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Abstract: A system that can fly off and touches down to execute particular tasks is a flying robot.
Nowadays, these flying robots are capable of flying without human control and make decisions
according to the situation with the help of onboard sensors and controllers. Among flying robots,
Unmanned Aerial Vehicles (UAVs) are highly attractive and applicable for military and civilian
purposes. These applications require motion planning of UAVs along with collision avoidance
protocols to get better robustness and a faster convergence rate to meet the target. Further, the
optimization algorithm improves the performance of the system and minimizes the convergence
error. In this survey, diverse scholarly articles were gathered to highlight the motion planning for
UAVs that use bio-inspired algorithms. This study will assist researchers in understanding the latest
work done in the motion planning of UAVs through various optimization techniques. Moreover, this
review presents the contributions and limitations of every article to show the effectiveness of the
proposed work.

Keywords: unmanned aerial vehicle; motion planning; optimization techniques

1. Introduction

Flourishing high-tech innovations are making aerial robots an integral part of our
daily lives. There are extensive research and analyses on flying robots that possess the
mobility given by flight [1,2]. Among these, Unmanned Aerial vehicles (UAVs) are vastly
used flying robots due to these distinguishing advantages over others, i.e., budget-friendly,
small-sized, lighter in weight, and portable. Moreover, the state-of-the-art characteristics
of UAVs are position controlling, sensor employment, auto-level application, structure
monitoring, etc. [3–5]. It also has a diverse array of applications, whether in the military
or civilian sectors [6]. There are two primary models of UAVs; one is fixed-wing, and the
other one is multi-rotor UAVs. The essentials of UAV performance are higher in complex
tasks or uncertain environments. Usually, a single UAV has a small size, which limits its
volume of sensing, communication, and computation [7]. Thus, cooperative UAVs working
together have more benefits and potential results in comparison to a single UAV [8]. A few
of them are cost and operation time reduction, low failure of missions, and achievement of
higher flexibility, survivability, configurability, and multi-tasks capability [9].

Background: It is one of the utmost evolving technologies from the 18th century and is
advancing till now. At first, in 1849, Montgolfier’s French brothers and Austrians employed
unmanned balloons filled with bombs [10]. The development of UAVs with cameras
occurred in 1860, which helped with vigilance [11]. In 1917, Charles F. Kettering invented
an Aerial Torpedo and named unmanned balloons bugs. The Royal Navy tested a radio-
controlled pilotless aircraft during the 1930s [12]. The 1940s were marked by operation
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Aphrodite, in which a formation of UAVs with handheld control took place for the first time
and radio control-based Queen Bee was developed. A few of them were Pioneer, Predator,
Ryan fire bee, etc. In 2003, Amazon started using UAVs commercially [13].

Related Work: Extensive analysis of various core issues on UAVs related to motion
planning under different circumstances and environments [14]. To design motion control
protocols and select path planning techniques, many problems and factors require serious
considerations [15]. Numerous researchers have proposed distributed consensus-based
motion controls for results with efficacy and accuracy. Some developed leader-follower
strategies for efficient outcomes [16]. Some analyses have used bio-inspired algorithms
for better path planning with minimal run time. Many employed hybrid algorithms for
optimal path planning and achieved a reduction in cost and convergence time [17].

Motivation and Contribution: The motivation for this paper is to assemble various
strategies used in different research together in a single place. This will help researchers
select the best strategy for their required missions while comparing the explorations and
exploitations of all the strategies. To overcome the hurdles of different limitations, uncer-
tain disturbances, and complexities, appropriate strategies are essential. This makes the
system more stable and efficient and reduces the convergence rate and cost. The prime
contributions of this review paper are:

A. The evaluation of the challenges faced by UAVs under different scenarios.
B. Summarizing various promising motion planning techniques and algorithms for

determining the optimum path for UAVs.
C. To gather the contributions and limitations presented in each article.

This review is based on the research studies and publications from reputed authors in
the field of motion planning techniques used for UAVs over the last three years.

Organization: The layout of this paper has many sections, of which Section 2 discusses
the challenges that a UAV faces. Section 3 reviews recent developments in motion control
and path planning mechanisms. Section 4 evaluates the motion planning and optimization
algorithms. Section 5 presents the discussion. Section 6 provides the conclusion, and
Section 7 gives directions for future work.

2. Challenges in Unmanned Aerial Vehicles

There are extensive investigations regarding UAVs, but still, they face various chal-
lenges. The prime challenges that all the researchers face include the selection of UAVs with
appropriate path planning that is suitable for the mission [18]. Then, forming efficient mo-
tion control and achieves optimal path planning. Moreover, employing proper techniques
for navigation and communication so that obstacle avoidance and collision avoidance are
possible. Along with this certification, regulation and human-machine interface issues are
of much importance. Below are some of the challenges that require serious consideration:

2.1. Navigation and Guidance

UAVs have to track their mobility by measuring their distances, making maps, and
sensing physical surroundings. To determine the positions of aerial robots, it is essential to
develop a navigation system, which is automatic and does not require human interven-
tions [19]. These robots are for flying at higher altitudes and under different environments
and hazards. Therefore, the safety and reliability of the system to operate properly are
major challenges.

2.2. Obstacle Detection and Avoidance

The navigation of UAVs is much influenced by obstacles and collisions. Providing
UAVs with an ideal environment is not a viable option. Obstacles that come in the path can
be avoided. Moreover, the performances of multiple aerial robots are more beneficial and
efficient than a single flying robot. Working in groups can result in collisions. UAVs must
be furnished with algorithms or techniques that can handle these issues [20].
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2.3. Shape and Size

Nowadays, UAVs are widely used for different purposes. They are required to fly at
different levels with different ranges. Some have to stay for a longer period to accomplish
their missions. Some use runways for flying and landing. Some have to pass through
narrow areas. To solve all these issues, it is necessary to consider the appropriate shapes
and sizes of UAVs according to the missions [21]. Figure 1 shows some of these challenges
faced by UAV [22].
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2.4. Formation Control and Path Planning Issues
2.4.1. Formation Control Issues

There are numerous studies on motion control, but it still lacks and requires consider-
ation and further handling. For example, there stands a need to tackle distributed levels
with their effects properly. Similarly, machine learning and reinforcement learning require a
longer time for the online learning period and huge data sets for offline training. Therefore,
the integration of artificial intelligence (AI) techniques into control protocols is essential.
One more challenge in motion control protocol is its robustness, which is highly influenced
by environmental disturbances [23].

