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Abstract: Federated learning (FL) is an emerging branch

of machine learning (ML) research, that is examining the

methods for scenarios, where individual nodes possess

parts of the data, and the task is to form a single com-

mon model that fits to the whole distribution. In FL,

we generally use mini batch gradient descent for optimiz-

ing weights of the models that appears to work very well

for federated scenarios. For traditional machine learning

setups, a number of modifications has been proposed to

accelerate the learning process and to help to get over

challenges posed by the high dimensionality and non-

convexity of search spaces of the parameters. In this paper

we present our experiments on applying different popu-

lar optimization methods for training neural networks in a

federated manner.

1 Federated Learning

Federated learning (FL) [1] is a new paradigm in Machine

Learning (ML), that is dealing with an increasingly impor-

tant distributed optimization setting, that came into view

with the spread of small user devices and applications writ-

ten for them that can profit from ML. The domain of ML

models is often the data collected on the devices, thus, to

train these models, one should incorporate the knowledge

contained into the learning process. The traditional way

for this would be to transfer the information gathered at

the users to data centers, where the training takes place,

then send back the trained models to the users. That, apart

from the obvious privacy concerns, can incur a huge com-

munication overhead along with the need for significant

storage and computational resources at the place of cen-

tralized training.

The idea proposed in [1] is that, instead of moving the

training data to centralized location, one could exploit the

computational power residing at the user devices and dis-

tribute the training process across the participating nodes.

1.1 Distributed Optimization

In ML, the goal is to find a model for the training data that

minimizes a loss function f that defines how our learned

model distribution differs from the empirical distribution.

Copyright ©2019 for this paper by its authors. Use permitted under

Creative Commons License Attribution 4.0 International (CC BY 4.0).

This measure in general case can be formalized as a nega-

tive log likelihood.

f =−Ex∼pdata
[log pmodel(x)] (1)

That is, if a given example x is drawn from the training

data distribution, what is the probability that it will be

present in the same form in the model distribution as well.

If the model is for predicting some value(s) y based on a

vector of some attributes x this can be rewritten as

f (x,y,w) =− log p(y|x;w) (2)

,

The problem we want to solve is to minimize the loss

function f with respect to model parameters w, that is an

aggregation of the losses over all available data point as

follows:

min
w∈Rd

f (w), where f (w) =
1

n

n

∑
i=1

fi(w), (3)

where fi(w)
def
= f (xi,yi,w) denotes the loss on data point i

given the parametrization w.

In the setup of FL the characteristics of data distribution

from which our training examples (xi,yi) will be drawn,

are the following:

1. Massively Distributed. Data points are stored across

a large number K of nodes. In particular, the number

of nodes can be much bigger than the average number

of training examples stored on a given node (n/K).

2. Non-IID. Data on each node may be drawn from a

different distribution, i.e. the data points available lo-

cally are far from being a representative sample of the

overall distribution.

3. Unbalanced. Different nodes may vary by orders of

magnitude in the number of training examples they

hold.

If we adapt the objective function (see Eq. 3) to these

characteristics, our problem can be defined as introduced

in the following paragraphs.

We have K nodes and n data points, a set of indices Pk

(k ∈ {1, . . . ,K}) of data stored at node k, and nk = |Pk| is

the number of data points at Pk. We assume that Pk ∩
Pl = /0 whenever l 6= k, thus ∑

K
k=1 nk = n.



We can then define the local loss for node as Fk(w)
def
=

1
nk

∑i∈Pk
fi(w) Thus the problem to be minimized will be-

come:

minw∈Rd f (w) =
K

∑
k=1

nk

n
Fk(w). (4)

To solve the problem in (4) the simplest algorithm is

FederatedSGD introduced in [2], that is equivalent to mini-

batch gradient descent over all data, and it is a simple ap-

plication of distributed synchronous Stochastic Gradient

Descent (SGD) [3] for the described setup.

Algorithm 1 FederatedSGD

1: procedure SERVER

2: initialize w0

3: for t = 0;1;2; ... do

4: for all k in the K nodes in parallel do

5: wk
t+1← ClientUpdate(k,wt)

6: end for

7: wt+1 = ∑
K
k=1

nk
n

wk
t+1

8: end for

9: end procedure

10: procedure CLIENTUPDATE(k,w)

11: B← split Pk to set of batches

12: for all b ∈B do

13: w← w−η∇ f (w,b)
14: end for

15: return W

16: end procedure

In neural network (NN) optimization, due to the non

convexity of the loss functions, the most used methods

for optimization of network parameters are gradient based,

more specifically the versions of SGD [4]. Gradient de-

scent methods take derivatives of loss function according

to the parameters of the model, then move the parameter

values in the negative of the gradient.

