design task using the key
principle of quality design as formulated by Taguchi
who proposed that designs be as insensitive as possible

to variations in parameters that affect their behavior. 1

Many efforts have been directed toward developing
design processes wherein the performance of the final
product will be minimally affected by variations in
parameters. Several efforts have been made to approach
the problem by imposing safety margins on the
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constraints to avoid entering the infeasible region. For
example, in reference 2 a worst case approach is used

wherein a specified tolerance on the uncertain design
variables reduces the feasible design space. The
objective is to stay as close as possible to the original
optimum and to remain within the newly defined
feasible region. A padding factor is added to the
constraints in reference 3. The factor is proportional to
the gradient of the constraint. The constraints are
updated throughout the optimization process using
linear and nonlinear approximations. In references 4
and 5 the authors proposed a method of designing for
"feasibility robustness". Given specified tolerances on
design variables and parameters, variations in the
constraints are predicted using worst case and statistical
analysis. This maintains a certain probability of
remaining feasible throughout the design process in

spite of fluctuations in the variables and parameters.

The above methods effectively reduce the size of
the feasible region resulting in trading a less optimum
value of the objective function for a higher degree of
robustness. In references 2, 4, and 5 this concept was
enhanced by adding tolerance ranges on specified
controllable variations as variables in the objective
function so that the values of the tolerances were

chosen during the design process. Reference 6 labeled
this approach a "tolerance allocation problem". The
method was applied to the design of a simple two-bar
truss to obtain a trade-off between the tolerances on the

structural dimensions and the manufacturing cost. As
the tolerances decrease, the cost of manufacturing the
product increases. In reference 7 a second order
tolerance model was incorporated into a nonlinear
optimization procedure which improved the
formulation by including a measure of function
skewness in the design process.

Another approach to decreasing the effects of
uncertainties in design is to directly minimize the
sensitivity of the design with respect to the
uncertainties. Reference 8 minimized the sensitivity
derivative of the response of a system with respect to
uncertain parameters using shape design variables with
formal optimization techniques. Reference 9 proposed
that wadeoffs be made in the design objectives to ensure
a degree of insensitivity to uncontrollable parameter
variations. This approach was referred to as a "design
for latitude" and it was handled with a multiple

_objective function minimization procedure which
included the sensitivity of the design with respect to the
uncertain parameters in the design objective. Reference
10 also used multiobjective optimization methods to
minimize sensitivities to variations in design



parametersbyincorporating sensitivity derivatives of
the objective and constraints into the objective function
or by constraining them to be less than a specified
value. Several formulations incorporating sensitivity-
based constraints and/or sensitivity-based objectives
were discussed. Reference 11 applied goal

programming methods in a similar manner to minimize
multiple objectives including the sensitivities of both
luted parameters and design variables to uncertainties.
Reference 12 utilized fuzzy sets to define a multiple
objective design optimization problem dealing with
uncertainty.

The approach taken in this paper extends the
concept of directly minimizing sensitivity derivatives to
that of minimizing optimum sensitivity deriviatives

(OSD) 13,14 with respect to problem parameters using a

nested optimization procedure. The procedure is
demonstrated for the design of a bimetallic beam for
minimum weight with insensitivity to uncertain
structural propeties. The beam is modeled with finite
elements based on two dimensional beam analysis. An

IMSL 15 sequential quadratic programming procedure

used for the optimization supplied the Lagrange
multipliers that were used to calculate the OSD using
the method described in references 13 and 14.

Annroach

The overall procedure contains two nested
optimization loops as shown in Figure 1.
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Flowchart of overall procedure.

The uncertain inputs are represented by the constant
parameters, P. The usual formulation of an
optimization problem is solved within the inner loop
(box 1) yielding a constrained optimum comprised of
the optimal values of the objective function, F and the

design variables, X denoted by Fop t and Xopt. These
quantities are functions of the parameters P, therefore
they are sensitive to uncertainties in these parameters.
That sensitivity is quantified by the optimum
sensitivity derivatives in box 2. These derivatives are

represented by dFopt/dP or Fop t. The derivatives may

be computed by finite differencing on the optimization
repeated with a parameter perturbed one at a time
(expensive, inaccurate, but simple to implement) or by
using a quasi-analytical method that is cheaper, more
accurate, but requires more implementation effort.13

The success of this procedure was found to be dependent
on a highly converged inner loop optimization that
provides accurate Lagrange multipliers. The outer loop
minimizes the sensitivity of the outcome of the inner
loop to the uncertain parameters by selecting the design
associated with the Smallest values for the optimum
sensitivity derivatives (box 3). The objective function
in the outer loop can be made up of multiple terms
including OSD's with respect to several parameters and
a term to reflect the value of the objective function in
the inner loop. Weighting factors can be applied to
each of these terms to prioritize their relative
importance during the outer loop optimization. Such a
weighted multiobjective function allows tradeoffs
between the optimum design that is achieved in the
inner loop and the level of sensitivity of this design to
the uncertain parameters. A user may choose to accept
a reduction in the measure of goodness (objective
function) of the original design to gain a degree of
robustness (insensitivity to uncertain parameters).

