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ABSTRACT In the paper we present integer programming (IP) optimization models for flexgrid elastic optical

networks (EON). We consider several different basic assumptions regarding flexibility of EON that lead to a

variety of IP formulations differing in precision and complexity. As usual, detailed models aiming at precisely

describing technological aspects of EON suffer from tractability issues resulting from their greater complexity

and have to be reasonably simplified. To achieve this, we consider cases where the bandwidth is divided

into predefined slots, cases where the bandwidth is continuous and can be divided between demands with no

restrictions, cases where a list of predefined paths is available, and finally cases where all the paths are indirectly

taken into account. We present both compact and non-compact formulations. The non-compact formulations are

accompanied with brief description of the dedicated column generation algorithms.
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1. INTRODUCTION

The most promising solution to deal with huge data traffic demands in communication networks is to use recent

technologies in flexible optical networking, and in particular the flexible grid (flexgrid) technology specified in

the ITU-T G.694.1 Recommendation [1]. In the flexgrid solution, the frequency spectrum of an optical fiber

link is divided into narrow frequency slots. Any sequence of consecutive slots can be used as one channel, and

such a channel can be switched in the network nodes to create a lightpath. Thus, a lightpath is determined by

a route and a selected channel. More details on flexible optical network architectures can be found in [2].

In flexgrid optical networks, the problem of establish lightpaths for a set of end-to-end demands that compete

for spectrum resources is called the Routing and Spectrum Allocation (RSA) problem. RSA consists of assigning

a lightpath to each demand. Each such lightpath is routed in a network graph and is assigned a contiguous fraction

of frequency spectrum reserved on the route. Clearly, frequencies assigned to individual lightpaths cannot overlap

on network links. Moreover, it is commonly assumed that the same piece of the spectrum is used on all the

links traversed by a lightpath.

Several alternative Mixed Integer Programming (MIP) formulations of the RSA problem can be found in the

literature [3]–[6]. In this paper we present the state-of-the-art of this field.

2. OPTIMIZATION MODELS

The whole notation used in this section is gathered in Table I. All the problems, to be presented, are RSA

problems with an objective function minimizing the total sum of lengths of all utilized lightpaths. The objective

function can be easily exchanged, upgraded, or even omitted, as the main goal of the models presented in this

paper is to define sets of constraints that describe feasible solution to the RSA problem.

2.1 Link-path formulation involving channels – LPC

The first presented model can be considered as a classical approach. In the model a notion of a lightpath

is used. A lightpath is understood as a pair: route and channel. The route is a path through a network from a

source node to a termination node of a demand, while the channel is a set of slots assigned to the lightpath. In

this formulation it is assumed that sets of possible lightpaths L(d) for each demand are given, thus the problem

simplifies to selecting one of those lightpaths for each demand in such a way that there are no two demand that

use the same slot on the same link. The formal formulation is given below. Variables in brackets, i.e, λd and

πes, are dual variables. A similar formulation can be found in [6].
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 TABLE I

NOTATION

Indices:
e link v node
d demand l lightpath
p route s spectrum slot

Sets:
E set of links Q(d, e, s) set of lightpaths for demand d using slot s on link e
V set of nodes R set of pairs of routes ((d, p), (d′, p′)) that use a common link
D set of demands P(d) set of routes allowable for demand d
S set of spectrum slots, S = {1, 2, ..., S} L(d) set of lightpaths allowable for demand d

δ+(v) set of links leaving node v δ−(v) set of links entering node v
C channel; a set of slots

Constants:
S number of slots B bandwidth carried by one slot
c(l) length of lightpath l c(p) length of route p
h(d) volume of demand d s(d) source of demand d
t(d) sink of demand d

Variables:
xdl binary, xdl = 1 when demand d uses lightpath l; xdl = 0 otherwise
xdp binary, xdp = 1 when demand d uses route p; xdp = 0 otherwise
yds binary, yds = 1 when demand d uses slot s; yds = 0 otherwise
ads binary, ads = 1 when demand d uses slots that are greater than s; ads = 0 otherwise
bds binary, bds = 1 when demand d uses slots that are smaller than s; bds = 0 otherwise
ad first slot used by demand d, i.e., slots 0, . . . , ad − 1 are not used by demand d
bd last slot used by demand d, i.e., slots bd + 1, . . . , S are not used by demand d
cdd′ binary, cdd′ = 1 if ad ≤ ad′ ; cdd′ = 0 otherwise
xde binary, xde = 1 when demand d uses link e; xde = 0 otherwise

min
∑

d∈D

∑

l∈L(d)

c(l)xdl (1a)

[λd]
∑

l∈L(d)

xdl = 1 d ∈ D (1b)

[πes]
∑

d∈D

∑

l∈Q(d,e,s)

xdl ≤ 1 e ∈ E , s ∈ S (1c)

xdl ∈ {0, 1} d ∈ D, l ∈ L(d) (1d)

Equation (1b) assures that each demand will use one and only one lightpath from a set of allowable lightpaths,

while (1c) assures that there are no collisions of the assigned resources, i.e., there are no two lightpaths in a

network that use the same slot on the same link. Finally (1d) assures that the variables are binary.