The pure form of SGD samples a random function (e.g

a random training data point) it ∈ 1,2, ...,n in iteration t

and performs the update:

wt+1 = wt −ηt∇ fit (wt), (5)

where ηt denotes the learning rate, which is, in the base

case, decaying during the learning to enforce convergence.

Intuitively, SGD works because evaluating the gradient at

a single training example gives an unbiased estimation of

derivative of the error function over all the training exam-

ples: E[∇ fit (w)] = ∇ f (w).
In practice, instead of applying the gradient for w at

each example, usually an average of gradients over b ran-

domly chosen examples is used, that are evaluated at the

same w. This method is called minibatch gradient de-

scent (MBGD), that better exploits parallel computational

capabilities of the hardware. (MBGD is still commonly

referred to as SGD) Though SGD/MBGD in the above

form is very popular in optimization, the basic approach

can sometimes result in very slow learning. To tackle the

challenges incurred by high curvature and noisy gradients

of the loss function of NN, a range of method has been

proposed based on exponentially decaying average of the

gradients or on adapting learning rates. [5]

In this paper, we investigate the effects of these meth-

ods on the performance , of federated training of artificial

neural networks.

1.2 Momentum techniques

Momentum based techniques [6] use a velocity term dur-

ing learning, that is an exponentially weighted average

over the gradients of the past.

v← βv−∇w(
1

m

m

∑
i=1

fi(w))

w← w+v (6)

This term, on one hand, accelerates the learning process

and, on the other hand, helps to get over noisy gradient

and local minima or flat points of surface defined by the

error function f .

A variant of momentum algorithm is introduced in

[7] and is based on the Nesterov’s accelerated gradient

method, that differs from the standard momentum of (6)

in the place of the evaluation of the gradient.

v← βv−∇w(
1

m

m

∑
i=1

fi(w+αv))

w← w+v (7)

In Nesterov’s momentum, the gradients are evaluated in-

corporating the velocity. This can be interpreted as adding

a correction factor to the standard momentum algorithm

[5].

1.3 Adaptive Learning Rates

Setting up learning rates is one of the most important fac-

tor in the learning process and deeply influences the per-

formance. Thus, finding methods to adapt the learning rate

might yield a substantial increase in speed of the learning.

The AdaGrad algorithm [8] adjusts the learning rates indi-

vidually for each parameter, taking into account the whole

history of the parameters, following the assumption, that

if the magnitude of the gradients is big than it should be

increased:

ηt =
η

√

∑
t−1
τ=1 g2

τ

, (8)

where g = ∂ f

∂w j
for some parameter w j, and thus ηt will

be the learning rate belonging to w j a timestep t.

It has been found empirically that aggregating the gradi-

ents from the beginning of the optimization can lead to too



fast decay in the learning rate, that, in some cases, leads to

weak performance.

To remedy this problem RMSProp [9] (the same time

proposed by the authors of AdaDelta [10]) replaces this

aggregation with a decaying average, in the form:

vt = ρvt−1 +(1−ρ)g2
t

ηt =
η√

vt + ε
(9)

RMSProp has been proven very effective in non-convex

optimization problems of NN, thus, it is the most often

used technique in practice.

According to the explanation in [5], AdaGrad is de-

signed to converge rapidly when applied to convex func-

tions. In non-convex cases it should pass many structures

before arriving at a convex bowl, and, since it accumulates

the entire history of the squared gradient, it can shrink pre-

maturely and eventually vanish. In contrast, discarding the

old gradients in the RMSProp case enables learning to pro-

ceed rapidly after finding the convex bowl, equivalently as

if AdaGrad would have been initialized within that convex

area.

1.4 Adam

The name of the Adam algorithm [11] comes from “adap-

tive momentum”, and can be viewed as the combination of

adaptive learning rates and momentums.

gt ← ∇w(
1

m

m

∑
i=1

fi(wt−1)) (10)

mt ←
β1mt−1 +(1−β1)gt

1−β t
1

(11)

vt ←
β2vt−1 +(1−β2)g

2
t

1−β t
2

(12)

wt ← wt−1−
ηmt√
vt + ε

(element-wise) (13)

In Adam, the weight update is given by applying the

RMSProp learning rate (12) on the momentum (11). (In

Equation (12) and (11) the denominator is applied bias

correction on the estimates.) We are not aware of clear

theoretical understanding why this is advantageous, how-

ever, it seems to work very well in practice and became

a de facto default optimization technique for a lot of ML

practitioners.