This optimization problem could be expensive to
solve because there are two nested optimization loops.
The computational expense could be amplified due to
the fact that to minimize a sensitivity means to
minimize a function that already depends on the
derivatives. Use of a gradient-driven search algorithm
would imply working with the computationally
expensive second derivatives. Therefore, it was decided
to use PoweU's method 16, a non-gradient-based search

algorithm, in the outer loop.

Example Problem

A simple but cogent example is used to
demonstrate the procedure and its potential. A beam of
a fixed length L=100.0 inches is clamped at both ends

as shown in figure 2.

._ L _t,-

P P2, E2 h2

L 1

Fig. 2. Bi-material beam problem.

The beam is made up of two sections. From the left
end to a distance L1 from the left end, the beam has

Young's modulus El, a density Pl and height h 1. The

other section has E 2, P2, and h2. Both sections have

rectangular cross-sections of width B1 and B2. The

values of these material properties are given in table 1.
It is assumed that there is uncertainty in the values of
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Pl andE2.Theobjectiveistodesignthisbeamusing
designvariablesL1,hi, andh2tohaveminimum

Table I - Beam material properties

Section I Section 2

Rho
(ibm/in3) 0.1O0 0.056

Youngs
modurue 2.0 E+7 1.0 E+7

(psi)

Width (in) 4.0 4.0

L - 100 inches

weight with constraints on the frequencies and to design
it with minimum sensitivity to the uncertainty in the

parameters, p 1 and E2.

The beam was modeled with 10 finite elements

which were based on a two dimensional beam analysis
using bending elements. As the value of L1 was varied
each section of the beam was divided into elements such

that a joint always existed at L1. Each section had a
minimum of two elements.

Inner Loon Formulation

The inner optimization problem minimizes the
weight of the beam subject to frequency constraints.
The weight is given in equation 1.

2

F = _piLiBihi
i=l

(1)

where B i , Li, and hi are the width, length, and height

of the ith section of the beam, respectively. In the
inner loop optimization, the design variables are the
heights of the beam sections, hl and h2, while L1 is a

constant parameter. Constraints place lower and upper
bounds on the fundamental bending frequency, t_ and
are given in equation (2). Satisfied constraints are

represented by the following expressions.

lO----_ <Oand °) -lO_<O (2)

0) 1 COu

where COl and Ou are the lower and upper bounds on

the frequency.

An IMSL sequential quadratic programming (SQP)
routine performs the optimization from which the
Lagrange multipliers needed for subsequent calculation
of the OSD's are output.

Outer Loop Formulalion

In the outer loop the sensitivity of the inner loop

optimum design is minimized with respect to the
uncertainty in Pl and E2 using L1 as the "auxiliary"

design variable. In other words, of all the minimum
weight designs that satisfy the constraints the objective
is to find the one which is least sensitive to

uncertainties in Pl and E 2. Since there are two

uncertain parameters, the sensitivity of the optimum
weight design must be minimized with respect to both
parameters. This can be done using a multiobjective
function with the first two terms being the magnitudes
of the two derivatives with a weighting factor I] as

shown in equation 3.

OBJ = _(DFOPTI ) + _(DFOPT 2)

+sW-W*
--if-z-

O)

where DFOPT1 and DFOPT2 are normalized optimum

sensitivity derivatives as shown in equation 4.

DFOPTI = Pl dFopt
Fopt dPl

DFOPT 2 = E2 dFol_
Fopt dE2

(4)

These normalized derivatives, sometimes referred to as

logarithmic derivatives, are valuable in that they
measure a percent change in the objective function due

to a percent change in the design variables. The
optimum sensitivity derivatives are calculated from
equation 5 using the quasi-analytical method of
references 13 and 14.

dFopt _ _F I__T /)ga

dP OP 3P
(5)

The overbars are used to denote quantities at the

optimum and ga represents the constraints that are

active at the optimum, _, is the Lagrange multiplier,
and P represents the parameter.

The last term in equation 3 represents the tradeoff
between a low weight design and the insensitivity to
the uncertain parameters. The term W* is a reference
weight and _ is a weighting factor. The values of 5 and

which are problem dependent are chosen arbitrarily.
A rational-method for obtaining the value of W* is by
optimizing the weight of the beam subject to frequency
constraints using inner and outer loop design variables

simultaneously. The value of W* will have an effect
on the location of the optimum and the nature of the
curve in the vicinity of the optimum.