2.4.2. Path Planning Issues

Path planning is to obtain a path for UAVs from the starting to the goal point in such a
way that they will carry out their tasks efficiently. UAVs require optimal paths that satisfy
their performance constraints and ensure collision avoidance. Such optimal and dynamic
paths consume less time and energy. Path planning is a global optimization problem that
requires various technologies and algorithms to be integrated [24].

Among all the challenges, the most crucial is path planning and motion control for
UAVs. These require considerations so that the UAV can perform well during tasks under
any environmental conditions. Several research centers, academies, and industries are
analyzing the aforementioned challenges and trying to overcome these issues by developing
more improved strategies. Section 3 reviews the development of various protocols and
techniques used for the above challenges.

3. Recent Developments in UAVs

UAV technology is expanding due to technological innovations. UAVs are becoming
more affordable and easy to use, which enhances their application in diverse areas [6]. This
paper reviews the strength and development of navigation, communication, shape and size,
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collision avoidance, motion control methods, and path planning techniques. It deliberates
how they provide solutions to challenging problems while making a considerable impact.

3.1. Developments in Navigation and Guidance of UAVs

Navigation technology is quite significant for UAV flight control. Various developed
navigation technologies possess different features. Such as satellite, geometric, integrated,
Doppler, and inertial navigations. Different purposes require different navigation technolo-
gies. The main navigation systems for UAVs are a tactical or medium range navigation
system and a high-altitude long-endurance navigation system [25,26]. Development in
navigation can be evaluated as:

D. High-performance Navigation with Data Fusion: Navigation uses a Kalman filter;
China introduced a data fusion mechanism using this filtering technology. This data
fusion is improved by using AI technology. It helps to determine the flight status and
guarantees the normal flight of UAVs.

E. New Inertial Navigation System: Many researchers rendered services to develop
optical fiber inertial navigation and laser inertial navigation. Improvement was
required by the industry. The widely used silicon micro resonant accelerometer helps
in UAV navigation. It simplifies the weight and volume, consumes less energy, and
refines flight pliability.

F. Intelligent Navigation Ability: An emergency navigation system utilizes various
adaptive technologies along with mission characteristics and modes. Moreover,
information technology is applied to boost the UAV technology and upgrade the
navigation system.

3.2. Developments in Shape and Size of UAVs

Earlier, UAVs were applicable for military purposes only, but now they are used for
various tasks. This is all due to the rapid progress in developing UAVs with a wide range
of shapes and sizes [27]. Different UAVs are utilized for different purposes. According to
physical types, we have fixed-wing and multi-rotor UAVs.

Fixed-Wing UAVs: These UAVs possess only one long wing on any body’s side and
require a runway or a broad and flat area. These can consume less battery; therefore, they
can stay in the air for maximum hours. They are widely used for long-distance purposes,
especially for military surveillance.

Multi-Rotor UAVs: These UAVs are built up with multiple propellers and rotors and
do not require a runway for vertical flying and landing. With more rotors, the position of
UAVs can be controlled in a better way. Mostly quad-rotors are used for small and regular-
sized UAVs. Similarly, UAVs are classified based on their sizes into micro or mini-UAVs,
tactical UAVs, strategic UAVs, and special-task UAVs.

Micro and Mini-UAVs: Many missions require small UAVs. Such as surveillance
inside buildings, Nuclear, Biological, and Chemical (NBC) sampling, the agricultural sector,
and broadcast industries. Micro and mini-UAVs were developed for these purposes. The
take-off weight of a micro-UAV is 0.1 kg, and a mini-UAV is less than 30 kg. Both fly below
300 m with less than 2 h of endurance. The communication range is up to 10 km.

Tactical UAVs: Missions such as search and rescue operations, mine detection, com-
munication relays, and NBC sampling use tactical UAVs. They can have a take-off weight
of up to 1500 kg. Tactical UAVs can fly up to 8000 m with an endurance of up to 48 h. The
communication range is around 10–500 km.

Strategic UAVs: For airport security, communication relays, intercept vehicles, and
RSTA, strategic UAVs are highly suitable. They can have a maximum take-off weight of
around 12,500 kg. They can fly up to 20,000 m with 48 h of endurance. The communication
range is more than 2000 km.
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3.3. Developments in Collision Avoidance of UAVs

A collision usually occurs between a UAV and its neighboring UAV or an obstacle
whenever there is less distance between them. A collision avoidance system (CAS) makes
sure that no collision takes place with any stationary or moving obstacle [28]. The CAS first
requires the perception phase and is then followed by the action phase.

Perception Phase: CAS detects an obstacle in this phase while utilizing various active
or passive sensors according to their functionality principle. Active sensors possess their
sources for wave emission or light transmission along with the receiver or detector. The
most-used active sensors include radars, sonar, and LiDARs. All of these use minimum
processing power, give a quick response, are less affected by weather, scan bigger portions
in minimum time, and can return various parameters of the obstacles effectively. Whereas
passive sensors are only capable of reading the emitted energy from another source such
as the sun. Widely used passive sensors are visual or optical cameras and infrared (IR) or
thermal cameras. The image formed by a visual camera requires visual light, whereas a
thermal camera requires IR light.

Action Phase: This phase utilizes four prime strategies for collision avoidance. These
are geometric, force-field, optimized, and sense and avoid methods. The geometric ap-
proach utilizes the information about the location and velocity of the UAV along with
its obstacle or neighbors. This is performed by trajectory simulation in which nodes are
reformed for collision avoidance. In force-field, the approach manipulates the attractive or
repulsive forces to avoid collisions. In the optimized method, the parameters of obstacles,
which are already known, are utilized for route optimization. In the sense and avoid
technique, runtime decisions are made based on obstacle avoidance. The development in
CAS helps in simple tasks by warning the vehicle operator and in complex tasks partially
or completely controlling the system for collision avoidance.

