
OPTIMIZATION MODELS FOR SHAPE-CONSTRAINED FUNCTION

ESTIMATION PROBLEMS INVOLVING NONNEGATIVE POLYNOMIALS AND

THEIR RESTRICTIONS

by
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ABSTRACT OF THE DISSERTATION

Optimization models for shape-constrained function estimation problems involving nonnegative

polynomials and their restrictions

by DÁVID PAPP

Dissertation Director:

Dr. Farid Alizadeh

In this thesis function estimation problems are considered that involve constraints on the shape of

the estimator or some other underlying function. The function to be estimated is assumed to be

continuous on an interval, and is approximated by a polynomial spline of given degree.

First the estimation of univariate functions is considered under constraints that can be represented

by the nonnegativity of affine functionals of the estimated function. These include bound constraints,

monotonicity, and convexity constraints. A general framework is presented in which arbitrary

combination of such constraints can be modeled and handled in a both theoretically and practically

efficient manner, using semidefinite programming. The approach is illustrated by a variety of

applications in statistical estimation. Numerical results are compared to those obtained using

methods previously proposed in the statistical literature.

Next, multivariate problems are considered. Shape constraints that are tractable in the uni-

variate case are intractable in the multivariate setting. Hence, instead of following the univariate

approach, polyhedral and spectrahedral (semidefinite) approximations are proposed, which are

obtained by replacing nonnegative splines by piecewise weighted-sum-of-squares polynomial splines.

A decomposition method for solving very large scale multivariate problems is also investigated.

In order to include more constraints in the same unified framework, the notion of weighted-

sum-of-squares functions is generalized to weighted-sum-of-squares cones in finite-dimensional real

linear spaces endowed with a bilinear multiplication. It is shown that such cones are semidefinite

representable, and the representation is explicitly constructed.

Finally, seeking a method to circumvent the use of semidefinite programming in the solution of

optimization problems over nonnegative and weighted-sum-of-squares polynomials, we study the

conditions of optimality, as well as barrier functions in such optimization problems. For univariate

polynomials, a method based on fast Fourier transform is provided that accelerates the evaluation of

the logarithmic barrier function (and its first two derivatives) of the moment cone. This reduces
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the running time of some interior point methods for semidefinite programming from O(n6) to O(n3)

when solving problems involving polynomial nonnegativity constraints.

iii



Contents

Abstract ii

1 Introduction 1

1.1 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Nonnegative and sum-of-squares polynomials 7

2.1 Univariate nonnegative polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Multivariate nonnegative polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Global nonnegativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Nonnegative polynomials on polyhedra . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Dual cones of nonnegative polynomials: moment cones . . . . . . . . . . . . . . . . . 18

3 Univariate shape constrained estimation 21

3.1 Existing results in univariate shape-constrained estimation . . . . . . . . . . . . . . . 22

3.2 Sieves and cones of nonnegative functions . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Estimation in functional Hilbert spaces . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Sieves and finite-dimensional approximations . . . . . . . . . . . . . . . . . . 28

3.3 Representations of nonnegative polynomials and splines . . . . . . . . . . . . . . . . 32

3.3.1 Representations involving semidefinite and second-order cone constraints . . 32

3.3.2 Sieves of polyhedral spline cones . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Shape-constrained statistical estimation models . . . . . . . . . . . . . . . . . . . . . 38

3.4.1 Non-parametric regression of a nonnegative function . . . . . . . . . . . . . . 39

3.4.2 Isotonic, convex, and concave non-parametric regression . . . . . . . . . . . . 39

3.4.3 Unconstrained density estimation . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.4 Unimodal density estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iv



3.4.5 Log-concave density estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.6 Arrival rate estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.7 Knot point selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.1 Isotonic and convex/concave regression . . . . . . . . . . . . . . . . . . . . . 46

3.5.2 Density estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.3 Arrival rate estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Multivariate shape constrained estimation 56

4.1 Multivariate nonnegative and sum-of-squares splines . . . . . . . . . . . . . . . . . . 57

4.1.1 Numerical illustration – posterior probability estimation . . . . . . . . . . . . 61

4.2 A decomposition method for multivariate splines . . . . . . . . . . . . . . . . . . . . 63

4.2.1 Augmented Lagrangian decomposition for sparse problems . . . . . . . . . . . 64

4.2.2 Numerical illustration – NJ Turnpike accidents . . . . . . . . . . . . . . . . . 67

4.3 Generalized sum-of-squares cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 Semidefinite characterization of sums of squares . . . . . . . . . . . . . . . . . 72

4.3.2 Application to vector-valued functions . . . . . . . . . . . . . . . . . . . . . . 78

4.3.3 Further applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Direct optimization methods for nonnegative polynomials 85

5.1 Optimality conditions for nonnegative polynomials . . . . . . . . . . . . . . . . . . . 87

5.1.1 Preliminary observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.2 Nonnegative polynomials over a finite interval . . . . . . . . . . . . . . . . . . 91
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Chapter 1

Introduction

In this thesis we consider function estimation problems involving constraints on the shape of the

estimator or some other underlying function. Such estimation problems abound in statistics and

engineering, and there are numerous examples in other disciplines as well. Here we briefly recall a

few to give a flavor of these applications; we will return to some of them in the subsequent chapters.

1. Isotonic regression. Regression problems often arise in situations where some prior knowledge

(laws of nature or common sense) tells us that the estimated function must be monotone

increasing or decreasing in some of the variables. Calculating the least-squares regression

function under this constraint is the simplest form of the univariate isotonic regression problem

[RWD88]. Multivariate extensions, as well as more abstract forms of this problem, such as

[Bru55], also exist; in these problems monotonicity is understood with respect to some partial

order.

2. Convex/Concave regression. Similarly to isotonic regression, some problems may require

that the estimator is convex or concave over its domain [Hil54]. Univariate applications include

the estimation of the Laffer curve [Wan78] and utility functions in econometrics. The latter

is also an example of a situation when multiple shape constraints may be present: the utility

function of a rational, risk-averse decision maker is increasing and concave.

3. Density estimation. One of the fundamental problems in statistics is the estimation of

probability density functions (or PDFs) and cumulative distribution functions (or CDFs) of

random variables, given a finite number of samples (realizations) of these variables [DG85, EL01].

These problems come in two flavors: in the parametric setting the unknown PDF or CDF is
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assumed to belong to a finite-dimensional space (or at least to a family of functions given up

to a finite number of parameters) that contains only PDFs and CDFs. Usually one considers

parametric families which contain only functions of the right shape. In the non-parametric

setting, however, no such assumptions are made, and constraints such as nonnegativity, being

less than or equal to one, and monotonicity must be explicitly added to the problem. Further

constraints, such as the unimodality or log-concavity of the PDF can also be considered (even

though unimodality is not a convex constraint, which makes optimization with unimodality

constraints particularly difficult).

4. Arrival rate estimation. The arrival rate of a non-homogeneous Poisson process must be

nonnegative by definition. The paper [AENR08] is the first in which a similar non-parametric

method to the one in this thesis is used in the univariate case. See also [PA08] and the thesis

[Rud09].

5. Design of curves. Various engineering problems involve the design of curves with shape

constraints [BF84, GSY94]. In particular, contours of objects and curves describing controlled

moving objects (such as a robot arm) may be required to lie entirely within a region. The

region may be, for example, a polyhedral set, or a basic semialgebraic set defined by polynomial

inequalities. The curve along which objects are moved may have a restricted curvature.

6. Estimation of posterior probabilities. Suppose a sample is known to belong to one of N

populations, and we wish to estimate the probability that it was sampled from population

i ∈ {1, . . . , N}, given some information on the distribution of the individual populations. When

N = 2, and one of the two classes is “good” while the other is “bad”, this can be viewed as the

assignment of a risk score to the sample. Such models are abound in a number of areas ranging

from medicine to homeland security.

7. Stochastic dominance. One way to express a decision maker’s preferences among different

gambles, or more specifically, to introduce risk-aversion in stochastic optimization models is

using stochastic dominance constraints [HR69]. We say that (real-valued) random variable A

has first-order dominance over B if their CDFs FA and FB satisfy FA(t) ≤ FB(t) for every t. In

models B is often a parameter, a “benchmark”. First-order dominance can be viewed as a variant

of the requirement that the graph of the estimated function lies in a given region. A weaker

form of dominance, second-order dominance, is expressible as
∫ s

−∞ FA(t)dt ≤
∫ s

−∞ FB(t)dt for

every s. Optimization problems involving stochastic dominance constraints were introduced in
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[DR03], and were developed in a series of papers by the same authors.

8. Covariance matrix estimation. Covariance matrix estimation in time series can be used

to capture the evolution of interdependencies between multiple time series. The object of

interest is then a univariate matrix-valued function that is required to be positive semidefinite

throughout the considered time interval. Depending on the estimation method this constraint

need not be satisfied automatically at every point by the estimator, in which case it needs to

be included as a hard constraint.

