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Abstract A superoscillatory focusing lens has been experimen-
tally demonstrated by optimizing Fresnel zone plates (FZP), with
limited physical insight as to how the lens feature contributes
to the focal formation. It is therefore imperative to establish a
generalized viable account for both FZP (amplitude mask) and
binary optics (phase mask). Arbitrary superoscillatory spots can
now be customized and realized by a realistic optical device,
without using optimization. It is counterintuitively found that high
spatial frequency with small amplitude and destructive interfer-
ence are favorable in superfocusing of a superoscillation pat-
tern. The inevitably high sidelobe is pushed 15λ away from the
central subwavelength spot, resulting in significantly enlarged
field of view for viable imaging applications. This work therefore
not only reveals the explicit physical role of any given metallic/

Amplitude Mask

Binary Phase Mask

dielectric rings but also provides an alternative design roadmap
of superresolution imaging. The robust method is readily appli-
cable in superthin longitudinally polarized needle light, quantum
physics and information theory.

Optimization-free superoscillatory lens using phase and
amplitude masks
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and Cheng-Wei Qiu1,∗

To observe microscale objects, people always pursue su-
perresolution imaging by decreasing the focused spot [1],
tailoring the evanescent wave [2, 3], utilizing the nonlin-
ear effect [4], exploiting the digital-image-processing tech-
nique [5, 6] and developing novel equipments [7, 8]. The
newly demonstrated optical microscopy based on super-
oscillatory focusing provides another route to superresolu-
tion imaging [9]. This superoscillatory optical microscopy
with the resolution of λ/6 has gained much attention be-
cause its focused spot can be infinitesimally sharp accord-
ing to the superoscillation theory, which opens up a promis-
ing conceptual avenue to imaging arbitrarily small objects.
Nevertheless, the superoscillatory spot with smaller fea-
ture suffers from its higher sidelobe, which, to some ex-
tent, imposes great challenges in the further application in
high-resolution imaging resolution. Since the superoscil-
latory spot is inevitably accompanied by its high sidelobe
[10, 11], one cannot eliminate the sidelobe if the super-
oscillation arises. Hence, it is nontrivial and imperative to
push the high sidelobe far enough apart from the center, so
as to produce realistic applications. However, this requires
the elaborate manipulation over superoscillation via com-
plicated lens design. The reported methods of constructing
a superoscillatory pattern in an optical lens mainly rely on
optimizing algorithms [9, 12] for FZP. Hence, the under-
lying physics, relating every feature of the physical lens
structure and their contribution on the imaging plane, is not
revealed yet, which in turn limits the flexible and controlled
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design of the superoscillation imaging in not only FZP but
also binary-phase masks [13].

It is well known that the superoscillation in optics is
one kind of destructive interference of light with different
frequencies at some points at small intervals by matching
the amplitude of every frequency [14]. This implies that one
can control the optical superoscillation by choosing a suit-
able amplitude and frequency of light for the destructive
interference at the prescribed position, which is a proto-
type inverse problem. We find that this inverse problem in
some realistic optical devices, e.g., a zone plate (ampli-
tude mask) or a binary-phase lens system (phase mask),
can be described by a nonlinear matrix equation. Solving
that can produce a customized superoscillatory pattern or
control the superoscillation optionally. In contrast to using
optimization for designing multiple rings as the only way,
the unveiled fundamental physics behind the matrix enables
us to analytically design a superfocusing central spot and
push the high sidelobe away from the center for several
wavelengths. In addition, we also attempt to propose a su-
peroscillatory criterion in optical focusing, rS = 0.38/fmax
(fmax is the maximum spatial frequency), which determines
whether the superoscillatory focusing occurs or not.

In contrast to the nanohole array [15], the zone plate
with the amplitude modulation of 0 or 1 is an easy method
to focus light into a superoscillatory spot. Optimization
turns out to be the only method reported so far that can
optimize the central radius and width of every belt in a
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Figure 1 The single belt’s diffraction at the intermediate region
(where z = 20λ) between the evanescent (near-field) and far-field
region. (a) The optical system describing the diffraction of a single
belt with its width �r and radius r0. (b) The dependence of RMSE
on the width �r and radius r0 (or sinα). The smaller the RMSE, the
better the approximation between the intensity profile at the target
plane and its zero-order Bessel function |J0(krsinα)|2 with the
same sinα (= r0/(r0

2+z2)1/2). We just show the cases with small
RMSE located in the colored region. The geometry parameters
of the single belt are (sinα, �r)A = (0.6, 1.7λ) at A and (sinα,
�r)A = (0.6, 0.5λ) at B. (c and d) The 1-dimensional intensity
profiles (red) of light passing through the belt with its parameters
at position A (c) and position B (d) and their corresponding Bessel
functions with the same sinα (blue). The intensity profile in (c)
shows an excellent coincidence with the Bessel function so that it
is hard to distinguish them. (e) The dependence of the amplitude-
modulation coefficient |Cn| in Eq. (1) on the width �r and radius
r0 (or sinα).

zone plate [9]. Unfortunately, such an optimization-based
method presents little physical information but a fitness
function containing lens parameters and the designed su-
peroscillatory spot, which is not able to provide an insight-
ful means for controlling the superoscillatory focusing with
a customized pattern in the imaging plane, e.g., the peak
ratio of sideband over central spot, the distance between
high sidelobe and the center. These are actually nontrivial
in practical imaging industries, when one wants to use a
superoscillatory lens. In this connection, the contribution
of our optimization-free design principle for a superoscil-
latory lens is three-fold: First, the design process is fully
guided by the proposed theory; Secondly, the approach ap-
plies not only to an amplitude mask but also a phase mask;
Thirdly, customization and solving the disadvantage of a
superoscillatory lens, i.e. higher sidelobe too close to the
central spot.