3.4. Developments in Formation Control Protocols of UAVs

Formation control aims to generate control signals, which pilot UAVs to form a specific
shape. Along with the architecture of motion control, the developed strategies for obtaining
it are of much importance [29].

Formation Control Design: Motion controls of UAVs require a flow of information
within its team; therefore, it uses communication architectures.

There may be a lack of availability of global information in a single UAV for a whole
operation. Due to its restricted capabilities to compute and communicate, centralized
architecture is considered or used rarely. Decentralized architecture is preferred more for
multi-UAV systems and uses the consensus algorithm technique for designing it. It is based
on local interactions with the neighbors while maintaining a certain distance.

Formation Control Strategies: Various developed control approaches are discussed
here that aid the researchers and possess certain benefits and limitations. They are:

i. Leader-Follower Strategy: As obvious from its title, this approach assigns one
UAV as a leader, while the remaining UAVs as followers in a group. The mission
information remains with the leader only while the followers chase their leader with
pre-designed spaces. The major benefit of this strategy is that it can be implemented
simply and easily. Due to leader dependency, this strategy faces single-point failures.
This limitation can be compensated by assigning multi-leaders and virtual leaders.

ii. Behavior-based Strategy: This approach produces control signals, which consider
several mission essentials, by adding various vector functions. Its greatest merit
is that it is highly adaptable to any unknown environment. Its demerit is the
requirement to model it mathematically, which leads to difficulty in analyzing
system stabilities.

iii. Virtual Structure Strategy: This approach considers rigid structure for the desired
shape of the group of UAVs. To achieve the desired shape, there is a need to fly each
UAV towards its corresponding virtual node. Abilities to maintain the formation
and fault-tolerance are its greatest advantages. This approach faces failure when the
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detection of a UAV is faulty in the formation. The compensation for this faulty UAV
requires reconfiguration of the formation shape. This approach calls for a strong
ability to compute, which is a disadvantage of this approach.

3.5. Developments in Path Planning Techniques of UAVs

Path planning aims to design a flight path towards a target with fewer chances of being
demolished while facing limitations. Extensive research proposed different methods that
overcome the path planning complexity of UAVs. To design algorithms for path planning,
certain parameters, such as obstacles, the environment, and constraints, require selection
with considerations [30]. The approaches employed for path planning have classifications
based on their features and methodology.

4. Motion Planning and Optimization
4.1. Motion Planning

In robotics, motion planning refers to the act of dissolving a specified mobility goal
into distinct motions. However, it is used to fulfill movement limitations while also
potentially optimizing some components of the motion. However, motion planning is the
challenge of planning for a vehicle that operates in areas with a high number of objects,
performing actions to move through the environment as well as modify the configuration
of the objects [31]. Even though the motion planning situation has arisen in continuous
C-space, the calculation is discrete. As a result, we need a means to “discretize” the problem
if we want an algorithmic solution. As a result, there are mainly two types of planning,
combinatorial planning and sampling-based planning.

4.1.1. Combinatorial Motion Planning

Combinatorial Motion Planning is a type of motion planning that involves more than
one approach to achieve the task, as shown in Figure 2. Although combinatorial motion
planning discovers the pathways through the continuous configuration space, by using
these strategies, researchers obtain a better result. The effective combination of algorithms
is commonly based on bio-inspired algorithms with different approaches.
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4.1.2. Sampling-Based Motion Planning

Random selection is used in sampling-based motion planning to build a graph or tree
(path) in C-space on which queries (start/goal configurations) can be solved, as shown
in Figure 3. To increase planner performance, we look at a variety of general-purpose
strategies. At times over the past years, sampling-based path planning algorithms, such as
Probabilistic Road Maps (PRM) and Rapidly Exploring Random Trees (RRT), have been
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demonstrated to perform effectively in reality and to provide theoretical assurances such
as probabilistic completeness.
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4.2. Optimization Approach in Motion Planning

The world has a desire for optimization concerning every natural phenomenon and
its aspects. Therefore, many researchers developed optimization methods for multi-
dimensional problems in various areas. These algorithms provide optimum solutions
to the motion planning problems of UAVs, such as reducing production costs, conver-
gence rate, energy consumption, and enhancing strength, efficiency, and reliability. The
optimization algorithms are classified into biological algorithms, physical algorithms, and
geographical algorithms, as presented in Figure 4 [34,35]. Biological algorithms have
further classifications, namely swarm-based and evolution-based algorithms.
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Biological Algorithms

Bionic researchers on a natural pattern developed nature-based algorithms and termed
them biological algorithms. These are stemmed according to the correspondence between
biological evolution and activities. The prime benefit of biological algorithms is their
strength to tackle static as well as dynamic threats and ensure offline working. Without
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classifying these algorithms into further groups, we can label them as memetic algorithms.
On the contrary, we can classify these algorithms into two categories, evolution-based
algorithms and swarm-based algorithms [37].

A. Evolution-Based Algorithms

An evolution-based algorithm provides an optimal path for UAVs with consideration
of three aspects. These aspects include travel distance, cost incurred, and path reliability
cost to track that path. These evolutionary algorithms choose practical and achievable
solutions randomly as the first generation and consider the parameters later to explain
which randomly selected feasible solutions are appropriate or not. For determining curved
paths with essential aspects in 3D terrain; an offline path planner with an evolutionary al-
gorithm is required [38]. By taking aspects into account, for example, beeline to destination,
min-max distance related to targets, and topographical obstacles free tracks, one can display
the B-spline curve as a flying path. Some examples of these algorithms include Genetic
algorithm (GA), Evolutionary Programming (EP), Evolutionary Strategy (ES), Differential
Evolution algorithm (DE), and Harmony Search algorithm (HS).

GA gives the best optimal results in search space using three steps selection, crossover,
and mutation. Besides its benefits, sometimes it gives long and premature convergence and
loses optimal results. Moreover, it is not applied to real-time data. In 1990, Fogel introduced
a technique called EP. It reaches optimal results after many iterations. Similarly, another
evolutionary algorithm is ES, which uses specified principles in optimization problems. DE
employs real coding instead of binary coding. It refines the final path while reducing the
computational cost. The evolutionary algorithm that mimics a musician’s improvisation
process is the HS algorithm. It shows promising results in optimization problems. It is
further improved with various versions.