TheobjectivefunctionOBJisminimized using the
auxiliary design variable L1. Minimization of the

optimum sensitivity is done using Powell's Method
which for one design variable degenerates into a one-
dimensional search.

Results

Results of Optimization Procedure

In order to assess the validity of the nested optimization
procedure, a study was conducted in which the parameter
L1 was changed in discrete increments in the outer loop

and only the inner loop optimization was performed. A
curve that represents a series of discrete calculations of
OBJ versus .5 inch increments of L1/L is shown in

figure 3 for 13equal to 10, W* equal to 30 and 5 equal
to 1. Each data point represents a minimum weight

OBI it.
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Fig. 3. Curve of discrete calculations of
outer loop objective function OBJ versus

L1/L.

optimization performed in the inner loop and an
optimum sensitivity analysis calculation. The
minimum indicated in the figure corresponds to the
value of L1/L for which the beam has a minimum

weight design and is least sensitive to uncertainties in
the parameters Pl and E2. From the graph, the data

point at minimum OBJ is L1/L is .365. The nested

optimization procedure produced a value for L1/L equal
to .364. Values associated with the initial and final

designs are given in table 2. The values in the table

Treble 2 - Initial and final optimum might designs for 5 I, 1,13 ,. 10

W'.30 L 1 h I h 2 WeigM DFOPT 1 OFOPT: OBJ

initial SO.O 0.$33 3.514 SO.il09 .379 .321 7.696

Final 36.43 0.283 4.664 70.909 .132 .442 7.ON

indicate that by adding approximately 40 percent more
weight to the beam, the sensitivity derivative of the

optimum weight with respect to Pl (DFOPT1) was
decreased by nearly a factor of 3. The optimum
sensitivity derivative with respect to E 2 (DFOPT2) was

increased slightly. This trend may be altered depending
upon the choice of the weighting factors 1_and 8. In
this case _ was considerably large and weighted both
optimal sensitivity derivatives equally in the outer loop
objective function whereas 8 was comparatively small.
It may be advantageous to use a different weighting
factor for each optimum sensitivity derivative to

emphasize minimization of one or the other or to
increase the value of 8 to emphasize minimization of
the weight. The following section will discuss the role
of the weighting factors in tailoring the formulation of

the problem to alter the optimum design.

Tradeoffs Using Weighting Factors

The weighting factors play a crucial role in the outcome
of the process. Figure 4 shows four graphs, the first
three representing one of the three individual terms in
the outer loop objective function versus L1/L and the

fourth showing the optimum values of the beam
heights versus L1/L. The figure clearly shows that in
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(a) Weight from inner loop optimization versus L1/L
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(b) Optimum sensitivity calculated at innerloop

optimum versus L1/L
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Fig. 4. Graphs of the three components of
the outer loop objective function and the
heights of the beam sections versus LI/L.

order to minimize each individual term, contradicting
values of L1/L are needed. For instance, in figure 4a

which shows the optimum weight versus L1/L demands
that L1/L be about 64 percent. Figure 4b indicates that

the optimum sensitivity derivative with respect to E2

(DFOPT2) wants to push L1/L all the way to the right

end of the beam. On the other hand, figure 4c shows
that in order to decrease the optimum sensitivity
derivative with respect to p 1 (DFOPT1), L1/L should

be located near the left end of the beam. Obviously a

value for L1/L has to be chosen that represents a

compromise in minimizing all three terms
simultaneously.

The following example demonstrates the effect of
the weighting factors on the final design. Similar to
the first example, a series of discrete calculations of the
outer loop composite objective function OBJ versus 0.5
inch increments of L1/L were carried out for two cases.

In the first case 13=5 and 5=1 for W* equal to 30. In the
second case 13=1 and 5=5 for W*=30. The plots are

shown in figure 5. Also shown in figure 5 is a curve
representing the opthnum weight (normalized with
respect to W*) from the inner loop for each incremental
value of L1/L. Investigation of the figure shows that

OBd
and-

W/W"

10

weigld, Sit _ ] I "-Optimum weight ,, 46
I I I I I I

.20 .40 .itO .it0 1.00

L1A.

Fig. 5. Graph showing tradeoff of

insensitivity versus weight.

the minima of the two OBJ curves correspond to
different values of L1/L and therefore different values of

weight depending upon what values of the weighting
factors are used. This is evident from figure 5 when

comparing the weight values that correspond to the
minima of the two curves. A large value of _ allows

the procedure to add weight to the structure if it will
reduce the sensitivity of the beam to the uncertain
parameters. On the other hand if the sensitivity to the
problem parameters is considered to be less important,
the value of 13may be decreased and 6 increased. In this
case the value of L1/L that gives the minimum value of

OBJ will correspond to a lower weight.