Perhaps the simplest of shape constraints in the above examples is nonnegativity, or (only slightly

more generally), the requirement that the graph of the estimated function is on one side of a given

line. Many other shape constraints, under some differentiability assumptions, also reduce to the same

constraint. For example, monotonicity, convexity, and concavity of (twice) differentiable functions

can be expressed as a constraint on the sign of the first or second derivative of the function. Hence,

a good starting point for our investigations is the following general optimization problem:

minimize c(x)

subject to Ai(fx)(t)− bi ≥ 0 ∀ t ∈ ∆, i = 1, . . . , k,

x ∈ X ,

(1.1)

where X is an arbitrary (albeit usually convex, close, and finite-dimensional) set; fx : ∆→ R is a

real-valued function with domain ∆ ⊆ Rm for every x; c is a (usually convex) cost function, each Ai

is a linear operator, and bi ∈ R.

The minimization in (1.1) is with respect to the vector x. With a slight abuse of notation we

can consider the estimated function fx to be the variable. However, it is often helpful to distinguish

between the unknown function fx and its representation x. Most algorithmic results, for example,

do not depend on the properties of the set of feasible functions {fx | x ∈ X}, but rather on those of

the set X .

In most of the applications considered in this thesis, X is a finite-dimensional set, while ∆ is

a polyhedral set. (Some of the results generalize to the setting where ∆ is a basic semialgebraic

set.) In these cases, (1.1) can be cast as a semi-infinite optimization problem (and if c is affine,

then as a semi-infinite linear optimization problem) with a continuum of linear constraints; see

[GL98, RR98] for an extensive review of semi-infinite linear optimization methods. In search of more

efficient methods, in this thesis we do not follow this direction. Instead, we assume that fx belongs
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to a set of functions, such as polynomials of a given degree, polynomial splines of a given order, or

trigonometric polynomials of some degree, in which nonnegativity over the entire domain can be

effectively characterized or approximated. Our primary models will involve polynomial splines.

Definition 1.1. A function f : [a, b]→ R is a univariate polynomial spline of degree d and continuity

Cr (r ≤ d− 1) if there exist knot points a0, . . . , am satisfying a = a0 < · · · < am = b such that (1) f

is a polynomial of degree d over each interval [ai, ai+1]; (2) f has continuous derivatives up to order

r over (a, b).

In this thesis we will always assume r = d − 1, such splines are often referred to as splines

with simple knots. Schumaker [Sch81] has a more general definition which allows a spline to be

differentiable up to different orders at different knot points. Wahba [Wah90] and others consider

only natural splines, which are more restricted on the first and last subinterval of the domain. All

models in this thesis could be adapted if we were to use any of these definitions. In the multivariate

models tensor product splines will be used, which are constructed by taking the tensor product of

univariate spline spaces.

Not all natural shape constraints can be cast in the form (1.1), and in some situations such

a formulation may not be the most useful. Consider, for example, the convexity of multivariate

functions. A twice continuously differentiable real-valued function f is convex over ∆ ⊆ Rn if and

only if its Hessian H is positive semidefinite over ∆. While this condition is equivalent to the

nonnegativity of the 2n-dimensional function (x,y) → yTH(x)y over ∆ × Rn, this approach has

several drawbacks. A similar constraint arises in the covariance matrix estimation problem. Another

example is the curve design problem with curvature constraint. For this problem, no formulation of

the form (1.1) is known. We will return to these problems in Chapter 4. At this point it suffices to

note that the following generalization of (1.1) can be used to model all of the aforementioned shape

constraints:

minimize c(x)

subject to Ai(fx)(t)− bi ∈ K ∀ t ∈ ∆, i = 1, . . . , k,

x ∈ X ,

(1.1′)

where K is a closed, convex, and pointed cone. (See Appendix A for definitions.) If K = R in (1.1′),

we obtain (1.1). The multivariate convexity constraint will be modeled by choosing K to be the cone

of n× n positive semidefinite real symmetric matrices.
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The thesis is self-contained; for completeness, some essential background material on conic and

semidefinite programming is included in the Appendix.

On notation. We will use the following notations and conventions: vectors (and matrices) are

typeset boldface, their components (rows and columns) are denoted with the corresponding lowercase

italic character, and they are indexed starting from 0 rather than 1, as this is more convenient for

coefficient vectors of polynomials. For example, the n+ 1 dimensional row vector pT could also be

written as (p0, . . . , pn). The inequality X < 0 denotes that X is a positive semidefinite real symmetric

matrix. All the remaining notation is introduced in the chapters as needed.

1.1 Outline of the thesis

Chapter 2 is primarily a literature review summarizing known characterizations of univariate non-

negative polynomials and subsets of multivariate polynomials (“sum-of-squares” and “weighted-sum-

of-squares” polynomials) that admit a good characterization suitable for convex optimization models.

These characterizations are the most important tools used in the rest of the thesis. We shall add a

few improvements and generalizations to the known theorems, as well as some new elementary proofs

to some of them. A brief overview of moment cones (the dual cones of nonnegative polynomials) is

also included, as it is necessary for Chapter 5.

In Chapter 3 we study univariate function estimation problems with nonnegativity, monotonicity,

convexity, and log-concavity constraints. The proposed optimization models involve nonnegative

polynomial splines, and can be translated to semidefinite and second-order cone programming

problems using the techniques introduced in Chapter 2. We investigate polyhedral approximations

to these problems, and give a necessary and sufficient condition for a family of piecewise nonnegative

polynomial splines to be dense (in uniform norm) in the cone of nonnegative continuous functions

(Theorem 3.4). Specifically, we make a case for using piecewise and coordinate-wise Bernstein

polynomial splines. This is followed by an extensive list of optimization models (Section 3.4) for a

variety of (statistical) estimation problems, and numerical experiments (Section 3.5), in which the

proposed semidefinite programming and linear programming approaches are compared to each other

and to kernel methods.

In Chapter 4 we investigate how the ideas of Chapter 3 can be applied in multivariate shape-

constrained estimation. Unlike in the univariate setting, nonnegative multivariate polynomials do not
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seem to admit a good characterization (their recognition is NP-hard). Nevertheless, using a multivari-

ate generalization of the density theorem of the previous chapter (Theorem 4.1) we provide a method

for estimating multivariate nonnegative continuous functions that is both practical and theoretically

sound. In Section 4.2 we demonstrate how these techniques can be coupled with decomposition meth-

ods to solve the large-scale optimization problems that arise in multivariate shape-constrained spline

estimation. Finally, Section 4.3 contains a generalization of Nesterov’s characterization of real-valued

sum-of-squares functions (Proposition 2.1) to arbitrary finite-dimensional real linear spaces, where

squaring is with respect to an arbitrary bilinear multiplication (Theorem 4.5). A weighted-sum-of-

squares version is also provided. These can be applied to a number of shape-constrained optimization

problems that cannot be modeled using nonnegativity constraints alone.

Chapter 5 is concerned with approaches that could be used to circumvent the use of semidefinite

programming in optimization problems involving nonnegative polynomial constraints. In Section 5.1

we study the conditions of optimality for the cone of nonnegative polynomials with the goal of

characterizing complementary pairs of nonnegative polynomials and moment vectors in a way that is

suitable for devising homotopy methods for these cones. The main results of this section are negative.

In Section 5.2 a barrier method is given that has the same iteration complexity as semidefinite

programming for nonnegative polynomial constraints, but whose time complexity is O(n3) compared

to the O(n6) complexity of the semidefinite programming-based method.

In Chapter 6 we summarize our results and discuss some open questions. The Appendix gives

some background on semidefinite programming, second-order cone programming, and general conic

programming.

All proofs of the Theorems and Lemmas in this thesis are original works of the author. Necessary

theorems and lemmas from the literature are reproduced here as Propositions, regardless of their

depth, so that they are clearly distinguished from new results. The proofs of previous results are

usually omitted, unless their ideas are important for the thesis; the original works in which these

results were proven are cited. While many of the new results were obtained during joint work with

several co-authors, only those parts of the joint work are reproduced here to which the author of the

thesis was the main contributor.

Parts of this thesis have been published in peer-reviewed journals, or have been available as tech-

nical reports. Parts of Chapter 3 have been disseminated in [PA08], but in the current, considerably

improved, form it is currently under review [PA]. Section 4.3 is currently under review [PCA], while

Section 5.1 is part of the accepted paper [RNPA]. The rest of Chapters 4 and 5 first appear here.
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Chapter 2

Nonnegative and sum-of-squares

polynomials

Optimization problems involving nonnegative and sum-of-squares polynomials will be used as a

fundamental modeling tool throughout the thesis. This chapter is a brief summary of the main

results about characterizations of nonnegative polynomials, which are necessary to make this thesis

self-contained. For a more comprehensive summary, especially regarding the applications of this

theory in other fields, such as algebraic geometry and global optimization of polynomials, the reader

is advised to consult the excellent monographs [Mar08] or [Lau08]. Unlike in the other chapters, we

include some of the prior results with new proofs when these proofs serve as new elementary proofs

to some well-known theorems, or when they generalize to some previously unknown results used in

subsequent chapters.

