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Optimization-Inspired Compact Deep Compressive Sensing

Jian Zhang, Chen Zhao, and Wen Gao, Fellow, IEEE

Abstract—In order to improve CS performance of natural
images, in this paper, we propose a novel framework to design
an OPtimization-INspired Explicable deep Network, dubbed
OPINE-Net, for adaptive sampling and recovery. Both orthogonal
and binary constraints of sampling matrix are incorporated
into OPINE-Net simultaneously. In particular, OPINE-Net is
composed of three subnets: sampling subnet, initialization subnet
and recovery subnet, and all the parameters in OPINE-Net
(e.g. sampling matrix, nonlinear transforms, shrinkage threshold)
are learned end-to-end, rather than hand-crafted. Moreover,
considering the relationship among neighboring blocks, an en-
hanced version OPINE-Net+ is developed, which allows image
blocks to be sampled independently but reconstructed jointly to
further enhance the performance. In addition, some interesting
findings of learned sampling matrix are presented. Compared
with existing state-of-the-art network-based CS methods, the
proposed hardware-friendly OPINE-Nets not only achieve better
performance but also require much fewer parameters and much
less storage space, while maintaining a real-time running speed.

I. INTRODUCTION

Compressive Sensing (CS) theory demonstrates that a signal

can be reconstructed with high probability from much fewer

acquired measurements than determined by Nyquist sampling

theory, when it exhibits sparsity in some transform domain [1],

[2]. This novel acquisition strategy is much more hardware-

friendly and it enables image or video capturing with a sub-

Nyquist sampling rate [3], [4]. In addition, by exploiting

the redundancy existing in a signal, CS conducts sampling

and compression at the same time, which greatly alleviates

the need for high transmission bandwidth and large storage

space, enabling low-cost on-sensor data compression. CS has

been applied in many practical applications, including but not

limited to single-pixel imaging [2], [5], accelerating magnetic

resonance imaging (MRI) [6], wireless tele-monitoring [7] and

cognitive radio communication [8].

Mathematically, for the original signal x ∈ R
N , in the sam-

pling process, its CS measurements are obtained by y = Φx ∈
R

M . Here, Φ ∈ R
M×N is a linear random projection (matrix).

Then, in the recovery process, the purpose is to infer x from

y. Because M≪N , this inverse problem is typically ill-posed,
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whereby the CS ratio is defined as M
N

. In this paper, we mainly

focus on CS sampling and recovery of natural images.

In the past decade, sparse representation model [9], which

assumes that natural images can be sparsely represented by

a dictionary, has achieved great success in image processing

and compressive sensing [10], [11], [12]. Recently, researchers

realize simultaneously optimizing the sampling matrix and the

dictionary for the CS system yields a better signal recovery

performance [13], [14], [15]. Concretely, traditional methods

usually consider the problem of simultaneously learning sam-

pling matrix and sparsifying dictionary by exploiting some

structured sparsity as an image prior and then solve a sparsity-

regularized optimization [13], [16]. Although these methods

enjoy the advantage of interpretability, they inevitably suffer

from high computational complexity, and they are also faced

with the challenges of tuning parameters in their solvers.

Fueled by the powerful learning ability of deep networks,

several deep network-based image CS algorithms have been

recently proposed to jointly optimizing the sampling ma-

trix and the non-linear reconstruction operator [17], [18],

[19], [20]. Compared to optimization-based algorithms, these

non-iterative algorithms dramatically reduce time complex-

ity, while achieving impressive reconstruction performance.

However, existing network-based CS algorithms for adaptive

sampling and recovery are all trained as a black box, which

limits the insights from the CS domain.

To address the above drawbacks, we combine the merits of

both optimization-based and network-based methods and pro-

pose a novel optimization-inspired explicable deep network,

dubbed OPINE-Net, for adaptive sampling and recovery of

image CS. All the parameters involved in OPINE-Net (e.g.

nonlinear transforms, shrinkage threshold, step size, etc.) are

learned end-to-end using back-propagation. As such, OPINE-

Nets enjoy the advantages of fast and accurate reconstruction

with well-defined interpretability. As far as we know, OPINE-

Net is the first work that maps an optimization problem into

deep network for joint adaptive binary sampling and recovery

of image CS.

In summary, our main contributions are four-fold:

• We present a constrained optimization framework for

adaptive sampling and recovery of image CS, and we

further propose to solve it with a two-step scheme, based

on which we are able to efficiently design our deep

network OPINE-Net.