B. Swarm-Based Algorithms

Nature-based along with population-based algorithms evolved into swarm-based
algorithms [39]. The swarm represents the combined behavior of all the agents. Agents in a
swarm have limited capabilities, but working together, they achieve the given tasks while
being at distances. As a result of which, fast, low cost, and optimal solutions are obtained
even in the uncertainties and complexities. Some examples of these algorithms include
Artificial Immune System (AIS), Particle Swarm Optimization (PSO), Bacteria Foraging Op-
timization algorithm (BFO), Cuckoo Search algorithm (CS), Artificial Bee Colony algorithm
(ABC), Ant Colony Optimization algorithm (ACO), Coral Reef Optimization algorithm
(CRO), Teaching–Learning Based Optimization algorithm (TLBO), Firefly algorithm (FA),
Shuffled Frog Leaping algorithm (SFLA), and Pigeon-Inspired Optimization (PIO).

AIS is an intelligent swarm-based algorithm that is modeled on the natural principles
of the immune system of humans. It has the characteristics of the immune system of
memory and learning to utilize for solving problems. It gives adequate trajectories in
path planning with less computation. The development of PSO is based on the mobility
theory of an insect crowd. In the layout of this fact-finding approach, every solo particle in
the crowd recognizes the points given by the last swarm and produces a velocity vector
towards the target point. The key benefit of this algorithm is that it is capable of obtaining
optimal path planning in 3D, whereas its disadvantages are premature convergence and
high time complexity. Passino introduced an algorithm based on the foraging behavior of
Escherichia coli bacteria that lies in human intestines. He labeled this intelligent algorithm
as BFO.

It provides rapid convergence and a global search. The CS algorithm replaces the
average solutions and applies the solution that is potentially better. The ABC algorithm
provides solutions to various optimization problems having constraints. The ACO algo-
rithm is based on depositing characteristics of ants during food search and proved to be a
meta-heuristic technique to derive the shortest path while dealing with continuous and
multi-objective path planning issues. The CRO algorithm works efficiently with many
advantages for difficult optimization problems. The TLBO algorithm requires minimum
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computational memory and can be employed easily. FA works efficiently for multimodal
optimization problems. It finds the best location for UAVs with less energy consump-
tion. SFLA depends on frogs’ clusters that are looking for food. It gathers the best frog,
which can give local optimum and evolves the frog with inaccurate positions. It continues
making iterations until the accomplishment of an optimal path with better convergence.
PIO works via sharing information and striving among all to quickly achieve the optimal
global solution.

C. Physical Algorithms

Heuristic algorithms that imitate physical laws and processes of nature are known
as physical algorithms. These algorithms copy the physical conduct and characteristics
of matter [40]. These are applicable for non-linear, high-dimensional, multimodal as well
as complex optimization problems. There is very little research available on physical
algorithms. These are categorized as Simulated Annealing (SA), Gravitational Search
algorithm (GSA), Chaotic Optimization algorithm (COA), Intelligent Water Drops algorithm
(IWD), and Magnetic Optimization algorithm (MOA). SA is suggested after a technique,
annealing in metallurgy. It is employed for more complex computational optimization
problems and gives approximate global optimum within a fixed time. GSA is a newly
introduced algorithm that mimics laws of motion and gravitational law. It is applied to
optimization problems with various functions. COA is an easily implemented and powerful
mechanism that can escape convergence to a local optimum within a short time. The IWD
algorithm is based on how natural rivers can find the best paths among many probable
paths to their ultimate destination. MOA, a newly emerging algorithm, is derived from
the basic principles of magnetism. The dual function of this algorithm can balance the
disadvantages against the advantages in optimization problems.

D. Geographical Algorithms

The meta-heuristic algorithms that give random outcomes in geographical search
space are labeled as geographical algorithms [41]. Some of the geographical algorithms
are the Tabu Search algorithm (TS) and Imperialistic Competition algorithm (ICA). The TS
algorithm determines an optimal solution among various feasible solutions. Its memory
can recall the recent optimal solution and guide the search to trace the previous solutions.
It is employed for optimization problems in various areas. Another geographical algorithm
for the global best solution in optimization is ICA. It imitates sociopolitical imperialist
competition. It involves imperialistic competition among empires along with assimilation
and revolution of colonies and so on. Due to its robust searching ability, it provides many
benefits in optimization problems.

Among all the aforementioned algorithms, most are based on the swarm. These
population-based algorithms are robust at obtaining better global solutions via their coop-
erative and self-adaptive abilities. These algorithms are employed for solving challenging
issues of UAVs. This review paper gives details on a comparison of the aforesaid algorithms
used for motion control and path planning of UAVs.

5. Related Review

To succeed, most motion planning approaches necessitate the use of appropriate
optimization algorithms. These strategies can be used on a single UAV as well as a group
of UAVs or a swarm of UAVs. When several UAV missions are viable for civilian objectives,
a nature-inspired algorithm is required for control and optimization. Table 1 presents
a detailed overview of the manuscripts related to motion planning problems of UAVs.
The review also helps scholars with the optimization techniques applied to single or
multiple UAVs.
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Table 1. A detailed study on the Motion Planning of UAVs using the optimization approach.

Ref. Topic Optimization
Approach UAV Type Contributions Limitations

[42]

“Collision free 4D path
planning for multiple
UAVs based on spatial
refined voting mechanism
and PSO approach”

PSO Multiple

� Enhances searching
ability and improves
velocity.

� Gives collision-free
paths.

� Returns to initial
points in extreme
conditions.

[43]

“Dynamic Discrete
Pigeon-inspired
Optimization
for Multi-UAV
Cooperative Search-attack
Mission Planning”

D2PIO Multiple

� Ability to switch task.
� Superior performance

in discrete
environment.

� Frequent switching
led to incomplete
tasks.

� Computational cost
is higher due to
population size.

[44]

“MVO-Based Path
Planning Scheme with
Coordination of UAVs in
3-D Environment”

MA Multiple

� Gives optimized path
costs.

� Maintains
coordination.

� Do not give dynamic
obstacles.

� Does not consider
hardware-oriented
constraints.

