
11

1119 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 11, NOVEMBER 1993

Concise Papers

Optimization Models for Reliability
of Modular Software Systems

Oded Berman and Noushin Ashrafi

Abstract-This paper presents four optimization models to demonstrate
that the optimization of software reliability within the available resources
can be accomplished. The models help us find the optimal software
system structure while considering basic information on reliability and
cost of modules. Each model is applicable to a distinct situation. All
four models maximize reliability while ensuring that expenditures remain
within budget.

Index Terms- Dynamic programming, fault tolerance, integer pro-
gramming, modularization, optimization, software reliability.

I. INTRODUCTION
N developing software systems, the manager’s goal is to produce I a software system within limited resources and in accordance

with user requirements. One important user requirement concerns
the reliability of the software. Reliability for a software system is
defined as the probability that software operates without failure in a
specified environment, during a specified exposure period [5]. Failure
is defined as a discrepancy between expected and actual output. Fault
is a defect in the program that, when executed, causes a failure.
One method to improve software reliability is by the application
of redundancy. A careful use of redundancy may allow the system
to tolerate faults generated during software design and coding thus
improving software reliability. Improving software reliability, using
redundancy, however, requires additional resources. The question
then is “how to incorporate redundancy into software structure such
that reliability is maximized and cost remains under control?”

A number of reliability models for prediction and assessment of
the reliability of fault-tolerant software systems have been developed.
However, the problem of reliability optimization for fault-tolerant
software has not been addressed by many researchers. Belli and
Jedrzejowicz [3] contribute this lack of interest partly to “. . . the
complexity of reliability optimization problems, difficulties in iden-
tification of dependencies between the resources and component
reliabilities . . ., and lack of necessary information on components’
reliability properties.”

The advancement of technology and the immense software devel-
opment cost has made the use of COTS (commercial off-the-shelf)
modules a reality and may be a necessity. Boehm [4] suggests
the use of COTS software whenever possible, as an appropriate
process model for a software development project. Considering the
concept of COTS in software development and the availability of
mathematical models to assess module reliability, it is now possible
to have information on module reliability and cost. Furthermore, the
failure independence of the redundant modules are more acceptable

Manuscript received January 1993; revised May 1993. Recommended by
F. Bustani.

0. Berman is with the Faculty of Management, University of Toronto,
Toronto, Ont., M5S 1V1, Canada.
N. Ashrafi is with the Department of Management Science and Informa-

tion Systems, College of Management, University of Massachusetts/Boston,
Boston, MA 02125.

IEEE Log Number 9213119.

because these modules may be developed by completely different
groups, different tools, and in different environments [2].

In this study we show the application of well-known optimization
models to determine the optimal redundancy level of fault-tolerant
software systems. The models use basic information on module reli-
ability and cost and allow the tradeoff between these two factors. Belli
and Jedrzejowicz have developed two optimization models for fault-
tolerant software. Their first model is similar to the second model of
this study, however, their expression of reliability is quite complicated
and no solution to the problem has been offered. Our earlier work
[I] used optimization models to determine the redundancy level of a
software package consisting of several independent functions where
each function is performed by a program with known reliability and
cost. Our current work, however, breaks down this approach one
step further and deals with software systems consisting of one or
more programs where each program consists of series of modules,
which upon sequential execution will perform a function. The optimal
redundancy level of the modules is to be determined. Four models
are presented, each applicable to a different software system structure
(ranging from a very simple structure to more sophisticated ones).
The diversity of the models gives the software engineer flexibility
in choosing an appropriate model for a given software system. The
next section explains the structure of the models. Then we present
formulations and solution methods for each model. The final section
offers concluding remarks and a discussion of the limitation of the
proposed models.

A. Notations
Number of functions the software system is required to
perform.
Number of modules within the software system.
Frequency of the use of function k , k = 1, 2,. . . , K.
Number of versions available for module i , i = 1,. . . , n.
Estimated reliability of version j of module i .
Binary variable that is equal to 1 if version j is selected for
module i , else 0.
Estimated reliability of module i .
Estimated reliability of the software system.
Cost of developing version j for module i .
Available budget.

B. Assumptions
1) Modular programming is used for software development.
2) Module versions are developed independently, and their relia-

bilities and costs can be estimated. Note that this assumption makes
the models directly applicable only to those software systems that are
developed using COTS modules. These modules are independently
generated and tested. Their reliability can be estimated using any
of the reliability estimation models available. Their cost is the
purchasing cost.

3) There is a specified budget for the software system.