Figure 1 shows the diffraction of light by a single belt
with its geometry of radius r0 and width �r, as shown

in Fig. 1a. In order to evaluate the focusing properties of
a single belt, we use the root-mean-square error (RMSE,
whose definition is available in Supplementary Materials)
between its diffracting intensity at the target plane and its
corresponding zero-order Bessel function of |J0(krsinα0)|2
with the same sinα0 ( = r0/(r0

2+z2)1/2). Figure 1b shows the
relationship between RMSE and the geometry (in terms of
width �r and radius r0) of a single belt. The light from a belt
has the different intensity profile at the target plane when
the geometry of the transparent belt in Fig. 1a changes.
Only the light passing through the belt with its geometry
located in the colored region of Fig. 1b has a better focusing
pattern with small RMSE, which can be approximated as
a zero-order Bessel function of the first kind as shown in
Fig. 1c, at the target plane. However, the intensity profile
for the case of A in Fig. 1d might destroy the total inten-
sity of the superoscillatory focusing for a subwavelength
spot due to its poor focusing property at r = 0 and the
incomplete destructive interference at its first valley. The
optimizing algorithm behaves poorly in rejecting the case
of A by itself. In addition, even if all the belts in a zone plate
have the geometry located in the colored region, it is still
an arduous task for the optimizing method to realize the
prescribed intensity (i.e. complete destructive interference
with zero intensity) at the customized radial (r) position
in the total intensity of the zone plate. To achieve the cus-
tomized intensity pattern, we here suggest a mathematical
method by solving a nonlinear matrix equation, without any
optimizing technique involved, to design a superoscillatory
mask.

Although some attempts based on the inverse of the
matrix have been made to construct a superoscillatory pat-
tern and diffraction-free beam [14, 16, 17], this method is
only constrained to the case that the unknown amplitude-
modulation coefficients are independent of the spatial fre-
quency. For the zone plate, the amplitude-modulation coef-
ficient from every spatial frequency has a tight relationship,
shown in Fig. 1e, with the geometry of the transparent belt in
the zone plate, which makes designing of a superoscillatory
zone plate very challenging. Here, we develop this method
further to design a superoscillatory mask with customized
pattern in a realistic optical system. For simplicity, we as-
sume that the illuminated light of the mask is an unpolarized
plane wave with uniform distribution in the paper. Accord-
ing to the scalar Rayleigh–Sommerfeld diffraction theory
[18], for an unpolarized incident beam passing through the
unobstructed belt with radius Rn and width �r in Fig. 2a,
its electric field at the target plane beyond the evanescent
region is

Un(r ) = 1

2π

∫ Rn+�r/2

Rn−�r/2

∫ 2π

0
u(r, φ)

∂

∂z

[
exp(ik R)

R

]
ρdρdφ,

(1)
where R2 = z2+r2+ρ2–2rρcos(θ–ϕ), the complex ampli-
tude u(ρ,ϕ) of the incident beam is taken as unity for
the uniform illumination here. The electric field mainly
depends on the Rn, �r and z. We define the amplitude-
modulation coefficient Cn = Un(0) and the normalized
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Figure 2 Generation of superoscillatory focusing with the side-
lobe away from the center by using a zone plate. (a) The sketch
of focusing light beyond the evanescent region by using the zone
plate. The nth belt in the zone plate has the radius of Rn and width
�d. (b) The constructed optical superoscillatory pattern with the
prescribed position r = [0, 0.33λ, 0.84λ, 1.29λ, 1.73λ] and the
customized intensity F = [1, 0, 0, 0, 0] at r. Inset: the solved Rn of
every belt with fixed �r = 0.3λ. (c) The modulus (dot) and phase
(circle) of the amplitude-modulated coefficient Cn in the solved
zone plate of (b). (d and e) The phase (d) and intensity (e) pro-
files of a belt with its width �r = 0.3λ and the changing radius
Rn.

amplitude An(r) = Un(r)/Cn. Figure 1b shows the root-
mean-square error (RMSE) between | An(r)|2 and its corre-
sponding zero-order Bessel function of |J0(krsinαn)|2 with
the same sinαn ( = Rn/(Rn

2+z2)1/2). In Fig. 1c, one can see
that |Cn| has a strong dependence on the width �r and the
spatial frequency designated as sinα/λ. Then, the total elec-
tric field of light passing through a zone plate containing N
belts can be expressed as

U (r ) =
N∑

n=1

Cn An(r ). (2)

To realize the intensity F = [f1, f2,.., fM]T at the position
r = [r1, r2, . . . , rM]T in the target plane, we can described
this problem as

SC = F, (3)

where S is an M×N matrix with its matrix element Smn

= An(rm) according to Eq. (2) and C = [C1,C2, . . . ,CN]T,
where the sign T means the transpose of matrix. The solu-
tion of Eq. (3) exists if M ≤ N. Here, we just consider the
case M = N for which Eq. (3) has the only solution. Be-
cause the Smn and Cn are dependent on the unknown Rn (or

sinαn) when the width �r and z are fixed, it is a nonlinear
problem to solve the matrix equation for Rn. Although, in
general, Eq. (3) has no analytical solution like the cases in
[14, 17], its numerical solution can be easily obtained by
using the well-developed Newton’s theory, which has been
widely used to deal with the nonlinear problem in many ar-
eas [19,20]. Newton’s theory for nonlinear problems solves
Eq. (3) on the basis of the exact solution of its subproblem
[20], which makes it a powerful tool to efficiently approach
the exact solution without any search-based optimizing al-
gorithm. The method described in Eq. (3) provides a very
useful way to design a superoscillatory zone plate despite
the fact that the solution is numerically approximated.