2 Experimental setup

For analyzing thew performance of the optimizer algo-

rithms, we implemented a simulation environment that

trains multiple local NN models that would be aggregated

into one common model, according to the Algorithm 1.

Compared to Algorithm 1, we have been varying the

CLIENTUPDATE(k,w) method, where the local updates

have been calculated. (Except for first experiment, since

it describes exactly the MBGD method).

The new CLIENTUPDATE(k,w) method is introduced in

the Algorithm 2.

Algorithm 2 ClientUpdate

1: procedure CLIENTUPDATE(k,w)

2: B← split Pk to set of batches

3: for all b ∈B do

4: ∆w = Optimizer(w,b)
5: w← w−∆w

6: end for

7: return W

8: end procedure

Naturally, all the optimizers have their own hyper-

parameters which should be tuned to get the best possi-

ble result. However, for this experiment we used only the

recommended values for them (that are in fact the default

values in Keras/TensorFlow libraries).

2.1 Topology

The model we used is a simple multilayer perceptron. The

input layer consists of 784 input units that is the flatten

representation of the input images of size 28× 28 pixels.

The input is connected to one hidden layer of 128 neurons

with ReLU activation. The output layer corresponds to

the 10 output classes, thus it has 10 neurons with softmax

activation.

In the implementation of the network, we relied on

Keras NN API on a TensorFlow backend.

2.2 Data

For the experiment, we have chosen the Fashion MNIST

dataset [12] that was planned to replace the MNIST bench-

mark database.

From the characteristics of the FL scenario, in this ex-

periment, we focused on non-iid nature of the data. That

is, we have created local datasets of a highly skewed man-

ner. Namely, training data at a given node contains ex-

clusively, or almost exclusively, instances from the same

class.

For these experiment, we have not taken into account

the unbalanced nature, and each node have been assigned

the same amount of data. Our idea here was that if some-

thing works in this simple setup then it might work in use

cases closer to the real world problem.

Due to the lack of computational resources we also ig-

nored the “massively distributed” condition and set the

number of nodes to 10.

The distributions of the local datasets we tried in the

experiments are the following:



99% non-iid The training data has been split into two

parts in the ratio of 99%-1%, where the parts are indepen-

dent and identically distributed, as best as possible. The

99% part will be assorted accorded to classes and then one

class assigned to one of the nodes. The 1% part will be

equally split into 10 parts and then added to the dataset of

the particular nodes.

full-non-iid In the second test case, we assorted fully the

training data and each node receives a dataset consisting

of instances belonging purely to one single class.

2.3 Hyperparameters

To measure general applicability of the examined algo-

rithms on the problem of FL, we executed the learning

process multiple times, using different parametrisations.

In setting the hyperparameters we followed the Method of

GridSearch, that is we defined a set of possible values for

each hyperparameter, then run the algorithms with all the

combinations. At defining the set of the possible values we

tried to include extremities and generally recommended

values. In addition to the parameters described in Section

1 we also included experimenting with the decay of the

learning rate. Here we only tried tried nevertheless two

case at each configuration of the other parameters, the one

without decay, and the one with time based decay, where

the learning rate a time t will be ηt =
η0

1+φ∗t with the decay

rate parameter φ = η0
max{t} .

3 Results

FedSGD - Simple Minibatch Gradient Descent As a

baseline we run the experiment with the standard Mini-

batch Gradient Descent optimiation. The experiment re-

sult is shown in Figure 1. It is clear that, as it of-

ten happens, the most simple algorithm, MBGD places

the baseline rather high for the more sophisticated op-

timizer algorithm. It performs very well for the 99%

non-iid datasets and surprisingly well with the full-non-

iid datasets, achieving an accuracy close to 75% in the 30

iterations with the best configuration of hyperparameters

(η = 0.001, no decay).

Moreover, in results it seems like on both distribution

too high learning rate without decay leads to a poor per-

formance.

FedSGD + Nesterov momentum In Figure 2, the results

using the Stochastic Gradient Descent with Nesterov mo-

mentum can be seen. We found that incorporating local

momentum into computing the partial directions of the up-

dates has a strong positive effect both on performance and

convergence rate of the aggregated model at both data dis-

tributions.

The best performing configurations reached in the first

couple of iterations the highest accuracy achieved by the

baseline during the entire experiment. According to our

results the higher the value β (that is the past directions in-

fluence stronger the update) is generally the better perfor-

mance, apparently independently from η and decay rate.

FedSGD + AdaGrad The AdaGrad algorithm yields an

even better performance 3, on the 99% non-iid datasets.