11. SOFTWARE SYSTEM STRUCTURES

Consider software systems that are developed using modular
techniques and are required to perform one or more functions as

0098-5589/93$03.00 0 1993 IEEE

1120 IEEE TRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 19, NO. 11, NOVEMBER 1993

specified by the user. Each function is performed by executing a
program where each program is further divided into several modules.
Each module may be called by more than one program. We assume
that functionally equivalent and independently developed versions
of modules are available, each with an estimated reliability and
cost. Optimization models of this study will determine the optimal

Given B = 6 the problem can be formulated as follows:

max (0.9X11 + 0.8X12 + 035x13)
. (0.95x21 + 0.8X22 + 0.7X23)(0.98X31 + 0.94x32)

subject to

rcdundancy level of the modules for each software structure so as to
maximize reliability at a limited given cost. Four models for different

x11 + xl2 + x13 = 1
= 1 ay21 + x22 + x23

software structures are formulated. x 3 1 + x 3 2 = 1

A. Model I : Selecting the Optimal Set of Modules for
One Function System (without Redundancy)

Software system consists of a single program performing one major
function. The program is comprised of a set of modules, which
are executed sequentially. There are more than one version of each
module available but, due to budget limitation and/or noncritical
nature of the software, keeping multiple versions of modules is not
desirable. The model developed for this situation allows the optimal
selection of a set of modules for the single program such that the
rzliability is maximized while meeting the constraint that the overall
development cost remains within budget.

Formulation of Model 1: The problem of maximizing reliability
by choosing the optimal set of modules can be formulated as follows:

n

max R = n R z (PI
z = l

subject to

m 2 Ex,, = 1, i = 1,. . . , n
J Z 1

X , , = 0, 1 i = l , . . . , n j = l , . . . , m z

where

, = I

The objective function of P1 reflects that the modules are executed
sequentially. The set of constraints (i) ensures that exactly one version
I S selected for each module. Constraints (ii) guarantees that total
expenditures will not exceed B.

Problem P1 is a nonlinear integer programming problem. We
wggest a Branch and Bound approach [7] to solve the problem. A
\imple numerical example for this model is given below. Readers
interested in our Branch and Bound scheme can refer to Appendix
4.

Suppose PI = 3, ml = 3, m2 = 3, and m3 = 2. The reliability
ind cost of the modules are given as follows:

R I , = 0.90, Ri2 = 0.80, Ri3 = 0.85

cll = $3. c l2 = $1, c 1 3 = $2

R L ~ = 0.95. R22 = 0.80, R23 = 0.70

C2l = $3, c 2 2 = $2, c 2 3 = $1

R ~ I = 0.98 R32 0.94

c31 = $3 c 3 2 = $2.

3x11 + xi2 + 2x13 + 3x21 + 2x22 + 1x23 + 3x31 + 2x32 5 6

where

x11, X12r x13, X21r"',X32 = o , 1.

The optimal solution found by our Branch and Bound method is
(X12, X Z ~ , x32) with objective function value of 0.714 and cost =
$6.

B. Model 2: Selecting the Optimal Set of Modules for One
Function Sofrware System (with Redundancy)

The second situation addressed in this paper occurs, when the
software system performs a more critical function whose failure can
be very severe. In such situations, software can be made fault-tolerant
by keeping redundant versions for each module. It is reasonable
to assume that the allocated budget, for systems performing such
functions, is large enough to allow redundancy of modules. The
objective in this situation is to determine the optimal set of modules,
allowing redundancy, so as to maximize the reliability of the software
system while remaining within the budget.

Formulation of Model 2: We now discuss the same problem de-
scribed in the previous section allowing redundancy. The problem
can be formulated as follows:

n

max R = f l ~ * (PZ 1
Z=1

subject to

j = l , . . . , m t x,, = 0 , 1 i = l , . . . , n

where
m 2 Ext, 2 1, i = 1 9 ... 3n

,=1

2 2 X t , C . , I B (ii)
~ 1 3 = 1

m,

(7) R, = 1 - fl (1 - Rz3)X'3 .

The reliability of module i is defined as the probability that at least
one of the m, versions is performing correctly (given as one minus
the probability that none of the m, versions is performing correctly).
Constraint set (i) guarantees that for each module i at least one version
is selected.

Problem P2 can be solved using Dynamic Programming [6] algo-
rithm. A numerical example is given below and, Appendix B presents
our Dynamic Programming approach. Using the same numerical
example that was used for model 1, with a budget of $10, the optimal
solution is found to be x31 = 1, XZI = x 2 3 = 1, XIZ = x13 = 1
and the overall reliability of the system is 0.9359.

.=1

I I I I ,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 11, NOVEMBER 1993

C. Model 3: Selecting the Optimal Set of Modules for a
System with K Functions (without Redundancy)

The third model deals with software systems consisting of several
programs each performing a specific function. Each program contains
a series of modules. Programs can be called by their corresponding
functions and modules can be called by any program. The objective
of this model is to determine the optimal set of modules for the
programs, not allowing redundancy, such that the reliability of the
software system is maximized while remaining within the budget.