In order to solve the problem to optimality, either sets L(d) have to contain all allowable lightpaths for each

demand or a column generation techniques has to be applied. The former approach is impractical. On the other

hand, the latter approach can be successfully applied. To find a possibly profitable new lightpath in a network

for each demand d and each channel C = {s1, s2, . . . , sn} satisfying demand d, the shortest path with respect

to weights of links equal to 1 +
∑

s∈C
πes has to be found. If a cost of this path is smaller than λd, then a

lightpath using the computed shortest path and the assumed channel should be added to L(d).

2.2 Link-path formulation involving slots – LPS

In Section 2.1 sets of all allowable lightpaths for each demand were used, thus in the formulation a possible

number of variables is huge—a variable is needed for each possible pair of a route and a channel. We address

this problem in the next formulation, where a notion of a lightpath is abandoned, and is replaced by a notion of

routes and slot assignments. Therefore, the resources used by a demand are now: a route defined by variables

xdp and utilized slots defined by variables yds.

In order to successfully define a problem we need set R of pairs of routes for different demands that share

at least one link. Formally the set is defined as R = {(d, d′, p, p′) : d, d′ ∈ D, d 6= d′, p ∈ P(d), p′ ∈
P(d′), p ∩ p′ 6= ∅}. Additionally we assume that slots are ordered, i.e., S = {1, 2, ..., S}. Those assumptions

allow us to formulate the problem as follows. Again variables in brackets are dual variables.
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min
∑

d∈D

∑

p∈P(d)

c(p)xdp (2a)

[λd]
∑

p∈P(d)

xdp = 1 d ∈ D (2b)

[γdd′pp′ ] xdp + yds + xd′p′ + yd′s ≤ 3 s ∈ S, (d, d′, p, p′) ∈ R (2c)

ads ≥ ads+1 d ∈ D, s ∈ S \ {S} (2d)

bds ≥ bds−1 d ∈ D, s ∈ S \ {1} (2e)

yds + ads + bds = 1 d ∈ D, s ∈ S (2f)

B
∑

s∈S

yds ≥ hd d ∈ D (2g)

yds, ads, bds ∈ {0, 1} d ∈ D, s ∈ S (2h)

xdp ∈ {0, 1} d ∈ D, p ∈ P(d) (2i)

Equation (2b) assures that each demand will use one route for its lightpath. Knowing the route (xdp) and the

channel assignment (yds) it is possible to assure that there will be no demands using the same resources. This

condition is enforced by (2c). In order to assure that slots assigned to a demand are consecutive slots auxiliary

variables ads and bds are used, both meaning that slot s is not used by demand d. Equation (2f) ensures that

for each demand d and slot s exactly one of variables ads, bds, or yds is equal 1. Constraint (2d) assures that if

for slot s variable ads is selected, then for each slot s′ with a lower identification number variable ads′ has to

be also selected, while (2e) assures that if for slot s variable bds is selected, then for each slot s′ with a greater

identification number variable bds′ has to be also selected. Summing up, constraints eqrefeq:LPS:a¿a, (2e), and

(2f) assure that channels are formed by consecutive slots. The requested size of the channel is controlled by

(2g). Finally, (2h) and (2i) assure that variables are binary.

To solve the problem to optimality either sets P(d) have to contain all allowable routes for each demand or

a column generation techniques has to be applied. The former approach is impractical. Unfortunately, in this

case, also the latter approach is not recommended. The reason is that not only variables xdp but also constraints

(2c) have to be added to the model. Reduced costs of possibly new routes depend on dual variables γdd′pp′ for

constraints that have to be also generated. Such a situation leads to cases when adding any new route can lead

to infeasibility of a current dual solution, as long as λd is greater than zero. It makes the approach impractical.

