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ABSTRACT 

Driver turnover is a significant problem for full truckload (TL) carriers that operate using 

point-to-point (PtP) dispatching.  The low quality of life of drivers due to the long periods of 

time they spend away from home is usually identified as one of the main reasons for the high 

turnover.  In contrast, driver turnover is not as significant for less-than-truckload (LTL) carriers 

that use hub-and-spoke transportation networks which allow drivers to return home more 

frequently.  Based on the differences between TL and LTL, the use of a relay network (RN) has 

been proposed as an alternative dispatching method for TL transportation in order to improve 

driver retention.  In a RN, a truckload visits one or more relay points (RPs) where drivers and 

trailers are exchanged while the truckload continues its movement to the final destination. 

In this research, we propose a new composite variable model (CVM) to address the 

strategic TL relay network design (TLRND) problem.  With this approach, we capture 

operational considerations implicitly within the variable definition instead of adding them as 

constraints in our model.  Our composites represent feasible routes for the truckloads through the 

RN that satisfy limitations on circuity, number of RPs visited, and distances between RPs and 

between a RP and origin-destination nodes.  Given a strict limitation on the number of RPs 

allowed to be visited, we developed a methodology to generate feasible routes using predefined 

templates.  This methodology was preferred over an exact feasible path enumeration algorithm 

that was also developed to generate valid routes.  The proposed approach was successfully used 

to obtain high quality solutions to largely-sized problem instances of TLRND. 

Furthermore extending the original CVM formulation, we incorporate mixed fleet 

dispatching decisions into the design of the RN.  This alternative system allows routing some 

truckloads through the RN while the remaining truckloads are dispatched PtP.   



 

 

We analyze the performance of our models and the solutions obtained for TLRND 

problems through extensive computational testing.  Finally, we conclude with a description of 

directions for future research. 
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1. Introduction 

In this dissertation, we study a strategic planning problem in truckload transportation – 

the design of relay networks (RN) – and develop mathematical models and algorithms for its 

solution.  In Section 1.1, we describe the motivation behind our research work.  A discussion of 

the main contributions of this dissertation is presented in Section 1.2.  Finally, Section 1.3 

presents an overview of the research work included in this document. 

1.1. Research Motivation 

Trucking is the predominant mode of land transportation of commercial freight in the 

United States.  According to the 2007 Commodity Flow Survey conducted by the U.S. Bureau of 

Transportation Statistics (2010), trucking accounts for 71.3% of total freight expenditures and 

70% of total weight transported annually.  The trucking industry is comprised of small and large 

carriers that provide service using one of two different types of operation: full truckload (TL) 

and less-than-truckload (LTL) (Campbell, 2005). 

TL carriers commonly ship goods using a dispatching method called over-the-road 

(OTR) or point-to-point (PtP) dispatching in which a single driver is responsible for transporting 

a load directly between origin and destination.  Under this method of operation, drivers who have 

just delivered a load must subsequently move a different load that originates near the drop off 

location for the first one in order to minimize empty miles.  For example, if a driver delivers a 

load to Fayetteville, AR, the carrier must either find a load leaving Fayetteville or have the driver 

travel to a nearby city to pick up another load.  Carriers must piece together a series of these trips 

to return drivers to their home domiciles.  Often, finding such backhaul trips in close proximity 

to a drop off location is a very challenging task due to imbalanced freight networks and the fact 

that demand arrives predominantly in a random fashion (Campbell, 2005).  This type of 
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operation often leaves drivers on the road for two or three weeks at a time.  The time that drivers 

spend away from their homes is one of the main causes of driver turnover for TL carriers given 

that most drivers perceive a reduction in their quality of life and quit (Taylor et al., 1999). 

The American Transportation Research Institute (2011) reports that driver retention is 

one of the most significant concerns for the TL industry having ranked in the top three concerns 

for carriers in five of the last seven years.  TL carriers commonly experience an annual turnover 

of more than 100% (Campbell, 2005).  In fact, the shortage of truck drivers during 2011 was 

estimated at 125,000, exceeding industry forecasts (Morris, 2011).  This is very costly since 

carriers must invest significant resources in recruiting, training, and retaining drivers.  Rodriguez 

et al. (2000) determined that average driver turnover costs are around $8,200 per driver.  

Considering the high turnover, the expense for TL carriers is very significant and it has been 

estimated at around $2.8 billion annually.  Additionally, the shortage of drivers negatively affects 

level of service to shippers and results in lost income from demand that cannot be satisfied 

(Keller and Ozment, 1999).  As reported by the American Trucking Associations (2007), this 

problem is actually able to produce negative economic impacts that go far beyond the boundaries 

of the TL industry given that trucking is not a self-contained industry. 

In contrast, LTL carriers move shipments that do not fill up a trailer.  These shipments 

must travel via a series of hubs where freight is sorted and consolidated to better utilize truck 

capacity.  Since freight is moved primarily between hubs, tours for the drivers are more regular 

which allows them to return home much more frequently.  In fact, the turnover rate for LTL 

carriers is often less than 10% (Campbell, 2005). 

Motivated by the differences in driver retention between LTL and TL carriers, an 

alternative dispatching method using a network of relay points (RPs) has been considered for TL 
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transportation.  This is referred to as a relay network (RN).  In this alternative system, freight is 

transported from its origin through a series of relay points to its destination.   This would 

essentially emulate LTL operations, except that no freight would be handled at the relay points; 

these points would only serve as locations in the network for drivers and loads to be exchanged 

(Campbell, 2005).  Given that the transportation of a truckload from origin to destination is 

divided into several shorter segments between nodes in the network, tour regularity for the 

drivers is increased given that they now have to visit fixed RPs (Üster and Maheshwari, 2007; 

Üster and Kewcharoenwong, 2011).  In a RN, local drivers are in charge of the movements 

between RPs and origin-destination nodes, while lane drivers transport loads between two RPs. 

The strategic design of relay networks for TL transportation has to consider a 

fundamental tradeoff between the costs associated with the relay network and the reduction in 

driver turnover.  A relay network configuration allows drivers to return to their home domiciles 

more frequently, but TL carriers need to consider the fixed cost of installation of RPs and the 

incremental cost associated with added miles for the truckloads due to circuity (Üster and 

Maheshwari, 2007). 

An existing prescriptive approach in the literature for the strategic design of TL relay 

networks considers an arc-based formulation that is a combination of the multicommodity 

network flow and hub location problems.  This original formulation presented by Üster and 

Maheshwari (2007) suffers from tractability issues associated with difficult operational 

constraints.  These constraints are eventually relaxed to develop a heuristic approach using a 

construction heuristic and tabu search.  Üster and Kewcharoenwong (2011) overcome some of 

the challenges and provide an exact algorithm based on an enhanced implementation of Benders’ 

decomposition to solve larger instances of this problem within a predefined optimality tolerance.  
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However, the authors report in their work that their methodology is only able to obtain solutions 

for up to 80 node network problems.  As observed, there is a need for new prescriptive models 

for this problem that would allow TL carriers to solve larger problem instances that are 

representative of practical cases and incorporate more challenging operational constraints such as 

limitations on circuity and number of RPs allowed to be visited.  In our dissertation research we 

focus on this specific need. 

1.2. Research Contributions 

There are several contributions related to the work completed in this dissertation.  Most 

of the previous research on the design of relay networks for TL transportation considers 

simulation analyses and the development of heuristic and algorithmic procedures.  However, the 

literature is still sparse on prescriptive modeling approaches for this problem. 

In this dissertation, we propose a new mathematical formulation for the strategic 

truckload relay network design (TLRND) problem that minimizes total transportation and 

installation costs for the RPs while explicitly considering operational constraints on load circuity, 

equipment balance, distance limits for local and lane drivers, and the number of RPs that a load 

visits.  Modeling these operational constraints represents a significant challenge.  We develop a 

prescriptive composite variable model (CVM) formulation to solve this problem.  Depending 

upon the way in which the composite variables are generated, this model can be used to obtain 

both exact and heuristic solutions for TLRND. 

Although previous research has considered some of these operational constraints in the 

formulation of the problem, aspects such as equipment balance and especially load circuity have 

been either relaxed or enforced through surrogate constraints due to tractability issues.  

Furthermore, the limitation on the number of RPs allowed to be visited has not been modeled as 
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part of this problem until now.  In our formulation, a composite variable implicitly captures the 

limitations on the number of RPs that can be visited, local and lane distances, and circuity over 

the shortest path distance between origin and destination.  Since these constraints are already 

captured in the variable definition, it is not necessary to include them in the mathematical 

formulation.  In addition, since empty repositioning moves can be modeled as additional 

variables in our formulation, we are able to enforce perfect balance at the nodes in the 

transportation network.  To the best of our knowledge, this has not been achieved by previous 

work in this area. 

A method to generate composites is required for the CVM.  We consider two ways: an 

exact path enumeration algorithm and a method using predefined templates for the routes.  The 

development of an exact feasible path enumeration algorithm for directed acyclic graphs (DAGs) 

that represent a TL transportation network provides an alternative approach to the literature on 

constrained shortest path algorithms.  The extensive computational testing with the proposed 

algorithm allows us to identify which restriction between the number of nodes allowed to be 

visited and the total length of a path represents a greater computational challenge based on the 

number of feasible paths that are generated.  

Furthermore, we use the composite generation method that uses predefined templates to 

exercise our model and obtain high-quality solutions in reasonable times to several instances of 

TLRND that are larger than those solved in existing literature.  This allows us to solve 

realistically-sized problem instances using our approach as demonstrated by the analysis of a test 

case provided by a major TL carrier that operates nationally. 

Another contribution of our proposed formulation is that it is flexible to extensions.  

Given the definition of our variables, we are able to incorporate generalizations of TLRND into 



6 
 

the model without significantly affecting the structure of the formulation and its tractability.  We 

extend our mathematical formulation to solve the integrated problem of strategically designing 

the relay network and selecting a dispatching method for truckloads served by a mixed fleet 

dispatching system that combines PtP and RN shipments.  To the best of our knowledge, this is 

the first prescriptive model for the strategic TL relay network design with mixed fleet 

dispatching (TLRND-MD) problem.  Furthermore, additional operational constraints can be 

incorporated in the CVM formulation of TLRND in a similar way. 

Finally, having prescriptive models for TLRND and TLRND-MD allows us to better 

quantify the benefit of a hybrid configuration for TL transportation that uses PtP and RN 

dispatching over a RN-only dispatching system.  Previous research attempts to compare these 

two systems, but those comparisons are made based on non-optimal solutions for TLRND-MD. 

1.3. Dissertation Overview 

The primary focus of my dissertation research is to study the TLRND problem.  

However, our research work in this area also includes both a related problem associated with our 

approach to solve TLRND and an extension to the basic CVM formulation proposed for this 

problem.  The latter is intended to add additional realistic aspects of the problem to the original 

formulation and be able to evaluate alternative implementations of TL relay networks that are 

more likely to be applicable in practice. 

In Chapter 2, we present the development of an exact method based on reverse 

topological sorting for the enumeration of all feasible paths that satisfy additional side 

constraints in directed acyclic graphs.  We explicitly consider limitations on the number of nodes 

visited and total path length.  The purpose of developing this algorithm was to generate valid 

routes (i.e., composite variables) for our proposed CVM formulation of TLRND presented in 
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Chapter 3.  Since our algorithm simultaneously considers both side constraints while 

enumerating paths between an origin node and a destination node in a graph, it overcomes one of 

the disadvantages of several constrained shortest path and constrained k-shortest path algorithms.  

Some implementations of these traditional methods require enumerating a large number of paths 

and checking those paths for every side constraint sequentially, adding to the computational 

effort required to solve this problem.  Also, our algorithm does not require finding an appropriate 

value of k that will ensure complete enumeration of feasible paths as it is the case with 

constrained k-shortest path algorithms.  Although we determined that our exact algorithm is very 

efficient for strict values of the side constraints considered, we also discovered that there are 

some drawbacks associated with the application of this algorithm for the generation of 

composites, especially for networks with a large number of nodes (i.e., more than 100 nodes in 

the network).  First, the method needs to consider general networks, not just DAGs.  While there 

are methods to transform a general network with loops into a DAG, they represent additional 

computational effort and cannot be applied without loss of generality.  Second, a new network 

needs to be constructed for every load considered in an instance of TLRND given that every load 

has a unique pair of origin and destination nodes.  Third, our algorithm is particularly challenged 

by instances with a large number of feasible paths as previously mentioned.  Given these 

limitations and since we also observed high variability in the number of feasible paths that exist 

across instances of the same type, we decided to focus on a different approach to generate 

composite variables as described in Chapter 3. 

Chapter 3 presents the CVM formulation for TLRND and describes the development of 

an enumeration-based algorithm for composite generation using predefined templates.  Exact 

solutions obtained using both standard branch-and-cut as implemented in CPLEX and a 
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customized pricing method for 50 node networks are included in this chapter.  We also describe 

how this model can be used to obtain heuristic solutions for larger problem instances if only a 

subset of composite variables is generated to solve the problem.  The effects of instance size, 

equipment balance and fixed cost of installation of the RPs are analyzed with respect to the 

performance of our solution approach and the characteristics of the solutions obtained using both 

randomly generated problem instances and test case data from a major TL carrier. 

In Chapter 4, we extend our model to study a generalization of TLRND where the TL 

carrier has the option of dispatching using a mixed fleet.  In this case, some of the loads are 

dispatched PtP while the rest are shipped through the network of relay points.  Academic 

researchers and industry practitioners have suggested that mixed fleet dispatching systems are 

likely to outperform individual methods for TL transportation.  However, since no exact 

approaches exist to design such mixed fleet dispatching systems, there is not a precise 

understanding of the actual benefits of such configurations in the TL industry.  We use our 

extended formulation to analyze the effect of several design parameters on the solutions obtained 

by looking at the resulting relay networks and measuring performance metrics for carriers, 

drivers and shippers.  The design parameters evaluated include repositioning costs applied to PtP 

loads, a maximum proportion of loads allowed to be sent PtP, a minimum volume required to 

open a RP, and equipment balance desired for loads routed through the RN.  Similar to the work 

in Chapter 3, the heuristic approach developed in this research to solve TLRND-MD is used to 

obtain solutions for randomly generated data and a test case provided by a major TL carrier. 

Finally, Chapter 5 presents the conclusions drawn from our research work along with 

suggestions for future research directions. 
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2. Feasible Path Enumeration for Directed Acyclic Graphs Limiting Path Length and 

Nodes Visited 

Path enumeration can lead to a very large number of paths from which only a subset will 

result after considering side constraints.  In this chapter we develop an efficient algorithm that 

explicitly considers constraints that limit total path length and the total number of nodes visited 

when enumerating paths for the case of directed acyclic graphs.  Computational results are 

analyzed, and we highlight insights we obtain about the effect of these constraints and network 

characteristics on the solutions we find.  At the end, conclusions are drawn and presented along 

with directions for future research. 

2.1. Introduction and Problem Description 

In many problems, it is not sufficient to generate a single path such as the shortest path 

between an origin and a destination.  Instead, many problems require several paths between two 

nodes in a network to be generated.  For instance, a traveler has many options between an origin 

airport and a destination airport when booking a flight.  To make a final decision about the 

appropriate ticket to buy, a traveler has to consider several aspects such as the number of 

connections to make, total time of the itinerary and total cost for the flight.  However, the 

number of possible routes is extremely large when looking at the air transportation network of 

one of the major carriers in the United States.  For this reason, it is necessary to limit the number 

of possible paths that the traveler will have to consider by restricting the number of airports 

visited and limiting the total cost of the flight in terms of either time, miles or dollars.  The 

traveler will then select a flight from a reduced set of available options. 

In general, the explicit enumeration of paths between an origin node and a destination 

node in a graph requires significant computational effort given that for most realistic 
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applications, the size of the network gives rise to an extremely large number of paths that need to 

be generated.  Even in cases such as the flight booking example presented above, the generation 

of a feasible subset of paths between two nodes in a graph is a challenging problem.  In this 

chapter, we consider a problem that simultaneously limits the length of the paths that can be 

generated and the number of nodes which can be visited.  An approach is developed to 

efficiently generate the set of feasible paths between an origin-destination (O-D) pair in a 

directed acyclic graph (DAG).  Such problems arise in the traffic assignment problem, the flight 

booking problem presented above and other route choice/optimization problems.  We will refer 

to this problem as path enumeration with nodes visited and length constraints (PENVLC). 

Previous research has developed exact and heuristic algorithmic approaches that 

incorporate restrictions imposed on the enumerated paths between two nodes in a network (see 

Park and Rilett, 1997 and Park et al., 2002).  A commonly used approach to generate these paths 

is to first enumerate all paths in the network or a very large number of those paths (e.g., k-

shortest paths) and later eliminate the paths that do not satisfy the side constraints (van der Zijpp 

and Fiorenzo Catalano, 2005).  This method is impractical for many realistically sized networks, 

and is particularly inefficient when very few of the paths satisfy the side constraints.  In those 

cases, the number of paths to be eliminated significantly exceeds the number of paths to be kept.  

Furthermore, such algorithms require computational effort not only to generate the set of all 

paths, but to check which of these paths satisfy the side constraints.  This leads to a procedure 

that is inefficient (van der Zijpp and Fiorenzo Catalano, 2005).  In Section 2.2, we review how 

constrained shortest path, k-shortest paths, constrained k-shortest paths algorithms and other 

heuristic approaches have been used for problems related to PENVLC. 
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In our research, we develop an exact algorithmic approach based on topological sorting 

that simultaneously limits both the number of nodes visited in a path and the total path distance 

while enumerating all feasible paths between an O-D pair of nodes in a DAG.  A DAG is formed 

by a collection of connected nodes and arcs such that there is no path that starts at any node i and 

follows a sequence of arcs that eventually returns to node i (Ahuja et al., 1993).  Many real-

world problems are not initially represented as DAGs.  However, since many applications such 

as emergency service vehicle routing require alternative paths that avoid visiting a node more 

than once while moving from origin to destination in the same direction (e.g., north-to-south), a 

DAG can be used to represent the underlying transportation network.  We can transform any 

directed graph with cycles into a DAG by applying a method such as the heuristic approach 

developed by Filippovich (1973) which eliminates a minimal number of arcs in the network to 

avoid cycles.  If this method is applied to preprocess the networks we consider, we can then 

apply our proposed approach to enumerate feasible paths for any network. 

Although PENVLC arises in several transportation and communication problems, the 

primary motivation to study this problem is the routing of loads for a full truckload (TL) carrier 

that uses a relay network for dispatching (see Taylor et al., 2001, Üster and Maheshwari, 2007 

and Üster and Kewcharoenwong, 2011).  These TL relay networks essentially divide a load’s 

transportation from O-D into several shorter segments between nodes (i.e., relay points) in the 

network.  At each relay point, drivers or trailers are exchanged and the load continues its 

transport.  This helps to increase the frequency with which drivers can return to their homes 

given an increased regularity in their routes.  This network design and configuration has the 

potential to reduce driver turnover, as time away from home is cited as the primary reason for the 

significant turnover rate of over 100% among TL carriers (Taylor et al., 2001).  Operating a relay 
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network requires planners to determine which paths the loads should take through the network.  

A significant added cost of operating on a relay network is the added circuity for the loads since 

they are no longer dispatched directly from origin to destination using point-to-point (PtP) 

dispatching.  For this reason, it is important to limit the distance of the paths that are considered 

– that is, the paths should not exceed a limit on circuity relative to the direct O-D distance.  In 

addition, it is important that the route a load takes does not have too many intermediate stops, as 

this can lead to excessive time to transport the load.  This requires us to place a limit on the total 

number of nodes in a path. 

Other real world applications where this algorithmic approach can be used include 

network interdiction problems and optimal route diversion problems after disruptions.  The 

algorithmic approach presented in this chapter contributes to the literature of path enumeration 

algorithms with a general method that does not rely on iteratively finding shortest paths and 

which can be adapted to practical applications where determining alternative feasible paths is 

required. 

The remainder of the chapter is organized as follows.  In Section 2.2, we present a 

literature review on path enumeration.  The algorithms developed in this research are presented 

in Section 2.3.  In Section 2.4, we test our algorithms and present computational results.  Finally, 

conclusions and future research are presented in Section 2.5. 

2.2. Related Work 

Most of the previous research on path enumeration has focused on developing methods 

for the generation of k-shortest paths, but some work has also considered the constrained k-

shortest paths and constrained shortest path problems as illustrated in Figure 1.  The two most 

common approaches used for path enumeration are labeling algorithms and heuristics for arc 
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penalty or arc elimination. Heuristic methods are generally preferred over exact methods in 

operational problems such as dynamic in-vehicle routing and other choice path problems where a 

smaller set of alternative paths is desired in a shorter period of time (see Park and Rilett, 1997 

and van der Zijpp and Fiorenzo Catalano, 2005). 

 

Figure 1.  Classification of Path Enumeration Problems. 

The k-shortest paths (KSP) problem is a generalization of the shortest path problem that 

enumerates and selects the k paths with minimum total length that connect a given pair of nodes 

in a network.  It was originally presented by Hoffman and Pavley (1959).  Two types of k-

shortest paths problems have been studied: one where cycles or loops are allowed in the 

generated paths and the other which finds paths where cycles or loops do not exist (Yen, 1971).   

Dreyfus (1969) introduced one of the early methods to solve the k-shortest paths problem 

in a network with cycles allowed.  This procedure computes the k-shortest paths that exist 

between an origin node and each of the remaining nodes in the network using a dynamic 

programming approach.  However, the procedure requires generating a large set of shortest paths 

and then selecting among them by applying side constraints. Eppstein (1998) developed another 

approach that uses a breadth first search algorithm to enumerate paths starting at a given origin 
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node and ending anywhere in the network.  Eppstein’s approach can also be used to enumerate 

all paths that are shorter than a stated distance threshold but it does not explicitly address a 

limitation on the number of nodes visited by those paths.  The main drawback to these 

approaches is that the paths generated are allowed to have cycles; this is undesirable for routing 

problems such as the TL relay network design problem.  In addition, determining the appropriate 

value of k for an O-D pair is difficult since this number has to ensure that all paths that satisfy the 

side constraints are included.  In the remainder of this section we focus on work that considers 

the generation of loopless paths. 

Yen (1971) was the first to present an efficient algorithm for the more complex problem 

of finding k-shortest simple paths (i.e., paths without cycles).  At the time this algorithm was 

developed, it was a very significant contribution because of its efficiency as compared to existing 

approaches.  Many of the original approaches considered enumerating all possible paths or a 

considerable number of paths from the origin to the destination node and then sorting them to 

obtain the k paths with the shortest distances.  Such approaches are highly inefficient especially 

when the size of the network is large and the value of k is relatively small (Yen, 1971).  The 

algorithm developed by Yen (1971) iteratively finds new paths by analyzing small deviations to 

paths that have already been determined.  As such, the new paths generated have more than one 

node in common with a previously generated path.  The remaining nodes are determined by 

finding the shortest path deviation to the destination node that visits at least a node in the 

network that is different from the ones already included in the original path.  No side constraints 

are taken into account when generating the k-shortest paths with this iterative procedure.  Some 

modifications and extensions to classical algorithms for KSP have been studied in the path 

enumeration literature such as the work of Katoh et al. (1982), and Hadjiconstantinou and 
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Christofides (1999) with undirected graphs; and Martins and Pascoal (2003) and Carlyle and 

Wood (2005) with directed graphs.  More recently, other algorithms based on replacing paths 

while iteratively generating the k-shortest simple paths in a network have been presented by 

Hershberger et al. (2007). 

There are a few difficulties associated with the application of k-shortest paths algorithms 

for path enumeration when considering one or more side constraints.  First, similar to complete 

enumeration, it is necessary to filter the set of k-shortest paths based on the side constraint(s), 

increasing the computational effort required to obtain the set of feasible paths.  Second, it is 

difficult to set the value of k for an O-D pair in order to enumerate all feasible paths.  Finally, the 

application of regular k-shortest paths algorithms typically results in the generation of paths that 

are very similar, which is not always desired when developing alternative routes for choice path 

set problems such as the emergency vehicle routing problem or in-vehicle dynamic routing  (see 

Park and Rilett, 1997 and van der Zijpp and Fiorenzo Catalano, 2005).  To overcome the 

difficulties associated with the use of regular k-shortest paths algorithms, Park and Rilett (1997) 

present a heuristic approach and Park et al. (2002) develop an exact labeling method for the 

generation of k-reasonable paths for the emergency vehicle routing problem (i.e. k paths that 

satisfy more than one side constraint and are as dissimilar as possible).   

More recently van der Zijpp and Fiorenzo Catalano (2005) proposed a method that 

directly generates feasible paths while considering side constraints.   They developed an 

algorithmic approach to enumerate k-shortest paths while imposing restrictions that avoid 

generating overly circuitous paths or paths that overlap considerably.  This proposed approach 

was developed based on Lawler’s approach (Lawler, 1972 and Lawler, 1976) of finding a unique 

shortest path between an O-D pair in the network and then partitioning the set of all remaining 
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paths into subsets so that the shortest path in each subset can be determined.  From the shortest 

paths generated, the best one is chosen as the second shortest path between the O-D pair of 

interest.  From then on, the set where the shortest path was found is further partitioned and the 

procedure is repeated considering the previous subsets.  While the work of van der Zijpp and 

Fiorenzo Catalano (2005) provides an approach that is appropriate for constrained k-shortest 

paths (CKSP) by pruning paths that do not satisfy simultaneous side constraints, the issue related 

to establishing an appropriate value for k remains.  This method is efficient but does not ensure 

the generation of the complete set of feasible paths given that number of paths is limited by the 

value of k.  Other CKSP algorithms have been proposed by Liu and Ramakrishnan (2001) for a 

communications problem and Shi (2010) for the design of an automated storage/retrieval system. 

When k = 1 and at least one additional side constraint is imposed, the problem is known 

as the constrained shortest path (CSP) problem.  Handler and Zhang (1980) use Lagrangian 

relaxation to propose a dual algorithm to reduce the value of k when a k-shortest path algorithm 

is used for solving this problem.  Aneja et al. (1983) formulate this problem as a special case of 

the minimum cost-flow problem with side constraints and present an implicit enumeration 

approach for its solution.  More recently, Carlyle et al. (2008) propose a method based on 

Lagrangian relaxation and near-shortest path enumeration to obtain the shortest path in a directed 

graph subject to one or more path-weight constraints.  Although these methods present 

alternative solution methods for imposing side constraints, they only provide the shortest path 

that satisfies those constraints.  In our research problem, we must obtain the complete set of 

feasible paths that satisfies one or more side constraints. 

In the next section, we present the algorithmic approach proposed in our research for 

explicitly considering more than one side constraint simultaneously while generating all feasible 
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paths between an O-D pair in a directed acyclic graph.  The proposed approach is different from 

previous research given that there is no need for determining a value for k and it is not required 

to iteratively compute shortest paths while enumerating feasible paths.  This represents an 

advantage in terms of having an efficient exact approach for the solution of PENVLC.  In a 

general sense, our approach fits in the literature of constrained k-shortest paths when no cycles 

are allowed and the value of k is unknown. 

2.3. Algorithms for Path Enumeration in Directed Acyclic Graphs 

2.3.1. Notation 

We first introduce the notation that is used throughout the presentation of the algorithms 

developed in this research to solve PENVLC. 

Let: 

N = set of nodes in the network, 

A = set of arcs in the network, 

t = destination node, 

s = origin node, 

dij = length of the arc between nodes i and j, 

n = maximum number of nodes allowed to be visited in a path from s to t including s and t, 

β = percentage circuity allowed with respect to shortest path from s to t, 

D = maximum total length (distance) allowed for paths from s to t, 

P = set of permanent nodes, 

T = set of pending nodes, 

indegree(i) = indegree for node i, 

outdegree(i) = outdegree for node i, 
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order(i) = topological order for node i, 

li = # of possible paths to destination node t for node i, 

SPi = shortest path from node s to node i, 

LPt = longest path from node s to t. 

2.3.2. Overview of the Procedure for Feasible Path Enumeration 

In this chapter, we present an exact procedure for PENVLC.  We explicitly consider a 

limit on the number of nodes that can be visited and a maximum total length for the enumerated 

paths.   

In Figure 2, we illustrate some of the paths that exist in a directed acyclic graph with nine 

nodes.  In this example, the limit on the number of nodes that can be visited is set as n = 4 (i.e., 

two nodes in addition to the origin and destination) and the maximum percent of allowed circuity 

is β = 0.2.  If the shortest path distance between origin node 1 and destination node 9 is 10 units 

(path 1-4-7-8-9), then we are interested in enumerating all those paths between nodes 1 and 9 

that visit up to 4 nodes and have a path length less than or equal to 12 units. 

As observed in Figure 2, Path A formed by nodes 1-5-9 satisfies both side constraints and 

therefore is a valid path that needs to be enumerated.  On the other hand, Path B with nodes 1-4-

5-8-9 satisfies only the maximum path length constraint since its distance is 12, but violates the 

limit on the maximum number of nodes that can be visited since five nodes are visited.  As a 

result, this is not a valid path and it should not be enumerated.  Path C formed by nodes 1-2-6-9 

only satisfies the maximum number of nodes visited constraint but violates the maximum path 

length allowed, and therefore should not be enumerated since it is not a valid path. 
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Figure 2.  Illustration of Feasible and Unfeasible Paths in a Network. 

The procedure for path enumeration requires applying two algorithms in sequence.  First, 

a network reduction algorithm (Algorithm 1) reduces any DAG G with multiple sinks to a DAG 

G’ with a unique sink node t.  We apply this since we are concerned only in generating paths 

from s to t; all other destination nodes (i.e., nodes with outdegree = 0) can be eliminated without 

loss of generality.  This is helpful in reducing the size of the networks we consider and the 

computational effort required to solve PENVLC.  The resulting network G’ is then used to 

generate feasible paths between the origin s and t using a path enumeration algorithm (Algorithm 

3).  Algorithm 1 is presented in Section 2.3.3 and Algorithm 3 is presented in Section 2.3.5.  

Algorithm 2 presented in Section 2.3.4 is necessary to determine the number of paths that satisfy 

the side constraints and is used to prove the correctness of Algorithm 3. 