We say that a polynomial is sum-of-squares if it can be expressed as a sum of finitely many perfect

squares. The cone of k-variate sum-of-squares polynomials of total degree 2n is denoted by Σ2n,k.

Let P2n+1 ∈ R2n+1 denote the cone of those univariate polynomials of degree 2n which are

nonnegative over the entire real line. Similarly, let P∆
n+1 denote the cone of those univariate

polynomials of degree n which are nonnegative over ∆. Although it is a slight abuse of notation

(recall the distinction between x and fx in the paragraph following (1.1)), we will also denote the

cone of the coefficient vectors of nonnegative polynomials (in standard basis, for simplicity) by the

same symbol:

P∆
n+1 =

{

(p0, . . . , pn)
T

∣
∣
∣
∣
∣

n∑

i=0

pit
i ≥ 0 ∀ t ∈ ∆

}

.
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The subscript n+1 shows the dimension of the cone. In this thesis the domain ∆ is always the entire

real line, or an interval. In the multivariate setting P∆
n,k denotes the cone of k-variate polynomials

(represented by their coefficients in the standard monomial basis) nonnegative over ∆ ⊆ Rk with

total degree n. For the applications considered in the thesis it is sufficient to consider the case when

the domain ∆ is polyhedral, but most of the results directly generalize to the case when ∆ is a

compact basic semialgebraic set. Again, we will drop the superscript whenever ∆ = Rk. All these

cones of nonnegative polynomials are closed, convex cones.

A few remarks on the terminology and notation are in order. In the related algebra literature,

typically sum-of-squares forms (that is, homogeneous polynomials) are considered, rather than

general, non-homogeneous polynomials. Every key definition and theorem about sum-of-squares

forms has a counterpart involving non-homogeneous polynomials of one fewer variable. However,

the notation Σ2n,k is frequently used with both meanings. It is also very common in the literature

(both in algebra and in optimization) to refer to the cones P∆
n+1 and P∆

n,k as positive polynomials – a

terminology derived from the theory of everywhere nonnegative forms, often called positive definite

forms. We will only use the terms nonnegative and strictly positive polynomials, as they certainly

cannot create any confusion.

The connection between nonnegative and sum-of-squares polynomials goes back to the 19th

century, and it is also related to Hilbert’s 17th problem [Hil00], and its affirmative solution (first

obtained by Artin [Art27]). Interest in sum-of-squares polynomials has raised considerably in the past

twenty years, especially in the context of global optimization of polynomials, computational algebraic

geometry, and its relation to copositivity. The main reason for this is that while the recognition

of nonnegative polynomials is NP-hard, the cone of sum-of-squares polynomials is semidefinite

representable, and hence is tractable both in the theoretical sense, and in practice, as demonstrated

by readily available software packages, such as SOSTOOLS [PPSP04], which finds sum-of-squares

decompositions of multivariate polynomials; YALMIP [Löf04], a simple modeling tool capable of

translating sum-of-squares polynomial constraints to semidefinite programming constraints; and

GloptiPoly [HL03], a program that finds global optima of polynomials. All of these are extensions

to the numerical computing environment MATLAB [Mat], and they all rely on general purpose

semidefinite optimization solvers, such as SeDuMi [Stu99] and SDPT3 [TTT99]. More information

on computational tools for semidefinite programming is given in the Appendix.

The semidefinite representation of the cones Σ2n,k can be derived from the following theorem on

(real-valued) sum-of-squares functional systems.
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Proposition 2.1 ([Nes00]). Consider a real linear space U of ∆→ R functions (∆ ∈ Rk), with a

finite basis {u0, . . . , um}, and let us define

U2 def
= span{uiuj | i, j = 1, . . . ,m}.

Let {v0, . . . , vn} be a basis of U2. Then the cone of sum-of-squares functions

Σ =

{

(p0, . . . , pn)
T

∣
∣
∣
∣
∣

n∑

i=0

pivi =

N∑

i=1

r2i , N finite, ri ∈ U

}

(2.1)

is a linear image of the cone of (m+ 1)× (m+ 1) positive semidefinite real symmetric matrices.

The linear mapping in Proposition 2.1 can be explicitly constructed in polynomial time for every

given {ui} and {vj}, following [Nes00]. A more transparent description of this construction can

be found in the tutorial [Ali06]. We do not repeat the details here, as we are going to present a

considerably more general theorem, Theorem 4.5 in Section 4.3.

An analogous representation theorem can be given for the cone of weighted-sum-of-squares

functions, that is, functions of the form
∑ℓ

i=1 wisi, where w1, . . . wℓ are fixed real-valued functions,

called weights, and each si belong to the cone Σ defined in (2.1).

Proposition 2.2 ([Nes00]). With the notations of Proposition 2.1, define the cone of weighted-sum-

of-squares functions as

Σw =






(p0, . . . , pn)

T

∣
∣
∣
∣
∣
∣

n∑

i=0

pivi =

ℓ∑

j=1

wj

Nj∑

i=1

r2ij , N finite, rij ∈ U
2






,

where w1, . . . , wℓ are arbitrary ∆→ R functions (the “weights”). Then Σw is the Minkowski sum of

ℓ cones, each a linear image of the cone of (m+ 1)× (m+ 1) positive semidefinite real symmetric

matrices, m = dim(U). The ℓ linear mappings that characterize Σw can be explicitly constructed in

polynomial time.

We will derive a generalization of this theorem, too, in Section 4.3.1. (Theorem 4.17.)

2.1 Univariate nonnegative polynomials

It is well-known (and follows easily from the fundamental theorem of algebra) that a univariate

polynomial is nonnegative if and only if it is a sum of two perfect squares; consequently, every
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univariate nonnegative polynomial is sum-of-squares. This in turn yields a characterization of

nonnegative polynomials as a linear image of the cone of positive semidefinite real symmetric

matrices, via Proposition 2.1. These results are summarized in the following proposition. This

theorem can also be derived without Proposition 2.1, from the theory of nonnegative functions in

Chebyshev systems [KS66, Chapter VIII], or from the (related) theory of moment spaces [DS97].

Proposition 2.3 ([KS66, PS76]). Suppose p is a polynomial of degree 2n, and p(t) =
∑2n

k=0 pkt
k.

Then the following are equivalent.

1. p ∈ P2n+1.

2. p = q2 + r2 for some polynomials q and r of degree at most n.

3. p ∈ Σ2n,1.

4. There exists a positive semidefinite real symmetric matrix X = (xij)
n
i,j=0 satisfying

pk =
∑

i+j=k

xij , k = 0, . . . , 2n.

Proposition 2.3 can be extended to the case of nonnegative polynomials over a finite or infinite

interval. A natural sufficient condition for a polynomial to be nonnegative over [a,∞) is that it can be

written in the form s1(t) + (t− a)s2(t), where s1 and s2 are sum-of-squares polynomials. Similarly, it

is sufficient for a polynomial to be nonnegative over [a, b] that it is of the form (t−a)s1(t)+(b− t)s2(t)

or s1(t) + (t− a)(b− t)s2(t), where s1 and s2 are sum-of-squares polynomials. It is known that these

sufficient conditions are also necessary; we give an elementary proof of this fact below.

Proposition 2.4. For every polynomial p of degree n,

1. p ∈ P
[a,∞)
n+1 if and only if p(t) = r(t)+(t−a)q(t) identically for some sum-of-squares polynomials

r and q of degree at most n;

2. p ∈ P
[a,b]
n+1 if and only if

p(t) =







r(t) + (t− a)(b− t)q(t) (if n = 2k)

(t− a)r(t) + (b− t)s(t) (if n = 2k + 1)

for some sum-of-squares polynomials r and s of degree 2k and q of degree 2k − 2.
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Proof. For simplicity we assume a = 0 and b = 1, the argument for general intervals is essentially

identical. First, let us assume p ∈ P
[0,∞)
n+1 , and consider the polynomial q(t) = p(t2). By assumption,

q is nonnegative everywhere, hence q =
∑

i r
2
i . Grouping the terms of the ri by the parity of their

degrees we write ri(t) = r
(1)
i (t2) + tr

(2)
i (t2), and since q has no odd degree terms,

p(t2) = q(t) =
∑

i

(

r
(1)
i (t2)

)2

+ t2
∑

i

(

r
(2)
i (t2)

)2

.