To verify the validity of our method, we show a con-
structed superoscillatory spot with size of about 0.5rR (rR is
the Rayleigh limitation) and its sidelobe is about 1.8λ away
from the center by using a zone plate, shown in Fig. 2a,
which is designed by our method. In order to realize the
goal of pushing away the sidelobe, we pad the zero inten-
sity at the locations between the sidelobe and the center to
suppress the high sidelobe near the center. The customized
position r with zero intensity must be carefully chosen to
reject the generation of any high intensity between the high
sidelobe and the center when solving Eq. (3). Therefore, we
choose F = [1, 0, 0, 0, 0]T at r = [0, 0.33λ, 0.84λ, 1.29λ,
1.73λ]T for achieving a superoscillatory spot with the size
of 0.5rR (0.33λ) and its sidelobe about 2λ away from the
center in Fig. 2b. In the customized F and r, f1 = 1, f2 =
0 and r1 = 0.33λ are used to define the superoscillatory
spot and the rest is responsible for suppressing the sidelobe
between the main spot and the high sidelobe. According
to the result in Fig. 1b, we assume that the width �r of
every belt has the same size of 0.3λ and the target plane is
located in z = 20λ in the simulation for removing the case
of A in Fig. 1d. To obtain the unknown Rn of every belt,
we solve its inverse problem described in Eq. (3) by using
the trust-region dogleg Newton theory that is introduced in
the Supplementary Materials [20]. The solved Rn is shown
in the inset of Fig. 2b and their corresponding sinαn =
[0.1387, 0.2576, 0.5643, 0.6638, 0.9548].

Conventionally, in order to obtain a supersmall focused
spot, one always prefers to focus the light of high spatial
frequency with large amplitude, which leads to a small size
spot dominating at the target plane, and interfere the light
from different spatial frequencies constructively, which en-
hances the focused spot. However, in superoscillatory fo-
cusing, we here show an abnormal phenomenon that the
maximum amplitude (|Cn|) is located at the frequency with
the intermediate value. This counterintuitive requirement
for obtaining a small spot by superoscillation mainly de-
pends on the fact that the superoscillation always oscil-
lates with very small amplitude that can be considered as
almost destructive interference [14]. The destructive in-
terference in the superoscillation is also reflected by the
phase of Cn that is shown in Fig. 2c. The phase differ-
ence between two neighboring belts in the designed zone
plate is nearly π , which implies that the destructive in-
terference is essentially required for realizing the super-
oscillation pattern in Fig. 2b. Thus, we can claim that the
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Figure 3 Generation of superoscillatory focusing with the side-
lobe away from the center by using a binary phase and a lens.
(a) The sketch of focusing a binary-phase modulated beam by
a lens. The binary element has the phase of 0 and π , whose
boundary is the circle with radius of Rn (n = 1,2, . . . ,N). The lens
has an NA of sinα, where α is the maximum convergent angle. (b)
A superoscillatory spot with size of 0.34λ and its sidelobe about
15λ away from the center by solving its inverse problem. Inset: 2-
dimensional intensity profiles in the range r ≤ λ. The specific radii
of individual dielectric grooves are given in Supplementary Mate-
rials. (c) Width �rn (blue dot) of every belt and its corresponding
angle width �θn (red star) in the designed binary phase. Inset: 3-
dimensional phase profile of this binary phase plate. (d) Modulus
(solid circle) and phase (hollow circle) of amplitude-modulated
coefficient Cn.

amplitude-modulated coefficient Cn has the alternating sign
of (–1)n with its modulus small for low and high spatial
frequency and large for the intermediate frequency, which
is further confirmed by the case of focusing the light with
rigorous single spatial frequencies (see Supplementary Ma-
terials). Nevertheless, this conclusion predicts that the zone
plate is not ideal to realize a superoscillatory spot in Fig. 2b.
Although the belt in the zone plate shows the excellent fo-
cusing property in a long range of Rn shown in Fig. 2e, the
phase of Cn, that is the case of r = 0 in Fig. 2d, varies from 0
to 2π quasiperiodically with the increase of Rn. As a result,
much effort must be made to obtain the phase difference of
π for the alternating sign of Cn. Therefore, the zone plate
may not be the best candidate to achieve a superoscillatory
spot with its high sidelobe away, although we can use it to
realize the superoscillatory spot in Fig. 2b.

Considering the difficulty of phase matching from a
zone plate, we suggest another optical system containing
a binary phase and a high numerical-aperture (NA) lens in
Fig. 3a to realize the superoscillatory subwavelength focus-
ing. The binary element with the phase 0 or π located in
the entrance pupil of the focusing lens provides the phase

difference of π for the generation of superoscillation in
focusing [13, 21]. In the uniform illumination of an unpo-
larized beam, the electric field at the focal plane can be
approximated by the Debye theory [22, 23]

U (r ) = 2π i

λ

∫ α

0
P(θ )J0(kr sin θ ) sin θdθ

=
N∑

n=1

(−1)n 2π i

λ

∫ θn

θn−1

√
cos θ J0 (kr sin θ ) sin θdθ

=
N∑

n=1

(−1)n Un (r ), (4)

where P(θ ) is the apodization function that equals
p(θ )·cos(θ )1/2 for the lens obeying the sine condition
[23, 24], p(θ ) is the entrance pupil function that is (–1)n

for the uniform illumination with the modulation of binary
phase. The relationship between Rn and θn (n = 0, 1, 2,
. . . , N with θ0 = 0, θN = α) is Rn/f = sinθn for the sine
lens used here, where f is the focal length of focusing lens.
We define the amplitude modulation coefficient Cn = (–
1)nUn(0) and An (r) = Un(r)/Un(0). Similarly, the inverse
problem of constructing the superoscillation using the opti-
cal system in Fig. 3a can also be expressed by Eq. (3) with
the unknown variable Rn (or sinθn). The amplitude modula-
tion coefficient Cn with the alternating sign of (–1)n makes
it easier to solve the inverse problem for generating the
superoscillatory focusing. Figure 3b shows a constructed
superoscillatory spot with a size of about 0.5rR (0.34λ) and
the high sidelobe about 15λ away from the center by using
a 0.95 NA lens (see Supplementary Materials for the radius
parameters).