2.3.3. Algorithm 1: Network Reduction Algorithm 

Directed acyclic graphs can have multiple sink nodes (i.e., nodes with no outgoing arcs).  

However, in PENVLC we consider only a single destination node t.  As such, we can eliminate 

all other sinks and reduce the original network G=(N,A) to a graph G’=(N’,A’) to enumerate valid 

paths more efficiently. Algorithm 1 eliminates nodes and arcs that will never be visited on a path 

from s to t. 
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2.3.3.1. Network Reduction to a Directed Acyclic Graph with a Unique Sink 

The algorithm to obtain G’ iteratively eliminates nodes with no outgoing arcs and all the 

incoming arcs to those eliminated nodes until the graph is left with t as the only sink node.  Our 

algorithm relies on a topological ordering of the nodes in G.  A topological ordering is obtained 

when every node i in G is given a label order(i) such that for every arc (i,j) in the set of arcs, 

order(i) < order(j) (Ahuja et al., 1993).  We are guaranteed to find such an ordering of nodes 

since a topological ordering of nodes i in G exists if and only if G is a DAG (Ahuja et al., 1993).  

This is used in Algorithm 1, a search algorithm that uses reverse topological ordering of the 

DAG to eliminate nodes that will not have a path to destination t.  The proposed algorithm is 

presented in Figure 3. 

 Algorithm 1: 
  

1 begin 

2            initialize N’ := N; A’ := A; 
3            let T := ∅; 
4            for all i ∈ N’ do outdegree(i) := 0; 
5            for all (i,j) ∈ A’ do outdegree(i) := outdegree(i) + 1; 
6            for all i ∈ N’ do 
7            begin 

8                         if outdegree(i) = 0 then T := T ∪ {i}; 
9            end; 
10            while T ≠ ∅ do 
11            begin 

12                         select i ∈ T; 
13                                    if i≠t then 
14                                               T := T\{i}; 
15                                               N’ := N’ \{i}; 
16                                               for all (j,i) ∈ A’ do 
17                                               begin 
18                                                          A’ := A’ \ (j,i); 
19                                                          outdegree(j) := outdegree(j) – 1; 
20                                                          if outdegree(j) = 0 then T := T ∪ {j}; 
21                                                end; 
22                                     else 
23                                                T := T\{i}; 
24             end; 
25 end; 

Figure 3.  Pseudocode for Algorithm 1: Network Reduction Algorithm. 
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The algorithm starts by computing the outdegree (number of outgoing arcs) for each node 

in the network (see lines 4-5 in Figure 3).  Then, it adds all nodes with outdegree equal zero to 

the set of pending nodes T which is composed of all of the sinks in the network (see lines 6-9 in 

Figure 3).  At every iteration of the algorithm, we select a node i in the set of pending nodes and 

if it is different than the destination node t, we proceed to eliminate it from the graph along with 

all of its incoming arcs (j,i) ∈ A’ (see lines 12-18 in Figure 3).  At the same time, the outdegree 

of every node j is updated to reflect the elimination of one of its outgoing arcs (see line 19 in 

Figure 3).  If the outdegree of a node j reduces to zero (i.e., node j becomes a new sink), node j is 

included in the set of pending nodes T (see line 20 in Figure 3).  The algorithm stops when the 

set of pending nodes is empty, and results in a network G’ where node t is the unique sink. 

2.3.3.2. Proof of Correctness of Algorithm 1 

To prove the correctness of the proposed Algorithm 1 for network reduction, we develop 

the following Proposition 1.  Also, Theorem 1 establishes that no paths from node s to t are 

eliminated by the network reduction algorithm.  Since no paths from s to t are eliminated by 

Algorithm 1, the resulting network can be used for the efficient enumeration of feasible paths in 

a further step of our proposed procedure.    

Proposition 1: Given a destination t in a directed acyclic graph G=(N,A), G can be reduced to a 

directed acyclic graph G’=(N’,A’) where t is the only node i ∈ N’ with outdegree(i) = 0. 

Proof:  Since G is a DAG, it does not contain any arcs (j,i) that produce cycles.  G’ is formed by 

a subset of the arcs included in G, and is therefore acyclic as well.  Also, since by construction 

we iteratively eliminate all nodes j ∈ N’: j ≠ t that have outdegree(j) = 0 (see lines 11-24 in 

Figure 3), G’ has a unique sink t with outdegree(t) = 0.  Therefore G’ is a DAG with a unique 

sink t. 
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Theorem 1: The reduction of G=(N,A) to G’=(N’,A’) does not eliminate any paths from s to t. 

Proof:  Deleting all arcs (j,i) ∈ A’ each time node i is eliminated from the graph reduces 

outdegree(j) by one for all such nodes j.  Since a node j with an outgoing arc (j,t) ∈ A’ has 

outdegree(j) > 0, it will never be a candidate for elimination in the network reduction algorithm 

(Algorithm 1).  Therefore, none of the arcs (k,j) ∈ A’ will be eliminated from the graph since 

node j remains part of the network during all iterations.  Next, assume (p,q) is on a path from s to 

t and that node q will never be eliminated from G’.  Since outdegree(q) > 0 at all iterations, arc 

(p,q) will never be eliminated from G’ and outdegree(p) > 0 during all iterations.  Therefore, by 

induction none of the arcs (p,q) on paths to the destination t will be removed and no paths 

between the origin s and the destination t will be eliminated.  The resulting graph G’ contains all 

paths between the origin s and the destination t. 

2.3.4. Algorithm 2: Counting Paths 

The second algorithm proposed in this research is not part of the procedure for path 

enumeration, but is necessary to determine the number of paths that exist in the reduced graph G’ 

between s and t.  This is important in order to prove the correctness of the Algorithm 3 for the 

enumeration of feasible paths in the network. 

2.3.4.1. Determining the Number of Paths in the Network 

The proposed algorithm to count the number of paths from any node to the destination t 

in G’ uses a search algorithm to iteratively update a label li that is the number of possible paths 

from a given node i to node t.  Similar to Algorithm 1, this algorithm uses a reverse topological 

ordering to determine the order in which nodes that have a path to the destination node t are 

visited in order to update their corresponding label. 
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The algorithm presented in Figure 4, starts by computing the outdegree for each node in 

the reduced network G’ and initializes the label lt = 1 (see lines 4-5 and 7 in Figure 4).  Since 

there is only one possible way to get to node t from t, node t is assigned to the set of pending 

nodes T (see line 6 in Figure 4).  Since t is the only sink node that exists in the reduced network, 

all other nodes have at least one path to t.  At every iteration of the algorithm, we select a 

pending node i and update the label li that represents the number of paths that exist between node 

i and the destination t (see lines 10-13 in Figure 4).  Next, we proceed to eliminate node i from 

the graph along with all of its incoming arcs (j,i) ∈ A’’, where A’’ is the set of remaining arcs in 

the reduced network G’’ (see lines 14-16 in Figure 4).  The outdegree of every node j is updated 

to reflect the elimination of one of its outgoing arcs (see line 17 in Figure 4).  If the outdegree of 

a node j reduces to zero, node j is included in the set of pending nodes T (see line 18 in Figure 4).  

The algorithm stops when the set of pending nodes is empty. 

 Algorithm 2: 
  

1 begin 

2            initialize N’’ := N’; A’’ := A’; 
3            let T := ∅; P := ∅; 
4            for all i ∈ N’’ do li := 0; outdegree(i) := 0; 
5            for all (i,j) ∈ A’’ do outdegree(i) := outdegree(i) + 1; 
6            let T := T ∪ {t}; 
7            let lt := 1; 
8            while T ≠ ∅ do 
9            begin 
10                         select i ∈ T; 
11                                    let P := P ∪ {i}; T := T\{i}; 
12                                    N’’ := N’’\{i}; 
13                                    if i ≠ t then li: = ∑ lkk:(i,k)∈A' ; 

14                                    for all (j,i) ∈ A’’ do 
15                                    begin 
16                                                A’’ := A’’ \ (j,i); 
17                                                outdegree(j) := outdegree(j) – 1; 
18                                                if outdegree(j) = 0 then T := T ∪ {j}; 
19                                     end; 
20             end; 
21 end; 

Figure 4.  Pseudocode for Algorithm 2: Path Counting Algorithm. 
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2.3.4.2. Proof of Correctness of Path Counting Algorithm 

We prove the correctness for Algorithm 2 using Propositions 2 to 4 and Theorem 2 that 

are presented below. 

Proposition 2: In a directed acyclic graph G’ where t is the only node i ∈ N’ with outdegree(i) = 

0, there is always at least one node j with (j,t) ∈ A’ such that outdegree(j) = 1. 

Proof:  During topological ordering of the nodes in a directed acyclic graph G’, whenever a node 

i is assigned a topological order label at a given iteration, node i has only outgoing arcs (i,k) that 

point to unassigned nodes k that will be given higher topological order labels in subsequent 

iterations.  We know that t will be the last node assigned a topological order label since it is the 

only node with outdegree equal to zero.  Therefore, the second to last node j included in the 

topologically ordered list has only one outgoing arc (j,t) that points to the destination t.  As such, 

outdegree of the second to last node is always 1. 

Proposition 3: For a directed acyclic graph G’, while |N’\{P ∪ T}| > 1, |𝑇| ≥ 1. 

Proof:  By induction.  From Proposition 2, there is at least one node j with (j,t) ∈ A’ that has 

outdegree(j) = 1.  Since at the start of the procedure P = ∅ and T = {t}, node t is moved from T to 

P and outdegree(j) is reduced by one.  Since now outdegree(j) = 0 and |N’\{P ∪ T}| = |N| - 1, 

node j is added to the set of pending nodes T and |𝑇| = 1.   

Suppose after n iterations that |𝑇| ≠ 0 and |N’\{P ∪ T}| > 2.  Three cases exist.  In case 1, 

|𝑇| > 1 and no node k ∈ N’\{P ∪ T} with outdegree(k) = 0 exists.  In this case, at the end of 

iteration n+1 an element of T is removed and added to set P which implies |N’\{P ∪ T}| > 2 and 

|𝑇| ≥ 1.  In case 2, |𝑇| > 1 and at least one node k ∈ N’\{P ∪ T} with outdegree(k) = 0 exists.  In 

this case, at the end of iteration n+1 one element of T is removed and at least one new element is 

added to T which implies |N’\{P ∪ T}| > 1 and |𝑇| > 1.  In case 3, |𝑇| = 1.  In this case, when 
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node i with outdegree(i) = 0 is the only element in the set of pending nodes T, G’’=(N’’,A’’) is a 

DAG with a unique sink i.  From Proposition 2 we know that since outdegree(i) = 0, there exists 

at least one node j with (j,i) ∈ A’’ that has outdegree(j) = 1.  Therefore, at the end of iteration 

n+1, outdegree(j) = 0 and j is included in T which implies |N’\{P ∪ T}| > 1 and |𝑇| ≥ 1. 

Proposition 4: For a directed acyclic graph G’, Algorithm 2 terminates in a finite number of 

steps. 

Proof:  From Proposition 1, since there are no cycles in the network G’, each node i will be 

added to the set of pending nodes T only once when outdegree(i) = 0.  Since there are a finite 

number of nodes in the network, the procedure will terminate in a finite number of steps.  

Theorem 2: At the end of Algorithm 2, the value of the label li for each node i in G’ equals the 

number of possible paths from node i to destination node t. 

Proof:  By induction. For any node i with (i,t) ∈ A’ such that outdegree(i) = 1, there is only one 

possible path from node i to destination node t.  As such, li = 1 for all such nodes i.  Suppose at 

iteration n, we know the set of permanent nodes P and pending nodes T.  For each node j ∈ P, we 

know the values of lj, which are the number of paths from each permanent node j to the 

destination node t.  Next, suppose that at iteration n+1, we arbitrarily select a node k ∈ T.  Since 

k ∈ T, all arcs (k,j) are connected to nodes j ∈ P.  The only possible ways to get to the destination 

t from node k must be on these outgoing arcs (k,j).  As such, each path from node k to node t 

must immediately visit one of the permanent nodes j ∈ P.  Since there is only one possible way 

to visit a permanent node j from k through the arc (k,j), and given that we know the number of 

paths from a node j to t is lj, the number of paths from node k to t that contain (k,j) is lj.  Since we 

know all outgoing arcs (k,j) ∈ A’, the total number of paths from node k to destination node t is 

given by lk = ∑ ljj:(k,j)∈A' . 
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2.3.5. Algorithm 3: Enumerating Paths 

The second step of our proposed methodology is the application of an algorithm that 

simultaneously considers limits on the distance traveled and the number of nodes visited while 

generating arrays of labels at each node.  These arrays of labels called states will later be used to 

construct the set of all feasible paths between s and t. 

2.3.5.1. Path Enumeration with Side Constraints 

Algorithm 3 is presented in Figure 5 and considers a reverse topological ordering of the 

nodes in the reduced DAG obtained from Algorithm 1 to iteratively generate arrays of labels 

called states for every node in the graph.  Each of these states k contains information to build a 

path from node i to destination t and is only included in a set Ki if the algorithm determines that 

such state corresponds to a feasible path in the network (i.e., a path that satisfies both side 

constraints).  The set of states Ks generated at the origin s is used to construct the set of all 

feasible paths between s and t.  A significant difference between our proposed algorithm and 

most of the existing work in the literature of k-shortest paths and constrained k-shortest paths is 

that it is not necessary to compute a shortest path at each iteration of the algorithm. 

The algorithm begins by computing the indegree and outdegree for each node in the 

network (see lines 2-3 in Figure 5) so that a topological ordering of the nodes in graph G’ can be 

determined (see lines 4-18 in Figure 5).  This ordering of the nodes in G’ is used to obtain 

shortest paths between origin s and every other node in the network when all arc costs are 

temporarily set to 1.  This allows us to create a label called “degrees of separation” for each node 

i (denoted by δi) which represents the minimum number of nodes needed to reach node i from 

the origin s (see lines 19-24 in Figure 5). 
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After completing a basic feasibility check of the problem using the degrees of separation 

information for node t, the shortest path between origin s and destination t is obtained (see lines 

25- 31 in Figure 5).  The length of the shortest path is then used to establish a bound on the 

maximum total length of paths, D, by considering the percentage of circuity β allowed on paths 

from s to t.  Also, Algorithm 3 determines the longest path distance that exists between the origin 

s and the destination t (LPt) (see lines 33-38 in Figure 5).  When appropriate, this latter value is 

used to check the feasibility of the paths generated and to determine the lengths of the resulting 

feasible paths. 

States k are comprised of a counter k, a label pik (path slack) that represents the remaining 

distance that can be traveled on a path from the origin to node i to complete the path represented 

by state k, a label vik that represents the number of nodes visited on a path from node i to t 

represented by state k, and a label uik that represents the immediate successor node on the path 

from i to t represented by state k (see lines 39-73 in Figure 5).  At every iteration of the search 

procedure, we select a node i in the set of pending nodes and recursively generate states for that 

node based on existing state information for successor nodes that are already in the set of 

permanent nodes P.  Both side constraints are enforced to determine whether a recently 

generated state should be eliminated or included in the set of valid states at node i denoted by Ki.  

We accept a new state at the current node i if the number of nodes visited and the remaining path 

slack pik still allow a feasible path from origin to destination.  After states are generated, we 

update the outdegrees of the affected nodes, and update the set of pending nodes T.  The 

generation of states stops when the set of pending nodes is empty after creating the set of states 

for node s denoted Ks. 
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In the last portion of the algorithm (see lines 74-90 in Figure 5), the set of states Ks is 

used to construct the feasible paths in the network between s and t.  For every state k, the length 

of the path is determined using the path slack information (psk) included as one of the fields of 

the state.  Successor node (uik) and number of nodes visited (vik) information contained in each 

state k is later used to determine the sequence of nodes i visited in a given path from node s to t. 

2.3.5.2. Complexity of Path Enumeration Algorithm 

Recall that Algorithm 3 has three main sections: topological ordering, generating states, 

and reconstructing paths using state information.  The complexity of topological ordering is 

O(|A|).  To generate states, the complexity is O(|A||K|).  Since |K| is not known in advance, we 

rely on Algorithm 2 to obtain an upper bound on |K|, |N||A|.  We therefore conclude that the 

generation of states requires O(|N||A|2).  Finally, the section of Algorithm 3 that builds feasible 

paths from information obtained from valid states requires O(|K|n).  This is equivalent to 

O(|N|n|A|n).  The term O(|N||A|2) will never be higher than O(|N|n|A|n) given that in our motivating 

problem we will always have n > 2 since for every load there is an origin and a destination, 

making the value of n at least 2.  As a result the computation complexity for Algorithm 3 is given 

by the portion of the code with the highest computational complexity: O(|N|n|A|n).    Although the 

worst case is an exponential time for the execution of our algorithm, in practice values of n will 

not be very high in order to avoid excessive handling of the loads, especially when the distance 

between origin and destination is not very large. 

2.3.5.3. Proof of Correctness of Path Enumeration Algorithm 

Theorem 3 and Propositions 5 through 8 are presented below.  Together they are used to 

prove the correctness of Algorithm 3 presented above. 
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Theorem 3: Algorithm 3 enumerates all paths from origin node s to destination node t in a 

directed acyclic graph G’ when side constraints on the number of nodes visited and the total 

length of the path are not enforced. 

Proof:  For any node i ∈ N’ with (i,t) ∈ A’ such that outdegree(i) = 1, there is only one possible 

path from node i to the destination node t.  As such, only one state k is created for each node i 

that represents the path from node i to t.  Furthermore |Ki| = li = 1. 

Suppose at iteration n, we know the set of permanent nodes P and pending nodes T.  For 

each node i ∈ P, we know the values of li, which are the number of paths from each permanent 

node i to the destination node t, and we have also generated li states k ∈ Ki.  Each of these states 

k represents a path from i to t and is included in set Ki.  Next, suppose that at iteration n+1, we 

arbitrarily select a node j ∈ T.  Since j ∈ T, all arcs (j,i) ∈ A’ are connected to nodes i ∈ P.  The 

only possible ways to get to the destination t from node j is on these outgoing arcs (j,i).  As such, 

each path from node j to node t must immediately visit one of the permanent nodes i and follow 

one of the feasible paths represented by a state k ∈ Ki.  In this way, one new state k’ is created at 

node j which is derived from an existing state k at node i.  Therefore, since side constraints on 

the number of nodes visited and the total length of the path are not enforced, for each outgoing 

arc (j,i) ∈ A’ there are li new states created at node j.  Since we know all outgoing arcs (j,i) ∈ A’ 

and the sets of states Ki at each node i, by induction we know that the states k created at node j 

represent the set of all paths from node j to t.  Furthermore, |Kj| = lj = ∑ lii:(j,i)∈A' . 

The procedure is repeated until node s is made permanent and set Ks is generated.  Since 

|Ks| = ls = ∑ lii:(s,i)∈A' , the elements of the set Ks represent all paths from origin node s to 

destination node t in a directed acyclic graph G’ when side constraints on the number of nodes 

visited and the total length of the path are not enforced. 
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 Algorithm 3: 46                              while T ≠ ∅ do 

  47                              begin 
1 begin 48                                               select i ∈ T; 
2            for all i ∈ N’ do indegree(i) := 0; outdegree(i) := 0; order(i) := 0; δi := ∞; SPi := ∞; lpi := 0; 49                                                                 let P := P ∪ {i}; T := T\{i}; 
3            for all (i,j) ∈ A’ do indegree(j) :=indegree(j) + 1; outdegree(i) := outdegree(i) + 1; d’ij := 1; 50                                                                 if i ≠ t then 
4            let T := ∅; next := 0; 51                                                                                   for all (i,j) ∈ A’ do 
5            for all i ∈ N’ do 52                                                                                  begin 

6                              if indegree(i) = 0 then T := T ∪ {i}; 53                                                                                                    for all k ∈ Kj do 
7            while T ≠ ∅ do 54                                                                                                    begin 
8            begin 55                                                                                                           let p’ := pjk; 
9                              select i ∈ T; 56                                                                                                           let v’ := vjk; 
10                                                let T := T\{i}; 57                                                                                                           k := k + 1; 
11                                                next := next + 1;  58                                                                                                           pik := p’ – dij; 
12                                                order(i) := next; 59                                                                                                           vik := v’ + 1; 
13                                                for all (i,j) ∈ A’ do 60                                                                                                           uik := j; 
14                                                begin 61                                                                                                           let k := {k, pik, vik, uik}; 
15                                                                  indegree(j) := indegree(j) – 1; 62                                                                                                           if vik + δi  > n   or   pik < 0 then 
16                                                                  if indegree(j) = 0 then T := T ∪ {j}; 63                                                                                                                       E := E ∪ {k}; 
17                                                end; 64                                                                                                           else 
18            end; 65                                                                                                                       Ki := Ki ∪ {k}; 
19            let δs := 0; 66                                                                                                     end; 
20            for r = 1 to |N’| do 67                                                                                  end; 

21            begin 68                                                                 for all (j,i) ∈ A’ do 
22                              select i ∈ N’ : order(i) = r; 69                                                                 begin 
23                                                for all (i,j) ∈ A’ do δj := min{δj, δi + d’ij}; 70                                                                                  outdegree(j) := outdegree(j) – 1; 
24            end; 71                                                                                  if outdegree(j) = 0 then T := T ∪ {j}; 
25            if δt < n then 72                                                                 end; 
26                              let SPs := 0; 73                                               end; 
27                              for r = 1 to |N’| do 74                                               for all k ∈ Ks do 
28                              begin 75                                               begin 
29                                                select i ∈ N’ : order(i) = r; 76                                                                 let length(k) := ptk – psk; 
30                                                                   for all (i,j) ∈ A’ do SPj := min{SPj, SPi + dij}; 77                                                                 let j := usk; 
31            end;  78                                                                 path(k) := {s,j}; 
32            let D := SPt (1+ β);  79                                                                 if j ≠ t then 
33            for r = 1 to |N’| do 80                                                                                  select k’ ∈ Kj : pjk’ = psk + dsj and vjk’ = vsk – 1; 
34            begin 81                                                                                  while ujk’ ≠ t do 
35                                                select i ∈ N’ : order(i) = r; 82                                                                                  begin 
36                                                                   for all (i,j) ∈ A’ do lpj := max{lpj, lpi + dij}; 83                                                                                                     let i := j; 
37                              end; 84                                                                                                     j := uik’; 
38                              let LPt  := lpt; 85                                                                                                     k” := k’; 
39                              let P := ∅; T := ∅; 86                                                                                                     path(k) := path(k) ∪ {j}; 
40                              for all i ∈ N’ do Ki := ∅; 87                                                                                                     clear k’; 
41                              let k := 1; 88                                                                                                     select k’ at ∈ Kj : pjk’ = pik” + dij and vjk’ = vik” – 1; 
42                              let T := T ∪ {t}; 89                                                                                  end; 
43                              let ptk := min{D, LPt}; vtk := 1; utk := ∅; 90                                               end; 
44                              let k := {k, ptk, vtk, utk}; 91 end; 

45                              Kt : = Kt ∪ {k};   

Figure 5.  Pseudocode for Algorithm 3: Path Enumeration with Side Constraints.
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Proposition 5: Pruning a state k at node i when vik + δi > n does not eliminate any paths with ≤ n 

nodes visited. 

Proof:  By definition, a path is infeasible if and only if vik + δi is greater than to the maximum 

number of nodes allowed to be visited in the path between nodes s and t that contains node i.  

This is since vik represents the number of nodes on the path from i to t for state k and δi 

represents the minimum number of nodes to reach node i from the origin.  Therefore, pruning a 

state k at node i when vik + δi > n does not eliminate any paths with ≤ n nodes visited. 

Proposition 6: Pruning a state k at node i when pik < 0 does not eliminate any paths of length less 

than or equal to D. 

Proof:  By definition, pik represents the remaining distance that can be traveled on a path from 

the origin to node i to complete the path represented by state k.  Since dij is non-negative for all 

(i,j) ∈ A’, if pik < 0, a path between nodes s and i will exceed the remaining path slack.  

Therefore, pruning a state k at node i when pik < 0 does not eliminate any paths of length less 

than or equal to D. 

Proposition 7: The path enumeration algorithm terminates in a finite number of steps for a 

directed acyclic graph G’. 

Proof:  Since there are no cycles in graph G’, each node will be added to the set of pending 

nodes T only once when the respective outdegree is equal to zero.  Since there are a finite 

number of nodes in the network, the procedure will terminate in a finite number of steps. 

Proposition 8: The algorithm enumerates all paths between s and t that satisfy a limit on the 

number of nodes visited and a maximum total length in a directed acyclic graph G’. 
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Proof:  From Theorem 3, we know that the algorithm is able to enumerate all paths between s 

and t in a directed acyclic graph G’ when we relax side constraints on the number of nodes 

visited and the total length of the path.  Also, Proposition 5 shows that only paths that exceed the 

limit on the number of nodes visited from s to t are eliminated by the algorithm and Proposition 

6 shows that only paths that exceed the maximum total length allowed on a path from s to t are 

eliminated by the algorithm.  Therefore, when we consider these side constraints simultaneously, 

the algorithm leaves us with all paths between s and t that satisfy a limit on the number of nodes 

visited and a maximum total length in a directed acyclic graph G’. 

2.4. Computational Results 

2.4.1. Experimental Design 

To test the performance of our procedure to solve PENVLC, we developed an experiment 

using the motivating context of the TL relay network design problem.  Our experimental design 

accounts for different aspects of relay network design such as the size of the market served by 

TL carriers and the existing road infrastructure that is used to provide service.  In addition, we 

establish limits on the number of nodes visited (n) and circuity (β) permitted between O-D pairs 

in the network.  The selected factors and their respective levels are presented in Table 1. 

Table 1. Experimental Design for PENVLC. 

Factors Levels 

Size of region Small (600 x 600 miles2), Large (1,000 x 1,000 miles2) 

Arc density Sparse (10%), Dense (45%) 

# of nodes 50 (only small region), 100, 200, 400 (only large region) 

max # of nodes visited 3, 4, 5, 10 

max allowed percentage circuity 0.1, 0.5, 1.0 
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The purpose of this experiment is to test both the performance of our algorithm, and to 

explore the characteristics of the solutions we obtain as a function of varying system parameters.  

The performance of the algorithms is reported in terms of CPU time and characteristics of the 

paths that are generated such as the average number of nodes visited and the average circuity of 

the generated paths. 

The range of values selected for circuity allowed is intended to test the performance of 

the path enumeration algorithm in a broad range of situations.  However, it is important to note 

that in the context of relay network design, a value of β=1 is very high since this can produce 

feasible routes that are up to twice as long as the shortest path distance between an O-D pair.  In 

practice, this is not desirable given the significant costs of circuitous routes.  It is more likely that 

a TL carrier would want to have a very strict limit on circuity which makes a value of β=0.1 a 

more reasonable value to restrict the number of feasible paths to be enumerated.  In terms of the 

value of n, since every load shipped between two different nodes located reasonably far apart 

must visit at least one relay point, we chose to use n=3 as the smallest possible value for the 

number of nodes allowed to be visited (i.e., one intermediate node is visited in addition to the 

origin and destination).  On the other hand, a value of n=10 is more likely in cases where the 

distance between the origin and the destination nodes is extremely large.  In the case where the 

O-D pair is not as distant, a smaller value of n is more reasonable since n=10 is a very relaxed 

bound on the number of nodes allowed to be visited.  According to the discussion on the 

computational complexity of our algorithm in Section 2.3.5.2, we expect a better performance in 

terms of CPU time for instances where the value of n is lower. 
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Based on preliminary testing, a time limit of 60 minutes was imposed for each instance in 

our experimental design.  During our initial testing, most of the instances were solved well below 

this value while the worst case execution required a running time close to 45 minutes to 

enumerate all feasible paths in a small-region dense network with 200 nodes.  A more detailed 

analysis of the conditions that would require the algorithm to run for extended periods of time in 

excess of our stopping criterion is presented in Section 2.4.3.4 when we analyze the results for 

networks with higher arc density.  In those cases where the algorithm is stopped prematurely, 

partial information is collected to analyze the total number of states created and the number of 

valid states obtained up to that point as well as the location in the network where the algorithm 

stopped. 

2.4.2. Random Network Generation 

Random DAGs with the desired network topologies described in Table 1 were generated 

using the layer-by-layer method proposed by (Tobita and Kasahara, 2002).  In our 

implementation, the number of layers is set equal to the number of nodes needed and every node 

in the network is assigned to a different layer.  This ensures that if an arc exists between a node 

in layer a (node a) and a node in layer b (node b), then there is no path from node b to node a.  

The probability of an existing arc between two layers is set so the desired arc density in the 

network is achieved.  

The location of each node is determined by generating uniform random values between 0 

and 1 for x-coordinates and y-coordinates and scaling them to the length of the region.  The 

corresponding arc distances were computed using the Euclidian norm.  Ten random networks 

(instances) for each combination of region size and arc density were constructed for a given 
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network size determined by the experimental design (i.e., 50, 100 and 200 nodes for networks in 

the smaller region and 100, 200 and 400 nodes for networks in the larger region).  These random 

networks were then tested for all values of n and β given in Table 1. 

2.4.3. Results 

2.4.3.1. Effect of the Network Reduction Algorithm on Test Problems 

We first look at the effect of Algorithm 1 – our network reduction algorithm – on the test 

instances that were generated for computational testing.  Table 2 shows the average number of 

nodes eliminated and the corresponding average number of arcs removed by Algorithm 1 for all 

test cases under study.  The values presented in Table 2 are averages for the ten replications 

generated for each test case.  It is clear that networks with both arc density and network size 

strongly influence the number of nodes and arcs that are eliminated by our algorithm. 

Table 2. Nodes and Arcs Eliminated by Network Reduction Algorithm (Algorithm 1). 

 Small-Region Sparse Small-Region Dense Large-Region Sparse Large-Region Dense 

Nodes 
Avg. # 
nodes 

eliminated 

Avg. # 
arcs 

eliminated 

Avg. # 
nodes 

eliminated 

Avg. # 
arcs 

eliminated 

Avg. # 
nodes 

eliminated 

Avg. # 
arcs 

eliminated 

Avg. # 
nodes 

eliminated 

Avg. # 
arcs 

eliminated 
50 7.90 60.50 0.00 0.00 --- --- --- --- 

100 10.20 181.80 0.20 18.10 7.30 134.00 0.10 9.00 
200 6.90 263.20 0.20 35.30 9.80 378.60 0.20 35.80 
400 --- --- --- --- 11.40 891.70 0.00 0.00 

 

2.4.3.2. Results for Small-Region Sparse Networks 

Before looking at our computational results, it is important to mention that based on our 

initial testing, we implemented slight modifications to Algorithm 3 to reduce total CPU time.  