• We propose to incorporate the binary and orthogonal

constraints for sampling matrix and the weight-sharing

strategy into OPINE-Net simultaneously, which makes

the whole network much more hardware-friendly and

memory-saving.

• We propose an enhanced multi-block version of OPINE-
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Fig. 1. Illustrations of our proposed OPINE-net framework. Specifically, OPINE-Net is composed of three subnets: Sampling Subnet (SS), Initialization
Subnet (IS) and Recovery Subnet (RS).

Net, dubbed OPINE-Net+, by exploiting the inter-block

relationship to improve image quality. Compared with

other network-based image CS methods, the proposed

OPINE-Nets not only achieve the best performance but

also have much fewer network parameters and much

smaller model size.

• Three interesting findings of learned sampling matrix are

presented, which fully verify the feasibility of data-driven

joint learning of sampling and recovery for CS.

II. RELATED WORK

According to the way of generating the sampling matrix,

we generally group existing CS methods of natural images

into two categories: fixed random Gaussian matrix and data-

driven adaptively learned matrix. In what follows, we give a

brief review.

Fixed Random Gaussian Matrix: In this case, the sam-

pling matrix Φ∈RM×N is constructed by generating a ran-

dom Gaussian matrix and then orthogonalizing its rows, i.e.

ΦΦ⊤=I, where I is the identity matrix. Applying y=Φx yields

the CS measurements of the original image x. Then, given Φ

and y, traditional image CS methods usually reconstruct x by

solving the following optimization problem:

min
θ

1

2
‖ΦDθ − y‖22 + λ‖θ‖1, (1)

where D∈RN×L denotes a sparsifying dictionary, θ∈RL×1

denotes the representation coefficients of x over D and the

sparsity of the vector θ is encouraged by the ℓ1 norm with

λ being the regularization parameter. After solving Eq. (1) to

obtain θ̂, the CS recovered image is x̂ = Dθ̂.

Many classic domains (e.g. DCT, wavelet [21], and gradient

domain [22]) and prior knowledge about transform coefficients

(e.g. statistical dependencies [23], structure [24], etc.) have

been applied in modeling Eq. (1) [25], [26], [27]. These

traditional image CS reconstruction methods usually require

hundreds of iterations to solve Eq. (1) by means of various

iterative solvers (e.g. ISTA [28], ADMM [22], or AMP [29]).

Quite recently some fast and effective convolutional neural

network (CNN) denoisers are trained and integrated into

Half Quadratic Splitting (HQA) [30] and alternating direction

method of multipliers (ADMM) [31], [32] to solve image

inverse problems.

Recently, several deep network-based image CS reconstruc-

tion algorithms have been proposed to learn the represen-

tation from training data and to reconstruct test data from

their CS measurements [33], [34], [35], [36]. Furthermore,

the tremendous success of deep learning for many image

processing applications has also led researchers to consider

relating iterative optimization methods to neural net-works

[37], [38], [39], [40], [41]. In particular, some optimization-

inspired deep unrolling networks are proposed to achieve state-

of-the-art performance for CS recovery in the case of fixed

random Gaussian matrix [42], [43], [44].

Data-Driven Adaptively Learned Matrix: In this case, the

sampling matrix Φ∈RM×N is adaptively learned by the train-

ing dataset X = {x1,x2, ...,xNb
}. To optimize the sampling

matrix and the dictionary simultaneously, traditional methods

usually formulate it by minimizing the following problem:

min
D,Φ,θi

Nb∑

i

{
1

2
‖ΦDθi −Φxi‖

2
2 + β‖Dθi − xi‖

2
2 + λ‖θi‖1

}
,

(2)

where θi denotes the representation coefficients of each xi

over D [13], [16]. The above problem can be solved by uti-

lizing the alternating-minimization based methods. The main

idea is to alternatively update one variable while fixing the

others. After obtaining the learned D and Φ, CS recovery

problem will become Eq. (1). Based on some well-studied

image formation models, these methods enjoy the advantage

of well-defined interpretability. However, they usually require

hundreds of iterations to solve Eq. (1) for CS recovery, which

inevitably gives rise to high computational cost. In addition,

Eq. (2) only works well for small image patches (such as

8× 8), since solving Eq. (2) will become inefficient and even

impractical if the dimension of the dictionary is high or the

size of training dataset is very large [13], [16].