Formulation of Model 3: Let s k denote the set of modules corre-
sponding to program k. For each module i E sk there are m, versions
available. We note that the same module can be called by different
programs. We number all the modules to be called by all programs
from 1 to n. The problem of maximizing reliability by choosing an
optimal set of modules (without redundancy) can be formulated as
follows:

K

max R = E F k fl R, (P3)
k = l z E S ~

subject to
m 2 Ex*, = 1, i = l , . . . , n (9
j=1

n m.

(ii)

X,, = 0, 1 i = l , . . . , n j = l , . . . , m t

where R, is given by (1).
Problem P3 can be solved by a Branch and Bound approach very

similar to the one for PI with minor modifications. A numerical
example is given below. Consider the example at the bottom of the
page.

The problem can be formulated as

1 0.70[(0.8OXii + 0.85X12)(0.7OXzi + 0.9OX~z)]+
0.30[(0.70x21 + 0.9Oxzz) (0.953 1 + 0.9Ox32)] max [

subject to

x11 + XlZ = 1
x21 + x22 = 1
x31 + x32 = 1
2x11 + 3 x 1 2 + 1x12 + 3x22 + 4x31 + 3x32 5 8

X,, = 0, 1 i = 1, 2, 3 j = l , . . . , m c .

The objective function above can be rewritten as

max0.392X11Xlz + 0.504XllX22 + 0 . 4 1 6 5 X 1 ~ X ~ l

+ 0.5355X12x22
+ 0.1995Xzlx31 + 0.189X2lX32
+ 0.2565X22X31 + 0.243X22x32.

The optimal solution is (X11, X22, x 3 2) which costs $8 and has
an optimal objective function value of 0.747. Observe that when
B = $10 the optimal solution is (X12, X22, x31) with an objective
function value of 0.792.

1121

D. Model 4. Selecting the Optimal Set of Modules for a
System with K Functions (with Redundancy)

The problem we discuss in this section is identical to P3 except
that redundancy is now permitted, i.e., we allow the choice of more
than one version for each one of the modules. The problem can be
formulated as follows:

subject to
m, Ex;, 2 1, i = 1 , . . . , n
J=1

n m.

(ii)

x,, = 0, 1 i = l , . . . ,n j = 1 , " . . m t

where R, is given by (7). Because of the set of constraints (i) and
since we deal with K > 1 functions, none of the methods discussed
so far in this paper can be used to solve problem P4. Moreover,
because the objective function is nonlinear we cannot solve the
problem directly as an integer programming problem. In Appendix C
we show how the problem can be solved using integer programming.
Using the same numerical example that was used for model 3, we
obtain the results that are given below.

After transforming the problem to Integer Programming, the prob-
lem is solved using Lindo on an IBM PC. The optimal solution for
a budget of $9 is X11 = X21 = X22 = x 3 2 = 1 and the optimal
objective function value is 0.8052, which is slightly better than 0.792
the objective function value of P3 for a larger budget of $10.

111. CONCLUSIONS AND DISCUSSIONS
This paper presents optimization models for software systems

that are developed using modular design technique. Four different
software structures are considered: 1) one program, no redundancy; 2)
one program, with redundancy; 3) multiple programs, no redundancy;
4) multiple programs, with redundancy. The optimization problems
are solved by using our version of established optimization methods.
The practical usefulness of this study is to draw the attention of
software practitioners to an existing methodology which may be used
to make an optimal selection out of an available pool of modules
with known reliability and cost. All four models maximize software
reliability while ensuring that expenditures remain within available
resources. The software manager is allowed to select the appropriate
model for a given situation.

Finally, we would like to comment on two assumptions made
throughout the paper. First, it is assumed that it is known whether or
not a function is performing in satisfactory manner. This assumption
is not restrictive since the models can be basically modified to include
an auxiliary program (with its known reliability and cost). This
auxiliary program can be used to determine whether or not a function
is operating in a satisfactory manner. Second, for the models with
redundancy it is assumed that there is statistical independence among

K = 2, F1 = 0.70, F2 = 0.30, n = 3, B = $8
SI = (1 , 2}, s2 = (2, 3}, mi = 2, m2 = 2, m3 = 2
R11 = 0.80 Rlz = 0.85 Rzl = 0.70 R22 = 0.90 R31 = 0.95 R32 = 0.90
c11 = $ 2 c12 = $3 c 2 1 = $1 c 2 2 = $3 c 3 1 = $4 c12 = $3.

1122 IEEE TRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 19, NO. 11, NOVEMBER 1993

different program versions (by using, for example, COST modules).
This is indeed a strong assumption that needs to be used with caution.