One of the modifications removes nodes that do not have a path to the origin from the set of 

pending nodes.  The other modification terminates the algorithm after the origin node has been 
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made permanent regardless of remaining elements in the set of pending nodes T.  This modified 

Algorithm 3 was applied to all test cases in our experimental design and the results shown 

correspond to its performance. We implemented our approach using Python 2.6 and ran our 

computational experiments on a 3.20 GHz Intel® Xeon® processor with 6 GB of RAM.   

The first set of computational results is presented for transportation networks that have 

small region size and sparse arc density.  In Table 3 we report the average values for each of the 

performance metrics obtained over the ten instances with the exception of the values that are 

italicized.  In these cases, one or two instances did not have any paths that satisfy the 

combination of the number of nodes visited and the total path length constraints.  A more 

detailed analysis of the instances without a solution indicates that for sparse networks, a low 

value of n is more likely to lead to the infeasibility of PENVLC. 

Table 3. Computational Results for Small-Region Sparse Networks. 

  
Nodes 

  
50 100 200 

n β 
CPU total 

(sec) 
Avg. # 
paths 

Avg. # 
nodes 

Avg. 
circuity 

CPU total 
(sec) 

Avg. # 
paths 

Avg. # 
nodes 

Avg. 
circuity 

CPU total 
(sec) 

Avg. # 
paths 

Avg. # 
nodes 

Avg. 
circuity 

3 

0.1 0.042 1.25 2.88 0.004 0.098 1.63 2.88 0.019 0.649 1.88 3.00 0.027 

0.5 0.024 1.89 2.96 0.123 0.098 2.63 2.91 0.104 0.651 4.90 3.00 0.193 

1 0.029 2.22 2.96 0.220 0.098 3.25 2.94 0.185 0.648 7.40 3.00 0.393 

4 

0.1 0.034 1.30 3.20 0.005 0.098 2.30 3.38 0.018 0.651 4.50 3.58 0.029 

0.5 0.034 3.60 3.45 0.171 0.098 8.80 3.64 0.207 0.647 25.00 3.71 0.253 

1 0.029 7.20 3.70 0.459 0.098 17.90 3.76 0.455 0.653 72.20 3.83 0.602 

5 

0.1 0.024 1.30 3.20 0.005 0.098 2.60 3.44 0.022 0.652 5.90 3.77 0.032 

0.5 0.029 5.30 3.68 0.209 0.100 15.30 4.09 0.259 0.674 57.20 4.26 0.289 

1 0.034 14.30 4.16 0.564 0.103 52.10 4.40 0.568 0.727 307.00 4.54 0.691 

10 

0.1 0.028 1.30 3.20 0.005 0.099 2.60 3.44 0.022 0.665 6.00 3.79 0.033 

0.5 0.029 5.60 3.71 0.211 0.105 18.60 4.22 0.268 0.782 90.80 4.69 0.312 

1 0.026 18.10 4.39 0.598 0.147 111.40 4.98 0.626 4.340 1,323.70 5.72 0.767 

 

From the results in Table 3, it is clear that the number of feasible paths increases as we 

relax the number of nodes visited and the total path length constraints by increasing the values of 
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n and β respectively.  Furthermore, we can observe in Figure 6 for networks with 50 nodes that 

when the maximum allowed circuity value is more restrictive (β=0.1), the increase in the number 

of feasible paths for higher values of n is not as significant as in the case where the value of β is 

not as restrictive (β=1.0). 

Similarly, when the number of nodes visited constraint is more restrictive (n=3), the 

increase in the number of feasible paths for higher values of circuity allowed is not as significant 

as in the case where the value of n is higher.  In Figure 7 it can be observed that when the 

number of nodes visited constraint is relaxed to allow up to 10 nodes, the difference in average 

number of feasible paths for different values of β becomes significant.  The same results are even 

more evident for networks with higher number of nodes.  The effects of both side constraints on 

the average number of paths generated in the cases with 100 and 200 nodes can be observed in 

Figure 8.  An analysis of variance completed in Minitab® indicates that both factors, n and β, are 

significant with p-values of 0.004 and 0.001 respectively for a level of significance of 0.05.  As it 

is also observed in Figure 8, the number of nodes in the network has a significant effect on the 

number of nodes that are enumerated. 

  

Figure 6.  Effect of Circuity on Small-Region Sparse Networks (50 Nodes). 
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Figure 7.  Effect of Nodes Allowed in a Path on Small-Region Sparse Networks (50 Nodes). 

  

Figure 8.  Effects of Circuity and Nodes Allowed in a Path on Small-Region Sparse Networks. 

We observe in Table 3 that the value of β seems to have a significant impact on the 

number of nodes visited in the enumerated feasible paths – that is, the paths tend to visit fewer 

nodes regardless of the value of n when the value for circuity allowed is very restrictive (β=0.1).  

We also observe that an increase in the number of nodes allowed to be visited seems to have a 

significant effect on the average number of nodes visited in feasible paths only on those cases 

where the maximum allowed circuity is high (β=1). 

Looking at the efficiency of our proposed algorithmic approach, we observe that for 

larger networks with 100 and 200 nodes the total CPU time required is proportional to the 
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number of feasible paths that are enumerated (Table 3).  For smaller networks (50 nodes), there 

is no significant difference between total CPU times across all values of n and β since the 

number of paths that are enumerated is very small.  In all cases, the average total CPU time is 

under one second with only one exception. 

In addition to total CPU time, we recorded other time metrics such as the CPU time 

needed to setup the problem (i.e., CPU time needed for Algorithm 1 and lines 1-45 of Algorithm 

3), the CPU time needed to generate states within the enumeration algorithm (lines 46-73 of 

Algorithm 3) and the CPU time required to reconstruct the paths obtained (lines 74-99 of 

Algorithm 3).  Overall, for small-region sparse networks, the most significant element of the 

total CPU time was the time required to setup the problem.  Both the CPU time to generate states 

and to build paths are proportional to the number of paths that are enumerated.  We observe that 

the setup CPU time is similar for networks of the same size, but increases with network size.  We 

also observed that the fraction of the total CPU time that corresponds to setting up the problem 

becomes less significant for networks with more nodes, decreasing from more than 85 percent of 

the total CPU time in networks with 50 nodes to less than 45 percent in networks with 200 

nodes. 

2.4.3.3. Effect of Increasing the Size of the Service Region 

Table 4 shows the computational results for large-region sparse networks.  Overall, we 

observe similar results for both large and small regions in terms of major trends observed.  

However, it is very important to note that the variability on the number of feasible paths 

increases significantly as the size of the network and the values of n and β increase.  A clear 

indication of this behavior can be observed on the metrics obtained when considering the values 
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n=10 and β=1 for networks with 200 and 400 nodes.  For 200 node networks, the number of 

feasible paths obtained with the algorithm varies significantly across the different replications 

ranging from 6 to 14,100.  In the case with 400 node networks, the average values presented in 

Table 4 (shown with an asterisk) actually correspond to nine replications completed within the 

stopping criterion set for our algorithm.  Here, we encountered the first instance for which the 

algorithm was not able to obtain a solution after 60 minutes due to an extremely large number of 

feasible paths. 

Table 4. Computational Results for Large-Region Sparse Networks. 

  
Nodes 

  
100 200 400 

n β 
CPU total 

(sec) 
Avg. # 
paths 

Avg. # 
nodes 

Avg. 
circuity 

CPU total 
(sec) 

Avg. # 
paths 

Avg. # 
nodes 

Avg. 
circuity 

CPU total 
(sec) 

Avg. # 
paths 

Avg. # 
nodes 

Avg. 
circuity 

3 

0.1 0.101 1.33 2.85 0.014 0.632 3.25 2.90 0.025 4.925 2.38 2.94 0.028 

0.5 0.101 2.20 2.88 0.129 0.631 7.25 2.94 0.147 4.944 6.50 2.98 0.193 

1 0.102 3.10 2.88 0.278 0.632 7.56 2.94 0.267 4.980 10.25 2.99 0.396 

4 

0.1 0.102 2.20 3.31 0.023 0.638 7.89 3.49 0.033 5.023 4.40 3.52 0.026 

0.5 0.102 7.40 3.46 0.179 0.640 44.30 3.75 0.238 5.053 26.20 3.79 0.274 

1 0.102 15.00 3.55 0.420 0.642 85.70 3.86 0.505 5.035 79.70 3.89 0.613 

5 

0.1 0.103 2.50 3.43 0.023 0.654 13.20 3.87 0.034 5.045 5.90 3.74 0.033 

0.5 0.104 17.20 3.84 0.201 0.687 168.80 4.33 0.271 5.200 67.80 4.18 0.296 

1 0.106 47.90 4.05 0.502 0.758 556.90 4.60 0.630 5.474 365.70 4.58 0.715 

10 

0.1 0.103 2.60 3.47 0.024 0.714 16.20 3.94 0.035 5.134 6.40 3.76 0.033 

0.5 0.114 37.00 4.16 0.217 2.259 534.00 4.93 0.298 6.730 212.80 4.50 0.307 

1 0.327 226.40 4.67 0.561 42.477 3,187.00 5.78 0.729 11.171* 531.33* 5.28* 0.767* 

 

Looking at the actual CPU times presented in Table 4, it is interesting to note that the 

majority of average times are still below 1 second except in cases where the variability increases 

significantly for networks with 100 and 200 nodes.  However, increasing the size of the network 

to 400 nodes causes a considerable increase in total CPU time to values close to 5 seconds and 

above.  In most cases, setup CPU time still represents a significant portion of the total CPU time, 

but as the number of feasible paths increases there is a significant increase in the fraction of total 
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CPU time that corresponds to the time required to generate states and build paths.  In fact, CPU 

time for building the paths becomes the more important portion of the total CPU time for those 

cases with a very high number of paths enumerated which demonstrates that the complexity of 

our approach is driven by this portion of the algorithm as discussed in Section 2.3.5.2. 

2.4.3.4. Effect of Increasing Arc Density 

In a different set of computational tests, we substantially increased the arc density of the 

networks.  We found that high values of n and β result in a very significant increase in the 

number of feasible paths that need to be enumerated relative to the lower density instances we 

considered.  We also observe longer run times for our algorithm due to the proliferation of valid 

states.  For example, assume that node i in a network with 200 nodes has outgoing arcs to nodes j 

and k.  If the number of valid states at nodes j and k are 1 million and 800 thousand respectively, 

the algorithm has to analyze a total of 1.8 million possible states at node i.  Assuming that only 

60 percent of those states are valid, the algorithm will have to analyze at least 1.08 million states 

at any of the predecessor nodes to node i in addition to all other corresponding valid states.  In 

general, the time required to generate states will continue to increase as the algorithm moves 

closer to the origin node (i.e., for those nodes with lower topological order).  In our 

experimentation, we were able to solve all instances of small-region dense networks with 50 

nodes, but some replications exceeded the time limit of 60 minutes for networks with 100, 200 

and 400 nodes for small-region and large-region dense networks.  In addition to this, we also 

observed high variability in the number of paths generated for instances solved when the value of 

n ≥ 5.  To illustrate the variability observed, Table 5 presents all instances for large-region dense 

networks with 200 nodes and values of n=10 and β=0.1, noting which of those we were unable to 
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solve within our 60 minute time limit.  We observe a significant variation among the instances 

that were completely solved with valid states that range from 4 to 304,828 and feasible paths 

ranging from 1 to 319.  It is also clear that the instances that were solved in a short period of time 

have a much lower number of total and valid states as opposed to those instances that were not 

solved within 60 minutes.  Furthermore note that the instances that were not solved actually were 

not even close to termination since the final node visited was in all cases several nodes from the 

origin. 

Table 5. States in Solved and Unsolved Instances for Large-Region Dense Networks. 

N = 200 
Replication 

CPU time 
(sec) 

# Paths # Total States # Valid States Final Node 

n = 10 1 4.808 99 374,632 10,428 1 

β = 0.1 2 3.108 12 20,820 337 1 

 
3 Stop Unsolved 14,635,144 957,280 55 

 
4 3.034 2 1,376 19 1 

 
5 Stop Unsolved 14,728,754 574,461 39 

 
6 3.018 1 341 4 1 

 
7 47.512 197 3,205,634 107,991 1 

 
8 Stop Unsolved 14,682,095 663,748 29 

 
9 217.415 319 7,520,374 304,828 1 

 
10 23.790 276 2,006,095 48,045 1 

 

Table 6 and Table 7 present the computational results found for small-region and large-

region dense networks respectively.  Due to the reduced number of instances completed and the 

high variability observed on the values obtained, we present only solutions for n=3 and n=4 for 

both small-region and large-region dense networks.  Other results are not included since the 

algorithm solved on average only five out of ten replications within our 60 minute time limit.  

These results suggest that the proliferation of states discussed at the beginning of this section is a 
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significant issue for the unsolved instances.  For this reason, increasing the time limit would not 

really help us to obtain results that can be analyzed with a central tendency measure such as the 

average due to the significant variability observed between the different replications for these 

cases when n ≥ 5 and the number of nodes in the network is large.  

Table 6. Computational Results for Small-Region Dense Networks. 

  
Nodes 

  
50 100 200 

n β 
CPU total 

(sec) 
Avg. # 
paths 

Avg. # 
nodes 

Avg. 
circuity 

CPU total 
(sec) 

Avg. # 
paths 

Avg. # 
nodes 

Avg. 
circuity 

CPU total 
(sec) 

Avg. #  
paths 

Avg. # 
nodes 

Avg. 
circuity 

3 

0.1 0.070 3.90 2.68 0.026 0.416 15.70 2.77 0.026 3.057 29.40 2.96 0.035 

0.5 0.072 11.10 2.88 0.195 0.419 38.20 2.96 0.197 3.067 83.70 2.99 0.200 

1 0.072 19.10 2.93 0.437 0.418 55.80 2.98 0.382 3.065 123.80 2.99 0.381 

4 

0.1 0.074 6.70 3.01 0.032 0.494 62.80 3.38 0.038 3.908 192.50 3.77 0.051 

0.5 0.080 36.60 3.48 0.254 0.596 447.60 3.72 0.280 5.306 1,812.20 3.94 0.302 

1 0.091 120.30 3.72 0.610 0.730 1,173.90 3.85 0.599 7.418 5,113.30 3.97 0.611 

 

Table 7. Computational Results for Large-Region Dense Networks. 

  
Nodes 

  
100 200 400 

n β 
CPU total 

(sec) 
Avg. # 
paths 

Avg. # 
nodes 

Avg. 
circuity 

CPU total 
(sec) 

Avg. # 
paths 

Avg. # 
nodes 

Avg. 
circuity 

CPU total 
(sec) 

Avg. # 
paths 

Avg. # 
nodes 

Avg. 
circuity 

3 

0.1 0.415 9.00 2.68 0.029 3.037 23.90 2.82 0.030 23.300 48.50 2.92 0.037 

0.5 0.418 25.30 2.90 0.203 3.050 64.30 2.86 0.162 23.467 132.10 2.98 0.202 

1 0.417 37.30 2.94 0.400 3.067 96.30 2.88 0.345 23.493 190.00 2.99 0.398 

4 

0.1 0.464 30.90 3.08 0.036 3.729 171.90 3.45 0.042 39.568 737.20 3.67 0.053 

0.5 0.539 259.30 3.53 0.265 4.799 1,413.40 3.64 0.249 74.105 6,252.60 3.90 0.299 

1 0.625 708.40 3.75 0.601 6.443 3,869.00 3.70 0.534 117.350 15,579.10 3.96 0.619 

 

Comparing the results for dense networks with those for sparse networks of the 

corresponding size, we observe that the average number of feasible paths increases significantly 

due to the increase in arc density.  However, it is interesting to note that the average total CPU 

times are still below 1 second for networks with 50 and 100 nodes.  A more detailed analysis of 

CPU times reveals that the setup CPU time for dense networks is not as significant as in the 

previous cases with sparse networks.  This is because networks with higher arc density do not 
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rely on the network reduction algorithm (Algorithm 1) as previously discussed in Section 2.4.3.1; 

therefore the time required to set up and reduce the network is a small fraction of the total CPU 

time for the algorithm.  In terms of the quality of the generated paths, the same general results 

previously observed for sparse networks are obtained when looking at the values for average 

number of nodes visited and average circuity of the feasible paths.  We again observe that the 

value of β seems to have an impact on the number of nodes visited with paths that have fewer 

nodes regardless of the value of n, especially when β=0.1.  In addition, increasing the value of n 

increases the average number of nodes visited as the value of circuity allowed gets higher. 

2.4.3.5. Relevance of Computational Results 

The computational results obtained indicate that the proposed approach is a significant 

contribution in terms of solving PENVLC. The large size of the networks as well as the high 

values set for the side constraints imposed do not allow us to solve the problem within a 60 

minute time limit.  Higher values for n and β would make this even more apparent.  However, in 

the absence of our algorithm, we would need to enumerate all paths in the network, and then sort 

through them to perform a feasibility check; this would only cause the time and computational 

effort required to solve this problem to increase.   

Our proposed algorithm allows us to generate only the paths which are feasible in a 

matter of seconds for reasonable values of n and β.  Even in those instances in which we have 

very generous values of n and β, the proposed method would prove to be more efficient to 

enumerate the complete set of paths satisfying the side constraint imposed since only the feasible 

ones are obtained and no post-processing is necessary. 
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2.5. Conclusions and Future Research 

Our research contributes to the path enumeration literature by developing an exact 

approach to generate feasible paths for large instances of PENVLC.  The proposed algorithmic 

approach avoids enumerating all paths and sorting through them to obtain the set of paths that 

satisfy the side constraints imposed.  This represents a considerable advantage in terms of 

efficiency, particularly when a small proportion of paths satisfy the side constraints (e.g., small 

values of n and β).  In addition, our approach avoids setting values for k, a significant drawback 

of using existing k-shortest path algorithms for PENVLC.  Furthermore, by simultaneously 

considering both side constraints, it also overcomes one of the disadvantages of several 

constrained shortest path and constrained k-shortest path algorithms that require checking paths 

for every side constraint in a sequential manner. 

The computational results obtained in our research indicate that as the number of nodes 

allowed to be visited increases, the number of feasible paths that need to be enumerated increases 

as well.  A similar observation is made in terms of allowing more circuity for the paths (i.e., 

increased circuity leads to a larger number of feasible paths).  In both cases, larger CPU times 

are required as the number of feasible paths grows.  Our experiments also indicate that for small 

sparse networks, highly restricting the number of nodes visited (i.e. a low value of n) may 

actually result in infeasible instances of PENVLC.  Our proposed algorithm is more efficient 

than regular methods in determining the infeasibility of the problem since it explicitly considers 

the side constraints as opposed to generating a large number of paths and post-processing them 

trying to find a valid path that does not exist.  We also found that arc density has significant 
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effect on the number of feasible paths that exist in a network, and consequently on the CPU time 

required to obtain these paths.  This is more evident for higher values of n and β. 

In our computational experiments, we observed that network topology also plays a 

significant role in the variability found across replications, especially for networks with a large 

number of nodes (e.g. more than 100 nodes).  We observed for large dense networks cases with 

only one feasible path and others with thousands of them.  This results in some instances that can 

be solved in a few seconds while others of similar type require an extended period of time to 

solve.  Our algorithm is particularly challenged by those instances with a large number of 

feasible paths.  However, we note that the number of feasible paths in a network is mostly driven 

by the bounds on nodes visited (n) and path length (β).  Appropriate values for these parameters 

depend upon the specific application for which this algorithm is used.  In our motivating 

problem, low values of β and n are likely to exist in practice.  From our experiments, most 

instances of these characteristics are solved very quickly (i.e., on average less than 12 seconds).  

As a result, our proposed method is adequate for PENVLC problems generated in the context of 

the TL relay network design problem. 

There are a number of promising extensions to the PENVLC algorithm we propose.  

While our algorithm is designed for DAGs, it would be interesting to extend the approach to 

general networks with cycles since many transportation problems may be best modeled by a 

general network.  Another promising area of future research relates to extending the proposed 

algorithm to include additional side constraints other than the ones considered in PENVLC via 

the labels used to represent valid states.  In the context of the TL relay network design problem, 

some periodic service requirements may be enforced such as the need to stop periodically for 
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fuel or maintenance in route between origin and destination.  These requirements would impose 

constraints to require that a node be visited within a specific time or distance threshold (e.g., 

cannot travel more than 500 miles without stopping for fuel).  Another potential side constraint 

corresponds to the need to satisfy some sort of service guarantee (e.g.., deliver a load in a given 

time window).  The addition of a time dimension in this problem results in an interesting 

challenge that is worth considering as future research. 

Other transportation problems such as the emergency vehicle routing problem focus on 

generating paths that are sufficiently different so that a real alternative route can be used between 

a particular O-D pair.  This type of requirement is also observed when risk is incorporated in the 

definition of alternative routes against disruptions in a transportation network.  Incorporating a 

limitation on path similarity is not straightforward, but it would make it relevant for a wider 

range of practical problems that currently rely on heuristic methods.  This would require defining 

the appropriate modifications to the labels used and to the strategy for generating valid states so 

that the set of feasible dissimilar paths is efficiently obtained.  This is another area that we would 

certainly like to study in the future.  The work done in the current research is a solid step towards 

the development of exact algorithms that can be applied efficiently in real world transportation 

problems that require enumerating paths that satisfy several additional constraints. 

References 

Ahuja, R.K., Magnanti, T.L., and Orlin, J.B. (1993). Network Flows: Theory, Algorithms, and 

Applications. Upper Saddle River, NJ: Prentice Hall. 

Aneja, Y.P., Aggarwal, V., and Nair, K.P. (1983). Shortest Chain Subject to Side Constraints. 
Networks, 13, 295-302. 



49 
 

 

Carlyle, W.M., and Wood, R.K. (2005). Near-Shortest and K-Shortest Simple Paths. Networks, 

46(2), 98-109. 

Carlyle, W.M., Royset, J.O., and Wood, R.K. (2008). Lagrangian Relaxation and Enumeration 
for Solving Contrained Shortest Path Problems. Networks, 52(4), 256-270. 

Dreyfus, S.E. (1969). An Appraisal of Some Shortest-Path Algorithms. Operations Research, 

17(3), 395-412. 

Eppstein, D. (1998). Finding the k Shortest Paths. SIAM Journal of Computing, 28(2), 652-673. 

Filippovich, V. (1973). Transforming a Cyclic Directed Graph into an Acyclic Graph. 
Cybernetics and Systems Analysis, 9(2), 348-351. 

Hadjiconstantinou, E., and Christofides, N. (1999). An Efficient Implementation of an Algorithm 
for Finding K Shortest Simple Paths. Networks, 34, 88-101. 

Handler, G. Y., and Zang, I. (1980). A Dual Algorithm for the Constrained Shortest Path 
Problem. Networks, 10, 293-310. 

Hershberger, J., Maxel, M., and Suri, S. (2007, November). Finding the k Shortest Simple Paths: 
A New Algorithm and Its Implementation. ACM Transactions on Algorithms, 3(4), 45:1-
45:19. 

Hoffman, W., and Pavley, R. (1959). A Method for the Solution of the Nth Best Path Problem. 
Journal of the Association for Computing Machinery (ACM), 6, 506-514. 

Katoh, N., Ibaraki, T., and Mine, H. (1982). An Efficient Algorithm for K Shortest Simple Paths. 
Networks, 12, 411-427. 

Lawler, E. L. (1972). A Procedure for Computing the K Best Solutions to Discrete Optimization 
Problems and Its Application to the Shortest Path Problem. Management Science, 18(7), 
401-405. 

Lawler, E. L. (1976). Combinatorial Optimization: Networks and Matroids. New York, NY: 
Holt, Rinehart & Winston. 

Liu, G., and Ramakrishnan, K.G. (2001). A*Prune: An Algorithm for Finding K Shortest Paths 
Subject to Multiple Constraints. Proceedings IEEE INFOCOM, 743-749. 

Martins, E.Q., and Pascoal, M.M. (2003). A New Implementation of Yen's Ranking Loopless 
Paths Algorithm. 4OR: Quarterly Journal of the Belgian, French and Italian Opeartions 

Research Societies, 1, 121-133. 



50 
 

 

Park, D., and Rilett, L.R. (1997). Identifying Multiple and Reasonable Paths in Transportation 
Networks: A Heuristic Approach. Transportation Research Record: Journal of the 

Transportation Research Board, 1607, 31-37. 

Park, D., Sharma, S.L., Rilett, L.R., and Chang, M. (2002). Identifying Multiple Reasonable 
Alternative Routes: Efficient Vector Labeling Approach. Transportation Research 

Record: Journal of the Transportation Research Board, 1783, 111-118. 

Shi, N. (2010). K Constrained Shortest Path Problem. IEEE Transaction on Automation Science 

and Engineering, 7(1), 15-23. 

Taylor, G.D., Whicker, G.L., and Usher, J.S. (2001). Multi-Zone Dispatching in Truckload 
Trucking. Transportation Research: Part E, 37, 375-390. 

Tobita, T., and Kasahara, H. (2002). A Standard Task Graph Set for Fair Evaluation of 
Multiprocessor Scheduling. Journal of Scheduling, 5(5), 379-394. 

Üster, H., and Kewcharoenwong, P. (2011). Strategic Design and Analysis of a Relay Network 
in Truckload Transportation. Transportation Science, 45(4), 505-523. 

Üster, H., and Maheshwari, N. (2007). Strategic Network Design for Multi-Zone Truckload 
Shipments. IIE Transactions, 39, 177-189. 

van der Zijpp, N., and Fiorenzo Catalano, S. (2005). Path Enumeration by Finding the 
Constrained K-shortest Paths. Transportation Research: Part B, 39, 545-563. 

Yen, J. Y. (1971). Finding the K Shortest Loopless Paths in a Network. Management Science, 

17(11), 712-716. 

 

  



51 
 

 

3. Composite Variable Model for Truckload Relay Network Design 

Driver retention is a significant problem for full truckload carriers that operate using a 

point-to-point dispatching method.  As an alternative, dispatching under a network configuration 

of relay points can be used to reduce driver tour lengths and consequently improve driver 

retention.  We present a new mathematical formulation for strategic relay network design that 

minimizes total costs while considering important operational constraints such as load circuity 

and driver tour length within the variable definition.  This formulation allows us to find very 

high quality solutions in reasonable times for largely-sized problem instances.  Computational 

results for generated instances and a test case problem provided by a major carrier are presented 

along with a discussion of areas for future research. 

3.1. Introduction 

Trucking is the predominant mode of land transportation of freight in the United States, 

accounting for 71.3% of total freight expenditures (U.S. Bureau of Transportation Statistics, 

2010).  One of the major challenges faced by truckload (TL) carriers is that of driver retention; 

typical truckload carriers experience an annual turnover of more than 100% (Campbell, 2005).  

This is very costly since carriers must invest significant resources in recruiting, training, and 

retaining drivers.  Industry estimates that this costs approximately $8,200 per driver.  This adds 

up to a significant expense for TL carriers, on the order of $2.8 billion annually (Rodriguez et al., 

2000).  Also, the American Transportation Research Institute (2011) reports that driver turnover 

has not been placed below the sixth spot on the list of top concerns for the trucking industry 

since 2005, and has been in the top three spots in five of the last seven years.  In fact, the 
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importance of retaining drivers is even more evident now that there is an estimated shortage of 

125,000 drivers (Morris, 2011). 

TL carriers typically move loads point-to-point (PtP); that is, loads are picked up at their 

origin and moved via a single driver to their destination.  For example in a PtP network, if a 

driver delivers a load to Fayetteville, AR, the carrier must either find a load leaving Fayetteville 

or have the driver travel to a nearby city to pick up another load.  These loads can be difficult to 

identify due to imbalanced freight networks.  Carriers must construct tours – a series of truckload 

movements that begin and end at a driver's base terminal – that allow drivers to return home.  

These tours are difficult to construct, and often leave drivers on the road for two or three weeks 

at a time.  The time that drivers spend away from their homes is one of the main causes of driver 

turnover for TL carriers (Campbell, 2005). 

Contrast this with less-than-truckload (LTL) carriers' operations.  LTL carriers move 

smaller shipments than TL carriers.  As a result, these shipments must travel via a series of hubs 

where freight is sorted and consolidated.  This means the drivers' trips are shorter since they go 

from one hub to another.  Since freight is moved primarily between hubs, drivers return home 

much more frequently; in some cases, nightly.  Turnover for LTL carriers is only around 10% 

(Campbell, 2005). 

Motivated by the differences in driver retention between LTL carriers and TL carriers, 

TL carriers are considering constructing a network of relay points (RPs).  This would be referred 

to as a relay network, and would serve as an alternative to traditional PtP dispatching.  Using a 

relay network, freight would be transported from its origin through a series of relay points to its 

destination.  This would essentially mimic LTL operations, except that no freight would be 
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handled at the relay points; these points would simply serve as points in the network for drivers 

and loads to be exchanged (Campbell, 2005). 

Relay points introduce a fundamental tradeoff that must be considered – the cost of the 

relay network must be balanced against improved service and a reduction in driver turnover.  

Relay networks increase cost for two primary reasons.  First, carriers must pay to open and 

operate relay points.  Second, circuity is introduced since traveling through a network of RPs is 

not as efficient as direct PtP transportation.  However, these costs must be balanced against the 

increase in driver retention since a relay network configuration allows drivers to return to their 

home domiciles more frequently.  In addition, there are service implications for RPs.  

Counterintuitively, a load's transit time can be reduced under a relay configuration because loads 

can travel continuously; since loads can be exchanged at RPs, they need not be inhibited by 

regulations that limit hours of service that would be in place if a single driver moved a load PtP 

(Taha and Taylor, 1994). 