Lately, some deep networks are developed to jointly op-

timizing the sampling matrix and the non-linear recovery

operator [17], [18], [19], [45], [20], [46]. In particular, Adler

et al. propose to utilize a fully-connected network to perform

both the block-based linear sensing and non-linear reconstruc-

tion stages. Lohit et al. propose to add one fully-connected

layer as the sampling matrix in front of ReconNet [35] for

simultaneous sampling and recovery. Shi et al. [19] and Du

et al. [18] separately propose to adopt a convolution layer
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to mimic the sampling matrix and utilize all-convolutional

networks for CS recovery. Obviously, the network-based CS

methods not only jointly train the sampling and recovery

stages, but also are non-iterative, which dramatically reduces

time complexity as compared with their optimization-based

counterparts. However, existing networks for joint learning

of sampling matrix and recovery operator are either fully-

connected or repetitive convolutional layers. We believe that

their lack of structural diversity is the bottleneck for further

performance improvement.

In order to address the drawbacks of existing networks-

based CS methods in the case of data-driven adaptively learned

matrix and inspired by the success of optimization-inspired

network in the case of fixed random Gaussian matrix, we pro-

pose to a novel optimization-inspired deep structured network,

dubbed OPINE-Net, for adaptive sampling and recovery of

image CS. We will detail our OPINE-Net in next section.

III. PROPOSED OPINE-NET FRAMEWORK

In this section, we first present a constrained optimization

framework for adaptive sampling and recovery of image CS.

Then, we propose to solve it with a two-step scheme, based

on which we are able to efficiently design our deep network

OPINE-NET. Finally, in order to address the issue of blocking

artifacts introduced by block-based sampling and recovery, we

extend the intra-block training of OPINE-NET to inter-block

training to enhance the CS recovery quality. Compared with

other network-based image CS methods, the proposed OPINE-

Net not only achieves the best performance but also has fewer

network parameters. More details are provided below.

A. Problem Formulation

Assume we have a training dataset X={x1,x2, ...,xNb
},

where Nb is the number of image blocks. Instead of using the

synthesis sparse model as in Eq. (2), we adopt a constrained

analysis sparse model and introduce a nonlinear sparsifying

transform F for modelling the image CS problem. Without

losing generality, we consider two typical types of constraints

associated with Φ. One is ΦΦ⊤ = I, where I is the identity

matrix. To facilitate practical hardware implementation, we

further introduce a second constraint — Φ is binary, i.e. each

element of Φ is either 1 or -1. Both constraints are repre-

sented as the set Ω(Φ), and thus the proposed optimization

framework is formulated as

min
x̂i,Φ,F

Nb∑

i

{
1

2
‖Φx̂i −Φxi‖22 + λ‖F(x̂i)‖1

}
s.t. Ω(Φ),

(3)

where x̂i denotes the recovered image block.

Next, to map the optimization in Eq. (3) in an efficient way,

we propose to implement it in a two-step scheme. Concretely,

the first step is to design the network architecture based on

the unconstrained version of Eq. (3), i.e. Eq. (3) without the

constraints Ω(Φ). Then, the second step is to enforce the

constraints Ω(Φ) back by incorporating them into the network

to form a complete OPINE-Net.

Fig. 2. Illustration of the equivalent transformation from matrix multiplication
to matrix convolution.

Fig. 3. Illustration of the pixelshuffle operation in the proposed initialization
subnet (IS).

B. Architecture Design of OPINE-Net

In this subsection, we will elaborate on the architecture de-

sign of the proposed OPINE-Net according to Eq. (3) without

Ω(Φ). Fig. 1 illustrates the overall architecture of OPINE-Net,

which is composed of three sub-networks: sampling subnet,

initialization subnet, and recovery subnet. We will describe the

design of these three sub-networks in detail in the following

subsections.

1) Sampling Subnet (SS): In this paper, we denote a block

of size
√
N×

√
N by its vector representation x∈RN , and the

linear measurements of a block by y∈RM , which is obtained

via y=Φx, where Φ is a measurement matrix.

Viewing the measurement matrix Φ∈RM×N as a learnable

network parameter, we reshape it into M filters in the same

way, i.e. each of which is of size
√
N×

√
N , as shown in

Fig. 2. By this means, we can equivalently mimic the CS

sampling process y = Φx ∈ R
M using a convolutional layer

without bias, which we call sampling subnet (SS). Fig. 1

illustrates a concrete example of sampling an image block x of

size 33×33 with CS sampling rate 25%. The sampling subnet

exploits a convolution layer using 272 filters of size 33×33
to obtain the CS measurements y, which is represented by a

tensor of size 1×1×272. Note that the advantage of using a

convolutional layer in SS is that it can be easily extended to

multi-block training, which will be shown in the following.