This superoscillatory spot is obtained by padding 29
zero-intensity positions between the main spot and the
sidelobe when solving its inverse problem with N = 30
variables. Compared with the result in Fig. 2b by using a
zone plate, the spot in Fig. 3b almost keeps the same size,
while the distance between its high sidelobe and center is
nearly 10 times that in Fig. 2b, which mainly benefits from
the binary phase (with a phase difference of π ) for de-
structive interference. We can enlarge the distance further
by padding more zero-intensity positions between the high
sidelobe and the center. Figure 3c shows the structure of the
designed binary phase by our method. The width �rn (=
Rn–Rn–1) of belts in the binary phase tends to be diminish-
ing at the outmost belts that are relative to the high spatial
frequency. However, for a sine lens, the corresponding an-
gle width �θn ( = θn–θn–1) of every belt is increasing so
that the amplitude modulation |Cn| shows the monotoni-
cally increasing tendency from the low spatial frequency
to the high in Fig. 3d, which is different from the case in
Fig. 2c. This is mainly attributed to the fact that every belt of
binary phase corresponds to the spectrum (from sinθn–1/λ
to sinθn/λ) of spatial frequency not a quasisingle spatial fre-
quency that occurs in zone plates. Through this example,
we have shown that the method suggested here is valid to
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solve the inverse problem of superoscillation by using the
optical system in Fig. 3a.

Next, we discuss the method that distinguishes a su-
peroscillatory spot in optical focusing. Although the su-
peroscillatory spot has been widely investigated in optical
focusing and imaging [9, 12, 15, 25], none provides a clear
demonstration as to how small a spot has to be so that it can
be considered as a superoscillatory spot. To our knowledge,
the Rayleigh criterion (rR = 0.61λ/NA) is mostly used to
judge a superoscillatory spot in optical focusing [26]. How-
ever, it is a very rough method because there is no definition
of superoscillation involved. In optics, a relevant and nat-
ural definition of superoscillation has been proposed by
measuring the changing rate of the phase of a band-limited
function in a local region [27,28]. In particular, for the case
of the 1-dimensional (or axisymmetric) band-limited func-
tion, i.e. the zone plate and a binary-phase-based lens, Berry
and Dennis proposed a practical method for measuring the
local wave number, k(r) = Im{∂r[lnF(r)]}, where F(r) is
the band-limited function [28]. Therefore, the definition of
local wave number by Berry and Dennis is preferred in
optical focusing. However, when we use Berry and Den-
nis’s suggestion to evaluate the local wave number of a
superoscillatory band-limited function in Fig. 4a, the cal-
culated wave number in Fig. 4b is larger than the wave
number of its maximum Fourier component only when the
band-limited function has zero intensity. This means that,
though the band-limited function indeed oscillates faster
in the whole region x ∈ [–0.8λ, 0.8λ] than its maximum
Fourier component, Berry and Dennis’s suggestion only
predicts the superoscillation at the zero-intensity position.
It is worth pointing out that Berry and Dennis’s suggestion
gives the wave number at a certain position but not in a
region where Fig. 4b shows the large wave number only at
the zero-intensity position. Therefore, in optical focusing,
it is better to define the superoscillatory spot by measuring
the phase-changing rate in a certain region.

In optical focusing, we constrain the definition of a
superoscillatory spot on three conditions: 1) The optical
system is axisymmetric so that a circular spot could be gen-
erated. 2) The superoscillatory spot must oscillate faster in a
certain region of the target plane than its maximum Fourier
frequency component. 3) “A certain region” is located at
r ≤ rS, where rS is the first zero-intensity position of the
electric field at the target plane by focusing the light only
from the maximum Fourier frequency component. The rea-
son for choosing the region r ≤ rS is to exclude the case
shown by the black curve of Fig. 4c, which has the fast
superoscillation at r≥rS while its spot size is very large. In
this region r ≤ rS, the maximum Fourier frequency com-
ponent only oscillates for one time without changing its
phase, which is shown by the blue curve in Fig. 4c. If a
spot oscillates faster in r ≤ rS, this will lead to the gen-
eration of the intensity valley, where the high local wave
number is located [28]. Thus, we can define a superoscil-
latory spot in optical focusing as: a spot is superoscillatory
when its local wave number that is larger than the wave
number of the maximum Fourier frequency is located in
the region r ≤ rS. In that case, a spot with its zero intensity

−1 −0.5 0 0.5 1

−1

0

1(a) (c)

(b) (d)

A
m

pl
itu

de

x(λ)

−1 −0.5 0 0.5 1

0k

x(λ)

−∞

∞

0 0.5 1
−1

0

1

r(λ)

A
m

pl
itu

de

NA

S
po

t s
iz

e 
(λ

)

SuperresolutionSuperoscillation

r
R
=0.61λ/NA

r
S
=0.38λ/NA

0.4 0.6 0.8 1

1.4

1.0

0.6

0.2

Figure 4 Superoscillatory criterion in optical focusing. (a) The
amplitude profiles of a superoscillatory band-limited function with
its zero-intensity position at x = ±0.2λ (red) and its maximum
spatial frequency component (blue). The band-limited function is
the electric field at the focal plane by using the binary-phase-
based 0.95NA lens in Fig. 3a with the solved sinθn = [0, 0.3435,
0.6523, 0.8744, 0.95]. This superoscillatory band-limited function
obviously oscillates faster in the region x ∈ [–0.8λ, 0.8λ] than its
maximum spatial frequency. (b) The local wave number of the
band-limited function in (a) by using Berry’s suggestion. (c) The
amplitude profiles of various cases: the first zero-intensity posi-
tion located in the colored region (red) and outside color region
(black). The blue curve shows the amplitude of the maximum
spatial frequency. (d) The spot size in different NA, which equals
the sine (sinα) of the angle between the optical axis and the
maximum convergent ray in free space. The two curves, which
are the Rayleigh (black) and superoscillation (white) criterions,
divide the focusing spot into three parts: subresolved (orange),
superresolution (cyan) and superoscillation (dark blue).