This chapter introduces a new mathematical model for the truckload relay network design 

(TLRND) problem. There are a number of contributions to the literature associated with this 

work.  First, we develop a prescriptive composite variable model (CVM) to solve TLRND.  We 

describe how this model can be used to obtain both exact and heuristic solutions for TLRND, 

depending upon the way in which the composite variables are generated.  Second, our CVM is 

able to explicitly capture operational constraints such as the number of RPs visited and limits on 

route circuity for the truckloads that to this point have been acknowledged as important by 

researchers in this area, but relaxed or replaced by surrogates in the previously-published studies 

on prescriptive models for TLRND.  We also explain how our CVM can be easily extended to 
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incorporate additional operational constraints.  Third, we exercise our model to obtain high-

quality solutions to several instances of TLRND.  We explore the tradeoff between the solution 

quality and the time required to obtain these solutions to offer insights into the performance of 

our model.  Finally, our model adds to the growing literature on CVMs.  Although a number of 

CVMs have been used to model and solve a number of problems, particularly in the areas of 

transportation and logistics, there is not yet a unified body of literature in this area or a 

predominant set of guiding principles to develop CVMs.  As a result, each new CVM is a 

contribution to the literature and helpful in developing a library of models that can be used by 

future researchers. 

The remainder of this chapter is organized as follows.  In Section 3.2, we formally 

introduce TLRND.  In Section 3.3, we present a new mathematical formulation for TLRND that 

uses composite variable modeling. Section 3.4 describes the computational experiments that we 

completed to evaluate the performance of our proposed model and the quality of the solutions 

obtained.  Finally, we conclude by highlighting the major findings of our research and discussing 

areas for future work in Section 3.5. 

3.2. Truckload Relay Network Design 

As opposed to the significant amount of work completed on freight transportation with 

consolidation for LTL shipping and express package delivery, relatively few authors have 

considered network structures for TL planning problems.  This type of configuration is not 

pervasive in TL transportation since truckloads are commonly dispatched PtP.  However, the 

benefits of operating a relay network for TL transportation make this an interesting area for 

research.  Most of the original work in TLRND corresponds to descriptive simulation analyses of 
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hub-and-spoke networks, multi-zone dispatching systems and other alternative dispatching 

methods for TL transportation.  These studies demonstrated the feasibility of such systems and 

explored different strategic and operational aspects of TLRND (Taha and Taylor, 1994; Taylor et 

al., 1995; Taylor et al., 1999; Taylor and Meinert, 2000; Taylor et al., 2001).  Only a few studies 

have considered algorithmic solution approaches to problems on TLRND such as Hunt (1998) 

and Ali et al. (2002).  To the best of our knowledge, the only mathematical modeling formulation 

for TLRND has been presented in Üster and Maheshwari (2007) and Üster and 

Kewcharoenwong (2011). 

A general conclusion drawn by the previous descriptive studies in this area is that 

tradeoffs among different performance metrics must be weighed when comparing traditional 

dispatching methods to alternative network-based configurations for TL transportation.  A 

description of the most important performance metrics for each of three major constituencies – 

drivers, carrier and customers – and how they are affected by a particular dispatching method is 

presented in Taylor and Meinert (2000).  A general recommendation derived from these previous 

studies is that TL carriers are best served by operating a partial relay network with some loads 

being shipped using PtP dispatching to prevent excessive circuity for some shipments. 

A more recent contribution in the TLRND literature is the work of Üster and Maheshwari 

(2007) and Üster and Kewcharoenwong (2011).  Üster and Maheshwari (2007) propose a 

mathematical formulation for the strategic design of a TL relay network.  Their model combines 

elements from multi-commodity flow network formulations and the hub location problem.  The 

basic model considers restrictions on the length of local and lane driver tours as well as 

maximum permissible levels of percentage circuity and load imbalance.  They were able to solve 
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smaller instances of this problem using this mixed-integer programming model, but their 

formulation is intractable for largely-sized problem instances.  For this reason, the authors 

developed a heuristic procedure to solve a relaxed formulation of the problem without 

constraints to enforce circuity limitations and load balance.  A construction heuristic was 

implemented to generate a feasible set of RP nodes that satisfy the local and lane driver tour 

length constraints.  Then, a tabu search procedure was used to improve the initial solution.  The 

heuristic approach was tested with randomly generated problem instances of up to 20 nodes in 

the network.  They were able to obtain optimality gaps of less than 1% for the tabu search in 

most cases. 

Üster and Kewcharoenwong (2011) use a slightly modified mathematical formulation as 

compared to that presented in the previous paper and develop a Benders' decomposition-based 

algorithm for solving the problem originally without the circuity constraints.  To overcome 

inefficiencies in solving the problem with a typical implementation of Benders' decomposition, 

the authors systematically explored alternatives within an ε-optimal framework such as deriving 

strengthened Benders' cuts, cut disaggregation techniques and heuristics for improved upper 

bounds.  They also used surrogate constraints in their model to enforce a limitation on circuity.  

With this approach, they were able to solve larger problem instances with up to 80 nodes within 

reasonable solution times with ε =2.0% for the optimality gap.  These two last papers provide a 

significant contribution in terms of defining TLRND, formulating a mathematical model for its 

solution and analyzing several design aspects for the construction of TL relay networks.  

However, major TL carriers usually deal with practical problems with hundreds of nodes and 

thousands of truckloads. 
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Variations of TLRND also appear in other domains.  For example, relay network design 

problems can be found in telecommunications when strategically designing a fiber-optic network 

with relays to overcome signal degradation due to attenuation and other factors.  The most 

significant difference between this problem and TLRND is that balance as well as a limitation on 

the distances between two consecutive nodes in a path are not considered.  Cabral et al. (2007) 

introduce this problem in the context of telecommunication network design and propose a path-

based integer programming model with a column generation approach for solving small problem 

instances.  They recommend using a subset of the feasible paths and relay combinations to solve 

bigger problem instances with very high quality solutions in reasonable CPU times.  The use of 

construction heuristics is also explored in their work.  More recently, Konak (2011) presents an 

alternative formulation for this problem based on set covering constraints to locate relays on the 

network and designs a genetic algorithm with a specialized crossover operator to generate 

feasible paths for the commodities.  With this approach, problems with up to 160 nodes and 10 

commodities are solved within reasonable CPU times. 

3.2.1. Problem Definition 

Given a set of truckloads to be transported through the network, the TLRND problem 

minimizes the total cost of opening RPs and routing the truckloads through the network of relay 

points.  In a relay network (RN), each truckload must stop at one or more RPs en route from 

origin to destination.  This configuration would be similar to a hub-and-spoke network, except 

that no sorting or consolidation of the loads occurs at the RPs.  Consider the example shown in 

Figure 9.  In this example, truckload ij is transported from its origin node i through a series of 

three relay points to its destination j.  When all routings are established, all nodes in the network 
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can be partitioned into zones that surround each RP.  These represent all origin and destination 

nodes served by a RP. 

 

Figure 9.  Relay Network for Truckload Transportation. 

Under this RN configuration, two types of drivers handle the loads.  Local drivers move 

loads within a zone (i.e., from an origin node to a RP or from a RP to a destination node).  These 

local drivers are domiciled at a RP, and return home each night.  The distances driven by local 

drivers cannot exceed a pre-specified limit, γ1.  Lane drivers are responsible for inter-zone 

movements.  These drivers travel longer distances than local drivers, transporting loads from one 

RP to another.  Distance limitations for lane drivers are imposed to ensure federal hours-of-

service regulations are satisfied.  We refer to the limitation on lane distances as γ2. 

Based on TL carrier requirements, we impose a limitation on the number of RPs that can 

be visited on a truckload route, λ.  This is to prevent excessive stopping or circuity, and to ensure 

that the delivery of loads is timely.  To the best of our knowledge, this constraint has not been 

explicitly considered in previous research though as previously mentioned its importance is 

validated in discussions with carriers.  Moreover, we impose a limitation on the circuity of loads, 

β.  Assuming that the shortest path that can be taken by a truckload is d, we allow only routes of 

length (1+ β)d or shorter to move that truckload.  All of these constraints must be imposed to 

ensure that the routes are feasible. 
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In addition, truckload routes and repositioning moves for empty trailers must be selected 

to ensure that each of the relay points is balanced.  This ensures that no node suffers an excessive 

surplus or deficit of empty trailers and allows the carrier to provide better quality of service to 

shippers while reducing the number of empty miles driven. 

3.3. Mathematical Model for TLRND 

Previous models for TLRND are variants of arc-based multicommodity flow network and 

hub location formulations (Üster and Maheshwari, 2007; Üster and Kewcharoenwong, 2011).  

These models have difficulty incorporating some of the operational constraints encountered in 

practice.  As a result, traditional formulations are either solved by heuristics, or relax important 

constraints like circuity altogether.  To overcome these challenges, we propose a composite 

variable formulation for TLRND.  As opposed to variables which represent small, localized 

decisions, composite variable formulations define the variables in such a way that many of the 

complicating constraints are captured implicitly within the variable definition.  This type of 

formulation has been used in the past in other integrated planning problems in transportation and 

logistics such as Armacost et al. (2002) in service network design for express shipping, Cohn and 

Barnhart (2003) and Lohatepanont and Barnhart (2004) in integrated airline planning, Cohn and 

Barnhart (2006) in service parts logistics, and Cohn et al. (2007) and Root and Cohn (2008) in 

integrated planning for small package carriers to name a few. 

In this formulation, we define a variable as a feasible route for a truckload; these 

variables are also referred to as composites.  Defining our variables in this way allows us to 

decompose the problem into smaller routing problems.  For example, the route shown in Figure 1 

would be one example composite.  Routes that do not satisfy circuity limitations, local and lane 
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distance requirements and limitations on the number of nodes visited are simply not created and 

therefore cannot be selected by our model.  Note that in this way, the challenging operational 

constraints are embedded implicitly within the definition of our variables.  It is important to 

mention that we also have composites which represent the repositioning of empty trailers; such 

composites may be required to achieve balanced networks.  These routing decisions are then 

coordinated via a master problem.  Given this variable definition, our model is given in the 

following section. 

3.3.1. Composite Variable Model 

To model the TLRND problem, we introduce the following notation. 

Sets 

R = set of composites r, 

T = set of truckloads t, 

N = set of nodes k, 

Rt = set of composites r for truckload t, Rt ⊂ R, 

Nr = set of nodes visited by composite r, Nr ⊂ N. 

Parameters 

cr = cost of composite r, ∀ r ∈ R, 

Fk = fixed cost of relay point k, ∀ k ∈ N, 

bt = demand for truckload t (in number of loads), ∀ t ∈ T, 

δ = maximum acceptable percentage load imbalance, 

θkr =    1 if composite r visits relay point k, ∀ k ∈ N, r ∈ R, 

0 otherwise, 
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ηkr =    -1 if node k is the origin relay point of composite r, ∀ k ∈ N, r ∈ R, 

1 if node k is the destination relay point of composite r, 

0 otherwise. 

Variables 

xr = number of composites r used, ∀ r ∈ R, 

yk = 1 if a relay point is opened at node k, ∀ k ∈ N, 

0 otherwise. 

Given this notation, our mathematical formulation for TLRND is as follows. 

min� crxr

r∈R

+�Fkyk

k∈N

 

 

(1) 

                          subject to  � xr

r∈Rt

= bt      ∀ t ∈ T (2) 

� θkrxr

r∈Rt

≤ btyk
      ∀ t ∈ T, k ∈ Nr : r ∈ Rt 

(3) 

� xr

r:ηkr=−1

− � xr

r:ηkr=1

≤ 𝛿 � xr

r:ηkr=−1

      ∀ k ∈ N (4) 

� xr

r:ηkr=1

− � xr

r:ηkr=−1

≤ 𝛿 � xr

r:ηkr=1

      ∀ k ∈ N (5) 

xr integer      ∀ r ∈ R (6) 

y
k
∈ {0,1}     ∀ k ∈ N (7) 

 

The objective function (1) minimizes the total cost of routing (i.e., the composites 

selected) and the fixed cost of opening RPs.  Constraint (2) requires routes to be selected for each 

of the truckloads to be moved through the network.  Constraint (3) requires that all RPs 
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associated with a composite be opened if that composite is used in the solution.  Network 

balance is enforced using constraints (4) and (5) by requiring the difference between the 

outgoing and incoming flows at each node be less than a limitation on the node imbalance.  Note 

that only one of these constraints will be binding at each node for values of δ > 0.  Constraints 

(6) and (7) require the integrality of all variables.  Note that xr may assume values greater than 

one to satisfy the demand (i.e., when bt > 1 in constraint (2)), or when multiple empty trailers 

must be repositioned to achieve balance (constraints (4) and (5)). 

3.3.2. Generating Composite Variables 

A challenge of composite variable formulations such as the one proposed in Section 3.3.1 

is in the large number of variables that must be generated.  To generate our variables, we use an 

enumeration-based procedure where we define templates: predefined routing patterns that 

truckloads can take.  Figure 10 shows a template with 4 nodes and 2 RPs (k and l) that is used to 

determine feasible routes for truckloads with origin in node i and destination in node j where the 

shortest path distance between i and j is given by SPij.  Since TL carriers do not typically permit 

movements that visit more than three relay points, it is possible to construct all templates that 

could be used (Figure 11) and completely enumerate the variables.  Empirical testing with our 

formulation reveals, however, that several of these templates are typically not used in optimal 

solutions as will be described later in Section 3.4. 

 

Figure 10.  Example Template for Composite Generation. 
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Figure 11.  Set of Templates Used for Composite Generation. 

To generate composites, we implemented an algorithm to check the feasibility of each of 

these templates for each truckload/node combination.  For all combinations which satisfy 

operational constraints such as circuity and local and lane distance limitations, the variables are 

generated and added to the model.  If the feasibility requirements are not satisfied for a given 

template, then those variables are simply not included.  By enforcing these important operational 

constraints implicitly within the definition of the variables, we do not need to include them as 

constraints in our mathematical formulation.  Additionally, the number of variables that are 

generated is reduced by considering the dominance of certain templates with respect to others in 

terms of composite cost.  For example, assuming that local movement rates are always less than 

lane movement rates, templates 1 and 2 presented in Figure 11 dominate template 3 given that 

each of them creates a composite with a lower transportation cost. 

3.3.3. Omitting Redundant Facility Location Constraints 

Another challenge of this formulation is the large number of constraints, particularly the 

facility location constraints (3).  This led us to consider ways in which we could reduce this 

number of constraints without sacrificing solution quality.  In our initial testing, we observed that 
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for a non-trivial proportion of truckloads t, only a single composite was generated; let T' 

represent the set of all such truckloads.  For all truckloads t ∈ T', the routing decisions – 

including the sequence of relay points k which must be visited – have already been determined; 

therefore they need not be considered in the model and constraints (2) can be omitted for all t ∈ 

T'.  More importantly when a routing for t ∈ T' is selected, we know which relay points k must be 

opened to transport this truckload.  If a relay point k is required to transport a truckload t ∈ T', 

then all constraints (3) associated with such relay points can be omitted from the model.  We 

found that omitting these constraints significantly reduced the number of constraints in the 

model, and affected the time required to obtain solutions for the TLRND problem as will be 

shown in Section 3.4. 

3.4. Solution Methodology and Computational Experiments 

In this section we present computational results obtained with our proposed formulation 

for both randomly generated problem instances as well as data provided by a major TL carrier.  

The algorithm for composite generation and our proposed formulation were implemented using 

Python 2.6, and all instances were solved using CPLEX 12.1 on a Xeon® 3.2 GHz workstation 

with 6 GB of RAM. 

3.4.1. Generation of Random Instances and Selection of Parameter Values 

To test the computational performance and the quality of the solutions obtained using the 

proposed model presented in Section 3.3.1, we generated random problem instances.  In 

particular, we generated complete networks – networks where each node pair is connected by an 

arc in both directions – of different sizes and truckload density.  Although networks that arise in 

practice tend to be sparser, using complete networks allowed us to test the worst case 
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performance of our proposed formulation due to the significant number of possible routes that 

can be generated between any node pair in the network.  This is particularly important given the 

enumeration-based procedure we use to generate our variables described in Section 3.3.2. 

One of the objectives of our computational experiments was to assess the effect of 

network size on the performance of our model.  Ten instances of networks with 50, 100 and 150 

nodes each were generated by randomly locating uniformly distributed nodes in a squared region 

of 600 miles × 600 miles.  The size of the region in which our networks were created was 

selected to represent the geographical area covered by a regional network (e.g., Northeast US 

region) for a major TL carrier.  However, the distances on the arcs between node pairs in our 

complete networks were computed using the Euclidean norm and do not represent actual over the 

road distances. 

Another goal of our computational testing was to determine the effect of different 

truckload flow densities (i.e., demand levels) on the performance of our formulation and on the 

quality of the solutions found.  For this reason, truckloads (i.e., origin-destination node pairs) 

were randomly selected to cover 10%, 20% and 40% of all pairs of nodes in the network; that is, 

for a network with 50 nodes, we selected 245, 490 and 980 origin-destination (O-D) node pairs 

to have truckload flows.  The actual demand (i.e., number of truckloads shipped between a 

selected O-D node pair) was determined by randomly generating a uniformly distributed integer 

between 10 and 20. 

In our testing, we assume each node in the network can serve as a RP.  The fixed cost of 

installation of a relay point was set to $10,000.  This value does not represent a considerable 

capital expense, but it is reasonable in the sense that RP locations are simple facilities where 
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drivers and loads are exchanged without using expensive equipment and infrastructure.  

However, we performed sensitivity analysis on the value for this parameter to determine its 

effect on the quality of the solutions obtained with our formulation.  Also, rates per mile were 

established for both local and lane movements.  Local miles driven were charged $0.80 per mile, 

while lane movement miles were charged $1.00 per mile. 

To generate feasible routes, we allowed 25% circuity (β) above the shortest path distance 

between origin and destination of a given truckload.  This is a somewhat generous value 

considering previous research on TLRND has shown that using truckload routes with 20% 

circuity results in a good compromise between company/driver performance and customer 

service metrics when using a network based dispatching system for TL transportation (Taylor et 

al., 1999).  The limitations on the distances covered by local (γ1) and lane (γ2) drivers were set to 

150 miles and 600 miles respectively.  The latter value accounts for the distance that can be 

covered in a full work day by a single driver according to current hour-of-service regulations for 

the industry. 

3.4.2. Exact Solution Method 

In our testing of the proposed model, exact solutions were obtained using CPLEX 12.1 

(i.e., a branch-and-cut approach) with model preprocessing enabled and other settings set to 

default values.  To assess the tractability of our model, we initially relaxed the equipment 

balance constraints (4) and (5) and ran computational experiments using networks with 50 and 

100 nodes.  Table 8 shows the results obtained with our model after omitting facility location 

constraints as described in Section 3.3.3.  Our customized preprocessing technique resulted in an 

average reduction on the number of constraints of 10.26% and an average reduction in solution 
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time of 20.54%.  The values presented in Table 8 correspond to averages for 10 replications, 

except where otherwise noted. 

Table 8. Exact Solution Results. 

# Nodes # Truckloads # Composites # Constraints Solution Value 
($) 

# RPs 
Open 

Setup Time 
(secs) 

Solution Time 
($) 

50 

245 30,812.9 3,189.3 1,344,387.3 22.9 38.07 0.59 

490 64,224.3 6,314.1 2,515,949.8 27.0 78.31 1.49 

980 127,840.2 11,505.0 4,752,742.7 31.2 165.76 2.08 

100 

990 782,406.7 25,138.2 4,719,260.5 39.3 1,932.10 114.61 

1,980 1,535,146.3 49,052.5 8,836,048.3 50.1 5,472.60 451.58 

3,960 3,010,949.8* 98,115.3* 17,433,227.15* 60.8* 16,626.70* 719.27* 
* CPLEX out of memory in 6 of the 10 replications. 

As observed in Table 8, the number of composite variables increases significantly as both 

the number of nodes and truckload density increase in our problem instances.  This has an effect 

on the tractability of our proposed formulation as observed in the case for problems with 100 

nodes and 3,960 truckloads where only 4 replications were solved before CPLEX ran out of 

memory due to problem size.  Based on these observations, it is expected that similar memory 

issues will also appear when attempting to solve instances with more than 100 nodes given the 

significant increase on the number of composites used in our formulation.  This will prevent us 

from solving practically sized problem instances of TLRND using this exact approach.  For this 

reason, alternative solution methods for largely sized instances of our problem are explored later 

in Sections 3.4.2.2 and 3.4.3. 

In a similar way, the large number of composites also affects setup time and solution 

time.  Setup time is the time required to generate composite variables and build the mathematical 

model, while solution time is the time CPLEX takes to solve the problem.  From this table we 

observe that the generation of the composites represents a significantly larger computational 

effort than the solution of the problem itself.  Setup times seem to be mostly driven by the 



68 
 

 

number of composites and do not increase linearly, while solution times seem to depend on both 

number of composites and number of nodes and increase in a nonlinear fashion as well.  

Although solution times do not exceed 12 minutes for networks with 100 nodes, having a huge 

number of composites produces setup times that exceed 4 hours and 30 minutes when truckload 

demand is high.  

In terms of the solutions found, Table 8 shows that, as expected, the objective function 

value increases as the size of the network and the truckload demand increase.  The proportion of 

the fixed cost in the total cost for the design of the RN decreases as the size of the problem 

instance increases.  This is because for networks of the same size, the number of RPs that need to 

be opened does not increase in the same proportion as the truckload density.  However, the large 

number of RPs observed can be explained by the low capital investment needed for the 

installation of the RPs (i.e., $10,000 per RP).  An analysis of the effect of this value on the 

solutions found is presented later in Section 3.4.3.  Another important observation about the 

solutions found is that several origin/destination nodes in the network are assigned to more than 

one existing RP in their vicinity.  This has been identified by other researchers as an open area in 

TLRND optimization.  Since our approach is already taking this aspect into account, this can be 

considered an additional contribution of our research. 

3.4.2.1. Strength of Formulation 

Because the number of composite variables in our formulation can hamper the tractability 

of our model using the standard branch-and-cut approach implemented in CPLEX, we explored 

alternative solution methods for largely-sized instances of TLRND.  However, we first analyzed 

the strength of our formulation to evaluate the potential use of other exact and heuristic solution 
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approaches.  Table 9 shows that the results found using the linear programming (LP) relaxation 

of our model without balance constraints are very close to the solutions found with the integer 

program (IP) for networks with 50 nodes.  Average and worst case optimality gaps below 1% are 

an indication that our formulation has the potential to find very high quality solutions for many 

problem instances even when the integrality of our variables is relaxed.  Furthermore, best case 

optimality gaps of 0.0% indicate that in all cases at least one problem was solved to optimality 

with the LP relaxation of our model. 

Table 9. Strength of Formulation of Composite Variable Model for TLRND (50 Nodes). 

# Truckloads IP 
Solution Value ($) 

LP Relaxation 
Solution Value ($) 

Average 
Optimality Gap 

Best Case 
Optimality Gap 

Worst Case 
Optimality Gap 

245 1,344,387.3 1,341,862.4 0.19% 0.00% 0.37% 

490 2,515,949.8 2,512,951.8 0.12% 0.00% 0.24% 

980 4,752,742.7 4,751,060.8 0.04% 0.00% 0.08% 

     

The values presented in Table 9 encouraged us to pursue both exact and heuristic solution 

methods that take advantage of the very small optimality gaps observed while reducing the 

memory requirements of our formulation.  In particular, we decided to employ an exact pricing 

method, and a heuristic method based on using a subset of the composite variables to find very 

high quality solutions in reasonable CPU times.  The pricing method is presented next (Section 

3.4.2.2) and the heuristic method is presented in Section 3.4.3. 

3.4.2.2. Pricing Method for Solving TLRND 

Given the tractability issues observed for largely-sized instances of TLRND and the small 

optimality gaps seen for solutions obtained with the LP relaxation of our model, we tested a 

branch-and-price framework to solve this problem.  Starting with the LP relaxation of our model 

and using only a subset of the composite variables at the root node of the branch-and-bound tree, 
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we implemented a pricing method to evaluate the reduced costs of composites not included in the 

model, and added those that improve the objective function value.  This pricing method is also 

used at the other nodes of the branch-and-bound tree until optimality can be proven.  In our 

implementation of the branch-and-bound tree, we decided to branch on the most fractional 

variable associated with a relay point (y variables) and used depth-first search to traverse the tree. 

The most significant challenge associated with this solution method was determining the 

appropriate pricing method for the composites.  One alternative is to develop a mathematical 

model for the pricing subproblem.  This resulted in a formulation similar to the existing model 

for TLRND presented in previous literature with balance constraints relaxed (Üster and 

Maheshwari, 2007; Üster and Kewcharoenwong, 2011).  Since there are tractability issues with 

this model, we decided to use a different approach for the pricing of the composites.  Our pricing 

method uses the templates previously defined for composite generation (Figure 11) to evaluate 

the reduced cost of composites not included in the reduced model.  Let ωt and ω0
tk denote the 

dual values for constraints (2) and (3) respectively.  The reduced cost for a given composite is 

shown in equation (8) where αtr indicates if a composite r corresponds to a truckload t. 

cr� = cr −�𝜔r𝛼tr

t∈T

+ ��ωtk
0 θkr

k∈Nt∈T

 

 

(8) 

Using the templates, equation (8) is evaluated for each composite not included in the 

reduced model and whenever the value obtained is negative, the composite can improve the 

objective function value and is therefore included in the model as a new column.  Since our 

facility location constraint (3) is defined only for those nodes visited by composites associated 

with a truckload (i.e., ∀ t ∈ T, k ∈ Nr : r ∈ Rt), the addition of new composites may also result in 

the generation of new rows in the model if new nodes are included in routes for a given 
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truckload.  For this reason, our solution methodology can be classified as a branch-and-price-

and-cut approach. 

Although this approach solves the memory issues by reducing the size of the problems 

and allows us to provide an optimality guarantee for the solutions obtained, it introduces a 

significant computational burden in terms of the CPU time required to obtain an optimal 

solution.  Table 10 shows the performance of this exact method for networks with 50 nodes.  The 

values in parentheses below the averages shown in this table represent the changes with respect 

to the values previously obtained for networks with 50 nodes (Table 8).  It is important to note 

the significant reduction in the number of composite variables generated with this exact approach 

(i.e., more than 86% reduction) and how this reduction in problem size helps to alleviate the 

memory issues previously observed.  However, the savings in terms of the reduction in the 

number of composites and the associated setup times are completely lost with the significant 

increase in solution times for the algorithm.  Although the number of nodes required in the 

branch-and-bound tree is relatively small (i.e., between 5 and 12 on average), using the templates 

to evaluate reduced costs for the composites represents a considerable computational effort 

similar to completing several setups during the pricing of the composites.  This does not allow us 

to find optimal solutions for largely-sized instances of TLRND in reasonable CPU times.  Even 

though we were are able to solve problems with 50 nodes and 980 truckloads in just over 10 

minutes, one instance with 100 nodes and 990 loads was stopped after it ran for 16 hours without 

obtaining the optimal solution.  For this reason, we developed the heuristic method that is 

presented in Section 3.4.3, and used this method to solve the remaining problem instances. 
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Table 10. Pricing Method Results (50 Node Networks). 

# Truckloads # Initial  
Composites 

# Final 
Composites 

# Constraints Setup Time 
(secs) 

# B-and-B 
Tree Nodes 

Solution Time 
(secs) 

245 
3,968.4 

(-86.94%) 
4,155.7 

(-86.29%) 
2,357.7 

(-26.02%) 
11.67 

(-69.22%) 
8.4 

176.53 
(+35,118.0%) 

490 
8,098.8 

(-87.29%) 
8,492.5 

(-86.68%) 
4,713.5 

(-25.27%) 
23.17 

(-70.24%) 
11.1 

449.82 
(+36,118.7%) 

980 
16,271.1 

(-87.16%) 
16,755.0 

(-86.77%) 
9,369.6 

(-18.08%) 
46.22 

(-71.81%) 
5.4 

549.85 
(+30,311.1%) 

 

3.4.3. Heuristic Method 

Since our testing revealed that a significant number of composites hampers the 

tractability of our formulation, we developed a heuristic procedure to solve largely-sized 

instances of TLRND.  In this heuristic method, we restrict our consideration only to a subset of 

the templates originally created to generate composites.  To select an appropriate subset of the 

templates to be used in our heuristic approach, we analyzed the usage of each template type in 

the optimal solutions found for networks with 50 and 100 nodes presented in Section 3.4.2.  The 

respective usages across all instances considered are presented in Table 11.  As observed in this 

table, there are four template types that are rarely used – types 7, 9, 10 and 11.  Based on these 

observations, our heuristic method only considers composite variables generated using the 

remaining templates shown in Figure 11 (i.e., types 1, 2, 3, 4, 5, 6 and 8) which only generate 

truckload routes with up to two relay points. 

While omitting templates does not allow us to guarantee that we will obtain optimal 

solutions, our testing indicated that the solution quality suffered either very little or not at all 

while the performance of the model improved significantly, as shown in Table 12.  The values 

presented between parentheses below the averages shown in this table correspond to the 

variations with respect to the exact solution values previously obtained for networks with 50 
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nodes presented in Table 8.  We observe that using a subset of the composites results in very 

high quality solutions for 50 node networks with average and worst case optimality gaps well 

below 1%.  Even more, optimal solutions were obtained in at least half of the replications for 

each truckload density used. 

Table 11. Usage of Composites in Optimal Solutions by Template Type. 

Template 
Type 

# Composites  
Used 

Percentage of 
Total 

1 3,063 4.89% 

2 4,969 7.93% 

3 844 1.35% 

4 14,374 22.93% 

5 2,981 4.76% 

6 2,835 4.52% 

7 7 0.01% 

8 33,578 53.56% 

9 10 0.02% 

10 8 0.01% 

11 21 0.03% 

Total 62,690 100% 

 

Table 12. Heuristic Method Results (50 Node Networks). 