[45]

“UAV trajectory
optimization for
Minimum Time Search
with communication
constraints and collision
avoidance”

ACO Single

� Detects the target
quickly.

� Maintains connection
with GCS and avoids
collision.

� Greater
computational time.

� A mandatory
ground connection is
needed to obtain
desired results.

[46]

“Efficient path planning
for UAV formation via
comprehensively
improved particle swarm
optimization”

IPSO Multiple

� Boosts the
convergence rate.

� Improves the solution
optimality.

� Does not allow path
re-planning with
moving and
unexpected
obstacles.

[47]

“Secrecy improvement via
a joint optimization of
UAV relay flight path and
transmit power”

PSO Single

� Enhances the secrecy
capacity.

� Allows optimum
position flying.

� Needs further
improvement for
full-duplex relaying.

[48]
“Trajectory Planning for
UAV Based on Improved
ACO Algorithm”

MACO Multiple

� Optimized initial
trajectory

� Proposed trajectory
correction schemes for
collision avoidance.

� No real-time
trajectory planning
used.

[49]

“Optimized Path-Planning
in Continuous Spaces for
Unmanned Aerial Vehicles
Using Meta-Heuristics”

DE
PSO
GA

Multiple

� Less computation for
first feasible path.

� DE overtakes PSO and
GA in convergence.

� Work exists for static
environment only.

� No real-time
implementation.

[50]

“Multi-UAVs trajectory
and mission cooperative
planning based on the
Markov model”

SA Multiple

� Improves drone
survivability.

� Solves multi-aircraft
mission planning
problems.

� Needs NP problem
exploration.
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Table 1. Cont.

Ref. Topic Optimization
Approach UAV Type Contributions Limitations

[51]

“PSO-based
Minimum-time Motion
Planning for Multiple
Vehicles Under
Acceleration and Velocity
Limitations”

PSO Multiple

� Minimizes the
travelling time for
slowest UAV.

� Reduces the
parameters for
mathematical
modeling.

� No control law for
motion tracking.

� Only applied to
selected vehicles.

[52]

“Information fusion
estimation-based path
following control of
quad-rotor
UAVs subjected to
Gaussian random
disturbance”

GIFC Single

� Reduces the design
complexity.

� Allows trajectory
tracking with high
accuracy.

� Contains a huge
amount of matrix
inversion
operations.

[53]

“3D multi-UAV
cooperative
velocity-aware motion
planning”

A* Multiple

� Shows a higher
possibility of
reaching
destinations.

� Reduces time costs
and paths.

� Does not serve
complex missions
and more UAVs.

[54]

“Unmanned aerial vehicle
swarm distributed
cooperation method based
on situation awareness
consensus and its
information processing
mechanism”

SDCM Multiple

� Works efficiently in
a complex and
antagonistic mission
environment.

� Obtains the mission
essentials at a
bearable cost.

� On a larger scale,
communication
topology and
management mode
changes.

[55]

“A co-optimal coverage
path planning method for
aerial scanning of complex
structures”

CCPP
PSO Multiple

� Optimizes path
efficiency and
inspection quality.

� Provides improved
flexible options.

� The exponential
growth of
complexity occurs as
the problem size
increases.

� Needs uniform
configuration spaces.

[56]

“A novel hybrid grey wolf
optimizer algorithm for
unmanned aerial vehicle
(UAV) path planning”

Hybrid
GWO Single

� Generates smooth
flight routes.

� Accelerates the rate
of convergence and
retains the ability to
explore.

� The optimal value is
lower than GWO,
SA, and SOS.

� Execution time is
higher than GWO in
all cases.

[57]

“Continuous-Time
Trajectory Optimization
for Decentralized
Multi-Robot Navigation”

DA Multiple

� Generates
collision-free
trajectories.

� Reduces jerk and
time.

� Robustness and
scalability can fail
sometimes.

� It has dynamic
speed limits.
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Table 1. Cont.

Ref. Topic Optimization
Approach UAV Type Contributions Limitations

[58]

“A Self-Heuristic
Ant-Based Method for
Path Planning of
Unmanned Aerial Vehicle
in Complex 3-D Space
with Dense U-Type
Obstacles”

SHA Single

� The number of retreats
reduced significantly.

� Time analysis enhanced
compared to basic ACO.

� Applied to static
obstacles only.

� Actual taboo
nodes are not used.

[59]
“A novel mission
planning method for
UAVs’ course of action”

TDRS Single

� Generates multiple
schemes automatically.

� Completes tasks in a
shorter time.

� Time optimization
is essential for war
scenarios.

� Variations in threat
and utilization
factors.

[60]

“A multi-objective
pigeon-inspired
optimization approach to
UAV distributed flocking
among obstacles”

Improved
MPIO Single

� Guarantees stable and
collision-free flocking.

� Prior environmental
details and the number
of UAVs are essential.

� Lacks convergence
analysis.

� Deadlocks can
occur.

� Emergency
conditions and
dynamic obstacles
are not tested.

[61]
“Application of the ACO
algorithm for UAV path
planning”

ACO Single

� Intermediate waypoint
concept introduced for
ACO.

� Improved fitness value.

� Search space is
bigger due to ACO
hunting
procedure.

� Higher
computational
complexity.

[62]

“A method of feasible
trajectory planning for
UAV formation based on
bi-directional fast search
tree”

Bi-RRT Single

� Solves the minimum
efficiency of compound
models in complicated
environments.

� Yields safe and efficient
formation and obstacle
avoidance.

� GA algorithm has
a smoother path
than Bi-RRT.

� Can move very
close to an
obstacle.

[63]

“Towards a PDE-based
large-scale decentralized
solution for path planning
of UAVs in shared
airspace”

PDE Single

� Ensures collision-free
and optimal path flight
safety.

� Proves to be
computationally
efficient.

� Does not allow
UAVs to share
their trajectories
during the
mission.

[64]

“Optimized multi-UAV
cooperative path planning
under the complex
confrontation
environment”

Improved
GWO Multiple

� Minimizes fuel costs
and threats.

� Proves to be effective in
cooperative path
planning.

� The average
distance of most
UAVs is greater.
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Table 1. Cont.