located in r ≤ rS is superoscillatory, which is shown by red
curves in Figs. 4a and c. This means that a superoscillatory
spot has a smaller size than that (rS) by only focusing its
maximum spatial frequency, which implies that rS can be
taken as the superoscillatory criterion. When light with a
single spatial frequency of sinα/λ (α is the angle between
the optical axis and the maximum convergent ray) is fo-
cused, its electric field at the target plane is proportional
to the zero-order Bessel function J0(2πrsinα/λ) of the first
kind, which gives rS = 0.38λ/sinα. The superoscillatory
criterion rS has a similar shape to the Rayleigh criterion rR.
Figure 4d shows the spot size in different NA that is usually
in terms of sinα in free space. For a given NA, the spot in all
the cyan and dark-blue areas below the Rayleigh criterion
(black curve) can be called the superresolution spot and
the spot in the dark-blue area below the superoscillation
criterion (white curve) is the superoscillation spot, which
means that the superoscillation spot is one subaggregate of
the superresolution spot. The finely distinguished roadmap
in Fig. 4d provides an instructive guide that the cyan area be-
tween the Rayleigh and superoscillation criterion is the best
choice when one pursues a superresolution focusing spot
without high sidelobe beyond the evanescent range. More
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importantly, rS implies a limitation of 0.38λ for the appli-
cation of subwavelength spot without high sidelobe.

In summary, we have demonstrated a physical design
roadmap of the superoscillatory focusing by using a zone
plate or a binary-phase-based lens, with significantly en-
larged field of view. The described inverse problem of su-
peroscillation in terms of a nonlinear matrix equation en-
ables construction of a customized superoscillatory pattern
possible to be implemented without the traditional opti-
mizing technique involved in the reported superoscillatory
lens. This paves the way to a new scheme in further im-
proving the resolution of the optical far-field imaging, and
narrowing width of longitudinally polarized needle light
for advanced data-storage performance [13]. In achieving
a supersmall spot beyond the evanescent region, our result
shows a counterintuitive phenomenon that the large spatial
frequency with low intensity and destructive interference
must be involved. Furthermore, the superoscillatory cri-
terion proposed here gives us the direct insight into the
spot pattern beyond the Rayleigh limitation, which sets a
theoretical limitation of 0.38λ for the spot size in some ap-
plications that demand the narrow spot and low sidelobe
simultaneously, i.e. optical lithography [29], high-intensity
optical machining [30] and high-contrast superresolution
imaging [31–33].
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Supplementary Materials for Design Procedure and Criteria 

 

1. The intensity and phase of light passing through a single belt with its radius r0 and width 

∆r. In Fig. 1, we show the sketch of the diffraction of a belt with radius r0 and width ∆r. The angle 

between the ray emitting from the center of belt to the on-axis point at the target plane and the 

optical axis is α whose sine has the form of sinα=r0/(r0
2
+z

2
)

1/2
. In order to evaluate the difference 

between the intensity profile of light passing through the transparent belt and the Bessel function 

J0(k0rsinα), we use the their root-mean-square error (RMSE) 

( )[ ] [ ]{ }
1

sin)(
1

2
2

00

2

−

−

=
∑

=

N

nrkJnrA

RMSE

N

n

n α

,   (S1) 

where N is the number of sampling points in position r. If RMSE is small, the intensity profile at 

the target plane has a good approximation of the Bessel function. Figure 1(b) shows the 

dependence of the RMSE on the width ∆r and radius r0 (or sinα) of the belt when the propagating 

distance from the belt plane to the target plane is 20λ. We take N=300 in Fig. 1(b). We just display 

the cases for the RMSE smaller than 0.05, in which the good approximation can be obtained. In 

order to show the difference between the color and white region more straightforwardly, we select 

some positions, i.e. A in white region and B in color region, and plot their intensity profiles at the 

target plane in Fig. 1(d) and (e). When we choose the parameters ∆r =1.7λ and sinα=0.6 at the 

position A in Fig. 1(b), the intensity profile has a bad approximation of Bessel function as shown 

in Fig. 1(d). However, for the position B with ∆r =0.5λ and sinα=0.6, one can hardly distinguish 

between the intensity profile and Bessel function with its RMSE of 8.5×10
-4

 in Fig. S1(d). From 

Fig. 1(b), we can see the tendency that the approximation is good when the radius r0 (or sinα) 

increases. For the belt with its width ∆r smaller than the wavelength, its RMSE between the 



intensity profile and Bessel function is also small enough to obtain a good approximation. If the 

width ∆r increases, the better approximation happens at only the position in the feather-like region 

of Fig. 1(b). This implies that the careful weight in choosing the width of belt is required in 

designing a zone plate for super-resolution or super-oscillation focusing because the belt with its 

parameters located at the white region in Fig. 1(b) makes no sense in achieving a small spot. From 

this viewpoint, Figure 1(b) shows an instructive roadmap for designing a super-resolution or 

super-oscillation zone plate.  