The optimization procedure was applied to this
example problem for both cases involving values of _i
and 13for W*=30 lbs. The procedure successfully
located the values of L1/L that correspond to the

minima shown in figure 5 for each case. Table 3 lists
the initial and final values of L1/L, the heights of the

sections, the weights of the beam, the values of the
composite outer loop objective function (OBJ), and the
optimal sensitivity derivatives for both cases. In the

Table 3 - Inlflei and final optimum weight designs
fo¢ dtlferent values of [_and

W':30 L 1 h I h 2 Weight DFOPT 1 DFOPT 2 OBJ

Initial

: I 50 .533 3.Slul SO.sO1 ,,,170 .321 4.195

W* = 30

Final

_:I 43 .4O3 4.027 51.341 .247 .Sll 4.111
W* = 30

kltlhll

_w"! 3o i s° .533 i_a4 S°'l°° .371 .3214.161

Final

_:1 . .105 4.154 46.053 1177 .1. $A48

W* : 30



case where 13was larger than 8, a 15 percent increase in
the weight occurred for a 34 percent decrease in
DFOPT 1 and a 20 percent increase in DFOPT 2. For
the second case where 8 was larger than [3, a 9 percent
decrease in the weight was achieved for a 52 percent
increase in DFOPT1 and a 38 percent reduction in

DFOPT 2. In this example the individual optimal

sensitivity derivatives had opposite trends. As one was
decreased the other was increased. By assigning
different weighting factors to the optimum sensitivity
terms, one sensitivity or the other may be emphasized
for reduction. The OBJ curve for case 1 was a relatively
flat curve and therefore the reduction in the value of

OBJ for case 1 was small compared to that of case 2 for

any choice of the initial L1/L value.

Concluding Remarks

A procedure based on minimizing a linear
combination of optimum sensitivity derivatives has
been developed and tested on a simple beam problem.
The results show that the procedure has the capability

to successfully perform structural optimization which
also minimizes the effects of uncertain parameters. It
was important in the procedure to include a term that
provided a measure of the minimum weight
optimization along with optimum sensitivity terms in
the overall objective function to gain control over the
trade-off between a low-weight design and the
insensitivity to uncertainties. The procedure provides
insight into design tradeoffs among various
uncertainties as well as tradeoffs between insensitivity
and structural weight. The design space was studied and
local minima were found to exist depending upon the
starting values of the inner loop design variables for
each consecutive inner loop optimization.
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Appendix: Examination of Local Minima

ill the Design Space

For the results shown in figures 3-5, the inner loop

optimization is always initiated using the final values
of the design variables from the previous inner loop

optimization. This procedure produced smooth curves
as shown in the figures. However, during the course of

Ofld 1

I I I I I

0 .2O .4O .iO JO 1.00

L1/I-

Fig. 6. Plot of outer loop objective
function versus LI/L showing
discontinuities in function.

this study the inner loop optimizations were also
initiated using some fixed nominal values for the
heights of the beam sections. The plots of the outer
loop objective function versus L1/L exhibited
discontinuities as shown for a typical case in figure 6.
These discontinuities suggested that local minima were
present in this example problem. While investigating
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(a) L1/L=.25
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Fig. 7. Weight versus beam segment heights
at lower bound constraint on frequency for
L1/L=.25, ,50, and .75.

this local minima phenomenon, it was observed that at
the inner loop optimum the lower bound frequency
constraint was active for all values of L 1. This

constraint boundary is shown in figure 7 where the
weight is plotted versus beam segment heights for three
values of L1/L. In figure 7a and 7c which represent

values of L1/L near the left and right ends of the beam

respectively there is one minimum. Figure 7b shows
that for values of L1/L in the vicinity of the beam
center as many as three local minima may exist. As
L1/L changes the inner loop optimization may

converge to a different local optimum depending upon
the initial values of the design variables hence
discontinuities will appear in the outer loop objective
function. If the inner loop is initiated with design

variables that are far away from the most current inner

loop optimum the optimization algorithm can cause the
procedure to find different local minima as L1/L is

changed. Starting successive inner loop optimizations
close to the optimum of the previous pass through the
inner loop lead to convergence to a local minimum.

It should be noted that the discontinuities in the

sweeps of the outer loop objective function versus L 1
shown in figure 6 did not cause the procedure to fail
because the search algorithm in the outer loop did not

require the calculation of any derivatives. However, the
potential did exist for the overall procedure to converge
to a local minimum which was not a global minimum.
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