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Concise Papers 

Optimization Models for Reliability 
of Modular Software Systems 

Oded Berman and Noushin Ashrafi 

Abstract-This paper presents four optimization models to demonstrate 
that the optimization of software reliability within the available resources 
can be accomplished. The models help us find the optimal software 
system structure while considering basic information on reliability and 
cost of modules. Each model is applicable to a distinct situation. All 
four models maximize reliability while ensuring that expenditures remain 
within budget. 

Index Terms- Dynamic programming, fault tolerance, integer pro- 
gramming, modularization, optimization, software reliability. 

I. INTRODUCTION 
N developing software systems, the manager’s goal is to produce I a software system within limited resources and in accordance 

with user requirements. One important user requirement concerns 
the reliability of the software. Reliability for a software system is 
defined as the probability that software operates without failure in a 
specified environment, during a specified exposure period [5]. Failure 
is defined as a discrepancy between expected and actual output. Fault 
is a defect in the program that, when executed, causes a failure. 
One method to improve software reliability is by the application 
of redundancy. A careful use of redundancy may allow the system 
to tolerate faults generated during software design and coding thus 
improving software reliability. Improving software reliability, using 
redundancy, however, requires additional resources. The question 
then is “how to incorporate redundancy into software structure such 
that reliability is maximized and cost remains under control?” 

A number of reliability models for prediction and assessment of 
the reliability of fault-tolerant software systems have been developed. 
However, the problem of reliability optimization for fault-tolerant 
software has not been addressed by many researchers. Belli and 
Jedrzejowicz [3] contribute this lack of interest partly to “. . . the 
complexity of reliability optimization problems, difficulties in iden- 
tification of dependencies between the resources and component 
reliabilities . . ., and lack of necessary information on components’ 
reliability properties.” 

The advancement of technology and the immense software devel- 
opment cost has made the use of COTS (commercial off-the-shelf) 
modules a reality and may be a necessity. Boehm [4] suggests 
the use of COTS software whenever possible, as an appropriate 
process model for a software development project. Considering the 
concept of COTS in software development and the availability of 
mathematical models to assess module reliability, it is now possible 
to have information on module reliability and cost. Furthermore, the 
failure independence of the redundant modules are more acceptable 
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because these modules may be developed by completely different 
groups, different tools, and in different environments [2]. 

In this study we show the application of well-known optimization 
models to determine the optimal redundancy level of fault-tolerant 
software systems. The models use basic information on module reli- 
ability and cost and allow the tradeoff between these two factors. Belli 
and Jedrzejowicz have developed two optimization models for fault- 
tolerant software. Their first model is similar to the second model of 
this study, however, their expression of reliability is quite complicated 
and no solution to the problem has been offered. Our earlier work 
[I] used optimization models to determine the redundancy level of a 
software package consisting of several independent functions where 
each function is performed by a program with known reliability and 
cost. Our current work, however, breaks down this approach one 
step further and deals with software systems consisting of one or 
more programs where each program consists of series of modules, 
which upon sequential execution will perform a function. The optimal 
redundancy level of the modules is to be determined. Four models 
are presented, each applicable to a different software system structure 
(ranging from a very simple structure to more sophisticated ones). 
The diversity of the models gives the software engineer flexibility 
in choosing an appropriate model for a given software system. The 
next section explains the structure of the models. Then we present 
formulations and solution methods for each model. The final section 
offers concluding remarks and a discussion of the limitation of the 
proposed models. 

A.  Notations 
Number of functions the software system is required to 
perform. 
Number of modules within the software system. 
Frequency of the use of function k ,  k = 1, 2,. . . , K. 
Number of versions available for module i ,  i = 1,. . . , n. 
Estimated reliability of version j of module i .  
Binary variable that is equal to 1 if version j is selected for 
module i ,  else 0. 
Estimated reliability of module i .  
Estimated reliability of the software system. 
Cost of developing version j for module i .  
Available budget. 

B. Assumptions 
1) Modular programming is used for software development. 
2) Module versions are developed independently, and their relia- 

bilities and costs can be estimated. Note that this assumption makes 
the models directly applicable only to those software systems that are 
developed using COTS modules. These modules are independently 
generated and tested. Their reliability can be estimated using any 
of the reliability estimation models available. Their cost is the 
purchasing cost. 

3) There is a specified budget for the software system. 