     Interestingly, one can note that the white region in Fig. 1(b) always spreads to the position 

where ∆r =nλ (n=1, 2, …) and sinα=1. This phenomenon tells us a fact that light passing through 

the belt with the integer-wavelength width ∆r and large radius r0 has a destructive interference 

with the zero on-axis intensity at the center, which has no any improvement in reducing the spot 

size but contributing a large ring-like intensity. Therefore, for the belt with very large radius r0, its 

width should be chosen as the value with integer wavelength when one pursues a small spot at the 

target plane.  

     Correspondingly, in Fig. 1(c), we show the modulated amplitude Cn with its intensity profile 

having a good approximation of Bessel function. According to the conclusion derived from Fig. 

1(b), we just consider the color region with the width ∆r smaller than the wavelength. In this 

region, for a belt with the fixed width ∆r, its amplitude is large for the intermediate radius r0 (or 

sinα) and small for the low and high radius r0 (or sinα), which is well consistent with the 

amplitude requirement for super-oscillation focusing in Fig. 2(b). This shows the advantage for 

zone plate to realize the super-oscillatory focusing spot with its sidelobe away from the center.  

    To understand the properties of light passing through a single belt, we plot the phase and 

amplitude profiles for the cases of the belt with different radius r0 and fixed width ∆r=0.3λ in Fig. 

2(d) and (e). The propagating distance is also chosen at z=20λ. The amplitude profile has the sharp 

variation for the small radius of the belt and the similar shape for the radius r0 is larger than 40λ. 

However, the modulated amplitude U(0) at r=0 has a peak near r0=20λ and slowly decreases for 

the large radius r0 of the belt. For its phase profile, there is a radial (along r) phase change of π 
where the zero intensity happens in Fig. 2(d). Moreover, the phase also changes with the 

increment of the radius of the belt, which means that the phase for every spatial frequency is 

different. One has to choose the suitable radius r0 of belt to make the phase difference between the 

neighboring frequencies become π for realizing the super-oscillation focusing, which makes the 

zone plate behave badly in realizing a spot with sidelobe away from the center. 

 

2. The trust-region Newton’s theory for nonlinear equations 

In this paper, the numerical solution for the nonlinear problem describing the inverse 

problem of super-oscillation by using a zone plate or a binary-phase modulated lens system is 

obtained by the well-developed trust-region Newton’s theory, which is the most widely used 

algorithm for nonlinear equations. In this section, we just show the part that has the tight 

relationship with our case in the paper and ignore the proof, which can be found in the relative 

books for more details [S1, S2], for every theory used in our codes.      

 

 

 

 



Newton’ theory  

For most nonlinear equations with multiple variables, the basic problem can be expressed as 

follows: 

            Given Γ: R
n→R

n
, find x*ϵR

n
 such that Γ(x*)=0                   (S2) 

where Γ is assumed to be continuously differentiable. Here, in our cases, the function F has the 

form of Γ(v)=L(rm)+F(rm)+∑nS(vn,rm)C(vn) for the lens system and Γ(v)= F(rm)+∑nS(vn,rm)C(vn) 

for the zone plate. For simplicity, we give the solution for the problem with one variable. We can 

             ( ) ( ) ( )∫
+

+Γ=+Γ
px

x
dttJxpx

0

0
00 ,                        (S3) 

approximate the integral in Eq. (S3) by a linear term J(x0)·p, where J(x0) is the Jacobian of Γ(x). 

Therefore, Eq. (S3) can be simplified with 

                         ( ) ( ) ( )pxJxpx 000 +Γ=+Γ ,                      (S4) 

Now, we can solve the step p that makes Γ(x0+p)=0, which gives the Newton iteration for this 

problem. The solution is 

                            ( ) ( )pxJx 00 −=Γ ,                             (S5) 

                              pxx += 01 .                                (S6) 

From Eq. (S5) and (S6), one can see that the choice of step p is very important in solving the 

nonlinear problem successfully. Many methods has been developed to find the suitable step p for 

the various nonlinear problem. The trust-region method is the most popular one for its global 

convergence properties and rapid local convergence with exact solution.    

 

Trust-region method 

     As shown in Eq. (S4), the step p is a root of the Γ(x0+p)=0. Equivalently, the step p is also a 

minimum of the Euclidean norm m(p) 
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where the sign 
2

2
⋅  stands for the Euclidean norm and the s

T
 is the transpose of the matrix s. 

Hence, the subproblem of trust-region method is to find the minimum of function m(p) in the 

limited region ║p║≤∆k, where ∆k is the trust-region radius which has the positive value. Choosing 

the trust-region radius ∆k at each iteration is the first problem that should be settled down in 

building the trust-region method. We follow the general way for evaluating the trust-region radius 

by the agreement between the model function m(p) and the objective function Γ(xk) at the previous 

iterations. For the iteration with its step pk, we can use the ratio 
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( ) ( )kkk

kkk
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pmm
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0

22

ρ  ,                       (S8) 

where the numerator and denominator evaluate the actual and predicted reduction. Because the 



step is obtained by minimizing the m(p) over the region includes p=0, the denominator always has 

the nonnegative value. This implies that, if the ratio ρk is negative, the next objective value is 

larger than the current value Γ(xk). Moreover, when ρk is close to 1, it is the good agreement for 

this step, resulting that it is safe to use the trust region of this step in the next iteration. However, 

when ρk is very small (close to zero) or negative, we should decrease the radius of trust region. 

When we carry out this method in a computer code, its flowchart for the trust-region method has 

the form as Fig. S1.    

 

Figure S1 | The flowchart of the trust-region method based on the Newton’s theory for 

non-linear equations. 

 

     In the flowchart, the calculation of pk is usually carried out by using the dogleg algorithm, 

which is a quick and efficient method for pk. Next, we introduce the dogleg algorithm.  