2) Initialization Subnet (IS): Inspired by traditional opti-

mization, given y = Φx as the output of the SS, the proposed

initialization subnet (IS) utilizes Φ⊤y as the OPINE-net

initialization, denoted by x̂(0). To be concrete, IS is composed

of two consecutive operations: a 1×1 convolution layer and a

pixelshuffle layer. We first reshape Φ⊤∈RN×M into N filters,

each of which is of kernel size 1×1×M . With these filters, a

1×1 convolution layer is utilized to obtain Φ⊤y, which is ac-

tually a tensor of size 1×1×N . Then, we adopt the pixelshuffle
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Fig. 4. Illustration of k
th phase in our recovery subnet (RS). Specifically, RS is composed of Np phases, and each phase corresponds to one iteration in

optimization. Here, Nf denotes the number of feature maps.

layer to reshape a tensor 1×1×N into a tensor
√
N×

√
N×1.

The pixelshuffle layer is clearly depicted in Fig. 3, which

was first introduced for sub-pixel convolution for image super-

resolution [47]. As shown in Fig. 1, a tensor of size 1×1×272
is transformed into a tensor of size 33×33×1 through IS. In

fact, IS is an efficient convolutional implementation of Φ⊤,

which can be easily extended to multi-block training and will

also be used in the following recovery subnet.

Compared with existing deep network based CS methods

that introduce extra M×N parameters for initialization [17],

[18], [19], [20], our proposed IS only utilizes Φ and requires

no extra parameters. Because the amount M×N is usually

quite large, our proposed OPINE-Net clearly reduces the

number of network parameters.

3) Recovery Subnet (RS): Regarding Φ and F as learnable

network parameters and given the measurements Φx, Eq. (3)

without the constraints Ω(Φ) is reduced to the following

expression (subscript i is omitted without confusion):

min
x̂

1

2
‖Φx̂−Φx‖22 + λ‖F(x)‖1. (4)

Obviously, Eq. (4) becomes the CS recovery with fixed

Φ. As discussed before, several recent optimization inspired

networks are developed for CS recovery, such as ISTA-Net+

and ADMM-Net [42], [44]. Considering the simplicity and

interpretability, in this paper, we adopt the framework of ISTA-

Net+ to efficiently solve Eq. (4). However, it is worth noting

that the proposed OPINE-Net can also be trivially extended to

other deep unrolling networks to solve Eq. (4).

To be specific, Eq. (4) can be efficiently solved with

iterative shrinkage-thresholding algorithm (ISTA) by iterating

the following two update steps:

r(k) = x̂(k−1) − ρΦ⊤(Φx̂(k−1) −Φx), (5)

x̂(k) = argmin
x̂

1

2
‖x̂− r(k)‖22 + λ‖F(x̂)‖1. (6)

ISTA-Net+ consists of a fixed number of phases, and each

phase corresponds to one iteration in traditional ISTA. In

particular, each phase of ISTA-Net+ is composed of r(k)

and x̂(k) modules, which are corresponding to the above two

update steps Eq. (5) and Eq. (6).

Here, to preserve the ISTA structure, r(k) module is directly

defined according to Eq. (5), in which the step size ρ becomes

a learnable parameter.

To map Eq. (6) into deep network, first define a linear

operator R(·) as R = G◦D, where D corresponds to Nf filters

(each of size 3×3 in the experiments). Then define F = H◦D,

where H consists of two linear convolutional operators and

one rectified linear unit (ReLU). Next, define the left inverse

of H as H̃, i.e., satisfying the symmetry constraint H̃◦H = I.

Therefore, with the learnable parameters {H, H̃,D,G, δ}, the

x̂(k) module to solve Eq. (6) is expressed as:

x̂(k) = r(k) + G(H̃(soft(H(D(r(k))), δ))). (7)

Different from ISTA-Net+, in this paper, we generalize G,

and set it as a composition of several convolutional operators

and ReLUs. Furthermore, our recovery subnet (RS) includes

Np phases. From experiments, we found sharing weights

across all the phases does not affect the final performance

in adaptive sampling and recovery. Therefore, we restrict that

each phase in our RS shares the same weights, which greatly

reduces the number of parameters in RS.