Using this method results in the fastest convergence until

the 70% of the baseline. In the first 30 rounds, though

AdaGrad’s performarnce drops dramatically full-non-iid

datasets, reaching at most a 25% accuracy without ob-

vious perspective further improvement. It might be inter-

esting to check how many random training examples need

to be put into the full-non-iid datasets to achieve the very

good performance of the AdaGrad which is measured with

the 99% non-iid datasets.

FedSGD + RMSProp The RMSProp optimizer is used in

the experiment which has produced the statistics in Figure

4. We experienced that this optimizer algorithm apart from

the stronger variance of performance seems to approach

the accuracy of the AdaGrad and Nesterov momentum

methods, and outperforming MBGD baseline as well on

the 99% non-iid distribution. One the other hand though

the accuracy on the full-non-iid still achieves a signifi-

cantly worse performance compared to MBGD and Nes-

terov momentum, however leraning curve is much more

promising than the one of AdaGrad. It reaches in the

best performing setups about 50% accuracy, and shows an

emerging tendency as well.

FedSGD + Adam The last experiment, we were apply-

ing Adam. The method is one of the most popular and

often default optimizer(11), thanks to fast convergence,

high accuracy in the traditional NN learning, and to its

robustness to hyperparameter settings. In our experiment

however, Adam worked with a very similar effectiveness

to RMSProp, and has been definitely outperformed by

MBGD and Nesterov momentum (Figure 5) regarding to

performance and smoothness of learning on the full-non-

iid datasets.

4 Conclusion

In our experiment we found, that the best performing op-

timizer algorithms for both the distribution are Minibatch

Gradient Descent without and with Nesterov momentum,

whilst Adadelta and RMSProp is promising despite their

poor performance on fully non-IID datasets. As one could

have assumed, the presence of the non-iid part of the train-

ing data has a very strong regularizing effect even if its

weight seems to negligible compared to the dominating

class.
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Figure 1: FedSGD baseline(simple minibatch updates )
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Figure 2: FedSGD + Nesterov momentum
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Figure 3: FedSGD with AdaGrad
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Figure 4: FedSGD with RMSProp
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lr:0.01 decay:0.01 epsilon:1e-08 beta1:0.95 beta2:0.9 
lr:1.0 decay:1.0 epsilon:1e-08 beta1:0.95 beta2:0.9 
lr:0.001 decay:0.0 epsilon:1e-08 beta1:0.95 beta2:0.95 
lr:0.01 decay:0.0 epsilon:1e-08 beta1:0.95 beta2:0.95 
lr:1.0 decay:0.0 epsilon:1e-08 beta1:0.95 beta2:0.95 
lr:0.001 decay:0.001 epsilon:1e-08 beta1:0.95 beta2:0.95 
lr:0.01 decay:0.01 epsilon:1e-08 beta1:0.95 beta2:0.95 
lr:1.0 decay:1.0 epsilon:1e-08 beta1:0.95 beta2:0.95 

Adam

Figure 5: Federated Averaging - Adam

In general we experienced that methods that are in-

tended to reduce the variance of the gradient direction

works actually quite well for our specific scenario (1).

This can be because momentum techniques can be seen

as an averaging over the subsequent gradients, leading to

a less and less biased estimate of the optimal update di-

rection. The fact that strong momentum (high β ) seems

to help in the big majority of configurations of the other

parameters supports this idea.

On the other hand methods that aim at adapting the mag-

nitude of the gradients seem to harm the learning process

(2) in the full-non-iid case. The reason behind this phe-

nomenon is most probably, that the local optimisers update

their inner state – which here corresponds to η learning

rate – based on the local gradients. In each local training

round according to our intuition the magnitude of gradi-

ents start growing, since the aggregation of the local mod-

els moved the model away from the locally optimal model,

but as we approaching again the local optima, they start

shrinking again, resulting in slower start (smaller η) of

optimization in the next iteration.

The extremely poor performance of AdaGrad on the

full-non-iid dataset can support this intuition, since it pre-

vents even the described fluctuation of the learning rate,

instead it decreases it continuously.

The good performance of these algorithms on the 99%

non-iid might be explainable with the presence of gradi-

ents of really big magnitude in the decaying average that

controls the learning rate keeping it at an effective level.

Another interesting phenomenon is that in case of Adam

– where momentum and adaptive learning rates are both

applied – the strong deccelerating effect of learning rate

adaption apparently overrides the help of the momentum.

However looking at magnitude of performance differences

it might be understandable.

Although according to our results these optimizers are

not clearly beneficial in perspective of finding the best

global model, they still could be useful for optimizing the

global model at clients. One can argue, that in the end

the goal of the entire federated optimization is to provide

clients with a model performs well on their own data.
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