 

Dogleg algorithm 

   To obtain the approximate solution p of min[m(p)] in Eq. (S7), we use the dogleg algorithm 

which is based on the Cauchy point 
C

kp  and the unconstrained minimizer 
J

kp . The Cauchy 

point is used to quantify the sufficient reduction of pk for global convergence proposes. The 

Cauchy point is   

Begin 

Defining D>0 

Calculate pk 

Evaluate ρk 

Compare ρk 

ρk <1/4 

ρk >3/4 

& ║pk║=∆k 

∆k+1=min( 2∆k, D) ∆k+1= ∆k /4 ∆k+1= ∆k  

Calculate ∆k+1 

else 

Calculate xk+1 
ρk >η else 

xk+1=xk+pk xk+1=xk 

End 

Is m(pk)  

small enough? 

k=
k+

1
 

Yes 

No 

Choosing ∆0ϵ(0,D) 

ηϵ(0,1/4), k=0. 
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     To realize the curved trajectory needed in dogleg algorithm for quick convergence globally, 

the unconstrained minimizer 
J

kp  is introduced. When the Jacobian Jk has full rank, the mk(p) has 

the unique minimizer. Therefore, the unconstrained minimizer is the good approximation for 

obtaining the solution of min[m(p)]. The unconstrained minimizer has the form of 

                          ( )kk

J

k xJp Γ−= −1
.                                (S11) 

In the practical implementation of dogleg algorithm, the Cauchy point and the unconstrained 

minimizer are combined together for determining the approximate solution p of min[m(p)]. The 

flowchart of dogleg algorithm is shown in Fig. (S2). 

 

Figure S2 | The flowchart of dogleg algorithm for solving the subproblem in trust-region 

Newton method  

 

3. Construct a super-oscillatory focused spot by focusing the light with rigorous single 

spatial frequencies 

 

We have showed the generation of a super-oscillatory spot by using a zone plate and a 

binary-phase-base lens system. Here, to investigate the properties of the super-oscillatory focusing 

in optics, we construct an optical super-oscillatory pattern by interfering the light of different 

spatial frequencies with modulated amplitudes to display how the super-oscillation in optical 

focusing happens. For the focusing of a unpolarized beam with the single spatial frequencie, it can 

be approximated by the scalar Debye theory [S3, S4].  The electric field at the focal plane is 

proportional to 
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where k0=2π/λ.Without loss of generality, we consider the interference of light with N different 

spatial frequencies whose amplitudes are modulated. Following the results in Eq. (S12), the total 

electric field after interference can be expressed as 

( ) ( )∑
=

=
N

n

nn rvkJCrf
1

00 ,                       (S13)    

where Cn and vn are the modulated amplitude and the corresponding NA of n-th spatial frequency, 

respectively. First we show the simplest case of N=2 which is shown in Fig. S3(a). According to 

the results in Fig. 4, if the super-oscillation happens, the first zero-intensity position in the total 

electric field f after interference should be located at r<rs. In Fig. S3(a), the first zero-intensity 

position is chosen at r=r0. Then the zero intensity at r=r0 can be realized by adjusting the 

amplitudes of f1 and f2. Here, we suggest a set solution of C1=2.2041 and C2=-1.2041, where the 

negative amplitude can be achieved by introducing a phase retardation of π in optics. The total 

electric field f seems to be the result that one pulls down the electric field f1 of the maximum 

spatial frequency along the chromatic zone in Fig. S3(a) until the zero electric field (or completely 

destructive interference) occurs at r0. When the pulling down of f1 continues, the arbitrarily small 

super-oscillatory spot can be obtained only if the on-axis intensity at r=0 is nonzero, which gives 

the reason for the fact that it is possible to theoretically get a super-oscillatory spot with 

infinitesimal size [S5, S6]. Another consequence of pulling down f1 is the further decrement of 

first valley with negative value that leads to the increment in intensity of high sidelobe as shown 

in Fig. S3(a), which can explain why the super-oscillation always accompanies with a high 

sidelobe [S5, S6]. From the case displayed in Fig. S3(a), we claim that, the super-oscillation in 

optics is the fact that the completely destructive interference happens at the some points with the 

neighboring interval smaller than the super-oscillation criterion rs. The case in Fig. S3(a) shows 

the simplest prototype that represents the inverse problem of super-oscillation: what is the 

amplitude for every spatial frequency if one wants to realize the nonzero intensity at r=0 and the 

zero intensity at r=r0 by using two given spatial frequencies.  

 



 

Figure S3 | The constructed optical pattern by inverse problem of super-oscillation. (a) The 

constructed super-oscillation by the light with two frequencies whose electric fields at the 

interfered area are f1=2.041J0(0.98k0r)and f2=-1.041J0(0.2k0r), respectively. (b) The intensity 

profiles of the constructed super-oscillation (blue) pattern by interference of the light with 10 

spatial frequencies and the optical pattern (red) from the maximum frequency. Inset: the values of 

10 given spatial frequencies (hollow circle) with equal interval and the solved C (solid dot) with 

the normalized value. (c) The intensity profiles of constructed super-oscillatory pattern when the 

minimum spatial frequency vmin is changing in the range of [0.001, 0.496] but the maximum 

spatial frequency vmax is fixed to 0.98. Inset: the maximum in the absolute value of the solved C 

(blue) and the corresponding norm ║S
-1║ (green) vs the different vmin. (d) The intensity profiles of 

constructed super-oscillatory pattern when vmax is changing in the range of [0.75, 0.98] but vmin is 

fixed to 0.01. Inset: the maximum in the absolute value of the solved C (blue) and the 

corresponding norm ║S
-1║ (green) vs the different vmax. 