C. Constraint Incorporation

In this subsection, we will show how to incorporate the two

constraints in Ω(Φ) into OPINE-Net simultaneously.

For the orthogonal constraint ΦΦ⊤=I, we design an or-

thogonal loss term, denoted by Lorth = 1
M2 ‖ΦΦ⊤ − I‖2F ,

and propose to directly enforce this constraint into the loss

function of OPINE-Net.

For the binary constraint, considering that Φ should

also satisfy the above orthogonal constraint, we introduce

an auxiliary variable denoted by Φ̃∈RM×N and define

Φ=α BinarySign(Φ̃), where α is actually a learnable scale

factor parameter and BinarySign(·) is an element-wise op-

eration defined below

BinarySign(z) = 1 if z >= 0 or − 1 if z < 0. (8)

Furthermore, in order to use back-propagation, we define

the derivative of BinarySign(·) as a constant function,

i.e. BinarySign′(z) = 1. Therefore, in practical imple-

mentation, the real learnable parameter is Φ̃, and we use

α BinarySign(Φ̃) to replace Φ in OPINE-Net.

Experiments demonstrate that the above schemes for con-

straint incorporation are very effective and efficient.
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Fig. 5. Illustrations of our proposed OPINE-Net+ framework, which allows image blocks to be sampled independently but recovered jointly, greatly suppressing
blocking artifacts.
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Fig. 6. (a) Average PSNR curves for Set11 by OPINE-Net with various phase numbers in the cases of CS ratio=25%; (b) The progression curves of
Ldiscrepancy , Lsymmetry , Lorth achieved by OPINE-Net in training with various epoch numbers in the case of CS ratio=25%.

D. Network Parameters and Loss Function

In light of previous descriptions, Eq. (3) has been suc-

cessfully mapped into our proposed OPINE-Net. Concretely,

the learnable parameter set in OPINE-Net, denoted by Θ,

includes the scale factor α and the auxiliary variable Φ̃

in the sampling subnet, the step size ρ, the parameters

of the transforms D(·),H(·), H̃(·),G(·), and the shrink-

age threshold δ in the recovery subnet. As such, Θ =
{α, Φ̃, ρ, δ,D(·),H(·), H̃(·),G(·)}. Note that all these param-

eters will be learned as neural network parameters and all

phases in recovery subnet share the same parameters.

Given the training dataset {(xi)}Nb

i=1, OPINE-Net first takes

xi as input and generates the reconstructed result, denoted

by x̂
(Np)
i as output. Note that, the purpose is to reduce the

discrepancy between xi and x̂
(Np)
i (Np denotes the total

number of phases in recovery subnet) while satisfying the

symmetry constraint H̃ ◦H = I and the orthogonal constraint

and the binary constraint. Therefore, we design the end-to-end

loss function for OPINE-Net as follows:

Ltotal(Θ) = Ldiscrepancy + γLsymmetry + µLorth, (9)

with:





Ldiscrepancy = 1
NbN

∑Nb

i=1 ‖x
(Np)
i − xi‖

2
F ,

Lsymmetry = 1
Nz

∑Nb

i=1

∑Np

k=1 ‖H̃(H(z
(k)
i ))− z

(k)
i ‖2F ,

Lorth = 1
M2 ‖ΦΦ

⊤ − I‖2F .

where z
(k)
i = D(r

(k)
i ) and Nz denotes the number of elements

in z
(k)
i . ‖ · ‖2F stands for the Frobenius norm of a matrix or

a tensor, Nb denotes the total number of training blocks of

size
√
N×

√
N , γ, µ are the regularization parameters. In our

experiments, γ and µ are set to 0.01.

E. Enhanced Multi-Block Version: OPINE-Net+

From Fig. 1, one can clearly see that each image block

is sampled and reconstructed independently, which will in-

evitably result in blocking artifacts and decrease image quality.

In order to exploit the inter-block relationship and improve

image quality, we furthermore design an enhanced multi-block

version of OPINE-Net, dubbed OPINE-Net+. As illustrated

in Fig. 5, instead of one block of size 33×33, we adopt a

larger image block of size 99×99 as input for training, denoted

by X. Obviously, X can be divided into nine blocks, i.e.