APPENDIX A

First we note that problem P 1 is feasible if

Let X, be the selected module for task i for i = 1 , n and let Xe
for 2 = 1. 7 2 be the optimal solution of P 1 when constraint (ii)
is ignored. Obviously if (X," , . . . , X :) is a feasible solution of P 1

it must also be an optimal solution of P 1 with an objective function
value of

(3)

APPENDIX B

Let us define the state of the system S to be the budget available
and state i to reflect module i for i = 1 , . . . , n. Let R, (S) be the
reliability of the system composed of module i, i + 1,. . . , n. Given
that S is the budget available (B - S) is the budget left for modules
l , . . . , i - 1

The recursive formula for R , (S) when i < n is

where the maximization takes place for X , , values for which
m2 m, EX,, 2 1 and x C t 3 X z J 5 S.

, = 1 3 = 1

The recursive formula for R, (S) is

1 m,

[3 = 1

Without any loss of generality suppose (SI, . . . ,) for k < n is
a partial solution of P I . An upper bound on this partial solution is
given by

R,(s) = max 1 - n (1 - R,,)~'"J

where the maximization takes place over XnJ values such that

(9)

(4)

The left part of (4) reflects the actual contribution of the partial Given state and state s, R t (S) be for in

solution to the objective function value while the right part indicates

(xi+, , . . . , xz)). Obviously, (XI. * . . , X k) cannot lead to any

the range

the optimal choice ignoring the budget constraint (i.e., choosing 1-1

possible feasible solution if k=z k = l

The upper bound (4) is attained only if

k

(5)

z=1 r = l + l

where Ce is the cost corresponding to Xp for i = k + 1, . . . , T I .

The Branch and Bound procedure starts with choosing a known
feasible solution to the problem that can serve as a lower bound
(denoted by LB). One feasible solution (if one exists) is given by
choosing the cheapest version for each module. In each level i of
the decision tree we make a choice of one version for module i ,
1 5 I 5 n . For each partial solution three numbers are calculated.

1) a-the upper bound value given by (4).
2) b-the lowest possible cost of any solution that include the

partial solution given in the expression left to the inequality sign of
(5) .

APPENDIX C
Now we show how to rewrite the objective function as a linear

function. Note that (1 - R,,)'*J in (7) can be written as

1 - -Y,,R,, 9,, = 0. 1 (11)

since, if S,, = 0 then (1 - R z J) X a ~ = 1 and if X, , = 1 then
(1 - R,,) = 1 - R,, . Therefore, (7) can be rewritten as

m,

R, = 1 - n(l - X , , R , ,) (12)
,= l

and the objective function of P4 can be expressed as

The objective function (13) is still not linear since it includes product
of binary variables. However, using [6] to express a product of rt

binary variables 2, as
n

* = 1 % I

3) c-the cost of solution (SI, -Yr.. . . , X k , X;+, , . . . , Xz)
given in the expression left to the inequality sign of (6).

A partial solution XI. XZ, . . . , A-k is fathomed if either (i) b >
R; or (ii) a < LB. A new solution is found whenever c 5
13 [solution (-XI, -X~..*..XI, X;+,,...,X:)] . A new feasible
solution becomes the new incumbent solution if n > LB. The

hranches, each corresponding to a choice of XI, for j = 1.. . . , ml .

we define
r1

y = nzz . y = 0. 1
t = 1

by the two linear functions
Branch and Bound starts by branching the root node in level 0 to m 1 21 + 2 2 +" . + 2, - y 5 11 - I

The next node to branch is chosen to be the node with the largest 1 1 1
upper bound. n n - 2 1 + ;zz + . . . + -2, - y 2 0.

, I I l l I

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 11, NOVEMBER 1993 1123

REFERENCES

[l] N. Ashrafi and 0. Berman, “Optimal design of large software systems
considering reliability and cost,” submitted to IEEE Trans. Reliubil-
ify,vol. 41, no. 2, pp. 281-287, 1992.

[2] A. Avizienis and J. P. Kelly, “Fault tolerance by design diversity:
Concepts and experiments,” Computer, vol. 17, no. 8, pp. 67-80, 1984.

[3] F. Belli and P. Jedrzejowicz, “An approach to reliability optimization
of software with redundancy,” IEEE Trans. Software Eng., vol. 17,

no. 3, pp. 310-312, 1991.

Computer Society Press, 1989.

Trans. Software Eng., vol. SE-1, no. 3, pp. 312-327, 1975.

Macmillan, 1976.

Cliffs, NJ: Prentice-Hall, 1975.

[4] B. W. Boehm, Softwure RiskManagement (Tutorial). New York: IEEE

[5] J. D. Musa, “A theory of software reliability and its application,” IEEE

[6] H. A. Taha, Operations Research: An Introduction. New York:

[7] H. M. Wagner, Principles of Operations Research. Englewood