2.3 Link-path formulation with continuous spectrum – LPCS

According to the standardization [1] a set of allowable slots is given and finite. However, its size is large

enough that formulations involving variables indexed by single slots can grow to prohibitive sizes. Therefore, it

is worth considering to work just on identification number ad of a starting slot of a channel and identification

number bd of an ending slot of a channel. Knowing that a channel has to be formed by consecutive slots, this

approach can save orders of magnitude of memory space while formulating the considered problem. Additionally,

in order to formulate the problem, binary variable cdd′ is needed. The variable indicates if identification numbers

of slots used by demand d are smaller than identification numbers of slots used by demand d′ or the opposite.

A similar formulation can be found in [4].

min
∑

d∈D

∑

p∈P(d)

c(p)xdp (3a)

∑

p∈P(d)

xdp = 1 d ∈ D (3b)

(xdp + xd′p′ + cdd′ − 3)S < ad′ − bd (d, d′, p, p′) ∈ R (3c)

(xdp + xd′p′ − cdd′ − 2)S < ad − bd′ (d, d′, p, p′) ∈ R (3d)

B(bd − ad + 1) ≥ hd d ∈ D (3e)

ad, bd ∈ {1, 2, . . . , S} d ∈ D (3f)

cdd′ ∈ {0, 1} d, d′ ∈ D (3g)

xdp ∈ {0, 1} d ∈ D, p ∈ P(d) (3h)

Equation (3b) assures that each demand will use one route for its lightpath. The fact that two demands cannot

use the same slot on the same link is enforced by (3c) and (3c). In case two demands d and d′ are using routes
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 that have at least one link in common two scenarios can happen. First, if d is supposed to use slots of lower

identification numbers (cdd′ = 1), then (3c) is active, and the constraint reduces to bd < ad′ . In other case,

constraint (3d) is active, and it reduces to bd′ < ad. Notice that in both (3c) and (3d) constant S is used as so

called big M . The requested size of the channel is controlled by (3e). Finally, constraints (3f), (3g), and (3h)

assure that variables are integral (ad and bd) or binary (cdd′ and xdp).

Unfortunately, the same remarks as in Section 2.2 concerning solving the problem to optimality applies in

this section, i.e., the problem can be effectively solved only if allowable sets of routes are given in advance.

2.4 Node-link formulation involving slots – NLS

All the formulations given above suffer from one drawback—they are not compact, thus solving them to

optimality involves either using huge sets of allowable routes or applying column generation techniques. This

problem is addressed by a formulation presented in this section. The formulation is similar to the formulation of

Section 2.2. The only difference is the way routes are handled. In the previous approach a variable was defined

for each demand-route pair. In this approach a variable is defined for each demand-link pair.

min
∑

d∈D

∑

e∈E

xde (4a)

∑

e∈δ+(s(d))

xde −
∑

e∈δ−(s(d))

xde = 1 d ∈ D (4b)

∑

e∈δ+(v)

xde −
∑

e∈δ−(v)

xde = 0 d ∈ D, v ∈ V \ {s(d), t(d)} (4c)

xde + yds + xd′e + yd′s ≤ 3 s ∈ S, d, d′ ∈ D, e ∈ E (4d)

ads ≥ ads+1 d ∈ D, s ∈ S \ {S} (4e)

bds ≥ bds−1 d ∈ D, s ∈ S \ {1} (4f)

yds + ads + bds = 1 d ∈ D, s ∈ S (4g)

B
∑

s∈S

yds ≥ hd d ∈ D (4h)

yds, ads, bds ∈ {0, 1} d ∈ D, s ∈ S (4i)

xde ∈ {0, 1} d ∈ D, e ∈ E . (4j)

The only novel constraints of (4) are (4c), (4b), and (4d). The first two express the Kirchhoff’s law for flows.

Each route is now a flow of unit size from s(d) to t(d). Constraint (4d) assures that reserved resources are not

shared by not allowing two demands to use the same link while simultaneously using the same slot. The rest

of the constraints are identical to constraints of (2).

This formulation is compact, so it can be solved to optimality using the standard branch-and-bound approach.

3. CONCLUSION

In the paper we presented four different MIP formulations of the RSA problem that differ in their complexity

and applicability. Formulation LPC should be used when a set of lightpaths is given or all lightpaths should

be taken into account. However, the latter case would require using branch-and-price techniques. An alternative

approach is NLS, which indirectly takes all lightpaths into account. It is less efficient than LPC. However, it is

much simpler to implement. Remaining two approaches should be used when a set of routes is defined. LPS

should be used for a small number of slots, while LPCS should be used for a large number of slots.
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