X = {x1, ...,x9}. Due to stride=33 in the convolution layer in

the sampling subnet and the efficient convolutional design of

Φ and Φ⊤ in OPINE-Net, the proposed OPINE-Net+ allows

image blocks of size 33×33 to be sampled independently but

reconstructed jointly.

IV. EXPERIMENTAL RESULTS

For fair comparison, we use the same set of 91 images

as in [35] for training. The training data {xi}Nb

i=1 is first
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TABLE I
ABLATION INVESTIGATION OF NETWORK CONSTRAINTS: BINARY

CONSTRAINT (BC) OF Φ, ORTHOGONAL CONSTRAINT (OC) OF Φ, AND

SHARED WEIGHTS (SW) IN RECOVERY SUBNET. WE OBSERVE THE BEST

PERFORMANCE (PSNR) ON SET11 IN THE CASE OF CS RATIO=25%.

Different combinations of constraints in OPINE-Net

BC # ! # # ! ! !

OC # # ! # ! # !

SW # # # ! # ! !

PSNR 34.31 34.39 34.43 34.41 34.47 34.43 34.44

generated by randomly extracting the luminance component of

88,912 image blocks (each of size 33×33), i.e. Nb=88912 and

N=1089 for OPINE-Net and 43,340 image blocks (each of

size 99×99) for OPINE-Net+, respectively. Then, for a given

range of CS ratios {1%, 4%, 10%, 25%, 50%}, we train the

OPINE-Nets separately for adaptive sampling and recovery

of image CS, obtaining the corresponding learned sampling

matrices Φ∈RM×N . In practice, the training of OPINE-Net+

is accelerated by fine-tuning OPINE-Net for one epoch. All the

experiments are performed on a workstation with Intel Core i7-

6820 CPU and GTX1080Ti GPU by PyTorch. Adam optimiza-

tion [48] is used with a batch size of 64 1. Training OPINE-

Nets with phase number Np=9 in recovery subnet roughly

takes 10 hours. For testing, we utilize three widely used

benchmark datasets: Set11 [35], BSD68 [49] and Urban100

[50]. Note that we deal with color images in the transformed

YCbCr space and conduct an independent operation for each

channel. The CS recovered results are evaluated with PSNR

and SSIM [51] on Y channel (i.e., luminance).

A. Study of Phase Number and Convergence

To determine a proper phase number Np, we plot the

average PSNR curves by OPINE-Net for Set11 with respect

to different phase numbers in the cases of CS ratio=25%, as

shown in Fig. 6(a). One can observe that the PSNR curves

increase as phase number Np increases; however, the curves

are almost flat when Np≥9. Thus, considering the trade-off

between computational complexity and recover performance,

we set Np to be 9 for our OPINE-Nets by default.

Fig. 6(b) further illustrates the progression of three types

of losses, i.e. Ldiscrepancy , Lsymmetry and Lorth in Eq. (9)

achieved by OPINE-Net with respect to epoch number in train-

ing in the case of CS=25% and Np=9. Clearly, OPINE-Net

converges very fast and all three losses decrease consistently.

In particular, the losses Lsymmetry and Lorth are eventually

close to zero, indicating that the learned OPINE-Net satisfies

the corresponding two constraints.

B. Ablation Studies and Discussions

By default, our propose OPINE-Net has three constraints,

i.e. binary constraint (BC) of Φ, orthogonal constraint (OC) of

Φ, and shared weights (SW) across phases in recovery subnet.

In this subsection, we will investigate the performance effect

1The sources codes and training models of OPINE-Net and OPINE-Net+

will be made available online: https://jianzhang.tech/projects/OPINENet
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Fig. 7. Convergence analysis on four combinations of constraints. The curves
for each combination are based on the PSNR on Set11 in the case of CS
ratio=25%.

Fig. 8. Visualization of one row in the traditional fixed random Gaussian
matrix (left), the learned matrix with ’OC’ (middle) and the learned matrix
with ’BC+OC+SW’ (right).

of these three Φ. constraints and give some interesting findings

about the learned Table I shows the ablation investigation on

the effects of BC, OC, and SW. From Table I, we can observe

that these three constraints do not impair the final performance

of OPINE-Net. In fact, BC and OC play as the role of network

regularization and always improve the performance a little.