Taking r =
∑

i(r
(1)
i )2 and s =

∑

i(r
(2)
i )2 we have p(t2) = r(t2) + t2s(t2), implying p(t) = r(t) + ts(t),

as claimed. The bounds on the degrees of r and s follow from the fact that the degree of each ri is at

most n. That concludes the proof of the first claim.

Next, suppose that p ∈ P
[0,1]
n+1 , and consider the polynomial q(t) = (1 + t)np(t/(1 + t)): by

assumption it is nonnegative for all t ≥ 0, and so by the first part of the claim, q(t) = r(t) + ts(t)

identically for some r =
∑

i r
2
i of degree at most n and s =

∑

i s
2
i of degree at most n− 1.

Observe that p(t) = (1− t)nq(t/(1− t)). If n = 2k + 1, then this yields

p(t) = (1− t)2k+1
∑

i

r2i (t/(1− t)) + (1− t)2k+1 t

1− t

∑

i

s2i (t/(1− t))

= (1− t)
∑

i

(
(1− t)kri(t/(1− t))

)2
+ t
∑

i

(
(1− t)ksi(t/(1− t))

)2
.

If n = 2k, then

p(t) = (1− t)2k
∑

i

r2i (t/(1− t)) + (1− t)2k
t

1− t

∑

i

s2i (t/(1− t))

=
∑

i

(
(1− t)kri(t/(1− t))

)2
+ t(1− t)

∑

i

(
(1− t)k−1si(t/(1− t))

)2
.

The degree bounds come from the degree bounds of the first part of the theorem.

In fact we can take the polynomials q, r, and s above to be squares rather than sums-of-squares;

this observation is usually attributed to Lukács [Luk18], and sometimes to Markov. The corresponding

semidefinite characterizations can be derived using Proposition 2.2. We split these results into a

sequence of propositions for better readability.

Proposition 2.5 ([Luk18, BS62]). For every polynomial p of degree n,

1. p ∈ P
[a,∞)
n+1 if and only if p(t) = r2(t) + (t− a)s2(t) identically for some polynomials r and s of

degree at most ⌊n/2⌋;
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2. p ∈ P
[a,b]
n+1 if and only if

p(t) =







r2(t) + (t− a)(b− t)q2(t) (if n = 2k)

(t− a)r2(t) + (b− t)s2(t) (if n = 2k + 1)

for some polynomials r and s of degree k and q of degree k − 1.

As in the case of everywhere nonnegative polynomials, this result can also be derived independently,

using the theory of moments and Chebyshev systems (see Chapter II in [KS66]), but these are rather

deep tools compared to the elementary nature of these claims. See [BS62] for the first (and, to the

author’s knowledge, only) elementary proof, using a reduction to Proposition 2.3.

The advantage of Proposition 2.4 and its above proof is that they can be repeated essentially

verbatim in every setting when a pointwise defined notion of “nonnegativity” of polynomials over the

reals is known to be equivalent to the algebraic notion of “being sum-of-squares” with respect to some

multiplication. (Both the more general nonnegativity and sum-of-squares notions need to possess

only a few basic properties.) We shall explore this in more detail in Section 4.3, where we prove a

generalization of the above theorem to univariate matrix polynomials that are positive semidefinite

over an interval. We shall also use a similar technique below to derive characterizations of some

nonnegative multivariate polynomials over polyhedra.

It is interesting to note that while in Proposition 2.3 it is evident that the degrees of the terms in

the sum-of-squares representations of p can be bounded by the degree of p (because the highest degree

terms cannot cancel each other out), this is not at all obvious in Proposition 2.5, where cancelations

are possible. Having bounds on the degree of each term is critical, as Nesterov’s representation

theorems (Proposition 2.1 and 2.2) are only applicable to functional spaces of fixed dimension.

For the convenience of the reader seeking directly applicable recipes, we shall also present the

“semidefinite programming-ready” characterization of nonnegative polynomials obtained from the

application of Proposition 2.2 to the above characterization. These are instrumental in obtaining the

computational results of Chapter 3.

Proposition 2.6 ([Nes00]). Suppose p is a polynomial of degree n = 2m + 1, p(t) =
∑n

k=0 pkt
k,

and let a < b are real numbers. Then p ∈ P
[a,b]
n+1 if and only if there exist positive semidefinite real

symmetric matrices X = (xij)
m
i,j=0 and Y = (yij)

m
i,j=0 satisfying

pk =
∑

i+j=k

(−axij + byij) +
∑

i+j=k−1

(xij − yij) (2.2)
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for all k = 0, . . . , 2m+ 1.

Similarly, if p is a polynomial of degree n = 2m, then p ∈ P
[a,b]
n+1 if and only if there exist positive

semidefinite real symmetric matrices X = (xij)
m
i,j=0 and Y = (yij)

m−1
i,j=0 satisfying

pk =
∑

i+j=k

(xij − abyij) +
∑

i+j=k−1

(a+ b)yij −
∑

i+j=k−2

yij (2.3)

for all k = 0, . . . , 2m.

It is not central to this thesis, but for the sake of completeness we should mention that the above

sum-of-squares representations for nonnegative polynomials are not unique, and neither are the

matrices X and Y in Proposition 2.6. However, Proposition 2.5 can be extended to a representation

theorem that associates a unique representation to every polynomial.

Proposition 2.7 ([KS53, Kar63]). Every strictly positive polynomial p of degree 2n admits a unique

representation of the form

p(t) = α

n∏

i=1

(t− t2j−1)
2 + β

n−1∏

i=1

(t− t2j)
2,

where α > 0, β > 0, and t1 < · · · < tn−1.

Every p ∈ P
[a,b]
n+1 admits a unique representation of the form

p(t) =







α
∏m

i=1(t− t2j−1)
2 + β(t− a)(b− t)

∏m−1
i=1 (t− t2j)

2 (if n = 2m)

α(t− a)
∏m

i=1(t− t2j−1)
2 + β(b− t)

∏m−1
i=1 (t− t2j)

2 (if n = 2m+ 1)

,

where α > 0, β > 0, and t1 ≤ · · · ≤ tn−1. Moreover, p is strictly positive over [a, b] if and only if in

the above representation we have t1 < · · · < tn−1.

2.2 Multivariate nonnegative polynomials

2.2.1 Global nonnegativity

The relationship between nonnegative and sum-of-squares polynomials is more involved in the

multivariate case. The first important difference from the univariate setting is that not every

nonnegative polynomial is sum-of-squares. In fact, there is an “infinite gap” between sum-of-squares

and nonnegative polynomials. While this was already known to Hilbert (see Proposition 2.10) the

first constructive proof is due to Motzkin.
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Proposition 2.8 ([Mot67]). Let m denote the Motzkin polynomial:

m(x, y)
def
= 1− 3x2y2 + x2y4 + x4y2.

The polynomial m is nonnegative over R2 (by the inequality between the arithmetic and geometric

means), yet, m+ C is not sum-of-squares for any C ∈ R.

It is unlikely that a good characterization of nonnegative multivariate polynomials exists:

Proposition 2.9. Deciding whether a d-variate polynomial is nonnegative over Rd (equivalently,

minimizing a d-variate polynomial) is NP-hard even for polynomials of degree four.

Proof. Both claims are “folklore” in the literature, but we give a short proof to underline the

important equivalence of polynomial minimization and optimization with nonnegative polynomial

constraints. This equivalence is shown by the following observation: for every d-variate polynomial p

of total degree n,

min
x∈Rd

p(x) = max
z∈R

p−z∈Pn,d

z.

Perhaps the easiest way to prove the first claim is by reduction from the Partition problem: the

multiset of integers {a1, . . . .ad} can be partitioned into two subsets with equal sums if and only if

the minimum of the polynomial (
∑

i aixi)
2 +

∑

i(1− x
2
i )

2 is zero.

As the above proof suggests, global optimization of polynomials can be reduced to the problem

of root-finding. This is a very well studied problem in algebra, and it can be solved by numerous

algebraic techniques; these include algorithms using discriminants and resultants [CLO04, Chapter

7], Gröbner bases [CLO04, Chapter 2], and also homotopy (continuation) methods [Li97]. The most

successful methods in practice, however, are the ones using a hierarchy of semidefinite optimization

models. In other words, rather than reducing polynomial minimization to root-finding, root-finding

via polynomial minimization has appeared to be successful. See also [PS03] for a brief overview of a

few algebraic methods, and a computational experiment comparing various algebraic methods to a

semidefinite programming technique.

The previous proof is based on a construction involving k-variate polynomials. Hence, recognizing

nonnegative polynomials with a fixed number of variables and a fixed degree might still be a

polynomial-time solvable problem. (In fact, it is, but the known polynomial time algorithms

involve quantifier elimination techniques [Tar51, Ren92], and are neither practical, nor suitable for
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optimization.) The question whether all nonnegative polynomials of a fixed degree and number of

variables are sum-of-squares was answered by Hilbert.