11. SOFTWARE SYSTEM STRUCTURES 

Consider software systems that are developed using modular 
techniques and are required to perform one or more functions as 
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specified by the user. Each function is performed by executing a 
program where each program is further divided into several modules. 
Each module may be called by more than one program. We assume 
that functionally equivalent and independently developed versions 
of modules are available, each with an estimated reliability and 
cost. Optimization models of this study will determine the optimal 

Given B = 6 the problem can be formulated as follows: 

max (0.9X11 + 0.8X12 + 035x13)  
. (0.95x21 + 0.8X22 + 0.7X23)(0.98X31 + 0.94x32) 

subject to 

rcdundancy level of the modules for each software structure so as to 
maximize reliability at a limited given cost. Four models for different 

x11 + xl2 + x13 = 1  
= 1  ay21 + x22 + x23 

software structures are formulated. x 3 1 + x 3 2 = 1  

A.  Model I :  Selecting the Optimal Set of Modules for 
One Function System (without Redundancy) 

Software system consists of a single program performing one major 
function. The program is comprised of a set of modules, which 
are executed sequentially. There are more than one version of each 
module available but, due to budget limitation and/or noncritical 
nature of the software, keeping multiple versions of modules is not 
desirable. The model developed for this situation allows the optimal 
selection of a set of modules for the single program such that the 
rzliability is maximized while meeting the constraint that the overall 
development cost remains within budget. 

Formulation of Model 1: The problem of maximizing reliability 
by choosing the optimal set of modules can be formulated as follows: 

n 

max R = n R z  (PI 
z = l  

subject to 

m 2  Ex,, = 1, i = 1,. . . , n 
J Z 1  

X , ,  = 0, 1 i = l , . . . , n  j = l , . . . , m z  

where 

, = I  

The objective function of P1 reflects that the modules are executed 
sequentially. The set of constraints (i) ensures that exactly one version 
I S  selected for each module. Constraints (ii) guarantees that total 
expenditures will not exceed B. 

Problem P1 is a nonlinear integer programming problem. We 
wggest a Branch and Bound approach [7] to solve the problem. A 
\imple numerical example for this model is given below. Readers 
interested in our Branch and Bound scheme can refer to Appendix 
4. 

Suppose PI = 3, ml = 3, m2 = 3, and m3 = 2. The reliability 
ind cost of the modules are given as follows: 

R I ,  = 0.90, Ri2 = 0.80, Ri3 = 0.85 

cll = $3. c l2  = $1, c 1 3  = $2 

R L ~  = 0.95. R22 = 0.80, R23 = 0.70 

C2l = $3, c 2 2  = $2, c 2 3  = $1 

R ~ I  = 0.98 R32 0.94 

c31 = $3 c 3 2  = $2. 

3x11 + xi2 + 2x13 + 3x21 + 2x22 + 1x23 + 3x31 + 2x32 5 6 

where 

x11, X12r x13,  X21r"',X32 = o ,  1. 

The optimal solution found by our Branch and Bound method is 
(X12, X Z ~ ,  x32) with objective function value of 0.714 and cost = 
$6. 

B. Model 2: Selecting the Optimal Set of Modules for One 
Function Sofrware System (with Redundancy) 

The second situation addressed in this paper occurs, when the 
software system performs a more critical function whose failure can 
be very severe. In such situations, software can be made fault-tolerant 
by keeping redundant versions for each module. It is reasonable 
to assume that the allocated budget, for systems performing such 
functions, is large enough to allow redundancy of modules. The 
objective in this situation is to determine the optimal set of modules, 
allowing redundancy, so as to maximize the reliability of the software 
system while remaining within the budget. 

Formulation of Model 2: We now discuss the same problem de- 
scribed in the previous section allowing redundancy. The problem 
can be formulated as follows: 

n 

max R = f l ~ *  (PZ 1 
Z=1 

subject to 

j = l , . . . , m t  x,, = 0 ,  1 i = l , . . . , n  

where 
m 2  Ext, 2 1, i = 1 9 ... 3n 

,=1 

2 2 X t , C . ,  I B (ii) 
~ 1 3 = 1  

m, 

(7) R, = 1 - fl (1 - Rz3)X'3 .  

The reliability of module i is defined as the probability that at least 
one of the m, versions is performing correctly (given as one minus 
the probability that none of the m, versions is performing correctly). 
Constraint set (i) guarantees that for each module i at least one version 
is selected. 

Problem P2 can be solved using Dynamic Programming [6] algo- 
rithm. A numerical example is given below and, Appendix B presents 
our Dynamic Programming approach. Using the same numerical 
example that was used for model 1, with a budget of $10, the optimal 
solution is found to be x31 = 1, XZI = x 2 3  = 1, XIZ = x13 = 1 
and the overall reliability of the system is 0.9359. 
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C. Model 3: Selecting the Optimal Set of Modules for a 
System with K Functions (without Redundancy) 

The third model deals with software systems consisting of several 
programs each performing a specific function. Each program contains 
a series of modules. Programs can be called by their corresponding 
functions and modules can be called by any program. The objective 
of this model is to determine the optimal set of modules for the 
programs, not allowing redundancy, such that the reliability of the 
software system is maximized while remaining within the budget. 