Note that BC makes the proposed OPINE-Net more hardware-

friendly and greatly reduces the storage of Φ. SW also reduces

the storage of the parameters in recovery subnet from Np

phases to one phase. We further visualize the convergence

process of four typical combinations in Fig. 7. We use the

performance of ISTA-Net+ with fixed random Gaussian matrix

as a reference. ’None’ means the case without using the above

three constraint. Clearly, all curves converge stably to the same

result. The curves with fewer constraints usually have faster

speed and OC does not affect the convergence speed.

Next, we give three interesting findings about the learned

Φ obtained by OPINE-Net with different constraint combi-

nations. 1) Define the sampling matrix learned in the case

of ’None’ as ΦNo. We observe that, although there is no

constraints, ΦNo still satisfies the orthogonal constraint in

the following form: ΦNoΦ
⊤

No = ηI, where η usually varies

at each training. This verifies the necessity of OC again. 2)

Define the sampling matrix learned in the cases of ’OC’ and

’BC+OC+SW’ as ΦOC and ΦAll, respectively. Denote the
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Fig. 9. Visualization of histograms of Φ̃No, ΦOC and ΦFG in the cases of CS ratio=25% and ratio=50%. Clearly, these three matrices have the same
distribution.

TABLE II
AVERAGE PSNR/SSIM PERFORMANCE COMPARISONS WITH DIFFERENT CS RATIOS. THE PROPOSED OPINE-NET+ ACHIEVES THE BEST

PERFORMANCE, WHICH IS LABELED IN BOLD.

Dataset CS ratio ISTA-Net+ [44] BCS [17] CSNet [19] AdapReconNet [20] OPINE-Net OPINE-Net+

Set11

1% 17.42/0.4029 19.15/0.4410 19.87/0.4977 19.63/0.4848 19.87/0.5070 20.15/0.5340
4% 21.32/0.6037 23.19/0.6633 23.93/0.7338 23.87/0.7279 25.04/0.7730 25.69/0.7920
10% 26.64/0.8087 26.04/0.7971 27.59/0.8575 27.39/0.8521 29.33/0.8825 29.81/0.8884
25% 32.59/0.9254 29.98/0.8932 31.70/0.9274 31.75/0.9257 34.44/0.9491 34.86/0.9509
50% 38.11/0.9707 34.61/0.9435 37.19/0.9700 35.87/0.9625 39.88/0.9790 40.17/0.9797

Set68

1% 19.14/0.4158 21.24/0.4624 21.91/0.4958 21.50/0.4825 21.80/0.4972 22.11/0.5140
4% 22.17/0.5486 23.94/0.6193 24.63/0.6564 24.30/0.6491 24.87/0.6709 25.20/0.6825
10% 25.32/0.7022 26.07/0.7537 27.02/0.7864 26.72/0.7821 27.54/0.7966 27.82/0.8045
25% 29.36/0.8525 29.18/0.8729 30.22/0.8918 30.10/0.8901 31.28/0.9034 31.51/0.9061
50% 34.04/0.9424 33.18/0.9400 34.82/0.9590 33.60/0.9479 36.12/0.9646 36.35/0.9660

Urban100

1% 16.90/0.3846 18.97/0.4363 19.26/0.4632 19.14/0.4510 19.45/0.4808 19.82/0.5006
4% 19.83/0.5377 21.55/0.5986 21.96/0.6430 21.92/0.6390 22.91/0.6930 23.36/0.7114
10% 24.04/0.7378 23.58/0.7230 24.76/0.7899 24.55/0.7801 26.44/0.8298 26.93/0.8397
25% 29.78/0.8954 26.75/0.8410 28.13/0.8827 28.21/0.8841 31.40/0.9270 31.86/0.9308
50% 35.24/0.9614 30.65/0.9129 32.97/0.9503 31.88/0.9434 36.88/0.9729 37.23/0.9741

fixed random Gaussian matrix, as ΦFG. In the cases with

same CS ratios, We reshape one row in ΦFG, ΦOC and ΦAll

into [33 33] and visualize them in Fig. 8, along with their

frequency. Obviously, the rows representing a filter in ΦOC

and ΦAll are more structured and are more like a low-pass

filter, instead of being random as one in ΦFG. 3) Define the

normalized ΦNo as Φ̃No=ΦNo/
√
η. We plot the histograms

of Φ̃No, ΦOC and ΦFG in the cases of CS ratio=25% and

ratio=50%, respectively, as shown in Fig. 9. Surprisingly, in

each case, these three matrices have the same distribution,

which naturally leads to the following two inferences. The first

one is the learned sampling matrix retains the same properties

as the fixed random Gaussian matrix, such as RIP [52]. The

second one is the feasibility of data-driven CS sampling matrix

learning has been fully verified.