Proposition 2.10 ([Hil88]). The equation P2n,k = Σ2n,k holds in precisely three cases:

1. when k = 1, but 2n is arbitrary, that is, for univariate polynomials;

2. when 2n = 2, but k is arbitrary, that is, for multivariate quadratic polynomials;

3. when 2n = 4 and k = 2, that is, for biquartic polynomials.

In all other cases, Σ2n,k ( P2n,k.

2.2.2 Nonnegative polynomials on polyhedra

For our spline estimation problems we need characterizations of polynomials of a few variables, and of

relatively small degree, that are nonnegative over simple polyhedra, such as a d-dimensional rectangle

or a simplex. Without a restriction on the number of variables this is also a well-known NP-hard

problem; see for example [BH02] for very simple formulations of NP-hard combinatorial optimization

problems as multilinear optimization problems over the unit cube.

Proposition 2.11 ([BH02]). Deciding whether a k-variate polynomial is nonnegative over [0, 1]k

(equivalently, minimizing a k-variate polynomial over the unit cube) is NP-hard, even for multilinear

polynomials of degree two.

Nevertheless, there are several ways to approximate nonnegative polynomials over polyhedra

(or even over semialgebraic sets, that is, sets defined by a finite set of polynomial inequalities)

using sum-of-squares polynomials. One possibility is to represent nonnegative polynomials as sums

of squares of rational functions whose denominators are positive over the domain of our interest.

(Whether every nonnegative polynomial can be expressed as a sum of squares of rational functions

was Hilbert’s 17th problem [Hil00], settled in the affirmative by Artin [Art27].) This is a topic that

merits its own book (indeed, see [Mar08] for a recent one), we must opt for giving only a flavor of

these results, and giving pointers to the literature for the interested reader.

First let us recall Pólya’s classic representation theorem of positive forms (homogeneous polyno-

mials) on the first orthant.

Proposition 2.12 ([HLP34, Section 2.24]). If a form is strictly positive on Rn
+ \ {0}, then it can be

expressed as F = G/H, where G and H are forms with nonnegative coefficients in the monomial

basis. In particular we may suppose that H = (
∑n

i=1 xi)
r
for a suitable r.
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With this proposition we obtain a very simple hierarchy of polyhedral inner approximations

of P
R

n
+

n,k. Denoting by F (p) the homogenization of p, for every r = 0, 1, . . . the r-th level of the

hierarchy is the set of polynomials p for which the form (
∑

i xi)
r
F (p) has only nonnegative coefficients.

For a stronger (semidefinite) hierarchy we may require a weaker condition: that (
∑

i xi)
r
F (p) is

sum-of-squares. This approach was suggested in the thesis [Par00].

As a consequence of Proposition 2.12 we obtain a representation of strictly positive polynomials

over the unit simplex.

Proposition 2.13 ([HLP34, Section 2.24]). If a polynomial is strictly positive on the simplex {x ≥

0 |
∑

i xi ≤ 1}, then it can be expressed in the form p(x) =
∑
cd1,...,dn+1

xd1
1 · · ·x

dn
n (1−

∑

i xi)
dn+1 ,

where the exponents dj are nonnegative integers, and the coefficients cd1,...,dn+1 are all positive.

For polyhedral approximations of the univariate polynomial cones the following consequence of

Proposition 2.13 is also interesting.

Proposition 2.14. Every strictly positive polynomial over [0, 1] has nonnegative coefficients in the

(scaled Bernstein polynomial) basis {xi(1− x)d−i | i = 0, . . . , d} for a sufficiently high d.

Nonnegativity over the first orthant and over the unit simplex are also closely related to the

concept of copositivity. (A matrix A is copositive if xTAx ≥ 0 for every x ≥ 0.) The cone of

copositive matrices is very well studied, but their recognition is NP-hard, and remains a challenge

even for matrices of order as small as 20. See [HUS10] for a recent review on several aspects of

copositivity, and the references therein.

Proposition 2.13 (along with our univariate starting point, Proposition 2.4) motivates the other

popular approach in the literature, which is also applicable to polynomials nonnegative over semialge-

braic sets. If ∆ = {x |wi(x) ≥ 0, i = 1, . . . ,m}, where w1, . . . , wm are polynomials, then a sufficient

condition for a polynomial p to be nonnegative over ∆ is for it to be expressible as

p(x) =
∑

I⊆{1,...,m}

(
∏

i∈I

wi(x)

)

sI(x), (2.4)

or simply as

p(x) =

m∑

i=1

wi(x)si(x), (2.5)

where the polynomials s are sum-of-squares polynomials. The theoretical justification behind this

approach is provided by theorems of Schmüdgen [Sch91] and Putinar [Put93]. Both of these theorems

are generally referred to as the Positivstellensatz (after Hilbert’s Nullstellensatz), and they show
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equivalence between strictly positive polynomials on semialgebraic sets and polynomials of the form

(2.4) (Schmüdgen) and (2.5) (Putinar) under different conditions. (We omit the details.) Note

however, that unlike Proposition 2.5, the Positivstellensätze do not give explicit bounds on the

degree of the sum-of-squares polynomials involved, hence these theorems are not directly useful.

For more on different variants of the Positivstellensatz, as well as for bounds on the degrees of the

terms required on the right-hand side of (2.4) and (2.5), see [Sch04] and [NS07]. Again, hierarchies

of weighted-sum-of-squares inner approximations can be defined using higher and higher degree

sum-of-squares polynomials in Equations (2.4) and (2.5), see for example [Las01b, Par03].

As a side note we shall mention that for simplexes the hierarchies built using the Positivstellensätze

of Schmüdgen and Putinar turn out to be equivalent [KLP05] to the hierarchy based on Pólya’s

results above.

In our spline estimation problems we will formulate optimization models with a large number

of polynomial nonnegativity constraints, so we cannot use high degree sum-of-squares polynomials

required by the above techniques. In the rest of this section we shall look into the approximation of low

degree nonnegative polynomials over simple polyhedra using low degree sum-of-squares polynomials.

Results in this direction were obtained by Micchelli and Pinkus [MP89]. These can be viewed as the

simplest successful multivariate generalizations of Proposition 2.5.

Proposition 2.15 ([MP89]). Let ∆ ∈ R2 be any of the following polyhedra: the right half-plane

R+×R, the first orthant R2
+, the unit simplex {( x1

x2
) ∈ R2

+ | x1+x2 ≤ 1}, the unit square [0, 1]2, or the

vertical slab {( x1
x2

) ∈ R2
+ | x1 ≤ 1}. Then every bivariate quadratic polynomial p that is nonnegative

over ∆ can be represented in the form (2.4) with wi ≥ 0 being the facet defining linear inequalities

for ∆. Moreover, we may assume that there are only quadratic terms in this representation.

The proofs of Micchelli and Pinkus involve a rather complicated case analysis and rely on the

theory of copositive matrices, specifically on Diananda’s result [Dia62] that every copositive matrix of

order n ≤ 4 can be written as a sum of a positive semidefinite matrix and an entrywise nonnegative

matrix. This is known not to hold for n ≥ 5, preventing the generalization of Proposition 2.15 to

polynomials with more variables or of higher degree.

Most of these results can be easily derived using essentially the same technique as in the proof of

Proposition 2.4. With the appropriate change of variables the nonnegativity of a polynomial p over

a polyhedron is equivalent to the global nonnegativity of another polynomial q. If q belongs to one

of those cones where nonnegativity is equivalent to being sum-of-squares (recall Proposition 2.10),

then the sum-of-squares characterization of q can be translated back to a weighted-sum-of-squares
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characterization of p. For example, to obtain Proposition 2.15 for the unit simplex, observe that the

quadratic polynomial p(x1, x2) is nonnegative over {( x1
x2

) ∈ R2
+ | x1 + x2 ≤ 1} if and only if q(s, t) =

(s2+t2)2p
(

s2

s2+t2 ,
t2

s2+t2

)

is nonnegative everywhere. (Note that this is a linear transformation p→ q.)

But q is a bivariate quartic polynomial, hence it is nonnegative if and only if it is sum-of-squares. The

characterization of those domains ∆ for which this approach works is an interesting open problem.

2.3 Dual cones of nonnegative polynomials: moment cones

The dual cones of the cones of nonnegative polynomials over ∆ are the moment cones, which are cones

spanned by the moment sequences of probability measures concentrated on ∆. We shall concentrate

only on the one-dimensional case here, as we will not use any multivariate results in this thesis. There

is a vast literature on problems involving the representations of moments of a measure, as well as the

structure of moment cones and spaces, as they have numerous theoretical and practical applications

beyond optimization. See the monograph [Lan87] for a comprehensive review of applications, and

[KN77, DS97] for further mathematical background on moment theory.