Ref. Topic Optimization
Approach UAV Type Contributions Limitations

[65]

“A constrained differential
evolution algorithm to solve
UAV path planning in
disaster scenarios”

CDE Single

� Refines the
limitations.

� Continues the
investigations.

� Used only
unconstrained
optimization
problems.

[66]

“A novel reinforcement
learning-based grey wolf
optimizer algorithm for
unmanned aerial vehicles
(UAVs) path planning”

GWO Single

� Achieves effective
and feasible routes
smoothly.

� Enables each UAV to
perform operations
independently.

� Not efficient in
solving other sorts
of an issue at the
same time while
introducing another
algorithm.

[67]

“Synergistic path planning
of multi-UAVs for air
pollution detection of ships
in ports”

PSO Multiple

� Detects air pollution
efficiently.

� Guarantees
reduction of ship
emissions.

� Does not cover air
control and wind
speed influences.

� Lacks large-scale
data testing.

[68]

“An intelligent cooperative
mission planning scheme of
UAV swarm in uncertain
dynamic environment”

HAPF
ACO Multiple

� Enhances searching
abilities.

� Executes tasks and
avoids collisions and
obstacles efficiently.

� Aims cooperative
search-attacks at
homogeneous UAVs
only.

[69]

“Path planning of multiple
UAVs with online changing
tasks by an ORPFOA
algorithm”

ORPFOA Multiple

� Solves tasks
efficiently with task
preference and
swapping tasks.

� Determines optimal
paths smoothly.

� Needs more
reduction in running
time.

� It has some complex
computations.

[70]

“Path Planning for
Multi-UAV Formation
Rendezvous Based on
Distributed Cooperative
Particle Swarm
Optimization”

DCPSO Multiple

� All UAVs arrived
simultaneously
without collision.

� It avoids all types of
obstacles.

� It cannot be used in
real-time scenarios.

� It takes more time to
avoid collisions.

[71]

“A Performance Study of
Bio-Inspired Algorithms in
Autonomous Landing of
Unmanned Aerial Vehicle”

BOA
MFO
ABC

Single

� MFO obtains the
best points with
minimal run time
and error.

� Gives bearable
accuracy.

� Error is not
optimized.

[72]

“UAVs path planning
architecture for effective
medical emergency
response in future
networks”

CVRP
PSO
ACO
GA

Single

� CVRP outperforms
with the least
runtime and
minimal cost and
enhanced capacities.

� Achieves the proper
navigation.

� Lacks benchmark
solutions. Does not
consider real-time or
complex scenarios.
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Table 1. Cont.

Ref. Topic Optimization
Approach UAV Type Contributions Limitations

[73]

“Path planning of multiple
UAVs using MMACO and
DE algorithm in dynamic
environment”

MMACO
DE Multiple

� Increases the
robustness.

� Preserves the global
convergence speed.

� In multi-colonies,
one colony follows
same path as basic
ACO.

[74]

“Multi-UAV coordination
control by chaotic grey wolf
optimization-based
distributed MPC with
event-triggered strategy”

Chaotic
GWO Multiple

� Gives efficiency in
computations.

� Enhances the global
search mobility
convergence speed.

� Stability
conditions are not
analyzed.

� Has limited
communication.

[75]

“Collective Motion and
Self-Organization of a
Swarm of UAVs: A
Cluster-Based Architecture”

PSO Multiple

� Gives fast
connectivity and
convergence.

� Assures stability
with fewer turns.

� Not implemented
on hardware.

� Focused on a
specific scenario.

[76]

“A Cluster-Based
Hierarchical-Approach for
the Path Planning of
Swarm”

MMACO Multiple

� Gives superior
performance.

� Gives an optimal
path with better
convergence.

� Variation in the
optimization costs
in colonies 2 and 3
is neglected.

[77]

“Cooperative Path Planning
of Multiple UAVs by using
Max-Min Ant Colony
Optimization along with
Cauchy Mutant Operator”

MMACO
CM Multiple

� Finds the optimal
routes with the
shortest distance.

� Avoids collision.

� Enhances the
system complexity.

[78]

“A multi-strategy
pigeon-inspired
optimization approach to
active disturbance rejection
control parameters tuning
for vertical take-off and
landing fixed-wing UAV”

MPIO Single

� Proves to be
superior among all
algorithms to solve
multi-dimensional
searching issues.

� It converges faster
and exploits in a
better way.

� Altitude
fluctuation is still
present.

� Immature result
after 2nd iteration.

[79]

“Landing route planning
method for micro drones
based on hybrid
optimization algorithm”

DO Multiple

� Shows stronger
convergence both
locally and globally.

� Yields better
outcomes than both
single algorithms.

� Speeds up
convergence after
orthogonal
learning.

[80]

“Energy Efficient
Neuro-Fuzzy Cluster-based
Topology Construction with
Metaheuristic Route
Planning Algorithm for
Unmanned Aerial Vehicles”

QALO Single

� Gives more
energy-efficient
results, more rounds,
higher throughput,
and lower average
delay results.

� Selects optimal
routes.

� Does not manage
resources
optimally.
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Table 1. Cont.

Ref. Topic Optimization
Approach UAV Type Contributions Limitations

[81]

“Coordinated path
following control of
fixed-wing unmanned
aerial vehicles in wind”

CPFC Single

� Attains leaderless
synchronization.

� Satisfies UAVs’
constraints and
upper bound path
following errors.

� Requires better
simulation of the
external
environment and the
wireless
communications.

[82]

“A diversified group
teaching optimization
algorithm with
segment-based fitness
strategy for unmanned
aerial vehicle route
planning”

GTO Single

� Gives faster
convergence.

� Handles all the
complex constrained
problems.

� Parameters need
automatic
adjustments.

[83]

“Coverage path planning
for multiple unmanned
aerial vehicles in maritime
search and rescue
operations”

RSH Multiple

� Gives optimal
results in a shorter
time.

� Robust to strong
wind.

� Does not provide
exact solutions for
larger instances.

[84]

“Hybrid FWPS
cooperation algorithm
based unmanned aerial
vehicle constrained path
planning”

FWPSALC Single

� Produces high and
superior quality
solutions.

� Handles constraints
in a better way.

� Gives poor
performance for
fewer number of
particles or a large
number of fireworks.