C. Comparison with State-of-the-Art Methods

We compare our proposed OPINE-Net with four recent

representative deep network-based CS methods, namely ISTA-

Net+ [44], BCS [17], CSNet [19] and AdapReconNet [20].

ISTA-Net+ does not involve sampling matrix learning, but

generates state-of-the-art CS recovery results using fixed ran-

dom Gaussian sampling matrix. The other four competing

methods are able to learn adaptive sampling and recovery for

image CS.

Table II clearly shows that our proposed OPINE-Net and

OPINE-Net+ outperform all the other competing methods by

a large margin across all the CS ratios. Note that ISTA-Net+

can be regarded as a special case of our proposed OPINE-

Net when the sampling matrix is fixed. OPINE-Nets achieved

more than 2 dB PSNR gains on average than ISTA-Net+,

which fully illustrates the necessity of adaptive sampling.

Compared with the remaining four methods, the performance

improvement of OPINE-Net mainly comes from the network

structure inspired by optimization. Accordingly, the superior

performance by OPINE-Net verifies the effectiveness of de-

signing optimization-inspired deep network for joint learning

of sampling and recovery. Furthermore, the enhanced version
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Fig. 10. Visual comparison of all the competing CS methods. The proposed OPINE-Nets are able to recovery more details and sharper edges than other
competing methods.

Fig. 11. Visual comparison of OPINE-Net and OPINE-Net+. The proposed
OPINE-Net+ achieves better results than OPINE-Net by further reducing
blocking artifacts.

OPINE-Net+ achieved about 0.4 dB PSNR gain on average

than OPINE-Net.

In Figure 10, we show the reconstructions of all six methods

of two images when the CS ratio is 10% and 25% respectively.

The proposed OPINE-Net is able to recovery more details

and sharper edges than other competing methods, and OPINE-

Net+ achieves better results than OPINE-Net by further reduc-

ing blocking artifacts. More visual comparisons of OPINE-Net

and OPINE-Net+ in the cases of CS ratio=4% and ratio=10%

are shown in Figure 11, which clearly verifies the superiority

of OPINE-Net+.

TABLE III
COMPARISON OF COMPUTATIONAL TIME AND MODEL SIZE.

BCS AdapReconNet CSNet OPINE-Net

#Para 7.76M 1.15M 1.17M 0.62M
Size 31.05MB 4.62MB 4.67MB 2.48MB
Time 0.0018s 0.0027s 0.0007s 0.0101s

D. Study of Model Size and Computational Time

Table III provides a comparison of model size and compu-

tational time for various methods in the case of CS ratio=50%.

Since BCS exploits all fully-connected layers, it has the most

parameters and the largest model size. Compared with the

other three CNN-based methods, our OPINE-Net reduces the

parameters by half due to that no additional parameters are

introduced in the initialization subnet. Remember that the

learned Φ by OPINE-Net is binary. If we use one bit instead

of 4 bytes to represent one element in the Φ, then the model

size of OPINE-Net can be further reduced to 0.31MB from

2.48MB. The last row records the average running time on a

512×512 image with GPU. Note that the computational time

of OPINE-Net is less than 15 millisecond (ms), which leads

to more than 60 frames-per-second (FPS).

V. CONCLUSION AND FUTURE WORK

Inspired by traditional optimization, we propose a novel

framework to design a structured deep network for adap-

tive sampling and recovery of image compressive sensing

(CS), which is dubbed OPINE-Net, as well as its enhanced

version OPINE-Net+. With the incorporated orthogonal and

binary constraints of sampling matrix. the proposed OPINE-

Nets possess well-defined explicability, and make full use of

the merits of both optimization-based and network-based CS

methods. All the parameters in OPINE-Nets are discriminately
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learned end-to-end. Some interesting findings of learned Φ

are presented. Compared with existing network-based meth-

ods, the proposed hardware-friendly OPINE-Nets reduce the

number of learnable parameters by half and achieves about 8×
model compression rate improvement. What’s more, OPINE-

Nets greatly improve upon the results of state-of-the-art CS

methods, while maintaining a real-time speed. Since the de-

veloped framework is quite general, one direction of interest is

to extend OPINE-Net to video application or to other scenarios

with joint sampling and recovery.
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