We will not need the “moment sequence” interpretation of the vectors in the moment cones,

instead we use two other characterizations of the moment cones, these are presented in the rest of

this section.

It is easy to derive a characterization of (P∆
n+1)

∗ directly from the definition of P∆
n+1. This is

because p ∈ P∆
n+1, that is

∑n
i=0 pit

i ≥ 0 for every t ∈ ∆, if and only if every vector of the form

c(t) = (1, t, . . . , tn)T satisfies 〈p, c(t)〉 ≥ 0. Hence, if we define

M∆
n+1 = cl cone

({
(1, t, . . . , tn)T

∣
∣ t ∈ ∆

})
,

then we have (M∆
n+1)

∗ = P∆
n+1, from which we also get (P∆

n+1)
∗ =M∆

n+1. We only consider two

cases: when ∆ = [a, b] and when ∆ = R; we drop the superscript ∆ when ∆ = R. We formalize these

definitions below.

Definition 2.16. Using the notation

cn+1(t)
def
= (1, t, t2, . . . , tn)T,
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the moment cone of dimension n+ 1 is defined as

Mn+1
def
= cl cone ({cn+1(t) | t ∈ R}) .

The (n+ 1)-dimensional moment cone over [a, b] is defined as

M
[a,b]
n+1

def
= cone ({cn+1(t) | t ∈ [a, b]}) .

It is not hard to show that M
[a,b]
n+1 is closed for every −∞ < a < b < ∞, but to make Mn+1

closed, it is necessary to use the closure operation in the definition. More precisely,

Mn+1 = cone ({cn+1(t) | t ∈ R}) ∪
{
(0, . . . , 0, t)T | t > 0

}
.

Our first proposition is the duality relationship between these cones and the cones of nonnegative

polynomials.

Proposition 2.17. P∗
2n+1 =M2n+1. Similarly, (P

[a,b]
n+1)

∗ =M
[a,b]
n+1.

As a corollary, we can derive a semidefinite representation of moment cones from Propositions 2.3

and 2.5, using the fact that the semidefinite cone is self-dual (Proposition A.8). This gives a second

characterization of moment cones; which can also be derived from the moment interpretation of these

cones [ST43]. We summarize these properties in our last two propositions, which make use of the

following notation.

For an odd-dimensional vector c = (c0, . . . , c2m)T we define its corresponding Hankel matrix as

H(c) = (ci+j)i,j=0,...,m. (2.6)

Using this notation, for a vector c = (c0, . . . , cn)
T and real numbers a < b we define the Hankel

matrices H̄
[a,b]
n (c) and

¯
H

[a,b]
n (c) as follows:

¯
H

[a,b]
2m (c) = H(c),

H̄
[a,b]
2m (c) = H

(
(−abci + (b− a)ci+1 − ci+2)

2m−2
i=0

)
,

¯
H

[a,b]
2m+1(c) = H

(
(−aci + ci+1)

2m
i=0

)
,

H̄
[a,b]
2m+1(c) = H

(
(bci − ci+1)

2m
i=0

)
.

(2.7)
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Proposition 2.18 ([ST43, KS66, DS97]). For every vector c = (c0, . . . , cn)
T, c ∈ M2n+1 if and

only if the Hankel matrix H(c), defined in (2.6), is positive semidefinite. Furthermore, with a < b

real numbers, c ∈M
[a,b]
n+1 if and only if the Hankel matrices

¯
H

[a,b]
n (c) and H̄

[a,b]
n (c), defined in (2.7),

are positive semidefinite.

Optimality conditions of optimization problems are often expressed via complementarity between

primal-dual vectors. Complementary pairs of nonnegative polynomials and moment cones, as well as

characterization of the extreme rays of these cones, can be easily found, and they are given in the

following Propositions.

Proposition 2.19. If p ∈ Rn+1 is the coefficient vector of a polynomial p, and t is a real number,

then p(t) = 〈p, cn+1(t)〉. In particular, p(t) = 0 if and only if 〈p, cn+1(t)〉 = 0.

Proposition 2.20 ([KS66, Sections 2.2 and 6.6]).

1. The nonzero extreme vectors ofM2n+1 are the vectors αc2n+1(t) for every α > 0 and t ∈ R,

and the vectors (0, . . . , 0, α)T for every α > 0.

2. The nonzero extreme vectors ofM
[a,b]
n+1 are the vectors αcn+1(t) for every α > 0 and t ∈ [a, b].
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Chapter 3

Univariate function estimation with

shape constraints

Our goal in this chapter is to demonstrate applicability of optimization over nonnegative polynomials

to a wide range of statistical estimation problems, specifically those with a number of shape constraints

on the unknown function. Our approach is flexible enough to handle any number of additional

linear constraints, such as interpolation, betweenness, or bounds on the integral of the estimator,

and multiple shape constraints over different intervals. While a lot of attention has been given to

shape constrained optimization, and also to employing (convex) optimization models in statistical

estimation, no systematic study has appeared that demonstrate both the theoretical soundness and

computational efficiency of modern convex optimization in shape-constrained estimation in such a

general setting.

Much of the development of this chapter generalizes to multivariate estimation as well. However, in

the multivariate setting there are a number of additional challenges; we shall discuss these separately,

in Chapter 4.

In each of the estimation problems considered in this chapter the goal is to reconstruct a

univariate, real-valued function f from finitely many observations (function values observed with

noise, realizations of random variables, arrival times, etc.) under a collection of constraints on the

shape of the function. Examples of such shape constraints include: (1) f is nonnegative over [a, b], or

more generally, its graph lies in a specific bounded region (defined, for example, by linear inequalities);

(2) f is monotone non-decreasing or non-increasing; (3) f is convex or concave. The function f is

otherwise assumed to belong to some (possibly infinite-dimensional) functional space. The optimal
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estimator shall minimize a given loss function over the set of shape constrained functions from this

space. We propose a variant of the classical method of sieves to find the estimator via the solution of

finite-dimensional optimization problems. As our primary example we use sieves involving polynomial

splines.

3.1 Existing results in univariate shape-constrained estimation

There is a vast literature on shape constrained estimation and learning problems. In [DTA00] a survey

of smoothing regression problems with shape constraints is presented. The thesis [Mey96] reviews

algorithms for both shape constrained regression and density estimation. The text of Robertson et al.

[RWD88] gives another comprehensive survey of order restricted estimation problems, with over 800

references; Turlach [Tur05] has a more recent review on spline smoothing.

There has also been substantial research on non-parametric estimation via optimization. The

works of de Montricher, Scott, Tapia and Thompson [MTT75, Sco76, STT80, TT90], and Nemirovskii,

Polyak, and Tsybakov [NPT84, NPT85] are representative; in these references detailed analyses

of consistency and rate of convergence of estimators are also presented. However, the majority of

algorithmic techniques used to date are relatively simple and ad-hoc; often specific to the (single)

shape constraint involved in the problem, with little potential for generalization. Below we summarize

some of the shortcomings of the existing approaches that we would like to address in this thesis.

1. Limited scope. Techniques that do not explicitly involve optimization are designed to solve a

specific problem, usually involving a single constraint on the shape of the estimator.

Many of the optimization-based methods also have a rather narrow scope; for example, several

approaches have been proposed for shape constrained spline smoothing using splines of a specific

degree. In [Hil54], convex regression using residual sum of squares loss function is approached

by searching over piecewise linear functions with fixed knot points; [Bru58] employs a similar

approach for monotone regression, but he works with piecewise constant functions. (In both

of these papers the knot points are aligned with the data points.) In [HS98] quadratic B-

splines are used for monotone regression, while [Die80] employs cubic splines in convex/concave

regression—both by forcing the piecewise linear second derivative to be nonnegative at its knot

points. These methods exploit the fact that global nonnegativity is expressible by finitely many

linear inequalities, which will not hold even if the order of smoothness (and the degree) of the

splines is increased by one. Similarly, [Tur05] proposes a method for spline smoothing that is
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only applicable to quadratic and cubic splines, but not to splines of higher degree.

Whenever the optimal estimators are known a priori to be piecewise constant or piecewise

linear, this approach is justified, and may not even require optimization. For instance, in

monotone regression with residual sum of squares loss function the optimal estimator is the

slope of the greatest convex minorant of the cumulative sum of the observed function values

yi = f(xi). This allowed Brunk to derive a closed form formula for the optimal piecewise

constant solution [Bru58]. A similar result holds for monotone increasing or decreasing density

estimation, see for example [EL01]. These ideas do not seem to generalize if we require that

the estimator belong to some space of smooth functions.