Formulation of Model 3: Let s k  denote the set of modules corre- 
sponding to program k. For each module i E sk there are m,  versions 
available. We note that the same module can be called by different 
programs. We number all the modules to be called by all programs 
from 1 to n. The problem of maximizing reliability by choosing an 
optimal set of modules (without redundancy) can be formulated as 
follows: 

K 

max R = E F k  fl R, (P3) 
k = l  z E S ~  

subject to 
m 2  Ex*, = 1, i =  l , . . . , n  ( 9  
j=1 

n m. 

(ii) 

X,, = 0, 1 i = l , . . . , n  j = l , . . . , m t  

where R, is given by (1). 
Problem P3 can be solved by a Branch and Bound approach very 

similar to the one for PI with minor modifications. A numerical 
example is given below. Consider the example at the bottom of the 
page. 

The problem can be formulated as 

1 0.70[(0.8OXii + 0.85X12)(0.7OXzi + 0.9OX~z)]+ 
0.30[ (0.70x21 + 0.9Oxzz) (0.953 1 + 0.9Ox32 )] max [ 

subject to 

x11 + XlZ = 1  
x21 + x22 = 1  
x31 + x32 = 1  
2x11 + 3 x 1 2  + 1x12  + 3x22 + 4x31 + 3x32 5 8  

X,,  = 0, 1 i = 1, 2, 3 j = l , . . . , m  c .  

The objective function above can be rewritten as 

max0.392X11Xlz + 0.504XllX22 + 0 . 4 1 6 5 X 1 ~ X ~ l  

+ 0.5355X12x22 
+ 0.1995Xzlx31 + 0.189X2lX32 
+ 0.2565X22X31 + 0.243X22x32. 

The optimal solution is (X11, X22, x 3 2 )  which costs $8 and has 
an optimal objective function value of 0.747. Observe that when 
B = $10 the optimal solution is (X12, X22, x31) with an objective 
function value of 0.792. 
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D. Model 4. Selecting the Optimal Set of Modules for a 
System with K Functions (with Redundancy) 

The problem we discuss in this section is identical to P3 except 
that redundancy is now permitted, i.e., we allow the choice of more 
than one version for each one of the modules. The problem can be 
formulated as follows: 

subject to 
m, Ex;, 2 1, i = 1 , .  . . , n 
J=1 

n m. 

(ii) 

x,, = 0, 1 i = l , . . .  ,n  j = 1 , " . . m t  

where R, is given by (7). Because of the set of constraints (i) and 
since we deal with K > 1 functions, none of the methods discussed 
so far in this paper can be used to solve problem P4. Moreover, 
because the objective function is nonlinear we cannot solve the 
problem directly as an integer programming problem. In Appendix C 
we show how the problem can be solved using integer programming. 
Using the same numerical example that was used for model 3, we 
obtain the results that are given below. 

After transforming the problem to Integer Programming, the prob- 
lem is solved using Lindo on an IBM PC. The optimal solution for 
a budget of $9 is X11 = X21 = X22 = x 3 2  = 1 and the optimal 
objective function value is 0.8052, which is slightly better than 0.792 
the objective function value of P3 for a larger budget of $10. 

111. CONCLUSIONS AND DISCUSSIONS 
This paper presents optimization models for software systems 

that are developed using modular design technique. Four different 
software structures are considered: 1) one program, no redundancy; 2) 
one program, with redundancy; 3)  multiple programs, no redundancy; 
4) multiple programs, with redundancy. The optimization problems 
are solved by using our version of established optimization methods. 
The practical usefulness of this study is to draw the attention of 
software practitioners to an existing methodology which may be used 
to make an optimal selection out of an available pool of modules 
with known reliability and cost. All four models maximize software 
reliability while ensuring that expenditures remain within available 
resources. The software manager is allowed to select the appropriate 
model for a given situation. 