#  
Truckloads 

# 
Composites 

# 
Constraints 

Solution 
Value ($) 

# RPs 
Open 

Setup Time 
(secs) 

Solution Time 
(secs) 

Worst Case 
Opt. Gap 

Optimal 
Replications 

245 
4,203.8 

(-86.15%) 
2,197.2  

(-31.18%) 
1,344,707.3 
(+0.24%) 

23.0 
(+0.1) 

3.64 
(-90.40%) 

0.22 
(-61.73%) 

0.15% 5 out of 10 

490 
8,579.7 

(-86.52%) 
4,334.9 

(-31.35%) 
2,516,115.6 
(+0.007%) 

27.1 
(+0.1) 

7.25 
(-90.69%) 

0.33 
(-79.89%) 

0.50% 6 out of 10 

980 
17,232.4 

(-86.39%) 
8,307.9 

(-30.12%) 
4,752,952.7 
(+0.004%) 

31.2 
(-) 

14.41 
(-91.22%) 

0.43 
(-79.30%) 

0.22% 6 out of 10 

 

Our results show that the slight increase in objective function value is observed in 

conjunction with a significant reduction in problem size and CPU times.  Most of the benefits of 

our heuristic method are obtained by reducing the number of composites generated (> 86% 

reduction) which significantly reduces the setup times (> 90% reduction).  Solution times are 

also reduced significantly, though they vary more than when all template types are generated. 
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In terms of solution quality, there is no noticeable change in the number of RPs that are 

opened relative to the exact solutions previously found.  The relatively high number of RPs that 

are selected by the model can be explained in part by the low fixed cost to open RPs in our 

experiments.  However, another reason for this is the service requirements that affect the 

feasibility of the network design.  In particular, when truckloads originate or terminate at isolated 

nodes in the network, RPs must be opened to accommodate such truckload.  Local and lane 

distance limitations can also force the model to open more than one RP in the same general area.  

This behavior was evident when we varied the fixed cost of installation of the RPs.  We observed 

that an increase of 100 times in magnitude for the fixed cost only produced an average reduction 

in the number of open RPs of 15%.  This indicates that feasibility of the routes plays a significant 

role in the quality of the solutions found with our model given the limitations on local and lane 

distances and circuity. 

To complement our analysis of the solutions obtained, we recorded the average and 

maximum circuity observed for the selected truckload routes and the truckload usage of the open 

RPs.  For networks with 50 nodes, the average circuity of the selected truckload routes is 3.43%, 

while the maximum circuity observed is 24.98%.  This indicates that while the majority of the 

truckloads are assigned routes with very low circuity, there are a few with very circuitous routes 

that are close to the maximum allowable circuity.  Most of these outliers correspond to 

truckloads with origin and destination nodes that are not very apart in distance but since they are 

not selected as RPs need to be routed through at least one other node in the network.  These 

truckloads are actually good candidates for PtP dispatching.  With respect to RP usage, we 

observe that although a few RPs handle a significant number of truckloads, most of the selected 
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RPs handle only a moderate to reduced number.  This is evidence that a non-trivial number of 

RPs are underutilized and mostly exist for feasibility reasons. 

The large number of required RPs and the existence of highly circuitous routes for 

relatively close O-D truckload pairs reinforce some of the conclusions presented in previous 

research related to TLRND that indicate that operating a hybrid system would be a more 

appropriate approach for the implementation of a network structure for TL transportation 

dispatching.  In a hybrid system, some of the truckloads would be dispatched using the relay 

network while the rest would be sent PtP.  In this way, a compromise between increased tour 

regularity (and consequently reduced driver turnover) and reduced cost of installation and 

operation of the dispatching system is likely to be obtained.  Further thoughts on this are 

presented when future research is discussed. 

3.4.3.1. Effect of Instance Size 

Using our heuristic approach, we were able to solve bigger instances of TLRND that 

were previously intractable.  We are now able to obtain solutions for all ten replications of 

networks with 100 nodes and 3,960 truckloads requiring an average running time of less than 5 

minutes for each instance.  This can be contrasted to the approximately 4 hours and 50 minutes 

previously required for each replication by the exact method when solving only four out of ten 

instances as described in Section 3.4.2.  Moreover, we can use the heuristic to solve even larger 

problem instances of TLRND with 150 nodes and 8,940 truckloads (40% truckload density) in 

less than 45 minutes on average.  Figure 12 shows the effect of instance size in the results 

obtained and the performance of our solution method.  The values presented in Figure 12 are 

averages obtained for ten replications of networks with 50, 100 and 150 nodes. 
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Figure 12. Effect of Instance Size on Solution Quality and Model Performance. 

As shown in Figure 12, solution value and number of RPs open increase as the number of 

composites increases for networks of the same size (i.e., as truckload density increases).  The 

size (i.e., number of nodes) of the network also seems to have an effect in these two quantities, 

especially for larger networks.  It is also evident that setup time is directly affected by the 

number of composites in the model.  There is an exponential growth in setup times as the number 

of composites increases regardless of the size of the network.  On the other hand, solution times 

for the model seem to be affected only by the number of nodes in the network.  Networks with 

150 nodes are all solved in less than 5 minutes regardless of the number of loads.  However, 

these instances take significantly longer to solve than instances that occur in networks with 50 

and 100 nodes; these are solved in less than a minute.  The significantly higher solution times for 
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largely-sized networks can be explained by the fact that the model has to make decisions for 

several more nodes than before.  The variability observed in solution times for networks of the 

same size is attributed to our customized pre-processing technique explained in Section 3.3.3.  

We observed that in some cases our pre-processing of the model helps to significantly reduce the 

size of the problem while in some other cases the effect is minimal. 

3.4.3.2. Effect of Equipment Balance 

Up to this point, the equipment balance constraints (4) and (5) have been relaxed from 

our formulation of TLRND.  This actually helped us to obtain significant insights about the 

performance of our model.  For instance, we discovered the memory issues that resulted when 

generating large numbers of composites and also determined that including only a subset of 

composites did not significantly impact solution quality.  These findings allowed us to come up 

with the pricing method described in Section 3.4.2.2 and the heuristic approach presented in 

Section 3.4.3.  However, we now consider the effect of balance in the quality of the solutions 

found and the performance of our model by incorporating again the previously relaxed 

constraints in our formulation. 

We tested networks with 50, 100 and 150 nodes considering values of 30% and 0% for 

the maximum allowed percentage of imbalance (δ).  A value of δ = 0 means that we are requiring 

perfect balance at all nodes in the network.  In all cases, the addition of the balance constraints 

increases the number of rows in our model by two times the number of nodes in the network.  

This is still manageable for our approach.  Also, we adapted our composite generation algorithm 

to create composites for deadhead (i.e., unloaded truck) movements in addition to the truckload 

composites.  This results in an increase in the number of variables in the model.  Fortunately, the 
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inclusion of these composites did not affect the tractability of our model.  Furthermore, they also 

allowed us to solve problems with perfect balance which have not been previously solved in the 

TLRND literature due to feasibility reasons.  This allows us to better assess the actual cost of 

operating a TL relay network since those empty movements required to provide service in the 

network are also included when computing the solution value. 

Table 13 shows the results obtained in our testing using our heuristic approach and 

setting an optimality gap of 1.0% in CPLEX.  The comparisons with the values observed without 

balance are shown between parentheses underneath the averages presented in this table for 

problems with δ < 1.  As observed in this table, achieving balance in the network comes at a cost 

both in terms of the solution value and computational effort.  However, the increase in solution 

value is not very significant, exceeding 1% in only a single case.  However, the solutions 

obtained typically increase the number of RPs opened, particularly when there are more nodes in 

the network.  Additionally, the model selects different routes and RPs in those cases to help 

balance the network with a minimal number of empty trailer repositioning moves.  Thus, the 

small increment in the total cost of the network design.  With respect to CPU times, there is an 

increase in setup times due to the fact that we have to generate feasible routes for the empty 

trailer movements.  Since the number of these additional composites is the same regardless of the 

truckload volume considered in a problem instance for networks of the same size, the effect of 

this addition in the setup time decreases as the truckload density increases.  Finally, note that 

incorporating equipment balance has a significant effect in the solution times for the model, 

especially for networks with 100 and 150 nodes.  However, as observed in this table, it only 
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takes less than 13 minutes on average to solve perfect balance problems with 150 nodes and 

8,940 truckloads. 

Table 13. Results with Equipment Balance Enforced. 

Nodes Imbalance 
Allowed (δ) 

#  
Truckloads 

Solution 
Value ($) 

# RPs 
Open 

Setup Time 
(secs) 

Solution Time 
(secs) 

Average 
Imbalance 

50 0.3 245 1,348,673.2 
(+0.30%) 

23.0 
(-) 

4.79 
(+31.51%) 

0.80 
(+375.40%) 

0.23 
(-30.19%) 

  490 2,518,189.8 
(+0.08%) 

27.3 
(+0.2) 

9.01 
(+24.33%) 

1.25 
(+452.11%) 

0.22 
(-23.40%) 

  980 4,754,359.6 
(+0.03%) 

31.0 
(-0.2) 

17.45 
(-21.00%) 

0.86 
(+169.83%) 

0.18 
(-14.81%) 

 0.0 245 1,374,934.1 
(+2.26%) 

23.6 
(+0.6) 

4.77 
(+31.07%) 

1.26 
(+508.57%) 

0.00 
(-100.00%) 

  490 2,534,493.9 
(+0.73%) 

28.1 
(+1.0) 

9.00 
(+24.19%) 

1.64 
(+474.96%) 

0.00 
(-100.00%) 

  980 4,773,788.4 
(+0.44%) 

31.5 
(+0.3) 

17.47 
(+21.15%) 

1.00 
(+194.78%) 

0.00 
(-100.00%) 

100 0.3 990 4,735,510.4 
(+0.34%) 

41.6 
(+2.3) 

67.92 
(+21.27%) 

15.55 
(+240.45%) 

0.23 
(-24.94%) 

  1,980 8,866,278.2 
(+0.34%) 

53.0 
(+2.8) 

138.60 
(+18.01%) 

10.30 
(+111.17%) 

0.20 
(-23.08%) 

  3,960 17,356,404.3 
(+0.37%) 

68.1 
(+6.8) 

300.98 
(+14.80%) 

10.79 
(+51.84%) 

0.17 
(-21.97%) 

 0.0 990 4,752,037.6 
(+0.69%) 

42.0 
(+2.7) 

68.08 
(+21.54%) 

46.05 
(+946.01%) 

0.00 
(-100.00%) 

  1,980 8,883,005.3 
(+0.53%) 

54.8 
(+4.6) 

138.61 
(+18.02%) 

53.49 
(+979.84%) 

0.00 
(-100.00%) 

  3,960 17,354,380.9 
(+0.36%) 

67.6 
(+6.3) 

300.69 
(+14.68%) 

38.46 
(+442.42%) 

0.00 
(-100.00%) 

150 0.3 2,235 9,774,214.6 
(+0.23%) 

58.9 
(+3.1) 

396.97 
(+16.84%) 

156.39 
(+341.71%) 

0.21 
(-18.69%) 

  4,470 18,978,074.4 
(+0.57%) 

87.3 
(+13.4) 

964.16 
(+13.28%) 

91.03 
(+94.21%) 

0.21 
(-14.91%) 

  8,940 37,317,107.6 
(+0.47%) 

109.6 
(+19.5) 

2,684.44 
(+8.56%) 

82.77 
(+19.35%) 

0.16 
(-33.01%) 

 0.0 2,235 9,811,407.2 
(+0.62%) 

63.8 
(+8.0) 

397.53 
(+17.00%) 

437.66 
(+1,263.52%) 

0.00 
(-100.00%) 

  4,470 19,002,880.2 
(+0.70%) 

88.7 
(+14.8) 

965.20 
(+13.41%) 

496.78 
(+851.14%) 

0.00 
(-100.00%) 

  8,940 37,184,483.5 
(+0.15%) 

95.1 
(+5.2) 

2,676.02 
(+8.47%) 

690.53 
(+872.09%) 

0.00 
(-100.00%) 

 

3.4.4. Test Case from a Major TL Carrier 

In addition to the computational results obtained for randomly generated instances of 

TLRND, we were able to test our proposed formulation using real data from J.B. Hunt, one of 
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the nation's largest TL carriers.  We consider a network of origin and destination nodes that 

encompasses the eastern half of the United States.  Figure 13 shows the location of the 623 origin 

and destination nodes included in this area, hereafter called the East U.S. Network.  Each of 

these nodes marks the location of the centroid for the latitude and longitude coordinates of 

origin/destination points that exist in a three-digit level ZIP code area. 

 

Figure 13. East U.S. Network for a Major TL Carrier. 

In addition to the node information, we also obtained truckload and road distance 

information for some of the arcs in this network from the carrier.  After consolidating and 

analyzing the truckload information, we decided to use all truckload origin-destination pairs with 

five or more truckloads.  The resulting 1,529 O-D pairs included in this subset account for 77.5% 

of the total truckload volume in the East U.S. Network.  We used MapPoint to obtain distances 

between pairs of nodes in the network that were not included in the arc set provided by the 



81 
 

 

carrier.  This allowed us to consider a denser network that more closely resembles the U.S. 

Highway System in the eastern part of the country (i.e., a network with 21.25% arc density). 

Similar to our testing with randomly generated instances of TLRND, we assumed that 

each node in the network is a potential RP.  We considered fixed costs of $10,000, $100,000, 

$200,000, $500,000 and $1,000,000 to assess the effect of RP installation costs on the 

characteristics of the solutions found.  The rates per mile for both local and lane movements 

were established using estimates provided by the carrier.  Local miles were charged $1.00 per 

mile, while lane miles were charged $1.30 per mile.  We maintained a limitation of 25% for the 

allowable circuity (β) for truckloads when enumerating feasible routes and the limitations on the 

distances covered by local (γ1) and lane (γ2) drivers were set to 225 miles and 450 miles 

respectively.  The value of γ2 represents the distance that can be covered in a full work day by a 

single driver when including an intermediate rest according to current hours-of-service 

regulations. 

We used the heuristic method described in Section 3.4.3 to solve this test case with 

equipment balance constraints enforcing perfect balance (i.e., δ = 0).  A preliminary assessment 

of the feasibility of the problem determined that considering our templates and the limitations 

enforced on circuity and local and lane distances no composites exist for 143 of the 1,529 O-D 

pairs with truckloads.  We can assume that the demand for these 143 O-D pairs can be 

dispatched direct point-to-point and design the relay network for the remaining 1,386 truckloads 

with five truckloads or more. 

Table 14 shows the results obtained for different values of fixed cost of installation of the 

RPs after setting an optimality gap of 1.0% in CPLEX. From the values observed in Table 14, it 
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is clear that the number of RPs that are open is only affected by the fixed cost of installation 

when this amount is less than $100,000.  This means that in many cases RPs are open only due to 

feasibility requirements for the truckload routes.  The increase from 116 to 117 RPs that are open 

when increasing the fixed cost from $500,000 to $1 million can be attributed to CPLEX stopping 

after finding the first integer solution that is within the specified optimality gap.  As observed in 

Table 14, the portion of the total cost that corresponds to loaded miles and empty miles to be 

driven does not vary significantly.  This is another indication that the basic design of the relay 

network remains the same regardless of the fixed cost of installation of the RPs.  Figure 14 

shows an illustration of the solutions with the most and least RPs open.  The circles around the 

nodes represent open RPs and their size is proportional to the truckload volume handled at the 

RPs.  It can be seen that many RPs only handle a small number of truckloads and in other cases 

there are more than two RPs that are open in the same general area.  These results enforce the 

idea that a hybrid system where some of the truckloads are dispatched direct point-to-point while 

others are sent through the relay network is a very appealing alternative for a dispatching system 

in TL transportation.  The reason for this is that having a mixed fleet dispatching system would 

allow the carrier to benefit from the reduction in driver turnover since most of the demand would 

be routed through the relay network while reducing costs of operation by sending only a portion 

of the truckloads directly from origin to destination. 

Table 14. Heuristic Method Results for East U.S. Network (623 Nodes and 1,386 Truckloads). 

Fixed Cost 
($) 

Solution 
Value ($) 

# RPs 
Open 

Cost Loaded 
Miles ($) 

Cost Empty 
Miles ($) 

Avg. 
Circuity 

Avg. 
RP Usage 

Setup Time 
(secs) 

Solution Time 
(secs) 

10,000 19,986,727 136 18,124,691 502,036 4.54% 488.65 11,509.67 989.38 

100,000 30,729,878 118 18,339,008 590,870 5.61% 545.11 11,580.90 1,156.96 

200,000 42,575,465 118 18,355,652 619,814 5.63% 545.28 11,547.63 1,192.89 

500,000 77,080,987 116 18,382,760 698,227 5.75% 560.97 11,591.93 1,307.86 

1,000,000 135,973,174 117 18,372,212 600,962 5.70% 554.63 11,606.78 1,045.40 
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Figure 14. Test Case Solutions for Different Fixed Costs of Installation. 

Finally, it is important to note that even though this test case represents a very large 

problem instance for a major TL carrier (i.e., more than 2.2 million variables and 60,364 

constraints), our heuristic method is able to obtain a solution in reasonable time, particularly for 

a strategic network design problem.  As observed in our previous testing, the huge number of 

composites affects significantly the setup time for the model.  While solution times are in turn 

slightly affected by the magnitude of the fixed cost of installation of RPs.  In this case, setup time 

is close to 3 hours and 15 minutes while CPLEX takes between 16 and 23 minutes to solve the 

test case instance for different values of the fixed cost of installation of RPs. 

3.5. Conclusions and Future Research Directions 

In this chapter, we presented a composite variable model for TLRND that implicitly 

captures difficult operational constraints such as truckload circuity and distance limitations for 

drivers within the definition of our variables.  This new modeling approach provides a stronger 

formulation for TLRND than existing models in the literature.  Exact solutions can be obtained 

for small and medium sized problem instances using standard branch-and-cut as implemented in 
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CPLEX.  However, given the very large number of composite variables needed in our proposed 

formulation, we developed both an exact pricing method and a heuristic method to solve largely 

sized problem instances of TLRND.  Although our exact pricing method provides a guarantee of 

optimality, its main drawback is that the pricing of the composites takes a significant amount of 

time and makes the use of this method impractical for medium and largely sized problem 

instances.  On the other hand, our computational testing showed that the solutions found with a 

heuristic method that uses a subset of the composites are very high quality with average 

optimality gaps below 1% for networks with 50 nodes.  As a result, we were able to efficiently 

solve largely sized problem instances of TLRND with up to 150 nodes using the heuristic 

approach.  In addition, we successfully used our heuristic method to obtain solutions for a 

problem with real truckload data provided by a major TL carrier that operates nationally and 

obtain insights about relay network design and TL dispatching. 

The computational performance of our proposed formulation is significantly affected by 

the number of composite variables in the model.  Once the parameters for circuity and local and 

lane distances are established, the number of composites depends on the number of nodes in the 

network and the demand for truckloads.  The large number of composites directly affects the 

time needed to setup our model which includes generating our variables using templates and also 

building the mathematical model.  This results in setup time being a very significant portion of 

the total time needed to solve the TLRND problem.  On the other hand, solution times seem to be 

mostly affected by the number of nodes in the network given that for bigger instances there are 

more opportunities to locate RPs.  Also, solution times are significantly affected by enforcing 

equipment balance at the RPs given the additional difficulty associated with selecting nodes and 
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routes to balance the network.  We additionally observed that solution times are variable due to 

the effect of the customized pre-processing method that we implemented to reduce the size of the 

model. 

The relaxation of the equipment balance constraints in our formulation allowed us to 

observe that enforcing this important operational restriction comes at a cost in terms of solution 

value and computational time.  The effect of balance on solution cost is not very significant 

which indicates that the initial design of the relay network actually facilitates attaining balance 

when enforced.  Also, adding composites for empty trailer movements allowed us to better assess 

the cost of designing a balanced network.  However, most importantly, the addition of these 

constraints also showed us that the tractability of our model is not affected by the addition of 

other restrictions in our basic network design formulation.  The flexibility of our proposed CVM 

for TLRND will allow us to incorporate extensions and better assess the effect of other realistic 

aspects of TL dispatching when designing the relay network. 

Looking at the solutions found with our proposed formulation, it is interesting to observe 

that the model selects a high number of nodes to be relay points.  Analysis of the solutions 

obtained when varying this fixed cost led us to observe that many RPs are selected for feasibility 

reasons in both randomly generated and real data problem instances.  Even very high fixed costs 

do not result in a significant reduction in the number of open RPs.  In addition, there is evidence 

of the existence of a very few number of highly circuitous routes for truckloads with origin and 

destination nodes that are not very distant apart.  Both of these observations indicate that if the 

network is to be setup with less RPs and reduced additional miles to avoid excessive installation 

and operation costs then some of the truckloads should still be dispatched point-to-point as 
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opposed to through the relay network.  The development of a prescriptive model for the strategic 

design of the relay network when using this mixed fleet dispatching system is an interesting area 

for future research.  In the past, the determination of which truckloads should be dispatched PtP 

has been completed a priori or after finding a solution for the TLRND problem.  A mathematical 

model that integrates this tactical decision would be very helpful in the process of designing a TL 

dispatching system that would better exploit the tradeoff between improved quality of life for the 

drivers and additional costs of operation, thus making a network configuration for TL 

dispatching more applicable in practice.   

A direct extension of our research is the analysis of the allocation of drivers to RPs and 

their assignation to truckloads based on the design of the dispatching system.  Although previous 

studies have shown that relay configurations make it significantly easier to return drivers to their 

home domiciles due to increased tour regularity, existing models do not consider this driver 

balance explicitly.  Instead, this operational problem is left to the carriers.  Some of the 

challenges associated with obtaining driver balance relate to enforcing hours-of-service 

regulations for each work day, and limitations on how long drivers can be away from their home 

domiciles.  Actually, considering driver balance explicitly will help to finally assess from an 

economic perspective the value of a relay network configuration for TL transportation as 

compared to the existing PtP dispatching system that is used in the industry. 

Finally, based on our experience with composite variable modeling for this problem, we 

would like to continue exploring other integrated decision problems in truckload transportation 

and logistics that would benefit from a stronger formulation in order to obtain very high quality 

solutions for realistically-sized problem instances found in practice. 



87 
 

 

Acknowledgments 

We gratefully thank J.B. Hunt Transportation Services for providing data for the test case 

presented in this research.  We also acknowledge the work of Sergio Maldonado who completed 

an empirical analysis of the factors affecting the TLRND problem for his undergraduate honors 

thesis.  The insights produced were very helpful as we completed our experiments.  Finally, we 

thank Dr. Chase Rainwater for reviewing our proposed formulation and providing helpful 

suggestions. 

References 

Ali, T., Radhakrishnan, S., Pulat, S., and Gaddipati, N. (2002). Relay Network Design in Freight 
Transportation Systems. Transportation Research Part E, 38, 405-422. 

American Transportation Research Institute. (2011). Critical Issues in the Trucking Industry - 

2011. Arlington, VA: American Transportation Research Institute (ATRI). 

Armacost, A., Barnhart, C., and Ware, K. (2002). Composite Variable Formulations for Express 
Shipment Service Network Design. Transportation Science, 36(1), 1-20. 

Cabral, E., Erkut, E., Laporte, G., and Patterson, R. (2005). The Network Design Problem with 
Relays. European Journal of Operational Research, 180(2), 834-844. 

Campbell, J. (2005). Strategic Network Design for Motor Carriers. In Logistics Systems - Design 

and Optimization (pp. 245-278). New York, NY: Springer-Verlag. 

Cohn, A., and Barnhart, C. (2003). Improving Crew Scheduling by Incorporating Key 
Maintenance Routing Decisions. Operations Research, 51(3), 387-396. 

Cohn, A., and Barnhart, C. (2006). Composite-Variable Modeling for Service Parts Logistics. 
Annals of Operations Research, 144, 17-32. 

Cohn, A., Root, S., Wang, A., and Mohr, D. (2007). Integration of the Load-Matching and 
Routing Problem with Equipment Balancing for Small Package Carriers. Transportation 

Science, 41(2), 238-252. 



88 
 

 

Hunt, G. (1998). Transportation Relay Network Design. Atlanta, GA: Ph.D. Thesis, Georgia 
Institute of Technology. 

Konak, A. (2011). Network Design Problem with Relays: A Genetic Algorithm with Path-Based 
Crossover and a Set Covering Formulation. European Journal of Operational Research, 
doi:10.1016/j.ejor.2011.11.046. 

Lohatepanont, M., and Barnhart, C. (2004). Airline Schedule Planning: Integrated Models and 
Algorithms for Schedule Design and Fleet Assignment. Transportation Science, 38(1), 
19-32. 

Morris, F. (2011). Thousands of Trucking Jobs, But Few Take the Wheel. Retrieved from 
http://www.npr.org/2011/10/31/141791952/thousands-of-trucking-jobs-but-few-take-the-
wheel. 

Rodriguez, J., Kosir, M., Lantz, B., Griffin, G., and Glatt, J. (2000). The Costs of Truckload 

Driver Turnover. Fargo, ND: Upper Great Plains Transportation Institute. 

Root, S., and Cohn, A. (2008). A Novel Modeling Approach for Express Package Carrier 
Planning. Naval Research Logistics, 55, 670-683. 

Taha, T., and Taylor, G.D. (1994). An Integrated Modeling Framework for Evaluating Hub-and-
Spoke Networks in Truckload Trucking. Logistics and Transportation Review, 30(2), 
141-166. 

Taylor, G.D., Harit, S., and English, J.R. (1995). Hub and Spoke Networks in Truckload 
Trucking: Configuration and Operational Concerns. Logistics and Transportation 

Review, 31(2), 209-237. 

Taylor, G.D., and Meinert, T.S. (2000). Improving the Quality of Operations in Truckload 
Trucking. IIE Transactions, 32, 551-562. 

Taylor, G.D., Meinert, T.S., Killian, R.C., and Whicker, G.L. (1999). Development and Analysis 
of Alternative Dispatching Methods in Truckload Trucking. Transportation Research 

Part E, 35, 191-205. 

Taylor, G.D., Whicker, G.L., and Usher, J.S. (2001). Multi-Zone Dispatching in Truckload 
Trucking. Transportation Research: Part E, 37, 375-390. 

U.S. Bureau of Transportation Statistics. (2010). Transportation: 2007 Commodity Flow Survey.  

Üster, H., and Kewcharoenwong, P. (2011). Strategic Design and Analysis of a Relay Network 
in Truckload Transportation. Transportation Science, 45(4), 505-523. 



89 
 

 

Üster, H., and Maheshwari, N. (2007). Strategic Network Design for Multi-Zone Truckload 
Shipments. IIE Transactions, 39, 177-189. 

 

  



90 
 

 

4. Mixed Fleet Dispatching in Truckload Relay Network Design Optimization 

A network of relay points where drivers and trailers are exchanged can be used to 

transport full truckloads from origin to destination.  This relay network system allows full 

truckload carriers to reduce driver tour lengths and improve driver retention as compared to the 

traditional point-to-point dispatching method that is used by the industry.  Previous research 

suggests that combining a relay network and point-to-point dispatching into a hybrid system 

using a partitioned fleet can result in better performance for carriers, drivers and shippers.  We 

propose a mathematical formulation for strategic relay network design and dispatching method 

selection that incorporates important operational constraints such as load circuity and driver tour 

length within the variable definition.  High quality solutions for largely-sized problem instances 

can be obtained in reasonable times using this formulation.  Computational results for randomly 

generated data and a test case from a major carrier are analyzed to develop insights about the 

effect of a mixed fleet dispatching system on the design of the relay networks and performance 

metrics of the system. 

4.1. Introduction 

Driver retention has been a significant problem for full truckload (TL) transportation 

carriers for a very long time.  The American Transportation Research Institute (2011) reports that 

driver retention has ranked among the top three concerns for the industry in five of the last seven 

years, and it has never placed lower than sixth during this period.  Driver turnover rates for TL 

carriers have historically exceeded 100%, and while the reported rate for the third quarter of 

2011 is 89%, this value is the highest of the last four years (American Trucking Associations, 

2011).  In fact, the estimated shortage of truck drivers during 2011 rose to 125,000, exceeding 
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previous estimates (Morris, 2011).  In this scenario, driver turnover not only represents a 

significant expense for the industry in terms of hiring and retention costs which are estimated at 

an average of around $8,200 per driver (Rodriguez et al., 2000), but this problem also negatively 

affects level of service to shippers and results in lost income from demand that cannot be 

satisfied (Keller and Ozment, 1999).  In reality, given that trucking is not a self-contained 

industry; the shortage of drivers is able to produce negative economic impacts that go far beyond 

the boundaries of the industry (American Trucking Associations, 2007). 

One of the main factors commonly associated with high driver turnover corresponds to 

the characteristics of the operation of TL carriers that use a direct point-to-point (PtP) 

dispatching method to satisfy demand.  Long-haul drivers who spend a significant amount of 

time away from home often quit due to a low quality of life perception (Gupta et al., 1996; 

Lockridge, 2008).  In a PtP system, carriers assign a truckload to a single driver who is in charge 

of transporting it all the way from origin to destination.  After the load is delivered, the carrier 

needs to find a new truckload for the driver with an origin close to the drop-off location in order 

to minimize empty miles.  Finding appropriate backhaul trips for these drivers is a very difficult 

task, and usually several consecutive repositioning moves are needed to return a driver to his or 

her domicile.  Other transportation industries such as less-than-truckload (LTL) and express 

package shipping that use a hub-and-spoke configuration for their transportation networks do not 

suffer from the same level of driver turnover (Taylor et al. 1999).  In fact, the turnover rate for 

LTL carriers does not commonly exceed 10% and the value reported for the last quarter of 2011 

is only 7% (American Trucking Associations, 2011). 
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As freight demand continues to grow and more truck drivers are needed to satisfy this 

demand, there is need to evaluate alternative dispatching methods as a means to reduce driver 

tour lengths and improve driver retention.  One such alternative dispatching method considers 

using a network configuration of relay points to allow drivers to exchange trailers and return 

home more frequently while the truckload continues its transport to its final destination.  These 

TL relay networks essentially divide a load’s transportation from origin to destination into 

several shorter segments between nodes in the transportation network.  This helps to increase 

regularity in the routes for the drivers since now most movements occur between fixed relay 

points (RPs) (Üster and Maheshwari, 2007; Üster and Kewcharoenwong, 2011).  In a general 

sense, the configuration of a relay network (RN) is somewhat similar to a hub-and-spoke 

network, except that no sorting or consolidation of truckload freight is required.  Also, the 

strategic design of a RN needs to consider unique operational constraints that make it different 

from a regular hub-and-spoke network.  Figure 15 shows a partial relay network for truckload 

transportation. A review of the literature on TL relay network design is presented in Section 4.2. 