The collection of papers in [Sch00] survey and justify why smoothing may be necessary for

regression problems, and Eggermont and LaRiccia [EL01] make a similar case for density

estimation. Hence, it is preferable to develop methods that can handle various loss functions

(such as those used in penalized maximum likelihood estimation), rather than committing to a

specific one.

2. Nonlinear transformation through change of variables. Many of the shape constraints

reduce to the nonnegativity of some unknown function over its entire domain. If f is required

to be nonnegative, then a simple way of imposing this constraint is to write f = g2, or

f = exp(g), and then turn the attention to g; see, for example, [GG71] for a method employing

such transformations. A difficulty with this approach is that linear constraints on f (such as

periodicity, f(t) = f(t+ a), or the requirement that f integrates to one) are transformed into

non-linear, and mostly non-convex constraints on g. As a result, the transformed optimization

problems may become computationally intractable. A further drawback of this approach is that

the underlying space of g may not be the same as that of f ; in particular, g may not belong to

a finite-dimensional linear space even if f does. See [MTT75] for a study on the existence and

uniqueness of maximum likelihood estimators in models involving such transformations.

3. Overly restricted models. At the time of some of the earlier works on shape constrained

estimation, semidefinite and second-order cone programming methods were either not available

or known, or were considered computationally too expensive, hence these studies often used

oversimplified inexact optimization models. Most of the models reviewed and proposed in the

surveys [RWD88] and [DTA00], as well as in the theses [Mey96] and [d’A04] formulate shape

constraints employing only polyhedral constraints, confining themselves to proper subcones of

the functional cones of interest. To see just one example of such an approach, suppose that
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we are interested in nonnegative d-degree polynomial splines over an interval [a, b]. Observing

that the B-spline basis functions are nonnegative functions that generate all polynomial splines

[Boo01], it has been proposed to look at the cone generated by B-spline basis functions, which

is a polyhedral cone. However, this cone is a proper subset of the cone of all nonnegative

d-degree splines. The idea of I-splines [Ram88] is based on the same concept. (I-splines are

integral functions of B-splines, and they form a basis of monotone nondecreasing functions.)

Since nonnegative splines can be effectively handled by modern convex optimization methods,

this restriction is no longer necessary. Nonetheless, such proper subcones may in some cases

provide an adequate estimator; in other cases, especially in the multivariate case, estimation

using proper subcones of nonnegative may be unavoidable on complexity grounds. However,

some theoretical justification must be provided to ensure that the polyhedral approximations of

the cone of shape-constrained functions are adequate. We explore this question, and compare

simplified models (using proper subcones) to models that use the entire cone of nonnegative

functions. Specifically, we examine estimating nonnegative polynomial splines generated by

piecewise Bernstein polynomial spline basis rather than B-splines, and compare the results

to the SDP/SOCP approach. (We will justify our choice of Bernstein basis over B-splines in

Theorem 3.6.)

4. Under-restricted models. To obtain simple optimization models (involving finitely many

linear constraints only) some statisticians impose shape restrictions only on a finite subset of

the domain of the unknown function. For instance, [DSTA96] and [MTA99] consider polynomial

splines with nonnegativity on the k-th derivative, but they impose this nonnegativity only

on the knot points. Obviously, except for piecewise linear splines, these constraints do not

guarantee nonnegativity on all points. The same approach is taken in [VW87].

5. Heuristics. A number of iterative methods were proposed which change the number of linear

constraints in each iteration, until the solution of the under- or over-restricted problem becomes

a feasible solution to the original problem. For example, [Tur05] proposes an iterative method

for shape-constrained spline smoothing that suffers from both over- and under-restriction.

Initially nonnegativity is imposed on the spline at finitely many points. Then, if this spline

is still negative somewhere, the following candidates are restricted to have critical points at

those local minima of the previous spline where it assumed negative values, and nonnegativity

is imposed at these critical points, too. Hence, from the second iteration onwards the optimal

nonnegative spline is likely to be excluded from the search.
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Ad-hoc methods for multiple shape constraints include iterative transformations of an estimator

to satisfy at least one of the constraints. These methods also have no theoretical justification:

even if they terminate, the resulting estimators are not known to be optimal in any sense, and

in some cases they do not even yield an estimator that satisfies the required constraints.

One of our goals in this thesis is to formulate shape constrained problems at the same level of

generality as it is common in the classical, not shape constrained, estimation literature, and propose

flexible methods also applicable in the multivariate setting, and in the presence of multiple shape

constraints.

In the univariate setting most shape constraints reduce to nonnegativity. Perhaps because in

most interesting function spaces the cone of nonnegative functions is not a polyhedral cone, it seems

that there is a hesitation to tackle the nonnegativity (or other shape constraints) directly in these

spaces. The following three quotes from well-known references are typical.

From Ramsay [Ram88]:

“Attempting to impose monotonicity on polynomials quickly becomes unpleasant. . . ”

From Tapia and Thompson [TT90] p. 103:

“The nonnegativity constraint [in density estimation] is, in general, impossible to enforce

when working with continuous densities which are not piecewise linear.”

From Mammen and Thomas-Agnan [MTA99]:

“Constrained smoothing splines with infinitely many constraints (like m(r)(x) ≥ 0) for all

x are difficult to compute. . . ”

We show that these concerns may not be all that warranted. In particular, nonnegativity

is an “easy” constraint when the shape constrained problems are formulated using polynomials,

trigonometric polynomials, polynomial splines of a given order, or exponential families, and the

theory of nonnegative polynomials outlined in Chapter 2 is used to reformulate these problems as

semidefinite optimization problems.

In recent years some authors have already applied SDP and SOCP techniques to a few shape-

constrained estimation and learning. Wang and Li [WL08] used cubic splines for isotonic regression,

and Fushiki et al. [FHT06] have used semidefinite programming constraints with log-likelihood

objective function in parametric density estimation with nonnegative polynomials. Alizadeh et al.

[AENR08] have used SOCP and SDP models to estimate the smooth arrival rate of non-homogeneous

Poisson process based on observed arrival rates using cubic splines.
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The work in this thesis is an extension of these results in several directions. We apply the

SDP/SOCP approach to problems of regression, density estimation, and even classification mostly

in univariate problems, and we also provide theoretical background for the multivariate case. Our

methods are flexible enough to allow multiple shape constraints. We may easily add interpolation

constraints requiring our function to go through a number of given points, and we may impose

multiple shape constraints over the entire range of data, or over a subset of the domain of the

unknown function.

In Section 3.2 we lay out a sieve method for shape constrained learning problems. In Section 3.3

we apply this general approach employing polynomial splines, and show how SOCP and SDP

approaches can be used effectively to solve these problems. Section 3.4 lists applications to this

theory to a number of shape constrained estimation problems. The corresponding numerical results

are collected in Section 3.5, where we also contrast the results to approximations based on using

polyhedral cones, especially those generated by Bernstein polynomials.

We should mention that our main purpose is to demonstrate wide applicability and computational

feasibility of the proposed methods, and to compare our methods to some earlier works using data

offered by other researches as well as simulated data. As such, some of the computational results are

mostly “proofs of concept” rather than detailed case studies of each individual problem.

3.2 Sieves and cones of nonnegative functions

3.2.1 Estimation in functional Hilbert spaces

In the most general setting in the statistical literature the goal is to reconstruct an unknown

real-valued function f ∈ H in some reproducing kernel Hilbert space (RKHS) H, based on finitely

many observations z1, z2, . . . , zN drawn from a subset D ⊆ Rk. The function f must satisfy a

number of shape constraints, which translate to the requirement that f belongs to a convex, closed,

pointed cone K ⊆ H, possibly intersected with an affine subspace. Finally, we seek a function f that

minimizes a convex loss functional L(·|z1, . . . , zN ). Hence, a shape-constrained estimation problem is

an optimization problem of the form:

inff L(f |z1, . . . , zN )

subject to Ai(f |z1, . . . , zN ) = bi for i = 1, . . . ,m

f ∈ K

, (3.1)
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where A1, . . . , Am are H → R linear functionals, b1, . . . , bm are real numbers, and L and K are as

explained above. Constraints on the shape of f are expressed by the conic constraint f ∈ K (possibly

together with some of the linear equations). For example, K can be the cone of nonnegative, monotone

non-decreasing, or convex functions in H. Multiple shape constraints can be modeled by considering

a cone K that is created the intersection of basic cones. If H is finite-dimensional (which happens,

for instance, when parametric models, or finite-dimensional approximations of infinite-dimensional

problems are considered), K is often the cone of nonnegative functions in H, which we denote by P

in this section. Many other shape constraints, especially in the univariate case, can be reduced to

this case. For example, derivatives of f may be sign-constrained, ensuring monotonicity, convexity or

concavity of f .