Finally, we would like to comment on two assumptions made 
throughout the paper. First, it is assumed that it is known whether or 
not a function is performing in satisfactory manner. This assumption 
is not restrictive since the models can be basically modified to include 
an auxiliary program (with its known reliability and cost). This 
auxiliary program can be used to determine whether or not a function 
is operating in a satisfactory manner. Second, for the models with 
redundancy it is assumed that there is statistical independence among 

K = 2, F1 = 0.70, F2 = 0.30, n = 3, B = $8 
SI = ( 1 ,  2}, s2 = (2, 3}, mi = 2, m2 = 2, m3 = 2 
R11 = 0.80 Rlz = 0.85 Rzl = 0.70 R22 = 0.90 R31 = 0.95 R32 = 0.90 
c11 = $ 2  c12 = $3 c 2 1  = $1 c 2 2  = $3 c 3 1  = $4 c12 = $3. 
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different program versions (by using, for example, COST modules). 
This is indeed a strong assumption that needs to be used with caution. 

APPENDIX A 

First we note that problem P 1  is feasible if 

Let X, be the selected module for task i for i = 1 , .  . . . n and let Xe 
for 2 = 1. . . . . 7 2  be the optimal solution of P 1  when constraint (ii) 
is ignored. Obviously if (X," , . . . , X :  ) is a feasible solution of P 1  

it must also be an optimal solution of P 1  with an objective function 
value of 

(3 )  

APPENDIX B 

Let us define the state of the system S to be the budget available 
and state i to reflect module i for i = 1 , .  . . , n. Let R, (S) be the 
reliability of the system composed of module i, i + 1,. . . , n. Given 
that S is the budget available ( B  - S) is the budget left for modules 
l , . . . , i  - 1 

The recursive formula for R , ( S )  when i < n is 

where the maximization takes place for X , ,  values for which 
m2 m, EX,, 2 1 and x C t 3 X z J  5 S. 

, = 1  3 = 1  

The recursive formula for R, (S) is 

1 m, 

[ 3 = 1  

Without any loss of generality suppose (SI, . . . , ) for k < n is 
a partial solution of P I .  An upper bound on this partial solution is 
given by 

R,(s) = max 1 - n ( 1 -  R,,)~'"J 

where the maximization takes place over XnJ values such that 

(9) 

(4) 

The left part of (4) reflects the actual contribution of the partial Given state and state s, R t ( S )  be for in 

solution to the objective function value while the right part indicates 

(xi+, , . . . , xz)). Obviously, (XI. * . . , X k  ) cannot lead to any 

the range 

the optimal choice ignoring the budget constraint (i.e., choosing 1-1 

possible feasible solution if k=z k = l  

The upper bound (4) is attained only if 

k 

( 5 )  

z=1 r = l + l  

where Ce is the cost corresponding to Xp for i = k + 1, . . . , T I .  

The Branch and Bound procedure starts with choosing a known 
feasible solution to the problem that can serve as a lower bound 
(denoted by LB). One feasible solution (if one exists) is given by 
choosing the cheapest version for each module. In each level i of 
the decision tree we make a choice of one version for module i ,  
1 5 I 5 n .  For each partial solution three numbers are calculated. 

1) a-the upper bound value given by (4). 
2) b-the lowest possible cost of any solution that include the 

partial solution given in the expression left to the inequality sign of 
( 5 ) .  

APPENDIX C 
Now we show how to rewrite the objective function as a linear 

function. Note that (1 - R,,)'*J in (7) can be written as 

1 - -Y,,R,, 9,, = 0. 1 (11) 

since, if S,, = 0 then (1 - R z J ) X a ~  = 1 and if X, ,  = 1 then 
(1  - R,, ) = 1 - R,, . Therefore, (7) can be rewritten as 

m, 

R, = 1 - n(l - X , , R , , )  (12) 
,= l  

and the objective function of P4 can be expressed as 

The objective function (13) is still not linear since it includes product 
of binary variables. However, using [6] to express a product of rt 

binary variables 2, as 
n 

* = 1  % I  

3) c-the cost of solution (SI, -Yr.. . . , X k ,  X;+, , . . . , Xz ) 
given in the expression left to the inequality sign of (6). 

A partial solution XI.  XZ, . . . , A-k is fathomed if either (i) b > 
R; or (ii) a < LB.  A new solution is found whenever c 5 
13 [solution (-XI, -X~..*..XI, X;+,,...,X:)] . A new feasible 
solution becomes the new incumbent solution if n > LB. The 

hranches, each corresponding to a choice of XI, for j = 1.. . . , ml . 

we define 
r1 

y = nzz .  y = 0. 1 
t = 1  

by the two linear functions 
Branch and Bound starts by branching the root node in level 0 to m 1 21 + 2 2  +" .  + 2, - y 5 11 - I 

The next node to branch is chosen to be the node with the largest 1 1  1 
upper bound. n n - 2 1  + ;zz + . . . + -2, - y 2 0. 
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