[85]

“Safety-enhanced UAV
path planning with
spherical vector-based
particle swarm
optimization”

PSO Single

� Reduces the cost
function.

� Gives the shortest
and smoothest paths
with fast
convergence.

� Faces premature
convergence.

In 2019, Yang et al. [42] proposed a spatial refined voting mechanism and PSO al-
gorithm that gave a 4D-space path planning that was collision-free and obstacle-free for
multi-UAVs. Duan et al. [43] used a dynamic discrete pigeon-inspired optimization tech-
nique for search attack missions by using distributed path generation and central tasks
mission. Jain et al. [44] suggested MVO and Munkres algorithms for the path planning and
coordination of multiples, it compared the results with the results of BBO and GSO and
concluded that the proposed algorithm is highly efficient in reducing execution time and
finding optimized path costs. Pérez-Carabaza et al. [45] worked on optimizing trajectories
for UAVs that used less time in searching for targets, avoided collisions, and maintained
communication. Then, there is a comparison of this MMAS-based algorithm with GA and
CEO, and it yielded better results than they yield. Shao et al. [46] used comprehensively
modified PSO for the path planning of UAVs. This method gave a faster and improved
convergence rate and solution optimality when compared with SPSO and MGA.

Mah et al. [47] suggested a joint optimization method that gave the best secrecy
performance to combat eavesdropping on the flight path and transmits power and gave
superior results to the max SNR method. Bo Li et al. [48] designed an improved ACO
algorithm based on the metropolis criterion and predicted three trajectory corrections
schemes for collision avoidance protocols and the inscribed circle method for smoothness.
Geovanni et al. [49] proposed an optimized path planning method using a meta-heuristic in
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the continuous 3D environment. The study also minimizes the path length in the presence
of static obstacles by manipulating control inputs. Ning et al. [50] solved the task-planning
issue of multi-target and multi-aircraft by proposing a two-layer mission-planning model
depending on the annealing and TS algorithms. Lihua et al. [51] gave an online priority
configuration algorithm for the UAV swarm flight in an environment having compounded
obstacles and showed superiority in cost of energy and time in simulation results.

In 2020, Xu et al. [52] solved the LQG problem of quad-rotor UAVs by presenting
a Gaussian information fusion control (GIFC) method that allowed accurate trajectory
tracking and reduced the design complexity. Hu et al. [53] proposed a 3D multi-UAV coop-
erative velocity-aware motion planning using VeACA2D and VeACA3D. While comparing
with LyCL and PALyCL, this algorithm gave higher possibilities of reaching the destination
while following shorter paths and reduced time costs. Gao and li [54] considered the
distributed cooperation approach formed on situation awareness consensus and its details
processing method for UAV swarms. Shang et al. [55] linked a co-optimal coverage path
planning method with a PSO algorithm for aerial scanning of compounded models. Qu
et al. [56] evaluated a novel hybrid grey wolf optimizer algorithm with MSOS and gave
better and improved results for UAV path planning in a complex environment.

Krishnan et al. [57] optimized the continuous-time trajectory by combining a decentral-
ized algorithm with third-order dynamics that helped robots to re-plan trajectories. Zhang
et al. [58] introduced an ant-based self-heuristic method for path planning of multi-UAVs.
In this study, the authors used U-shaped dense complex 3D space to reduce the confusion of
obstacle detection. It reduces the deadlock state with a two-stage strategy. Zhou et al. [59]
utilized the multi-string chromosome genetic and cuckoo search algorithms to improve
the MDLS algorithm. This improved algorithm proved that it had a better global opti-
mization capability and diversified scheme options, and completed tasks in a shorter time
as compared to the simplified MDLS. Qiu and Duan [60] developed an improved MPIO
formulated on hierarchical learning behavior that gave improved distributed flocking
among obstacles. Comparison with MPIO and NSGA-II showed that the improved MPIO
proved to be more suitablefort handling the various-objective optimization and obstacle
avoidance for UAV flocking.

Konatowski and Pawłowski [61] presented a path planning for UAVs with the help
of ACO. It uses waypoints along its path with unknown parameters. The proposed work
reduces the computational time and obtains the optimal route. Huang and Sun [62] detailed
an approach to feasible trajectory planning formation that depends on a bi-directional fast
search tree for UAVs. Radmanesh et al. [63] applied a PDE-based large-scale decentralized
approach and compared it with centralized and sequential approaches to obtain collision-
free and optimal path planning of multiple UAVs. Xu et al. [64] linked the grey wolf
optimizer algorithm with the PSO algorithm to achieve cooperative path planning of multi-
UAVs under the threats of ground radar, missiles, and terrain. Yu et al. [65] introduced an
improved constrained differential evolution algorithm that reduced the fitness functions
and satisfied the three constraints, namely, height, angle, and slope of UAVs.

Later, this improved algorithm was compared with FIDE, DE variants, RankDE,
CMODE, and (µ + γ) − CDE and proved that the proposed CDE generated more optimal
paths smoothly. Qu et al. [66] used a reinforcement learning-based grey wolf optimizer
algorithm. Then, compared the outcomes with the results of GWO, MGWO, EEGWO,
and IGWO algorithms and concluded that the proposed RLGWO gives better, feasible,
and effective path planning for UAVs. Shen et al. [67] solved the air pollution detection
problem for ships in ports and evaluated a synergistic path planning of multiple UAVs. He
suggested an improved PSO algorithm with a Tabu Search (TS) table, proved the efficient
detection of air pollution, and ensured less emission by ships.

Zhen et al. [68] gave an improved method that is a hybrid artificial potential field with
ant colony optimization (HAPF-ACO) method that executes tasks and avoids collisions and
obstacles efficiently for the cooperative mission planning of fixed-wing UAVs. The results
were compared with ACOAPF and PSO algorithms that proved the suggested algorithm
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to be highly efficient in task execution. Li et al. [69] detailed an ORPFOA algorithm that
allows online changing tasks for optimal path planning of multi-UAVs for solving faster
and giving higher optimization. Then, the outcomes of this suggested algorithm were
compared with GWO, PSO, PIO, PSOGSA, PPPIO, and FOA. The proposed algorithm gave
faster convergence and optimization than the others.