 

      

Next, we discuss the inverse problem of super-oscillation generally. Assuming that we want 

to realize the electric field F=[f1,f2,…,fM]
T
 at the prescribed position r=[r1, r2,…, rM]

T
 by using the 

interference of light from the given spatial frequencies v=[v1, v2,…, vN]
T
, the problem of 

determining the unknown amplitude C=[C1,C2,…,CN]
 T

 can be expressed by 

                             SC=F,                                    (S14) 

where S is an M×N matrix that has its matrix element Smn=J0(k0rmvn) according to Eq. (S13). 

Because the only unknown variable in Eq. (S14) is C, it is a simple linear-equation problem to 

solve C, whose solution exists if N≥M. For simplicity, here we just discuss the case of N=M 

which implies that S is a square matrix. In this case, if S is invertible or has the nonzero 

determinate, which means the S
-1

 is not a singular matrix, C has the only solution of C=S
-1

F. For a 
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given F, S
-1

 is the key parameter that determines the cost C for super-oscillation. Therefore, we 

can use the norm ║S
-1║to evaluate the cost of super-oscillation. The norm ║S

-1║ depends on the 

prescribed position r and the spatial frequency v. A fast super-ocillation means that the interval 

∆r=rm+1-rm is very small. The m and m+1 row of S trends to have little difference so that S has its 

determinate |S| close to zero, which leads to the very large norm ║S
-1║ that causes a high cost in 

amplitude C. Therefore, the faster super-oscillation always requires the higher cost.  

Then, using the inverse problem of super-oscillation demonstrated above, we show an 

example that realizes a super-oscillatory spot with its high sidelobe away from center for 

super-resolution focusing. As shown in Fig. S3(b), for the N=10 given spatial frequencies v=[vmin, 

vmin+∆v,…,vmin+(N-2)·∆v, vmax] with equal frequency interval ∆v=vmax-vmin/(N-1) where 

vmin=0.201 and vmax=0.98, our aim is to use the frequencies v to realize a customized 

super-oscillatory pattern with its intensity profiles obeying F=[1, 0, … , 0]
T
 at the prescribed 

position r=[0, 0.158λ, 0.348λ,…, 1.233λ]. According to Eq. (S14), we can provide the solution C 

that is shown in the inset of Fig. S3(b). Using Eq. (S13) and the solved C by the inverse problem 

of super-oscillation, the intensity profile of constructed super-oscillatory pattern is displayed in 

Fig. S3(b). The constructed pattern indeed oscillates faster than the optical pattern from the 

maximum frequency. More importantly, the sidelobe in the constructed pattern is pushed several 

wavelengths away from the super-oscillatory main spot at the center by artificially padding the 

zero-intensity position between the sidelobe and main spot when setting the targeted F in practical 

application. In the intermediate area between the sidelobe and main spot, the zero intensity is used 

to suppress the high intensity of sidelobe so that the sidelobe has to move away from the center. 

The distance between the sidelobe and main spot can be enlarged by introducing more 

zero-intensity locations in their intermediate region, which implies more cost in the corresponding 

amplitude C [S7]. Nevertheless, this method provides an unrestricted route in theory for realizing 

a super-oscillatory focusing spot with its sidelobe arbitrarily far away from the center, which is a 

significant promotion in popularizing the super-oscillation in super-resolution imaging. 

Interestingly, the solved amplitude C has the alternating sign of positive or negative with its 

amplitude module small for low and high spatial frequencies and large for the intermediate spatial 

frequencies.  

       It is not the sole solution C for realizing the super-oscillatory pattern with the customized 

intensity F at the prescribed position r shown in Fig. S3(b) when we change the given spatial 

frequencies v. In Fig. S3(c), we fix the maximum spatial frequency vmax/λ to be 0.98/λ and change 

vmin from 0.01 to 0.496, so that the N=10 given spatial frequencies have the form of v=[vmin, 

vmin+∆v,…,vmin+(N-2)·∆v, vmax] with equal frequency interval ∆v=vmax-vmin/(N-1) where vmin is 

changing and vmax=0.98. According to the inverse problem described by Eq. (S14), we display the 

intensity profiles of some solutions in Fig. S3(c) that has absolutely the same intensity F at the 

prescribed position r although a little deviation between different frequency groups exists at the 

unprescribed position. It is worthy to note that both the norm ║S
-1║ and the maximum absolute 

value |C|max in every case experience a valley near vmin=0.2 when vmin varies from 0.01 to 0.496. 

This reveals that the cost for every frequency group is different and an optimal solution is existent 

in our case, which is an undeniable proof that the optimization mechanism of super-oscillation is 

considerably developed by choosing the suitable spatial frequencies. The existence of the optimal 

solution for super-oscillation renovates the cognizance that there is no cheapest band-limited 

function for super-oscillation [S7]. Furthermore, we use the fixed vmin=0.01 and varied vmax from 



0.75 to 0.95 to generate the spatial frequency group v with equal frequency interval 

∆v=vmax-vmin/(N-1). Likely, the customized intensity F at the prescribed position r is also achieved 

and shown in Fig. S3(d). In this case, the cost of super-oscillation exponentially decreases with the 

increment of vmax, which implies that the high spatial frequency is preferred in optimizing the 

super-oscillation with the smallest cost.   

 

4. Parameters of binary phase mask in Fig. 3b 

 

                 Table S1. Data of designed binary phase in Fig. 3b 

n sinθn n sinθn 

0 0 16 0.5196 

1 0.0317 17 0.5517 

2 0.0635 18 0.5835 

3 0.0955 19 0.6154 

4 0.1291 20 0.647 

5 0.1614 21 0.6796 

6 0.1941 22 0.7113 

7 0.2271 23 0.7435 

8 0.2602 24 0.7742 

9 0.2928 25 0.8063 

10 0.3247 26 0.8357 

11 0.3576 27 0.8676 

12 0.3899 28 0.8949 

13 0.4222 29 0.9244 

14 0.4544 30 0.95 

15 0.487   
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