 

Figure 15. Relay Network for Transportation of Truckloads. 
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Previous work on the TL relay network design (TLRND) problem has shown that this 

alternative dispatching method has significant potential to improve drivers’ jobs.  However, these 

previous studies also suggest that combining the two methods, PtP and RN, into a hybrid system 

using a divided fleet will result in a better performance for carriers, drivers and shippers.  

Interestingly, as described in Section 4.2, most of the literature focuses on the use of simulation 

and heuristic approaches for solving this and other mixed fleet dispatching system design 

problems.  A general observation from previous work in this area recognizes that hybrid systems 

seem to consistently outperform the individual methods for freight transportation by truck, but 

since no exact approaches exist to design such mixed fleet dispatching systems there is not a 

precise understanding of the actual benefits of such configurations in the TL industry. 

In this chapter, we propose a mathematical formulation to solve the integrated problem of 

strategically designing the relay network and selecting the appropriate dispatching method for 

truckloads served by a mixed fleet of trucks in a hybrid system that combines PtP and RN 

dispatching.  We call this problem strategic TL relay network design with mixed fleet 

dispatching or TLRND-MD.  The contributions of this work are as follows: 

• We develop a prescriptive mathematical model for TLRND-MD using a composite variable 

model (CVM) formulation.  To the best of our knowledge, this is the first prescriptive model 

that incorporates the selection of the dispatching method for truckloads within the strategic 

design of a relay network for TL transportation. 

• The model presented in this research successfully integrates strategic and tactical decisions 

while considering several operational constraints using an approach that is similar to the one 

presented in Chapter 3, but is different from most previous work in this area.  This shows that 
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this modeling formulation is flexible and it is able to incorporate significant changes in 

problem scope without significantly affecting the tractability of the model. 

• The formulation and the heuristic solution approach developed in this research allow us to 

obtain very high quality solutions for largely-sized problem instances of this problem in 

reasonable time.  An exact solution approach can be used to optimally solve problems of 

moderate size. 

• We use our model to quantify the benefit of a hybrid configuration for TL transportation that 

uses PtP and RN dispatching over a RN-only dispatching system through extensive 

computational testing.  The effect of several design parameters is analyzed with respect to 

performance metrics for carriers, drivers and shippers using randomly generated problem 

instances and a test case provided by a major TL carrier. 

The remainder of the chapter is organized as follows.  In Section 4.2, we present a 

literature review of alternative dispatching methods for freight transportation focusing on mixed 

fleet systems.  A formal problem statement of TLRND-MD and the proposed mathematical 

formulation for its solution are presented in Section 4.3.  In Section 4.4, we introduce our 

solution methodology.  The analysis of the computational results obtained for randomly 

generated problem instances and test case data from a major carrier is presented in Section 4.5.  

Finally, conclusions and future research are presented in Section 4.6. 

4.2. Alternative Dispatching Methods in Freight Transportation 

Traditional dispatching methods used in the TL industry have focused on the reduction of 

empty miles between drop-offs and pick-ups for single drivers in order to reduce dispatching 

costs.  However, this practice and the fact that carriers often receive long-haul driving job 
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requests in a random fashion make it very difficult to find an appropriate sequence of jobs for 

drivers so that they can return to their domiciles frequently.  It is estimated that TL drivers 

typically spend between 14 and 21 days on the road between return trips to their home domiciles 

(Taylor et al. 1999).  This has motivated academic and industry researchers to examine the 

development of alternative dispatching methods that can improve driver job quality and 

potentially reduce driver turnover rates. 

Considering the relatively low driver turnover rate in the LTL industry, Taha and Taylor 

(1994) analyzed the use of hub-and-spoke networks for TL transportation using a simulation 

approach.  This was the first in a series of studies that considered using a different configuration 

to dispatch truckloads and observed the benefits associated with such alternative dispatching 

systems.  In general, they concluded that a network configuration for TL dispatching would 

reduce driver tour lengths due to the regularization of the duties between the hubs.  They 

observed, however, that this reduction comes at the expense of added circuity for the loads.  This 

tradeoff needs to be explicitly considered when designing the hub-and-spoke networks, 

especially since truckload circuity represents an additional cost for the carriers.  In a different 

study, Taylor et al. (1999) considered the development and analysis of other alternative 

dispatching methods for a regional implementation.  Their simulation experiments showed that 

among the alternatives considered a zone method with hubs located along its perimeter and a 

hybrid system incorporating a central hub to the zone with perimeter hubs lead to significant 

improvements in several performance metrics for carriers and drivers.  Moreover, they mention 

that field data indicates that driver tour lengths for the regional jobs analyzed in this research are 

on the order of 2 to 4 days. 
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Building on these findings, several other mixed fleet dispatching systems have been 

analyzed in the literature.  Taylor and Whicker (2002) present a heuristic method and an integer 

programming approach for selecting routings for truckloads and compare various methods of 

dispatch in a distributed manufacturing setting when considering private fleets held by 

manufacturers and retailers.  Taylor et al. (2006) considered the combination of traditional PtP 

dispatching and the use of regional fleets with limited coverage service areas.  Taylor et al. 

(2009) analyzed the use of delivery ‘pipelines’ with local end-of-line dray movements for some 

high volume lanes and assessed the effect of these shipments on the rest of system employing 

regular PtP dispatching.  Another 3-way hybrid system integrating regional fleets, delivery 

‘pipelines’ and PtP dispatching in a concurrent operation was explored by Taylor and Whicker 

(2008).  Finally, Taylor and Whicker (2010) studied the use of an extended regional dispatching 

system using lanes to connect regions of limited service area as they are integrated with a direct 

PtP dispatching method for some of the truckloads in the system.  A general conclusion of these 

simulation studies is that although operational tradeoffs exist, mixed fleet dispatching systems 

always outperform a baseline PtP-only system for several metrics that affect carriers, drivers and 

shippers.  Unfortunately, although some general design rules for these hybrid systems are 

provided, no indication of what constitutes an optimal design is presented in these studies. 

Other types of mixed fleet dispatching systems for freight transportation can be found in 

the LTL literature.  Despite the significant differences between the TL and LTL industries, these 

studies also show that allowing an alternative method in addition to traditional dispatching is 

beneficial for improving performance metrics, especially obtaining a reduction of dispatching 

costs.  In this area, Ronen (1997) explored the effect of combining a private fleet with the use of 
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a common carrier when considering two different objectives: distance minimization and cost 

minimization.  A mathematical model is presented to select between the alternative dispatching 

methods and it is used to demonstrate that the cost minimization approach is superior when 

dispatching LTL shipments from a single source using a mixed fleet of trucks.  In another study, 

Liu et al. (2003) developed a heuristic approach for the selection of the dispatching mode for 

LTL loads in a mixed truck delivery system with both hub-and-spoke and direct shipment 

between suppliers and customers.  Their heuristic based on local search also selects routes for 

individual loads in both modes of delivery.  They concluded that the mixed delivery system is 

more effective than both pure systems based on savings in total distance required for demand 

satisfaction.  As evidenced in these studies, a systematic analysis of alternative dispatching 

systems that use a mixed fleet of trucks is justified based on the potential benefits that can be 

obtained. 

4.2.1. Relay Networks for TL Transportation 

The use of a relay network for TL transportation has been considered as one alternative 

dispatching method to alleviate the driver retention problem.  Most of the research in this area 

has been motivated by the initial work of Taha and Taylor (1994).  Hunt (1998) and Ali et al. 

(2001) explored the development of algorithmic and heuristic approaches for determining the 

number and location of relay points considering shortest path routes for the truckloads in the 

network.  The first mathematical formulation for the strategic design of TL relay networks was 

presented by Üster and Maheshwari (2007) and it was slightly modified by Üster and 

Kewcharoenwong (2011).  Their basic model is a combination of the multicommodity network 

flow formulation and the hub-and-spoke problem.  Üster and Maheshwari (2007) present a 
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heuristic approach to solve a formulation of TLRND that relaxes limitations on truckload 

circuity and equipment balance.  As part of their approach, a feasible set of RPs is generated 

using a construction heuristic that enforces limitations on the length of lane and local driver tour 

lengths.  Then, a tabu search procedure is used to improve the initial solution.  This method is 

successfully applied in small- to medium-sized problem instances of TLRND.  Alternatively, 

Üster and Kewcharoenwong (2011) developed an algorithm based in Benders’ decomposition to 

solve larger problem instances of this problem.  In most of their computational experiments, the 

authors explicitly consider the limitation on equipment balance, but relax the truckload circuity 

constraint which is eventually incorporated through a surrogate later in their experimentation.  

To enhance the efficiency of their typical implementation of Benders’ decomposition, the 

authors analyzed several alternatives within an ε-optimal framework.  Their exact approach 

incorporates strengthened Benders’ cuts, cut disaggregation techniques and heuristics for 

improved bounds.  Relay networks with up to 80 nodes are solved using this approach in 

reasonable times considering an optimality gap of ε=2.0%. 

In Chapter 3, we present an alternative formulation for the strategic design of TL relay 

networks.  We propose a CVM formulation for this problem where operational constraints such 

as limitations on circuity, local and lane driver tour lengths and number of RPs visited by a load 

are implicitly incorporated within the definition of variables that represent feasible routes for the 

truckloads.  This approach requires a very large number of composite variables which are used in 

an integer programming model to locate RPs and select routes for the truckloads while 

minimizing total costs.  Another advantage of this modeling approach is that perfect equipment 

balance can be effectively enforced using this method since deadhead movements can be 
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incorporated as additional variables in the model, whereas this had not been achieved in previous 

research.  Computational experiments with randomly generated data are used to show that this 

modeling approach provides a stronger formulation for TLRND.  Relay networks with up to 100 

nodes and high freight density are solved to optimality using standard branch-and-cut as 

implemented in a commercial solver.  Moreover, high quality solutions are obtained in 

reasonable times for largely-sized instances with 150 nodes using only a subset of the variables.  

This heuristic approach provided very small optimality gaps while significantly reducing 

computational times and was successfully used to solve a network design problem with test case 

data provided by a major TL carrier. 

More recently, Melton and Ingalls (2012) proposed another prescriptive model for 

locating RPs while minimizing total costs.  Their mixed integer program incorporates driver 

considerations and includes a driver turnover cost in the objective function.  The driver turnover 

percentage is determined based on an estimation of the number of drivers required for each 

origin-destination (O-D) node pair according to the location of RPs and the resulting number of 

miles per week per driver.  However, this formulation does not explicitly consider empty 

movements to balance equipment and it is only used to solve a small case study for a single O-D 

pair. 

Although these studies show that relay networks for TL transportation have the potential 

to improve the quality of TL driving jobs, some of the results presented also seem to suggest that 

a partial implementation of this alternative configuration along with direct PtP dispatching is 

likely to result in a system with better performance.  Both Üster and Kewcharoenwong (2011) 

and Chapter 3 point out that for a non-trivial number of truckloads with origin and destination 
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nodes that are close to each other, highly circuitous routes result from the use of a relay network 

for dispatching.  Figure 16 shows an example of this case when a truckload has origin at node i 

and it is destined to node j.  It is easy to observe that routing this truckload through the relay 

network is not as efficient as sending it directly from i to j.  In Chapter 3, we also found out that 

several RPs are only opened for feasibility reasons, especially when truckloads have origin or 

destination nodes in isolated regions of the transportation network.  We observed that the amount 

of traffic at these RPs is significantly lower than in other parts of the network with higher node 

density.  These isolated truckloads are also good candidates for direct PtP dispatching.  Having 

the option of sending them using this method would result in a reduction in the number of RPs in 

the network. 

 

Figure 16. Highly Circuitous Route in a Relay Network for Truckload Transportation. 

The design of relay networks for TL transportation using this mixed fleet dispatching 

system was analyzed by Üster and Kewcharoenwong (2011) using two approaches.  The first is 

an a priori approach in which first some truckloads of reduced distance (i.e., less than 2/3 of the 

limitation for local movements) are pre-selected for PtP dispatching and then the relay network is 

designed for the remaining truckloads.  The second approach considers designing the relay 

network for all truckloads and then selecting truckloads with excessive circuity (e.g. more than 
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200% circuity) to be dispatched using PtP dispatching.  The authors determined that the a priori 

approach as implemented in their research provided a greater reduction in total costs with more 

truckloads being dispatched PtP.  However, no sensitivity analysis of the values used for 

selecting truckloads for direct dispatching in both methods is presented in this research.  To the 

best of our knowledge, no prescriptive model exists in the literature to solve this problem in an 

integrated manner.  The research presented in this chapter is intended to fill this existing need. 

4.3. Problem Statement and Mathematical Formulation 

4.3.1. Truckload Relay Network Design with Mixed Fleet Dispatching (TLRND-MD) 

Given a set of truckloads that need to be transported, the TLRND-MD problem 

minimizes the total cost of opening RPs and routing truckloads either through the relay network 

or directly PtP from origin to destination.  Figure 15 shows an example of a RN for TL 

transportation and Chapter 3 provides a detailed description of its structure and basic operation.  

Two types of drivers are required to handle the truckloads that are routed through the RN.  Local 

drivers handle the movements from an origin node to a RP or from a RP to a destination node.  

The distances covered by this type of drivers are limited so that they can return home each night 

using a pre-specified limit, γ1.  Lane drivers are in charge of the movements between RPs.  In 

this case, a limitation on distances for lane drivers, γ2, is imposed to ensure that federal hours-of-

service regulations are satisfied in a single movement between two RPs (U.S. Department of 

Transportation, 2011).  Alternatively, distances for drivers who are responsible of PtP loads are 

not limited in accordance to current practice in the industry. 

Additional constraints are imposed based on requirements from TL carriers.  In order to 

prevent excessive handling of the RN loads and be able to ensure timely service to customers, a 
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limitation is imposed on the number of RPs that can be visited between an O-D pair, λ.  We also 

consider a limitation on circuity for the truckloads, β, so that the number of additional miles 

driven in the RN does not represent a considerable expense for the carriers.  In this case, if the 

shortest path distance between origin and destination for a truckload is d, only those routes that 

are shorter or equal to (1 + β)d are allowed as alternatives to move that truckload.  Similarly, in 

order to reduce the number of empty miles driven and ensure that no node in the RN suffers and 

excessive deficit or surplus of empty trailers, equipment balance must be enforced at the RPs. 

The formulation of TLRND-MD is further complicated by two design considerations that 

are imposed by TL carriers.  First, a minimum volume of freight traffic is desired at the RPs in 

order to justify their installation.  Nodes that do not exceed this threshold are not considered as 

RPs.  Second, the proportion of loads that are dispatched direct PtP with respect to the total 

demand in the system cannot exceed a specified percentage value.  This maximum value is set to 

ensure that the benefits of improved driver retention are actually attained by having most of the 

driving jobs in regular routes. 

4.3.2. Composite Variable Formulation for TLRND-MD 

In this chapter, we present a CVM formulation for TLRND-MD that extends the original 

formulation presented in Chapter 3 for the TLRND problem.  As in this previous work, our 

composite variables are defined as feasible routes for a truckload when it is dispatched using a 

RN.  Limitations on circuity, number of RPs visited, and local and lane distances are enforced 

when creating feasible routes according to the method described in Section 4.4.1.  This allows us 

to incorporate the difficult operational constraints for the design of the RN within the variable 

definition and decompose this problem into several smaller routing problems.  Additionally, we 
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introduce a set of decision variables that let the truckloads to travel PtP.  Using this approach, the 

selection of dispatching mode for the truckloads and the coordination of the routing decisions for 

RN loads are handled by the following integer program. 

4.3.2.1. Notation 

Based on the definition of our composite variables, the following notation is required for 

the formulation of the CVM for TLRND-MD. 

Sets 

R = set of composites r, 

T = set of truckloads t, 

N = set of nodes k, 

Rt = set of composites r for truckload t, Rt ⊂ R, 

Rk = set of composites r that visit node k, Rk ⊂ R. 

Parameters 

cr = cost of composite r, ∀r ∈ R, 

Fk = fixed cost of relay point k, ∀k ∈ N, 

Pt = cost of dispatching truckload t using PtP dispatching, ∀t ∈ T, 

bt = demand for truckload t (in number of loads), ∀t ∈ T, 

δ = maximum acceptable percentage equipment imbalance, 

ρ = maximum proportion of truckloads to be dispatched direct PtP, 

ν = minimum volume (in number of loads) required to open a RP, 
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ηkr = -1 if node k is the origin relay point of composite r,  

         1 if node k is the destination relay point of composite r, ∀k ∈ N, r ∈ R, 

         0 otherwise, 

θkr = 1 if composite r visits relay point k, ∀k ∈ N, r ∈ R, 

        0 otherwise. 

Variables 

xr = number of composites r used, ∀r ∈ R, 

yk = 1 if a relay point is opened at node k, ∀k ∈ N, 

       0 otherwise. 

zt = number of truckloads t sent direct PtP, ∀t ∈ T. 

4.3.2.2. Model Formulation 

The mathematical formulation for TLRND-MD is as follows. 

min� crxr

r∈R

+�Ptzt

t∈T

+�Fkyk

k∈N

 

  

(9) 

                          subject to  � xr

r∈Rt

+ zt = bt      ∀ t ∈ T (10) 

� θkrxr

r∈Rt

≤ btyk
      ∀ t ∈ T, k ∈ Nr:r ∈ Rt 

(11) 

� xr

r:ηkr=−1

− � xr

r:ηkr=1

≤ 𝛿 � xr

r:ηkr=−1

      ∀ k ∈ N (12) 

� xr

r:ηkr=1

− � xr

r:ηkr=−1

≤ 𝛿 � xr

r:ηkr=1

      ∀ k ∈ N (13) 
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� θkrxr

r∈R

≥ νy
k
      ∀ k ∈ N (14) 

� zt

t∈T

≤ 𝜌� bt

t∈T

 (15) 

xr integer      ∀ r ∈ R (16) 

y
k
∈ {0,1}      ∀ k ∈ N (17) 

zt integer      ∀ t ∈ T (18) 

The objective function (9) minimizes the total cost of routing truckloads through the RN, 

the cost of dispatching loads PtP, and the fixed cost of installation of the RPs.  Constraint (10) 

requires that a routing for each truckload is selected either using a RN route (i.e. a composite) 

and/or dispatching the load directly from origin to destination.  In either case, total demand for 

all truckloads has to be satisfied.  Constraint (11) enforces that selected routes can visit relay 

points in the network only if they are open.  Constraints (12) and (13) enforce relay network 

balance by requiring that a maximum permissible imbalance at each node be satisfied 

considering the difference between outgoing and incoming flows for RN loads.  Note that a value 

of δ = 0 enforces perfect balance for RN loads at every node in the transportation network; this is 

the only case in which constraints (12) and (13) will be binding simultaneously.  Note that since 

PtP loads are dispatched using a different fleet, they are not included in these constraints.  To 

account for the balance of PtP loads, we include a repositioning cost into the estimation of the 

cost of sending a load direct from origin to destination, Pt.  In particular, we recognize that 

additional miles must be traveled to achieve balance in the PtP network.  This allows the model 

to accurately tradeoff the increased travel required to reposition PtP movements and the cost of 

opening and rebalancing trailers in the RN.  Constraint (14) requires the volume at each open RP 

to meet or exceed a pre-specified threshold, ν.  Constraint (15) requires that the proportion of 
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truckloads dispatched direct PtP with respect to the total demand does not exceed a given 

limitation set by the TL carrier.  Finally, constraints (16), (17) and (18) enforce integrality for all 

decision variables. 

4.4. Solution Methodology 

4.4.1. Generation of Composite Variables 

An enumeration based procedure using templates is used to generate composite variables 

for our formulation of TLRND-MD presented in Section 4.3.2.2.  A template is a predefined 

routing pattern that represents an alternative for moving truckloads from origin to destination 

through a series of intermediate nodes.  Since the number of RPs allowed to be visited in a route 

is limited to λ=3 based on TL carrier requirements, we are able to completely enumerate all 

feasible routes with three or fewer stops that satisfy constraints on circuity and distances for local 

and lane drivers.  Even with this limitation on the number of RPs that can be visited, the number 

of composite variables required for our formulation is very large.  Figure 17 shows all template 

types that were considered in this research. Note that no templates with a total of two nodes from 

which only one is a RP are considered here.  The reason behind this is that since these 

alternatives connect O-D pairs directly over a limited distance, truckloads that would be 

generated with these templates can be handled by a different fleet than the truckloads that are 

routed though the RN. 

Note that since we enforce the important operational constraints associated with circuity 

and distance limitations by checking the feasibility of the routes that are generated with this 

approach, there is no need to incorporate them as constraints in the mathematical formulation for 

TLRND-MD. 
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Figure 17. Template Types Used for Composite Variable Generation. 

4.4.2. Heuristic Solution Method 

Exact solutions for some instances of TLRND-MD can be obtained using standard 

branch-and-cut as implemented in CPLEX.  Preliminary testing with the formulation discovered 

that the number of composite variables needed significantly affects the tractability of the model.  

However, this testing also revealed that optimal solutions for this problem do not usually 

consider composites generated for some of the template types that are presented in Figure 17.  

This presented an opportunity to reduce the number of variables significantly.  Table 15 shows 

the usage of each template type in the optimal solutions found during our preliminary testing 

with 50 node networks. 

Moreover, an analysis of the truckloads that are dispatched PtP showed that most of these 

loads traveled short distances.  Figure 18 shows how many loads travel PtP and via the RN as a 

function of the distance between origin and destination nodes. 
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Table 15. Usage of Composite Variables in Optimal Solutions by Template Type. 

Template Type # of Composites Used Percentage of Total 
1 481 2.72% 
2 3,339 18.88% 
3 1,639 9.27% 
4 1,594 9.01% 
5 6 0.03% 
6 8,418 47.59% 
7 6 0.03% 
8 6 0.03% 
9 6 0.03% 

Total RN 15,495 87.59% 
Total PtP 2,195 12.41% 

Total 17,690 100% 
 

 

Figure 18. Dispatching Method Usage with Respect to Truckload O-D Pair Distance. 

These observations from empirical results allowed us to develop a heuristic approach to 

obtain high quality solutions to TLRND-MD.  The basic idea behind this heuristic approach is 

that the generation of composite variables is modified so that only a reduced subset of high 

quality variables is created and added to the model.  This reduced model is then solved using 

CPLEX until a pre-specified optimality tolerance is satisfied.  We use a similar approach to the 

one implemented in Chapter 3 (i.e., elimination of template types that produce variables that are 
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not commonly used in optimal solutions), but we enhance it by further reducing the number of 

composites in the model when we avoid creating routes for truckloads that have O-D pair 

distances that are below a given threshold.  The assumption is that these truckloads will be 

dispatched using the direct PtP method and no alternative routes (i.e., composites) are required 

for them.  From Table 15, it is evident that template types 5, 7, 8 and 9 are rarely used.  Based on 

these findings, the heuristic implemented in this research considers only the remaining templates 

with two or less RPs that are shown in Figure 17 (i.e. types 1, 2, 3, 4 and 6). 

In the same way, as observed in Figure 18, truckloads with O-D pair distances below 100 

miles seem to be dispatched primarily using PtP rather than routing them through the relay 

network; we therefore preprocess the solutions to ensure such loads will travel PtP and avoid 

generating composite variables for them.  Although we are not able to guarantee that optimal 

solutions will be obtained with this heuristic approach, our computational results showed that we 

are still able to obtain very high quality solutions while significantly improving the performance 

of the model.  The average and worst case optimality gaps observed for 50 node networks are 

0.1% and 0.3% respectively, while there is a significant reduction on the number of composites 

generated for the model that exceeds 86%.  The reduction in problem size considerably improves 

the performance of the model by reducing total CPU times almost 90%.  These improvements 

allow us to solve largely-sized problem instances in reasonable times.  Further results are 

presented in Section 4.5.3.2. 

4.5. Computational Results 

Computational testing of our proposed formulation and solution approach for TLRND-

MD considers the use of a baseline scenario and seven alternative cases based on modifications 
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to the original design parameters established.  One of the purposes of our computational 

experiments is to perform sensitivity analysis to observe the effect of parameter changes on the 

design of the RNs (i.e., number of RPs opened and dispatching method selected for the 

truckloads) and performance metrics for drivers, carriers and shippers.  Different network sizes 

and freight densities are considered through randomly generated problem instances.  

Additionally, we compare the results obtained for the mixed fleet dispatching system with those 

of a pure RN implementation and a PtP-only dispatching system.  These results are presented in 

Sections 4.5.3.1 to 4.5.3.3.  Finally, to assess the performance of our proposed formulation in a 

realistic scenario, we include the analysis of a test case provided by a major TL carrier in Section 

4.5.3.4. 

4.5.1. Experimental Design 

In order to determine the influence of certain design parameters on the solutions obtained 

for TLRND-MD and the performance of our model, a baseline and several alternative scenarios 

are defined by varying parameter values.  The results obtained for each scenario are averaged 

over 10 replications of 50, 100 and 150 node test networks that were randomly generated using 

the approach that is presented later in Section 4.5.2. 

The baseline scenario was established to assess the effect of allowing truckloads to be 

dispatched either PtP or through the RN without enforcing a limitation on the maximum 

proportion of PtP loads allowed (ρ=1.0) or requiring a minimum volume of truckload traffic to 

open a RP (ν=0).  Additionally, as the results for the mixed fleet dispatching system are to be 

compared to a RN-only system, perfect balance is required for RN loads (δ=0) and repositioning 

costs of PtP loads are estimated to be one quarter of the actual cost of transportation between 
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origin and destination nodes.  In this way, transportation costs are inflated 25% for these loads.  

This 25% increase over the regular rate per mile for lane movements comes from industry 

estimates of the average percentage of empty miles for TL carriers (Alam et al., 2007).  Finally, 

the fixed cost of installation of a relay point is assumed to be $10,000.  Discussions with a major 

TL carrier indicate that installing RPs requires very little capital investment.  This is because 

exchanging trailers between drivers at these locations does not require the use of expensive 

equipment and infrastructure.  Besides land cost, RP facilities only require a perimeter fence with 

a security system in place to prevent the loss of assets.  Exact and heuristic results obtained for 

this scenario are presented in Sections 4.5.3.1 and 4.5.3.2 respectively.   

In each of the following scenarios, the value of one of the parameters is modified with 

respect to the baseline scenario to evaluate the effect of the corresponding parameter on the 

solutions obtained while the remaining parameters were held constant across all scenarios during 

our computational experimentation.  This sensitivity analysis is presented in Section 4.5.3.3.  We 

explored the effect of repositioning cost for PtP loads by considering values that are lower and 

higher than the estimated value used in the baseline scenario.  We also considered the effects of 

establishing a limitation on the proportion of loads that are dispatched PtP and the requirement of 

having a given amount of truckload traffic visit a node in order to open a RP at that location 

respectively.  We also analyzed the effect of allowing some imbalance at the nodes for 

truckloads that are dispatched through the RPs to assess the effect of enforcing equipment 

balance.  And finally, we studied the effect of a higher fixed cost of installation for the RPs. 

For system parameters, we used values similar to those used in Chapter 3 to solve 

TLRND.  A limitation of 25% circuity (β) above the shortest path distance between origin and 
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destination nodes was imposed when generating feasible RN routes for a truckload.  Similarly, 

the distances covered by local (γ1) and lane (γ2) drivers were limited to 150 miles and 600 miles 

respectively.  Note that changes to these parameters affect the number of composite variables 

that are generated and consequently have an effect on the tractability of our model.  Finally, the 

rates per mile charged for local and lane movements were set to $1.0 and $1.30 respectively. 

4.5.2. Random Network Problem Generation 

Similar to the approach used in Chapter 3, our computational tests used random instances 

of complete networks with 50, 100 and 150 nodes to assess the effect of network size on model 

performance.  These are networks that have arcs connecting every pair of nodes in both 

directions, and consequently have the highest network density possible.  Although practical 

transportation networks are sparser, these instances allow us to test the worst case performance 

of our formulation since the number of composites (i.e., feasible routes for the truckloads 

through the RN) that will be generated using the approach described in Section 4.4.1 is expected 

to be very large.  Nodes are uniformly distributed in a squared area that represents the regional 

service area of a major TL carrier (i.e., 600 miles × 600 miles), and distances between node pairs 

are computed using the Euclidean norm as a surrogate to actual over the road miles.  Ten 

network problems of each size were generated to reduce random effects. 

To test the performance of our model with different truckload flow densities, the number 

of lanes in the network (i.e., O-D node pairs) with freight traffic was also modified.  To 

accomplish this, 10%, 20% and 40% of all O-D pairs were randomly selected to have truckload 

flows.  This means that for a network with 100 nodes, we selected 990, 1,980 and 3,960 O-D 

node pairs to have truckload flows.  Moreover, to represent lanes with different freight volume, a 
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randomly generated integer number between 10 and 20 was used to establish the actual number 

of truckloads required between each selected O-D node pair.  The latter is similar to the approach 

used by Üster and Kewcharoenwong (2011). 

4.5.3. Results 

We implemented our formulation and solution approach using Python 2.6 and solved the 

computational experiments with CPLEX 12.1 on a 3.20 GHz Intel® Xeon® workstation with 6 

GB of RAM. 

4.5.3.1. Exact Solution Results 

Table 16 shows the results obtained for the baseline scenario with 50 node networks 

using CPLEX 12.1 (i.e., a standard branch-and-cut method) to solve our CVM formulation for 

TLRND-MD.  As observed in this table, freight density affects the size of the problem by 

increasing the number of variables and constraints in the formulation.  In turn, the increase in 

problem size directly affects the time required for the solution.  Setup times correspond to the 

time required to generate composites and build the mathematical model that is then solved by 

CPLEX using the time shown in the last column of this table (i.e., Solution Time).  Although 

problem size negatively affects total CPU time, optimal solutions are obtained for high freight 

density problems in very reasonable times (i.e., less than 5 minutes in the worst case).    The 

values presented in Table 16 are averages for ten replications of problems with the same freight 

density. 