Shao et al. [70] obtained multi-UAV path planning by using the distributed cooperative
PSO approach. This study presents a complex dynamic environment with a higher success
rate of 0.9 compared to CCGA. Ilango and R. [71] studied Bio-inspired algorithms and
analyzed their performance in the autonomous landing of UAVs. Wu et al. [72] applied a
new method to UAVs that is based on consensus theory for their formation control as well
as obstacle avoidance.

In 2021, recent research by Ali et al. [73] developed a multi-colonies optimization
and combined MMACO and DE techniques for the cooperative path planning of many
UAVs in a dynamic environment. WANG et al. [74] proposed an MPC framework along
with Chaotic Grey Wolf Optimization (CGWO) and an event-triggered approach to give
UAV coordination control and trajectory tracking. Ali et al. [75] used combined movement
along with the reflexivity of a UAV swarm via the cluster-based technique by combining
the PSO algorithm with the MAS. It showed better convergence and durability. Shafiq
et al. [76] suggested a cluster-based hierarchical approach for control and path planning.
It quickly finds the optimal path along with the minimal costs. Ali et al. [77] applied a
hybrid algorithm of the max-min ant colony optimization algorithm with CM operators on
multiple UAVs for collective path planning. It gives the optimal global solution in minimum
time. He and Duan [78] considered flying, as well as touching down, issues and suggested
an improved PIO for tuning the parameters of ADRC. Liang et al. [79] developed an optimal
route planning for the landing of micro-UAVs using hybrid optimization algorithms with
orthogonal learning.

Pustokhina et al. [80] designed clustering that is energy efficient and plans optimal
routes by developing Energy Efficient Neuro-Fuzzy Cluster-based Topology Construction
with the MRP technique for UAVs. Chen et al. [81] suggested a coordination strategy for
fixed-wing UAVs with wind disturbances and developed a hardware-in-the-loop (HIL)
simulation. Jiang et al. [82] worked on path planning for UAVs under various obstacles and
proposed a diversified group teaching optimization algorithm with a segment-based fitness
approach that has better global exploration ability. Cho et al. [83] gave a coverage path
planning strategy with two phases for multi-UAVs that helped in searching and rescuing
in maritime environment. Zhang et al. [84] presented a hybrid FWPSALC mechanism for
the path planning method for UAVs that proved to be robust in searching and handling
constraints and had a better speed convergence. Phung and Ha. [85–88] developed a novel
technique with spherical vector-based particle swarm optimization (SPSO) that ensures
safety, feasibility, and optimal paths and gives results better than classic PSO, QPSO, θ-PSO,
and various other algorithms.

6. Discussion

The most crucial challenge in the field of UAVs is efficient motion planning. It requires
a state-of-the-art optimization method to counter issues. This research evaluates various
challenges faced by UAVs and all the current designs of motion planning techniques.
The recent developments discussed the results in high adaptable ability, cost and time
reductions in task executions, energy efficiency, obstacles, and collision avoidance.

While reviewing various motion planning approaches, it became evident that most of
the researchers preferred to use an optimization approach with nature-inspired algorithms.
While discussing numerous categories of path planning strategies, it appears that hybrid
algorithms give better performance. These improved and optimized algorithms overcome
the limitations of numerical and analytical techniques. By analyzing the manuscript, it
can be concluded that the best optimization approaches are swarm-based due to their
exceptional ability to solve complex issues with their simplified approach.
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7. Conclusions

UAVs are flying machines that possess safe and task-oriented mobility in the presence
of uncertainties with the help of modified techniques and the latest technological develop-
ments. The autonomous capability of these machines is also advancing and upgrading to
provide efficient flying and stable formation in dynamic environments. However, motion
planning issues in UAVs are most challenging among scholars. In this article, a detailed
comparative study on the motion planning issues and achievements of UAVs has been pre-
sented, along with the limitations of each article. The study also presents recent challenges
in all possible categories of UAVs to highlight the importance of UAVs in our society along
with their developments and state-of-the-art work performed in the last 3 years.

8. Future Work

There is a very bound analysis in the comparison field of motion planning and op-
timization algorithms that exists already and the determination of the best among them.
To deploy the multiple UAV systems in a finer way, various challenges and possibilities
need more exploration, as well as a reduction in exploitations. Leads for future work are to
model different swarm-based intelligent optimization approaches with high accuracy and
efficiency and further feasible algorithms for 3D-path planning strategies.
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Abbreviations

Acronyms Definitions
UAV Unmanned Aerial Vehicles
AI Artificial Intelligence
P2P Point-to-Point
MAC Medium Access Control
IETF Internet Engineering Task Force
MAVLink Micro Air Vehicle Link
NBC Nuclear, Biological, and Chemical
CAS Collision Avoidance System
IR InfraRed
GA Genetic algorithm
EP Evolutionary Programming
ES Evolutionary Strategy
DE Differential Evolution
HS Harmony Search
AIS Artificial Immune System
PSO Particle Swarm Optimization
BFO Bacteria Foraging Optimization
CS Cuckoo Search
ABC Artificial Bee Colony
ACO Ant Colony Optimization
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CRO Coral Reef Optimization
TLBO Teaching-Learning Based Optimization
FA Firefly algorithm
SFLA Shuffled Frog Leaping algorithm
PIO Pigeon Inspired Optimization
SA Simulated Annealing
GSA Gravitational Search algorithm
COA Chaotic Optimization algorithm
IWD Intelligent Water Drops
MOA Magnetic Optimization
TS Tabu Search algorithm
ICA Imperialistic Competition algorithm
MACO Metropolis Criterion ACO
MA Munkres algorithm
GIFC Gaussian information fusion control
DA Decentralized algorithm
SHA Self-Heuristic Ant
TDRS Task Decomposition Recourse Scheduling
CDE Constraint Differential Evolution
PDE Partial Differential Equation
DCPSO Distributed Cooperative Particle Swarm Optimization
DO Dragonfly Optimization
QALO Quantum Ant Lion Optimization
CPFC Coordinated Path Following Control strategy
RSH Randomized Search Heuristic
GTO Group Teaching Optimization
SDCM Swarm Distributed Cooperation Method
MFO Moth Flame Optimization
BOA Bat Optimization algorithm
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