From this table, note that as freight density increases the number of RPs that are opened 

increases while the proportion of loads that are dispatched PtP decreases.  This is the result of 

having more traffic in the system and consequently better opportunities for relayed movements.  
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More importantly, the proportion of loads that are dispatched PtP never exceeds 20% and is 

almost half of that number for higher freight density problems.  This means that most of the 

demand will be satisfied by RN drivers, and thus driver retention will generally improve for the 

TL carrier. 

Table 16. Exact Results for 50 Node Networks (Baseline Scenario). 

# O-D 
Pairs 

# 
Composites 

# 
Constraints 

Solution Value 
($) 

# RPs 
Open 

Proportion of 
PtP Loads 

Setup Time 
(secs) 

Solution Time 
(secs) 

245 30,743.5 3,471.4 1,650,991 15.1 19.58% 45.83 6.07 

490 64,077.7 6,894.0 3,148,072 19.9 13.65% 94.22 6.42 

980 127,566.0 13,660.1 6,040,305 25.6 10.43% 197.27 8.87 

 

One of the objectives of the present study was to determine the benefit of a mixed fleet 

dispatching system over RN-only and PtP-only systems.  Table 17 shows the comparison of 

these two other dispatching methods with the mixed fleet system.  The values between 

parentheses are the differences observed with the mixed fleet results. 

Table 17. Comparison RN-only and PtP-only Systems with Mixed Fleet Dispatching (50 Nodes). 

 Mixed Fleet RN-only PtP-only 

# O-D 
Pairs 

Solution Value 
($) 

# RPs 
Open 

Solution Value 
($) 

# RPs 
Open 

Solution Value 
($) 

# RPs 
Open 

245 1,650,991 15.1 
1,694,802 
(+2.65%) 

24.0 
(+8.9) 

1,913,915 
(+15.82%) 

N/A 

490 3,148,072 19.9 
3,164,872 
(+0.53%) 

28.7 
(+8.8) 

3,884,885 
(+23.40%) 

N/A 

980 6,040,305 25.6 
6,018,572 
(-0.36%) 

32.5 
(+6.9) 

7,734,080 
(+28.06%) 

N/A 

 
Results for the pure RN implementation were obtained using the heuristic approach 

presented in Chapter 3 to solve TLRND, while the solution values for the PtP system were 

computed considering a repositioning cost of 25% over the lane rate per mile for all truckloads 

when they are dispatched directly from origin to destination.  Note that the mixed fleet system 

provides significant savings as compared to the PtP-only system, and those savings increase as 
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freight density increases.  This is due largely to the need to reposition the equipment for the next 

pick-up of a PtP load which adds empty miles to the transportation costs in this system.  

Repositioning is significantly easier and less expensive in a relay network configuration since 

loads flow between a limited number of points and can be repositioned more easily.  Also, given 

the savings observed note that the solutions for the mixed fleet dispatching system are still 

cheaper than using the PtP-only method even when the fixed cost of installation of RPs increases 

from its baseline of $10,000 to up to $17,000, $37,000 and $66,000 respectively for problems 

with 10%, 20% and 40% freight density. 

In contrast, although there is no significant difference in the total cost as compared to the 

RN-only method, using the mixed fleet system results in relay networks with considerably fewer 

RPs.  This reduction in the number of RPs represents other operational advantages to the carriers 

in terms of managing fewer driver domiciles and increased utilization of each of the RPs that is 

installed.  Note, however, that another byproduct of the mixed fleet system is increased circuity 

for the truckloads that travel through the relay network since fewer RPs are open.  

Although the mixed fleet dispatching system seems to provide overall benefits to the 

carriers, it is also important to look at performance metrics for drivers and customers.  A measure 

of importance to drivers is the average length of haul defined as the average one-way driving 

distance covered in a single leg between two nodes.  A reduced average length of haul allows the 

creation of shorter driving duties (i.e., driving jobs that initiate and terminate at a driver’s 

domicile).  This means more frequent returns to domiciles for the drivers and consequently, an 

improvement in quality of life that leads to lower driver turnover.  Similarly, a metric that 

interests shippers is service time defined as the estimated time to deliver a truckload from origin 
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to destination.  In a PtP system, service time is estimated by considering the distance between 

origin and destination for the truckload, average speed for the vehicles, and hours-of-service 

regulations for the drivers.  Given the long distances that are usually covered by TL carriers, 

some loads are commonly delayed while drivers stop to rest in compliance with federal safety 

regulations.  On the other hand, truckloads that are dispatched on the RN can be immediately 

transferred to a different driver assuming there are available drivers at the RP and continue to 

their final destination.  It is important to determine expected and worst case service times for RN 

loads and PtP loads in the mixed fleet system in order to guarantee appropriate service to all 

customers. 

Figure 19 shows the results for average length of haul and Figure 20 presents the average 

and worst case service times observed for the three alternative dispatching systems under study.  

Once again, the PtP-only dispatching system shows the worst performance of the three with the 

highest average length of haul and worst case service times observed.  The comparison between 

the RN-only and mixed fleet dispatching systems shows that there is no significant difference 

between the metrics obtained for truckloads that are shipped through the relay network.  

However, an advantage of the mixed fleet system can be observed for those truckloads that are 

sent PtP.  The reduced average length of haul for these loads allows the creation of short duties 

for the drivers who are responsible for these movements.  As a result, even if they are not 

assigned to relayed movements, it is very likely that they will be able to return home more 

frequently.  Also, average service times for PtP loads in the mixed fleet dispatching system are 

below the average service times observed for RN loads since many of the truckloads dispatched 

PtP travel only short distances between origin and destination nodes. 
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Figure 19. Length of Haul Results for Alternative Dispatching Systems (50 Nodes). 

 
Figure 20. Service Time Results for Alternative Dispatching Systems (50 Nodes). 

Finally, it is important to note that the strength of our formulation was analyzed by 

solving these problem instances using the LP relaxation of our model.  The average and worst 

case optimality gaps obtained were 0.03% and 0.22% respectively.  In fact, our formulation 

proved to be better as freight density increased.  This is an indication that the CVM formulation 

has very good lower bounds even when problem size increases.  This allows us to obtain high-

quality solutions quickly. 
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4.5.3.2. Heuristic Solution Results 

Since the number of variables ultimately affects our model’s tractability, we decided to 

implement the heuristic method presented in Section 4.4.2 that omits several template types and 

consequently reduces the number of composite variables in our model to solve the 50 node 

network instances and test the performance of the heuristic approach in terms of solution quality 

and efficiency.  Table 18 shows the results obtained using the heuristic.  The values between 

parentheses correspond to the differences observed with respect to the exact solutions presented 

in Table 16.  As shown in this table, the significant reduction in the number of composite 

variables and constraints in the model allows us to obtain very high quality solutions efficiently.  

The reduction in setup times is a direct result of the reduction in problem size. 

Table 18. Heuristic Results for 50 Node Networks (Baseline Scenario). 

# O-D 
Pairs 

# 
Composites 

# 
Constraints 

Solution Value 
($) 

# RPs 
Open 

Proportion of 
PtP Loads 

Setup Time 
(secs) 

Solution Time 
(secs) 

245 
4,096.2 

(-86.68%) 
2,381.7 

(-31.39%) 
1,652,401 
(+0.09%) 

15.2 
(+0.1) 

20.21% 
(+0.63) 

5.06 
(-88.96%) 

2.17 
(-64.33%) 

490 
8,351.9 

(-86.97%) 
4,628.9 

(-32.86%) 
3,151,178 
(+0.10%) 

19.7 
(-0.2) 

14.50% 
(+0.85) 

9.58 
(-89.83%) 

1.73 
(-73.10%) 

980 
16,828.7 

(-86.81%) 
9,182.2 

(-32.78%) 
6,047,650 
(+0.12%) 

25.3 
(-0.3) 

11.52% 
(+1.09) 

18.66 
(-90.54%) 

2.17 
(-75.49%) 

 
Based on the performance of the heuristic, we used this method to solve larger problem 

instances with more nodes and freight traffic to assess the effect of network size and freight 

density.  The results for 100 and 150 node networks are presented in Table 19. 

These results show that while the number of composites in the model directly affects 

setup times, solution times are mostly determined by the size of the networks (i.e., number of 

nodes).  However, setup time is still the most important fraction of total CPU time in most cases.  

The largest problem instances with 150 nodes and 8,940 O-D pairs with truckload flows are built 

and solved in less than 55 minutes in the worst case.  This is quite acceptable considering that 
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this is a strategic design problem.  It is interesting to note that solution times seem to be higher 

for problems with the same number of nodes but lower freight density.  This may be an 

indication that as more truckload traffic exists more common routes can be defined and it is 

easier to design the relay network. 

Table 19. Results for 100 and 150 Node Networks (Baseline Scenario). 

Nodes # O-D 
Pairs 

# 
Composites 

# 
Constraints 

Solution  
Value 

($) 

# RPs 
Open 

Proportion  
of 

PtP Loads 

Setup  
Time 
(secs) 

Solution  
Time 
(secs) 

100 990 55,684.7 16,170.5 5,902,860 29.4 10.09% 70.12 118.68 

 1,980 109,663.5 31,688.8 11,152,766 39.3 9.24% 143.56 51.08 

 3,960 219,354.3 63,079.8 21,970,931 50.6 8.57% 312.50 46.71 

150 2,235 265,290.2 51,505.2 12,310,993 55.6 8.30% 408.82 266.40 

 4,470 532,480.1 102,724.4 23,906,718 68.7 8.02% 992.13 165.51 

 8,940 1,065,642.4 204,741.7 47,230,483 76.9 8.00% 2,722.20 253.09 

 

Another observation from these results is that the fixed cost of installation of the RPs is 

not a significant fraction of the total cost.  This is clearly the case for problems with 150 nodes 

and 2,235 O-D node pairs.  This indicates that transportation costs account for most of the 

expense for the carriers.  Also, similar to the results obtained for 50 node networks, the number 

of open RPs increases and the proportion of loads dispatched PtP decreases as freight demand 

increases for networks of the same size.  However, the rate of decrease for the proportion of 

loads dispatched PtP seems to be decreasing as well with problem size. 

Comparing these results to those obtained for RN-only and PtP-only dispatching systems 

we observed similar results to those obtained for 50 node networks.  Both RN-only and mixed 

fleet systems outperform traditional PtP dispatching, and although the objective function values 

are very close for the network-based systems, we noticed a greater reduction in the number of 

RPs required in the mixed fleet dispatching system as the size of the network increases requiring 
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around 13 fewer RPs in 100 node networks and up to 30 fewer RPs in 150 node networks.  

Certainly, this represents an advantage for the mixed fleet dispatching system, particularly as the 

cost of relay point installation increases as discussed later in Section 4.5.3.3.5. 

4.5.3.3. Sensitivity Analysis for Different Carrier Parameters 

The results analyzed so far correspond to the baseline scenario presented in Section 4.5.1.  

Appendix A shows the results in detail for the scenarios that explore the effects of repositioning 

costs for PtP loads, the proportion of PtP loads permitted, the minimum volume required to open 

a relay point, the percentage of imbalance allowed in the relay network, and the fixed cost of 

installation of RPs.  These results are analyzed in the following subsections. 

4.5.3.3.1. Effect of Repositioning Cost for PtP Loads 

In two alternative scenarios, we considered modifications to the repositioning cost 

applied to loads that are dispatched PtP to evaluate the effect of this parameter on the solutions 

obtained and the performance of our formulation.  The scenario called Low PtP Repositioning 

Cost tests a repositioning cost that is less than the average percentage of empty miles (10%) for 

TL carriers while the scenario called High PtP Repositioning Cost considers a cost that doubles 

the baseline cost (50%).  A repositioning cost of zero was not used since additional moves to 

balance equipment for the PtP fleet will always be needed in practice.  Table A.1 and Table A.2 

in Appendix A show the results for these two scenarios. 

In the low PtP cost case, we observed a reduction in solution values and number of RPs 

that are required in the relay network.  However, the reduction in total cost is not significant and 

never exceeds 2%.  A greater effect is observed in the proportion of truckloads that are shipped 

PtP, especially for 50 node networks and low freight density.  This is an indication that with the 
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lower repositioning cost, some truckloads are better served PtP since circuity and rebalancing 

miles can be avoided in the RN.  The increase in the proportion of loads moved PtP is less 

significant for bigger instances since having more truckloads in the system requires routing a 

higher proportion of truckloads through the RN to obtain balance at the nodes.  In terms of the 

performance of our model, there is a prevalent reduction in solution times which seems to show 

that it is generally easier to select the dispatching method when the transportation cost for PtP 

loads is less expensive and closer to the cost for RN loads. 

Looking at the results for the high PtP cost case, we noticed a similar behavior but in the 

opposite direction.  Increments in solution values and number of open RPs are observed but they 

are only marginal (the highest increase in solution value does not exceed 2%).  The effect of the 

higher repositioning costs on solution times is less clear and seems to range from higher CPU 

times for largely-sized problems with 150 nodes to lower CPU times for smaller instances.  

These results indicate that even assessing a very high repositioning cost seems to result in a 

mixed fleet dispatching system that has advantages over a pure RN dispatching method in terms 

of fewer RPs open and comparable total costs.   

Figure 21 shows the effect of varying the repositioning cost for PtP loads from 10% to 

50% on solution values and number of open RPs for instances with 100 nodes and 10% freight 

density.  As observed in the graph located on the left side of Figure 21, the savings associated 

with the mixed fleet system as compared to a RN-only system decrease as the repositioning cost 

for PtP loads increases.  Note that when the repositioning cost is 50% over the cost of 

transportation, the cost of a mixed fleet system exceeds that of a RN.  The main reason for this is 

that in our approach we pre-process truckloads with distances shorter than 100 miles to be 
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dispatched PtP in the mixed fleet dispatching system, and thus the transportation cost for these 

truckloads always exceeds the cost that would be incurred if they are dispatched through the 

relay network as local movements.  On the other hand, it can also be observed in the graph 

located on the right side of Figure 21 that the hybrid configuration consistently requires fewer 

RPs in the network than a RN-only system. 

 
Figure 21. Differences Between RN-only and Mixed Fleet as PtP Repositioning Cost Varies. 

4.5.3.3.2. Effect of Maximum Proportion of PtP Loads 

One of the parameters considered for the design of a mixed fleet dispatching system is 

the maximum proportion of loads that are allowed to be dispatched PtP.  TL carriers believe that 

limiting the proportion of loads traveling PtP represents the best compromise between overall 

driver retention (given that most loads are dispatched through the relay network and shorter tour 

lengths are possible) and reduced circuity (i.e., additional miles driven) for the truckloads.  In the 

baseline scenario we did not impose a restriction on this value.  For the scenario called Limited 

Proportion of PtP Loads, we used a value of ρ = 0.1 to limit the proportion of loads that are sent 

PtP to 10%.  The results obtained are presented in Table A.3 in Appendix A. 

The limitation on the proportion of PtP loads in the mixed fleet system proved to be more 

restrictive for the smaller networks with 50 nodes, especially when freight density is low.  In 
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these cases, the limitation on the proportion of PtP loads results in the need for more RPs to 

handle more traffic through the RN.  However, since the fixed cost of installation of RPs is not a 

significant portion of the total cost, solution values do not change significantly.  The observed 

worst case increase in solution value just barely exceeds 1%.  It is also important to note that 

there are some infeasible instances for which no solution can be obtained using our heuristic 

approach.  The reason for this is that since we pre-select truckloads with O-D node pair distance 

below 100 miles, the proportion of PtP loads that will exist in the system is already higher than 

the limitation imposed by the model.  The exact solution approach or a heuristic method without 

pre-processing of PtP loads will be able to find solutions for these problems. 

In terms of the performance of our formulation when this restriction is imposed, we 

observed that with a few exceptions, solution times are significantly higher than those observed 

in the baseline case.  Note, however, that setup times continue to be the most significant portion 

of total CPU times and the largest instances are still solved in less than 54 minutes in average.  

This is just 4 minutes longer than in the baseline case. 

4.5.3.3.3. Effect of Minimum Volume Required to Open a Relay Point 

A design parameter that interests TL carriers is the establishment of a minimum volume 

required to justify opening and operating a RP.  The installation of a RP is justified as long as the 

location is expected to handle a given proportion of the total demand in the system.  For this 

reason, we considered values of ν = 2% and ν = 5% of the total truckload demand to require 

moderate and high truckload volume respectively.  A value of zero for this parameter was 

established in the baseline scenario, so that even locations with low truckload traffic were 
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allowed to become RPs.  Table A.4 and Table A.5 in Appendix A show the results for moderate 

and high truckload volume required to open a RP in respective order.   

In both scenarios, we observed that the limitation becomes restrictive as the size of the 

network and freight density increase.  The moderate volume requirement only starts to affect 

problems with 100 nodes and 40% freight density.  A reduction in the number of open RPs along 

with a significant increase in solution times are observed for these instances.  However, total 

costs increase only slightly as a result of this constraint.  It is clear that as the size of the network 

increases to 150 nodes, this limitation becomes very restrictive affecting the performance of our 

formulation and requiring longer solution times.  Although instances with 20% freight density 

are still solved by CPLEX, problems with higher freight density (i.e., 40%) cannot be completely 

solved and CPLEX stopped due to lack of memory as more nodes in the branch-and-cut tree are 

needed.  Interestingly, we noticed that for the majority of the time required to solve the model, it 

maintains an initial feasible solution with all truckloads dispatched PtP.  When the first mixed 

fleet solution is found, the optimality gap drops substantially (typically to <1%) and a final 

solution is found relatively soon after.  For the largest instances that we were able to solve, we 

observed a worst case solution time of 86 minutes on top of the time required to setup the 

problem. 

The same general behavior is observed in the high volume requirement scenario.  This 

means reductions in the number of open RPs and increased solution times are observed for 

instances in which the constraint becomes restrictive.  However, since the limitation is stricter in 

this case, its effect is more significant and starts to be noticed in smaller instances as compared to 

the previous case (i.e., fewer RPs and longer solution times are observed for 50 node networks 
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with 40% freight density).  Still, high quality solutions for mixed fleet dispatching designs are 

able to be obtained for problems with up to 150 nodes and 10% freight density.  After the 

problem is setup, these instances can be solved in less than 4 hours and 15 minutes in the worst 

case with an average solution time of 2 hours and 40 minutes.  Once again, memory issues 

prevent us from solving larger problem instances with 20% and 40% freight density.  In general, 

these results are an indication that this parameter is very important for the design of mixed fleet 

dispatching systems of considerable size since it can limit significantly the number of open RPs 

in the network, and has implications both on the solutions obtained and the tractability of our 

model. 

Figure 22 shows the differences in solution values and number of open RPs between a 

RN-only system when this limitation is enforced and the mixed fleet dispatching system for 

problems with 100 nodes and 10% freight density.  Note that as the minimum volume required to 

open a RP increases the savings associated with the mixed fleet system become more apparent as 

fewer RPs are needed and more loads can be dispatched PtP. 

 
Figure 22. Differences Between RN-only and Mixed Fleet as Minimum Volume Required to 

Open RPs Varies. 
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4.5.3.3.4. Effect of Equipment Balance for Relay Network Loads 

The baseline scenario requires perfect balance for the loads that are dispatched through 

the relay network.  We decided to relax this limitation and allow some imbalance at the nodes in 

the network to analyze the effect of this operational constraint on the performance of our model 

and the solutions obtained.  The results for a maximum percentage imbalance allowed of δ = 0.3 

are presented in Table A.6 of Appendix A. 

From the results obtained, no significant differences are observed for the solution values 

as compared to the baseline scenario with perfect balance.  However, we note a slight increase in 

the number of RPs that are open in networks with 150 nodes.  This increment in the number of 

facilities in the RN is not accompanied by a significant change in the proportion of loads that are 

dispatched PtP. 

More importantly, we were able to determine that balance comes at a cost in terms of 

CPU time.  As observed in these results, with the exception of the small networks with less 

freight density, allowing some imbalance at the nodes in the RN results in solution times that are 

significantly faster than the baseline scenario.  Nonetheless, since setup times are once again the 

most important portion of total CPU time, the overall benefits are not as significant.  The average 

total CPU time for the largest instances is only reduced in 3 minutes, decreasing from 50 minutes 

in the perfect balance case to 47 minutes when this constraint is relaxed. 

The effect of equipment imbalance at the nodes in the relay network in terms of solution 

values and number of open RPs can be observed in Figure 23.  This figure also shows the 

differences between the mixed fleet dispatching system and a RN-only system as this limitation 

varies from requiring perfect balance to allowing 100% imbalance.  We observe that the savings 



127 
 

 

associated with the mixed fleet configuration remain consistent across the different levels of 

allowed imbalance at the nodes. 

 
Figure 23. Differences Between RN-only and Mixed Fleet as Maximum Imbalance Allowed 

Varies. 

4.5.3.3.5. Effect of Fixed Cost of Installation of Relay Points 

TL carriers that operate nationally have difficulty estimating appropriate installation and 

operation costs for their facilities given the differences in land and labor costs across regions in 

the U.S.  The value of $10,000 used in the baseline scenario can be considered relatively low, but 

is justified by the fact that RPs do not need expensive equipment and infrastructure to operate.  

However, in this scenario we considered a fixed cost of installation for the RPs that is ten times 

higher (i.e., $100,000) to test the performance of our model and determine how this parameter 

affects the characteristics of the solutions obtained.  The results for a higher fixed cost of 

installation of $100,000 are presented in Table A.7 of Appendix A. 

We observe that the higher fixed cost of installation results in PtP-only solutions for 

problems with 50 nodes and freight densities of 10% and 20%.  In these cases, as the capital 

investment to open RPs becomes more significant, the reduced truckload volume is insufficient 
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to justify opening RPs as the expense associated with their installation cannot be outweighed by 

the reduction in transportation costs. 

Solutions with a mixed fleet configuration begin to occur for instances with 50 nodes and 

40% freight density.  The higher fixed cost of installation results in mixed fleet systems with 

significantly fewer RPs.  This consequently affects the proportion of loads that are dispatched 

PtP and solution values.  The reduced number of RPs becomes more significant as the number of 

nodes and freight density increase.  This reduction goes from 16 to 47 fewer RPs with respect to 

the baseline case.  Solution values increase significantly but never exceed a 25% increase over 

the baseline scenario.  As the instance sizes grow, this objective function increase becomes less 

significant. In the same way, the increase in the proportion of loads that are dispatched PtP is 

more significant for smaller instances.  In these cases, the proportion of loads dispatched PtP is 

almost two times higher than in the baseline scenario. 

The higher fixed cost of installation also affects solution times significantly.  The 

increase in solution times always exceeds 750% with respect to the baseline scenario as observed 

for instances with 50 nodes and 40% freight density.  As the number of nodes and freight density 

increase this increase is even more significant.  The largest instances solved without running into 

memory issues are those with 150 nodes and 20% freight density.  The worst case solution time 

observed for these problems is 3 hours and 2 minutes with an average solution time of 2 hours 

and 46 minutes. 

Figure 24 shows that as the fixed cost of installation of the RPs increases the differences 

between RN-only and mixed fleet dispatching become more apparent from an economic 

perspective.  For a fixed cost of $100,000, the savings associated with the hybrid configuration 
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ascend to 20.5% with respect to the pure RN system.  In addition, it can be observed that as fixed 

cost increases the number of open RPs in the RN-only system converges to a value required for 

feasibility reasons.  Since loads can also be dispatched PtP in the mixed fleet system, the number 

of open RPs continue to decrease as higher fixed costs of installation are considered. 

 
Figure 24. Differences Between RN-only and Mixed Fleet as Fixed Cost of RPs Varies. 

4.5.3.3.6. Discussion of Sensitivity Analysis Results 

In our computational experiments, we observed that with the exception of minimum 

volume required to open a RP and fixed cost of installation, changes to the design parameters for 

TLRND-MD result in solutions with very similar total costs.  However, it is important to note 

that although the solutions obtained are very similar from an economic perspective, they are all 

different in terms of the configuration of the mixed fleet dispatching system obtained with our 

model since different nodes are selected as RPs and varying proportions of loads that are 

dispatched PtP.  This highlights the importance of our prescriptive model since very different 

solutions with very similar solution values can be obtained when making changes to several 

design parameters of this problem.   

Figure 25 shows the general trends observed for the changes in solution characteristics 

and model performance for each scenario with respect to the baseline scenario.  The values 
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presented in this figure provide an idea of the significance of these changes and a sense of how 

they affect different instances across different network sizes and freight densities.  For example, 

the low PtP repositioning cost produces a reduction in solution times that is variable across 

different instances but always less than 2% with respect to the baseline case.  This scenario also 

results in a reduction in the number of open RPs that is consistent across different problems with 

an average of 2 fewer RPs with respect to the baseline.  Also, the change in the proportion of PtP 

loads is variable across different instances with an increase that is as high as 10.45 percentage 

points for smaller problems and as little as 0.13 percentage points for the largest problems.  

Finally, when PtP repositioning costs are low, there is a reduction in solution times that never 

exceeds 45% with respect to the baseline case.  The results for the remaining scenarios can be 

read in a similar way. 

 
Figure 25. Summary of Effects of Design Parameters. 

As observed in Figure 25, the most significant changes in solutions obtained and model 

performance are observed for the scenarios in which we enforce a limitation on the minimum 
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volume required to open a RP and the scenario with a higher fixed cost of installation.  

Consequently, TL carriers need to consider these two parameters very carefully when designing 

mixed fleet dispatching systems. 

4.5.3.4. Test Case Results 

To test the performance of our model with realistically-sized problem instances, we used 

test case data provided by J.B. Hunt Transportation Services, one of the largest TL carriers in the 

United States.  Origins and destinations for truckloads in the eastern half of the U.S. were 

aggregated at the three-digit zip code level resulting in a network with 623 nodes where a node is 

placed on the centroid of the aggregated origins and destinations.  These nodes are connected by 

a total of 83,734 arcs.  This is an arc density of 21.61% which is significantly lower than the arc 

density of 100% of the complete networks used in our previous experiments.  The distances on 

the arcs are over the road miles between connected nodes in the transportation network.  A total 

of 1,386 O-D node pairs with truckload flows are included in this problem instance.  Also, we 

considered limitations on the distance allowed for local drivers of γ1 = 225 miles and distance 

allowed for lane drivers of γ2 = 450 miles.  All other problem parameters were not modified in 

the experimental design.  Table 20 shows the results for the baseline scenario of TLRND-MD 

described in Section 4.5.1.  This table also presents the values observed for RN-only and PtP-

only dispatching methods to compare them to the mixed fleet dispatching system. 

As observed in this table, the mixed fleet dispatching system has the lowest solution 

value of the three configurations.  Similar to the randomly generated instances previously 

analyzed, the difference is more significant with respect to the PtP-only system that has a total 

cost that is 22.56% higher.  On the other hand, the cost of the pure RN system is only 1.9% 
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higher than the mixed fleet method.  The most noticeable difference between RN-only and mixed 

fleet dispatching relates to the number of open RPs.  Allowing some truckloads to be dispatched 

PtP results in a considerable reduction of 34 RPs or 25% fewer facilities than in the RN-only 

alternative.  As previously mentioned, this reduction translates into operational advantages for 

carriers such as fewer drivers’ domiciles to manage and increased utilization.  This reduction in 

the number of RPs needed is accomplished by shipping close to 92% of the truckloads through 

the relay network while the rest is dispatched PtP. 

Table 20. Results for Test Case (623 Nodes and 1,386 O-D Pairs with Truckload Demand).  

Dispatching 
Method 

Solution  
Value 

($) 

# RPs 
Open 

Proportion  
of 

PtP Loads 

Average  
Length of Haul  

(miles) 

Average  
Service Time  

(hours) 

Maximum  
Service Time  

(hours) 

Setup  
Time 
(secs) 

Solution  
Time 
(secs) 

Mixed Fleet 19,613,127 102 8.42% 310.15 (RN) 
748.62 (PtP) 

18.94 (RN) 
29.99 (PtP) 

35.39 (RN) 
64.62 (PtP) 

9,894.34 1,648.86 

RN-only 19,986,727 136 0.00% 314.73 19.25 35.70 11,577.23 1,025.67 

PtP-only 24,038,329 0 100.00% 638.08 25.37 64.62 N/A N/A 

 

Average length of haul and service times for the majority of the truckloads in the mixed 

fleet system (i.e., loads that are shipped through the relay network) are comparable to those in 

the RN-only method and are considerably better than in traditional PtP dispatching.  

Unfortunately, the small portion of loads that are dispatched PtP in the mixed fleet system show 

relatively high average length of haul and service times.  In contrast to the previous experiments, 

there is a higher proportion of direct shipments that cover longer distances.  This mostly occurs 

when a direct shipment is used to satisfy demand at isolated nodes in the network. 

In terms of the performance of our formulation of TLRND-MD and the heuristic solution 

approach developed in this research, setup times continue to dominate total CPU time.  The large 

number of composite variables that are generated (i.e., close to 2 million composites) requires 

approximately 2.5 hours of setup time to build the model.  Fortunately, CPLEX takes less than 
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28 minutes to solve the problem with an optimality gap of 1.0%.  The solution of this test case 

shows that our approach can be used to obtain high quality solutions for largely-sized problem 

instances that are likely to appear in practical settings. 

4.6. Conclusions 

This chapter presents a prescriptive model for the design of a mixed fleet dispatching 

system for TL transportation.  This alternative dispatching method combines direct shipments 

from origin to destination with the use of a network configuration of relay points.  To the best of 

our knowledge, this is the first prescriptive model for such systems. 

We propose a composite variable model that implicitly considers several operational 

constraints within the definition of variables that represent feasible routes for truckloads through 

the relay network.  The selection of the dispatching mode and routing for the truckloads is 

handled by an integer programming model that is used to obtain high quality solutions for 

largely-sized problem instances. 

Both TL carriers and researchers have suggested that mixed fleet networks show 

significant promise and are more likely to be successful in practice than a RN alone.  Our results 

show that from a cost perspective the differences between relay networks and mixed fleet 

dispatching systems are not significantly different when fixed cost of installation of the RPs is 

low with an average difference of only around 2% in the best case.  However, as the fixed cost of 

installation increases, mixed fleet dispatching systems show more significant savings over a pure 

RN system.  In addition, mixed fleet network configurations always require fewer relay points 

which may offer other advantages over RN-only solutions in terms of higher utilization of 

facilities and fewer domiciles to manage.  Note that our methodology can be used to assess 
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whether these findings are true for other network topologies and demand patterns.  In addition, 

our experiments show that both systems – RN-only and mixed fleet – outperform the traditional 

PtP-only dispatching system in total costs and other performance metrics of interest such as 

average length of haul and service times for the truckloads. 

Our results suggest that truckloads that have origin and destination nodes not too distant 

apart are good candidates for PtP dispatching.  In the same way, truckloads that either have the 

origin node or the destination node in an isolated area are best served PtP.  As the proportion of 

truckloads that are shipped directly is usually small, TL carriers can expect to improve the 

quality of the driving jobs for the majority of their people using this alternative dispatching 

method while considerably reducing the number of RPs required in the network. 

Changes to several design parameters of the mixed fleet systems result in alternative 

configurations with different RPs and varying proportions of truckloads shipped PtP.  However, 

these changes seem to only minimally affect the solution values (i.e., total costs) obtained.  A 

general observation across different scenarios is that dispatching through the relay network is 

preferable for a higher proportion of the truckloads as network size and freight density increase. 

Also, we determined that the performance of our CVM formulation for TLRND-MD is 

consistent across several scenarios with the exception of cases where very strict limitations are 

imposed on the minimum volume required to open a RP and when higher fixed costs of 

installation for RPs are considered.  Extended solution times are required for larger problem 

instances in these cases.  Moreover, the heuristic approach developed in this research was 

successfully used to obtain a solution for a practical problem provided by a major TL carrier in 

reasonable time, especially considering that this is an integrated strategic design problem. 
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There are some challenges that need to be addressed as part of future work such as 

explicitly incorporating a balance constraint for truckloads that are dispatched PtP instead of 

using a repositioning cost as a surrogate.  Another important area for future research is to assess 

whether or not mixed fleet dispatching systems can significantly outperform RN-only 

configurations for certain network topologies, or whether our observations that for low fixed 

costs of installation of the RPs the cost implications of a mixed fleet dispatching system are not 

significant extend to all types of network configurations.  If secondary performance metrics 

beyond total cost can be identified to assess the value of mixed fleet dispatching systems, the use 

of a multi-objective optimization approach may be justified for this problem based on the effect 

of alternative dispatching systems on metrics that interest not only carriers but also affect drivers 

and shippers. 

In addition, we would like to explore other methods for the generation of the composite 

variables that are used in our formulation.  A column generation approach using a multi-label 

shortest path algorithm seems to be a viable alternative.  This would also allow us to solve 

problems where more than three RPs are allowed to be visited in a route without significantly 

increasing the number of variables needed in our model.  Alternatively, a method to generate the 

composites in parallel for different truckloads will help to reduce setup times even further, 

especially for largely-sized problems. 

Finally, driver considerations and timing for the truckloads should be incorporated in 

order to develop efficient schedules for the drivers.  The benefits of this and other alternative 

dispatching systems in terms of driver retention will only be attainable as long as TL carriers are 

able to construct driving duties that bring drivers home more frequently. 
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Appendix A 

Table A.1. Results for Low PtP Repositioning Cost. 

Nodes # O-D 
Pairs 

Solution Value 
($) 

# RPs 
Open 

Proportion of 
PtP Loads 

Setup Time 
(secs) 

Solution Time 
(secs) 

50 245 1,619,427 
(-2.00%) 

12 
(-3.2) 

30.66% 
(+10.45) 

5.05 
(-0.18%) 

2.74 
(+26.64%) 

 490 3,121,304 
(-0.95%) 

18.2 
(-1.5) 

18.14% 
(+3.64) 

9.59 
(+0.18%) 

1.54 
(-11.04%) 

 980 6,006,667 
(-0.68%) 

23.5 
(-1.8) 

13.73% 
(+2.21) 

18.68 
(+0.15%) 

1.28 
(-40.99%) 

100 990 5,874,232 
(-0.48%) 

28.3 
(-1.1) 

11.20% 
(+1.11) 

70.24 
(+0.17%) 

75.59 
(-36.31%) 

 1,980 11,108,342 
(-0.40%) 

38.0 
(-1.3) 

9.67% 
(+0.44) 

143.56 
(-) 

36.51 
(-28.52%) 

 3,960 21,895,843 
(-0.34%) 

49.6 
(-1.0) 

8.78% 
(+0.21) 

311.47 
(-0.33%) 

41.68 
(-10.77%) 

150 2,235 12,265,220 
(-0.37%) 

54.1 
(-1.5) 

8.57% 
(+0.27) 

408.61 
(-0.05%) 

262.11 
(-1.61%) 

 4,470 23,814,251 
(-0.39%) 

64.3 
(-4.4) 

8.20% 
(+0.18) 

991.97 
(-0.02%) 

159.89 
(-3.40%) 

 8,940 47,085,717 
(-0.31%) 

75.4 
(-1.5) 

8.13% 
(+0.13) 

2,723.96 
(+0.06%) 

230.97 
(-8.74%) 

 

Table A.2. Results for High PtP Repositioning Cost.  

Nodes # O-D 
Pairs 

Solution Value 
($) 

# RPs 
Open 

Proportion of 
PtP Loads 

Setup Time 
(secs) 

Solution Time 
(secs) 

50 245 1,684,057 
(+1.92%) 

17.4 
(+2.2) 

15.63% 
(-4.58) 

5.06 
(+0.11%) 

2.87 
(+32.66%) 

 490 3,185,633 
(+1.09%) 

21.2 
(+1.5) 

12.89% 
(-1.62) 

9.60 
(+0.28%) 

1.69 
(-2.32%) 

 980 6,098,415 
(+0.84%) 

27.0 
(+1.7) 

10.43% 
(-1.09) 

18.71 
(+0.26%) 

2.38 
(+9.43%) 

100 990 5,943,406 
(+0.69%) 

31.0 
(+1.6) 

9.29% 
(-0.80) 

70.10 
(-0.03%) 

111.78 
(-5.82%) 

 1,980 11,219,937 
(+0.60%) 

41.0 
(+1.7) 

8.87% 
(-0.36) 

143.58 
(+0.02%) 

35.51 
(-30.47%) 

 3,960 22,089,934 
(+0.54%) 

52.6 
(+2.0) 

8.32% 
(-0.25) 

312.18 
(-0.10%) 

34.77 
(-25.57%) 

150 2,235 12,366,688 
(+0.45%) 

54.0 
(-1.6) 

8.13% 
(-0.17) 

408.94 
(+0.03%) 

415.61 
(+56.01%) 

 4,470 24,033,820 
(+0.53%) 

71.0 
(+2.3) 

7.88% 
(-0.14) 

990.13 
(-0.20%) 

168.19 
(+1.62%) 

 8,940 47,465,632 
(+0.50%) 

79 
(+2.1) 

7.89% 
(-0.11) 

2,720.51 
(-0.06%) 

262.92 
(+3.88%) 
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Table A.3. Results for Limited Proportion of PtP Loads. 

Nodes # O-D 
Pairs 

Solution  
Value 

($) 

# RPs 
Open 

Proportion  
of 

PtP Loads 

Setup  
Time 
(secs) 

Solution  
Time 
(secs) 

# of 
Infeasible 
Instances 

50 245 1,669,985 
(+1.06%) 

21.6 
(+6.4) 

10.00% 
(-10.21) 

4.93 
(-2.52%) 

3.72 
(+71.77%) 

3 

 490 3,174,001 
(+0.72%) 

27.4 
(+7.7) 

10.00% 
(-4.50) 

9.41 
(-1.78%) 

4.56 
(+164.25%) 

2 

 980 6,044,016 
(-0.06%) 

28.6 
(+3.3) 

9.98% 
(-1.54) 

18.30 
(-1.91%) 

4.52 
(+107.97%) 

1 

100 990 5,907,329 
(+0.08%) 

30.6 
(+1.2) 

9.64% 
(-0.45) 

70.14 
(+0.02%) 

200.65 
(+69.07%) 

0 

 1,980 11,115,816 
(+0.03%) 

39.9 
(+0.6) 

9.10% 
(-0.14) 

143.64 
(+0.06%) 

40.81 
(-20.10%) 

0 

 3,960 21,971,203 
(+0.001%) 

50.5 
(-0.1) 

8.57% 
(-) 

312.16 
(-0.11%) 

45.33 
(-2.95%) 

0 

150 2,235 12,323,958 
(+0.11%) 

57.7 
(+2.1) 

8.31% 
(+0.01) 

408.79 
(-0.01%) 

353.18 
(+32.58%) 

0 

 4,470 23,962,971 
(+0.24%) 

73.8 
(+5.1) 

7.96% 
(-0.06) 

990.58 
(-0.16%) 

246.20 
(+148.75%) 

0 

 8,940 47,100,056 
(-0.28%) 

74.8 
(-2.1) 

8.06% 
(+0.06) 

2,747.40 
(+0.93%) 

477.65 
(+188.73%) 

1 

 

Table A.4. Results for Moderate Volume Required to Open a RP.  

Nodes # O-D 
Pairs 

Solution  
Value 

($) 

# RPs 
Open 

Proportion  
of 

PtP Loads 

Setup  
Time 
(secs) 

Solution  
Time 
(secs) 

50 245 1,652,414 
(+0.001%) 

15.3 
(+0.1) 

20.17% 
(-0.04) 

5.08 
(+0.39%) 

2.82 
(+30.59%) 

 490 3,151,213 
(+0.001%) 

19.7 
(-) 

14.53% 
(-0.03) 

9.64 
(+0.65%) 

1.65 
(-4.40%) 

 980 6,047,985 
(+0.006%) 

25.2 
(-0.1) 

11.61% 
(+0.09) 

18.79 
(+0.74%) 

1.82 
(-16.26%) 

100 990 5,902,990 
(+0.002%) 

29.2 
(-0.2) 

10.08% 
(-0.01) 

71.40 
(+1.83%) 

104.77 
(-11.72%) 

 1,980 11,156,163 
(+0.03%) 

38.8 
(-0.5) 

9.39% 
(+0.15) 

144.11 
(+0.39%) 

50.58 
(-0.95%) 

 3,960 22,001,047 
(+0.14%) 

46.4 
(-4.2) 

9.00% 
(+0.43) 

311.57 
(-0.30%) 

154.75 
(+231.29%) 

150 2,235 12,291,190 
(-0.16%) 

45.5 
(-10.1) 

9.01% 
(-0.71) 

411.20 
(+0.58%) 

833.83 
(+213.00%) 

 4,470 23,939,619 
(+1.38%) 

55.3 
(-13.5) 

8.81% 
(+0.80) 

989.78 
(-0.24%) 

2,228.59 
(+1,246.48%) 

 8,940a --- --- --- 2,747.40 
(+0.93%) 

--- 

a CPLEX out of memory while exploring branch-and-cut tree 
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Table A.5. Results for High Volume Required to Open a RP. 

Nodes # O-D 
Pairs 

Solution  
Value 

($) 

# RPs 
Open 

Proportion  
of 

PtP Loads 

Setup  
Time 
(secs) 

Solution  
Time 
(secs) 

50 245 1,653,791 
(+0.08%) 

15.0 
(-0.2) 

20.57% 
(+0.36) 

5.07 
(+0.18%) 

2.84 
(+31.12%) 

 490 3,153,772 
(+0.08%) 

19.2 
(-0.5) 

14.79% 
(+0.29) 

9.57 
(-0.10%) 

2.32 
(+34.47%) 

 980 6,065,296 
(+0.29%) 

22.6 
(-2.7) 

12.74% 
(+1.22) 

18.79 
(+0.69%) 

7.47 
(+243.62%) 

100 990 5,928,106 
(+0.43%) 

25.9 
(-3.5) 

11.26% 
(+1.18) 

71.48 
(+1.94%) 

527.51 
(+344.47%) 

 1,980 11,278,022 
(+1.12%) 

28.6 
(-10.7) 

11.12% 
(+1.88) 

143.46 
(-0.07%) 

4,553.36 
(+8,815.00%) 

 3,960 22,443,812 
(+2.15%) 

29.3 
(-21.3) 

11.01% 
(+2.44) 

310.16 
(-0.75%) 

6,387.58 
(+13,574.75%) 

150 2,235 12,450,410 
(+1.13%) 

28.9 
(-26.7) 

10.65% 
(+2.34) 

410.54 
(+0.42%) 

9,651.55 
(+3,522.95%) 

 4,470b --- --- --- 987.66 
(-0.45%) 

--- 

 8,940b --- --- --- 2,720.42 
(-0.93%) 

--- 

b CPLEX out of memory while exploring branch-and-cut tree 

 

Table A.6. Results for Some Imbalance Allowed at Nodes for RN Loads. 

Nodes # O-D 
Pairs 

Solution Value 
($) 

# RPs 
Open 

Proportion of 
PtP Loads 

Setup Time 
(secs) 

Solution Time 
(secs) 

50 245 1,633,912 
(-1.12%) 

15.1 
(-0.1) 

16.90% 
(-3.31) 

5.06 
(+0.06%) 

5.97 
(+175.77%) 

 490 3,133,419 
(-0.56%) 

19.5 
(-0.2) 

13.88% 
(-0.62) 

9.56 
(-0.16%) 

2.26 
(+30.74%) 

 980 6,025,640 
(-0.36%) 

25.0 
(-0.3) 

11.13% 
(-0.39) 

18.68 
(+0.12%) 

0.91 
(-58.36%) 

100 990 5,885,231 
(-0.30%) 

29.2 
(-0.2) 

10.16% 
(+0.07) 

70.08 
(-0.06%) 

27.54 
(-76.80%) 

 1,980 11,132,782 
(-0.18%) 

39.8 
(+0.5) 

9.18% 
(-0.06) 

143.82 
(+0.19%) 

11.92 
(-76.65%) 

 3,960 21,958,981 
(-0.05%) 

50.7 
(+0.1) 

8.55% 
(-0.02) 

312.41 
(-0.03%) 

12.96 
(-72.25%) 

150 2,235 12,323,958 
(+0.11%) 

57.7 
(+2.1) 

8.32% 
(+0.02) 

408.95 
(+0.03%) 

73.59 
(-72.38%) 

 4,470 23,957,141 
(+0.21%) 

74.4 
(+5.7) 

7.91% 
(-0.11) 

990.57 
(-0.16%) 

32.35 
(-80.45%) 

 8,940 47,245,013 
(+0.03%) 

79.5 
(+2.6) 

7.97% 
(-0.03) 

2,729.60 
(+0.27%) 

56.75 
(-77.58%) 
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Table A.7. Results for High Fixed Cost of Installation of RPs. 

Nodes # O-D 
Pairs 

Solution Value 
($) 

# RPs 
Open 

Proportion of 
PtP Loads 

Setup Time 
(secs) 

Solution Time 
(secs) 

50 245 1,913,915 
(+15.83%) 

0.0 
(-15.2) 

100.00% 
(+79.79) 

4.17 
(-17.58%) 

5.01 
(+131.19%) 

 490 3,884,855 
(+23.28%) 

0.0 
(-19.7) 

100.00% 
(+85.50) 

7.90 
(-17.54%) 

9.50 
(+450.05%) 

 980 7,329,919 
(+21.20%) 

9.5 
(-15.8) 

31.84% 
(+20.32) 

15.45 
(-17.21%) 

18.60 
(+755.86%) 

100 990 7,321,420 
(+24.03%) 

10.8 
(-18.6) 

27.66% 
(+17.58) 

70.33 
(+0.30%) 

1,011.92 
(+752.63%) 

 1,980 13,069,119 
(+17.18%) 

14.6 
(-24.7) 

18.26% 
(+9.02) 

143.75 
(+0.14%) 

2,843.32 
(+5,466.92%) 

 3,960 24,551,334 
(+11.74%) 

19.8 
(-30.8) 

13.72% 
(+5.15) 

309.66 
(-0.91%) 

4,253.72 
(+9,006.51%) 

150 2,235 14,334,604 
(+16.44%) 

16.2 
(-39.4) 

16.16% 
(+7.86) 

408.19 
(-0.15%) 

4,297.87 
(+1,513.31%) 

 4,470 26,584,614 
(+11.20%) 

22.3 
(-46.5) 

12.26% 
(+4.24) 

1,003.10 
(+1.11%) 

9,942.02 
(+5,906.82%) 

 8,940c --- --- --- 2,732.72 
(+0.39%) 

--- 

c CPLEX out of memory while exploring branch-and-cut tree 
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5. Conclusion 

5.1. Research Conclusions 

This dissertation is motivated by an important problem for the TL transportation industry.  

The excessive driver turnover experienced by large and small TL carriers has motivated industry 

and academic researchers to explore the development and analysis of alternative dispatching 

methods to the traditional point-to-point dispatching system.  In this context, the use of relay 

networks for TL transportation has been recognized in previous research as a valid alternative to 

improve driver retention.  This dissertation mainly addresses the need for prescriptive 

mathematical models and solution approaches to solve largely-sized strategic relay network 

design problems. These problems are complicated by the need to incorporate operational 

constraints imposed by TL carriers to overcome some of the challenges of dispatching truckloads 

through a network configuration of relay points and to effectively improve driving jobs.  We 

contribute to the literature with mathematical formulations and solution approaches that can be 

effectively used to solve practically motivated instances of TLRND problems. 

We first present the development and analysis of an algorithmic approach for the solution 

of a subproblem related to TLRND.  Determining the number and location of relay points in a 

TL relay network requires the generation of feasible routes for the truckloads.  An exact 

algorithm based on topological sorting is developed for the enumeration of all feasible paths 

between an origin node and a destination node in a directed acyclic graph.  This algorithm uses a 

labeling approach to simultaneously enforce limitations on total length and number of nodes 

visited in a path.  The approach presented in this research overcomes several shortcomings of 

existing methods in the path enumeration literature.  For example, one class of algorithms 
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considers the side constraints to eliminate the paths that are infeasible only after all paths in the 

network have been enumerated.  In general, those methods are less efficient especially when 

networks are large and the number of feasible paths is small.  A second class of algorithms can 

generate the k-shortest paths.  This requires the user to set a value for k to determine these paths.  

As the number of feasible paths is commonly not known in advance, values for k are often set to 

a very large numbers.  This affects the efficiency and reliability of k-shortest path algorithms to 

obtain all feasible paths in the graph.  Our methodology overcomes these limitations.  

Furthermore, using the approach presented in this research, there is no need to check the 

feasibility of generated paths considering every side constraint sequentially as is the case for 

several constrained shortest path and constrained k-shortest path algorithms.  This also results in 

efficiency gains over these latter methods. 

Computational tests of the proposed algorithm for PENVLC show that it can be used to 

obtain feasible paths for O-D pairs in DAGs with different number of nodes, area size and arc 

density.  In general, larger computational times are required to solve PENVLC as the number of 

feasible paths grows.  This number is in part affected by the bounds imposed for the side 

constraints.  The proposed algorithm is very efficient when strict limitations are imposed for both 

path length and number of nodes allowed in a path, but requires longer computational times as 

the constraints are significantly relaxed.  Our results indicate that relaxing the limitation on 

number of nodes allowed in a path has a relatively greater effect in the performance of the 

proposed algorithm.  The number of feasible paths also depends on the characteristics of the 

graphs under study.  In this regard, arc density has the most significant effect on the total number 

of feasible paths over network and area size.  The algorithm is particularly challenged by 
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problems with large dense networks since the number of feasible paths is very large for most of 

these instances.  Still, largely-sized problems can be solved in a few seconds using the algorithm 

when the limitations imposed by the side constraints are maintained at reasonable values as it is 

the case for feasible route generation in TLRND. 

We then present a composite variable model for TLRND that minimizes total 

transportation and installation costs for the RPs while implicitly incorporating operational 

constraints relaxed by previous studies within the definition of the variables.  The composites 

used in our formulation represent feasible routes for the truckloads that are generated considering 

limitations on circuity, number of RPs allowed to be visited, and distances for local and lane 

drivers.  In previous research, circuity limitations had been either relaxed or enforced through 

surrogate constraints while a limitation on the number of RPs allowed to be visited had not been 

considered in previous prescriptive models.  As the algorithm for PENVLC requires additional 

extensions to be used for this purpose, we develop an alternative enumeration algorithm using 

pre-defined templates representing possible routes for the truckloads through the relay network.  

Based on this variable definition, the proposed integer program for TLRND coordinates the 

selection of RPs and routes for the truckloads that minimizes total costs.  This CVM formulation 

presents advantages over existing arc-based formulations proposed by previous research in this 

area that are comparable to those expected from path-based formulations.  Better lower bounds 

obtained with this model determine a stronger formulation with improved tractability for larger 

problem instances than those solved in previous studies.  The most significant challenge for the 

proposed formulation is the generation of composite variables given that a very large number of 

them is required to ensure optimality.  Exact and heuristic solutions for TLRND are obtained 
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using this model.  The heuristic method developed in this research considers a reduced model 

with a high quality subset of composite variables.  Although optimality cannot be guaranteed 

with this approach, very high quality solutions (i.e., solutions with less than 1% optimality gap) 

are obtained very efficiently as demonstrated by comparing these results to exact solutions 

obtained using standard branch-and-cut as implemented in CPLEX.  An alternative exact 

solution method using a branch-and-price approach was also considered, but proved to become 

inefficient as size of the problems increased and was therefore not pursued further. 

The effects of network size and freight density were analyzed using the heuristic 

approach through computational tests using randomly generated networks.  The results show that 

more RPs are needed as the number of nodes and truckload demand increase.  Interestingly, a 

significant number of RPs are opened only for feasibility reasons as the fixed cost of installation 

of RPs does not seem to have a significant effect on the design of the relay networks.  Our 

experiments also show that enforcing balance at the nodes in the network only has a marginal 

effect on the total cost for the system, although it comes at a cost in computational times.  In this 

regard, since it is possible to generate empty movements between nodes in the network as 

additional variables, we were able to solve perfect balance problems (i.e., requiring that the 

incoming flow into a node be equal to the outgoing flow).  We have not been able to find other 

approaches in the literature that achieve perfect balance in TLRND.  Additionally, our 

formulation allows assigning origin-destination nodes to multiple RPs based on the selection of 

the routes for the truckloads.  This effectively covers an open area in strategic design of relay 

networks as identified by previous studies. 
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Our experiments reveal that computational times are dominated by the time required to 

generate the composites and build the mathematical model.  This setup time is directly 

proportional to the number of composite variables in the model.  On the other hand, solution 

times seem to depend mostly on the number of nodes in the network as there are more 

opportunities to locate RPs when more nodes exist in the network.  In general, very short 

solution times are observed for this strategic planning problem even for largely-sized instances 

with 150 nodes and 40% freight density (i.e., CPLEX takes an average of less than 12 minutes to 

solve these problems).  Moreover, the suitability of our formulation to solve more realistic 

problem instances of TLRND is demonstrated by obtaining solutions for a test case problem 

provided by a major TL carrier in reasonable time (i.e., around three and a half hours for setup 

and solution) considering the scale of this planning problem. 

Later in this dissertation, we show that our proposed formulation is flexible to extensions 

and that other realistic aspects of this problem can be incorporated into the model without 

negatively affecting its tractability.  We extend the CVM formulation of TLRND to include new 

decisions for the selection of dispatching mode for truckloads between PtP and RN shipments 

when the carrier operates a mixed fleet dispatching system.  We have not been able to find other 

prescriptive models for the TLRND-MD problem in the literature.  Additional constraints 

imposed by carriers are also included in this extended model such as a limitation on the 

proportion of loads that are dispatched PtP and the requirement of a minimum truckload volume 

to open a RP.  Also, a repositioning cost is assessed on the cost of transportation of PtP loads as a 

surrogate to enforce equipment balance for these movements. 
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Exact solutions for TLRND-MD are obtained for 50 node networks to show that this 

remains a strong formulation and its tractability is not affected by the extensions.  In addition, 

these results show that most truckloads that have origin and destination nodes not too distant 

apart (i.e., less than 100 miles) are better served PtP.  This observation in used to develop an 

enhanced heuristic approach with a priori selection of truckloads to be dispatched PtP.  This 

further reduces the number of composite variables in the model.  This heuristic approach is then 

used to complete computational tests with several randomly generated problem instances of 

different network size and freight density.  Results for a baseline scenario of TLRND-MD allow 

us to quantify the benefit of a mixed fleet dispatching system over RN-only and PtP-only 

dispatching systems.  It is determined that both mixed fleet and RN-only clearly outperform 

traditional PtP dispatching in total costs and performance metrics for drivers (i.e., lower average 

length of haul) and customers (i.e., shorter service times).  On the other hand, contrary to the 

predominant expectation of TL carriers and academic researchers who suggest that a hybrid relay 

network system would have significant benefits over a RN-only system, our experiments do not 

show significant differences from an economic perspective between the two alternative 

dispatching systems when fixed costs of installation of the RPs are low.  In these cases, the most 

significant difference observed between these two methods is the reduced number of RPs in the 

solutions obtained for the mixed fleet system.  Since the proportion of loads that are shipped PtP 

usually remains below 10%, operating fewer RPs represents other operational advantages for 

carriers such as higher utilization of their facilities and fewer drivers’ domiciles to manage.    

However, as fixed costs of installation of the RPs increase, the difference between mixed fleet 

and RN-only systems become more significant from an economic perspective with greater 
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savings for the hybrid system.  Furthermore, an analysis of the results obtained for TLRND-MD 

confirms the basic idea that truckloads with origin or destination nodes located in isolated areas 

of the network along with truckloads shipped between locations that are not too far apart are 

good candidates for PtP dispatching.  Still, we note that as network size and freight density 

increase a higher proportion of truckloads is dispatched through the relay network. 

Alternative scenarios for TLRND-MD considering changes to some of the parameters of 

the model seem to have only minimal effect on the total costs of the resulting configurations that 

display different RPs and varying proportion of truckloads dispatched PtP.  Our experimentation 

shows that strict limitations on the minimum volume required to open a RP and high fixed cost 

of installation of the RPs have the most significant effect on the solutions obtained by 

significantly reducing the number of open RPs and also affect the performance of our 

formulation by requiring longer solution times.  Finally, similar to the performance of our model 

for TLRND with test case data, a baseline scenario of TLRND-MD can be solved for an instance 

provided by a major TL carrier in reasonable time using our extended formulation.  This shows 

the value of our research in the search for methods that can be used to obtain solutions for 

problems that exist in practice. 

5.2. Future Research Directions 

We are able to identify areas for future work that span across the problems studied in this 

dissertation and extend to other related planning problems in logistics and transportation. 

First, it is important to extend the analysis of the economic and operational differences 

between a mixed fleet dispatching system and a pure relay network configuration to other 
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network topologies and demand patterns to determine whether or not the results observed in this 

research are also applicable to other network configurations.  

As determined in this research, the most challenging aspect of our approach to 

strategically design TL relay networks is the generation of composite variables for the CVM 

formulations of TLRND and TLRND-MD.  We would like to explore other methods for 

composite generation that will allow us to optimally solve largely-sized instances of these 

problems without significantly affecting computational times.  One of the alternatives is to 

explore the use of a multi-label shortest path algorithm as part of a column generation approach 

to identify truckload routes that provide the most benefit to the objective functions of our models 

without necessarily enumerating all feasible routes and adding them to the models.   

Although in this case the algorithm for PENVLC developed in this research cannot be 

effectively used for composite generation as previously explained, it can still be used in other 

applications that require enumerating alternative paths that satisfy certain limitations.  Additional 

work is required to extend the applicability of our algorithm from directed acyclic graphs to 

general networks with cycles as several practical problems are modeled in this way.  

Furthermore, additional side constraints other than total path length and number of nodes visited 

can be considered through the labeling approach of our algorithm.  An interesting extension in 

this case would be to explicitly consider limitations related to service and maintenance in which 

time plays a significant role.  Other applications such as telecommunication networks and service 

network design for airlines, railroads, LTL and express shipping carriers may benefit from this 

type of algorithms for efficient enumeration of feasible paths. 
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A direct extension of our research is the analysis of the driver scheduling problem for TL 

carriers that operate alternative dispatching methods such as RN-only and mixed fleet 

dispatching.  To the best of our knowledge no prescriptive models currently exist in the literature 

to solve this operational problem for the carriers.  Some of the challenges associated with 

obtaining schedules for truck drivers other than the large-scale nature of these problems relate to 

driver considerations such as enforcing hours-of-service regulations and limitations on how long 

drivers can be away from their domiciles as well as timing requirements for truckload service.  

TL carriers should able to construct driving duties that bring drivers home frequently as 

truckloads are dispatched using alternative systems to traditional PtP in order to improve driver 

retention. 

Also, as there are multiple players involved in TL freight transportation (i.e., carriers, 

drivers and shippers) and all of them have their own metrics of interest, an alternative approach 

using multi-objective optimization may be adequate to solve TLRND and TLRND-MD 

considering their different perspectives.  Moreover, other techniques such as stochastic 

programming and robust optimization can be applied to these problems to account for 

uncertainty in the timing and location of the demand for TL freight transportation, risk associated 

to natural and human disruptions, and other practical aspects of this industry. 

Finally, based on the experience with this research, we would like to continue exploring 

other integrated decision problems in transportation and logistics.  We are particularly interested 

in studying research problems where logistics collaboration and supply chain planning are 

relevant.  These types of problems usually include sourcing decisions, service network design, 

inventory routing, resource allocation, profit/savings sharing decisions and other strategic, 
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tactical and operational level decisions.  These problems usually present operational complexities 

that are difficult to handle with traditional modeling approaches.  We are interested in using 

analytical and optimization approaches such as the ones utilized in this dissertation to improve 

the design and operations of this type of systems and obtain solutions that are more applicable in 

practice.  

We are also interested in problems at the intersection of facility location analysis and 

supply chain planning.  Relevant tactical and operational decisions in supply chain management 

such as routing and choice of transportation modes have not been extensively integrated with 

location decisions.  The role of facility location is significant in supply chain network planning 

and it is important to develop models that simultaneously capture many aspects that are relevant 

to real-world distribution problems.  There is also a need for modeling these types of integrated 

problems considering a more complex structure of the supply chain network as compared to 

existing literature where a single product and a single location layer are usually assumed.  

Aspects related to postponement and returns only increase the complexity of these integrated 

problems of supply chain planning when making location decisions at a strategic level.  Studying 

these types of problems will definitively provide a solid base for extending our research to other 

problems in logistics collaboration and transportation planning. 
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