Care has to be taken to ensure that the problem (3.1) has an optimal solution; this largely

depends on the underlying space H and the loss function L. Hence, H is chosen as appropriate in the

specific problem at hand. This is a well researched area; for instance, when a smooth estimator is

sought, a Hilbert-Sobolev space Wm
2 ([a, b]) is an appropriate choice for a number of commonly used

loss functions [KW71]. Moreover, in certain shape constrained problems it is also known that the

optimal solution belongs to a specific finite-dimensional space. Examples include the (unconstrained

and inequality constrained) smoothing [Wah90, Chapter 1], [VW87], [EL01], and certain maximum

likelihood estimation problems [NPT84]. In univariate problems, these solutions are often piecewise

polynomial splines.

For an example when the problem is ill-posed, consider density estimation, where zi = Xi

are the realizations of a random variable whose density we seek. If the negative of the likelihood

(or log-likelihood) is chosen as the loss functional, and the search space is the set of nonnegative

continuous density functions, then there is no optimal solution at all.

As another example, consider the least square regression problem. In this case the data consist

of zi = (yi,xi) with xi ∈ dom f . Obviously, if we choose the least square loss function L(f |zi) =

∑

i

(
yi − f(xi)

)2
, then in every sufficiently “rich” space H we can find solutions f which interpolate

the data and thus, have a loss value of zero. The problem with such an “optimal” solution is that

the resulting function, aside from being too complicated, overfits the data, and thus will be a poor

fit at new and unobserved points x.
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3.2.2 Sieves and finite-dimensional approximations

The term sieve was coined originally by Grenander [Gre81] for a sequence of subsets S1, S2, . . . of

some metric space of functions Ω containing the unknown function; it is assumed that
⋃

k Sk is

dense in Ω. The main idea is that for any kind of statistical function estimation problem, instead of

minimizing a given loss functional on the entire space Ω, search in Sm for some m, which is an easier

problem. As m increases it is assumed that the “complexity” of the functions under consideration

also increases. This on the one hand may give rise to a better fit to the observed data, but on the

other hand, may depend too much on the data, and result in overfitting. Thus, care is taken to select

the appropriate Sm. The value of m is usually determined from the data by techniques discussed

below. Note that the idea is almost independent of the kind of objective function used, that is the loss

functional to be minimized. Thus, it can be applied to least-squares regression problems, maximum

likelihood estimation, penalized maximum likelihood estimation, and so on. Note, however, that for

specific loss functionals the choice of sieves may effect the consistency and the rate of convergence of

the estimators [GH82, NPT84].

The presence of shape constraints sometimes has a regularizing effect, forcing the optimal solution

to belong to a simple, a priori known, finite-dimensional space. In such cases sieve methods may not

even be necessary to avoid overfitting and ill-posedness in (3.1). For instance, if K in (3.1) is the

cone of monotone increasing functions, then as long as the underlying space H is sufficiently large, a

piecewise constant function is the least square solution [Bru58]. The same claim holds for maximum

likelihood estimation of monotone probability density functions. In other situations, however, the

shape constraints do not remove the overfitting and the ill-posed nature of the infinite-dimensional

problems. For instance, if the only shape constraint is that f must be nonnegative (K is the cone

of nonnegative functions), then least squares regression will still result in interpolating functions,

and maximum likelihood will result in sums of Dirac distributions. Even when the shape constraints

add some regularization, they may not yield a function in the functional space of interest. In the

above examples the piecewise constant functions may not be acceptable if we are seeking smooth

estimators.

In this chapter we follow the sieve method, but with certain restrictions both on the space Ω

and the subsets Sm. First, Ω is replaced by a RKHS H ⊆ C([a, b]) (the set of continuous functions

over [a, b]). Second, we assume that the sequence {Sm} is nested, that is S0 ⊂ · · · ⊂ Sm · · · ⊆ H, or

asymptotically nested, meaning that for every m the sieve has a nested subsequence of subsets of

Sm. (We define these terms precisely below.) Finally, we assume that Sm are all finite-dimensional.
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Therefore, we are considering finite-dimensional approximations of problem (3.1).

There are several ways to choose the right subcone from a sieve (that is, the right value of m),

these are essentially the same approaches as those commonly used to avoid overfitting. We shall

mention two of them. One approach is cross-validation, in which only a subset of the data is used for

estimation, and then the resulting estimated f is tested on the remainder of the data to gauge the

prediction power of the estimated function. Another approach is to measure the trade-off between

the accuracy and complexity of the model using Sm. Several such measures have been proposed, they

are commonly referred to as information criteria. For more on information criteria, see [BA04]; for

model selection in general the reader is referred to the monograph [BA02].

All of these approaches can be combined with smoothing techniques. These include a penalty

functional in the loss function which discourages “overly complex” solutions.

Let us now discuss what we mean by a finite-dimensional approximation of problem (3.1).

Definition 3.1. A sequence {Ki}, Ki ⊆ K, of closed, pointed and convex cones is called a conic

sieve if each Ki is finite-dimensional, and
⋃

iKi is dense in K. We say that the sieve is nested if

K1 ⊆ K2 · · · ⊆ Ki ⊆ · · · , and it is asymptotically nested if for each i the sequence has a nested infinite

subsequence containing Ki.

The most straightforward construction of sieves for the cone K in H is to consider a countable

orthonormal basis {φi}i=1,... of H, and letting Vm
def
= span(φi)

m
i=0, and Ki = K ∩ Vi for each i.

However, it may not be computationally tractable to optimize over K ∩ Vi. As a result, we may need

to find alternative conic sieves K′
i ⊂ Ki, where optimizing over K′

i is easier than optimizing over Ki.

To make things concrete, let us look at a few examples.

Example: Nonnegative univariate polynomials

Suppose that in problem (3.1), H ⊆ C([a, b]) (the set of continuous functions over [a, b]), and K = P

is the cone of nonnegative functions in H. Then finite-dimensional approximations can be constructed

using polynomials of increasing degree. Let Vi be the set of polynomials of degree at most i. Then

⋃

i Vi is dense in C([a, b]) (with respect to the uniform norm topology), and thus it is dense in H.

Then for each i, Ki = K ∩ Vi = P
[a,b]
i+1 is the cone of polynomials of degree i that are nonnegative

over [a, b]. In this case, the unknown function can be expressed as f(t) = f0 + f1t+ · · ·+ fit
i, and

thus, the coefficients fj , for j = 0, . . . , i are the variables of the finite-dimensional approximation. (In

practical computations we would, of course, choose an orthogonal basis to represent the polynomials,

not the rather poorly behaved standard basis.)
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Example: Polyhedral approximations and Bernstein polynomials

If we prefer polyhedral approximations, we can use a technique similar to Ramsay’s [Ram88], but for

polynomials rather than splines. Namely, we should identify a basis {ϕj(t)}j=0,...,i of polynomials

of degree up to i satisfying ϕj(t) ≥ 0 for all j = 0, . . . , i and a ≤ t ≤ b. Then we let Ki be the

cone generated by {ϕj(t)}j=0,...,i. Care should be taken in our choice of ϕj to make sure that
⋃

iKi

is dense in the cone of nonnegative functions in H. For instance, the standard polynomial basis

functions, {1, t, . . . , ti}, are nonnegative over [0, 1], however the cone generated by them contains

only monotone non-decreasing polynomials, and cannot be used to approximate every continuous

nonnegative function.

A nonnegative basis which gives rise to a conic sieve is the Bernstein polynomial basis: Bi,j(t) =
(
i
j

)
tj(1 − t)i−j , j = 0, . . . , i. (The binomial coefficient plays no role in our context, we kept

it only to be faithful to the usual definition of Bernstein polynomials.) If we choose K′
i =

{
∑i

j=0 αjBi,j | αj ≥ 0, j = 0, . . . , i
}

, then
⋃

iK
′
i is dense in the cone of nonnegative continuous

functions; this follows from the well-known proof of Weierstrass approximation theorem based on

Bernstein polynomials [Lor86, Theorem 1.1.1].

Example: Univariate polynomial splines

Another important sequence of finite-dimensional function spaces is the one induced by splines.

Recall Definition 1.1: a univariate polynomial spline f of degree d and continuity Cr (r ≤ d− 1) is a

real valued function on [a, b] = [a0, am] defined piecewise on the intervals [ai, ai+1], i = 0, . . . ,m− 1

that satisfies the following properties: (1) f is a polynomial of degree d over each interval [ai, ai+1],

i = 0, . . . , n − 1; (2) f has continuous derivatives up to order r over (a, b). In this thesis we will

always assume r = d− 1. The points ai are called the knot points of the spline. The linear space of

all splines of order d and knot point sequence a is denoted by S(d,a).

Suppose that the degree d is fixed, and Vi is chosen to be S(d,ai), where {ai} is a sequence of

knot point sequences such that the length of the longest subinterval in ai tends to zero. Then by

[Sch81, Chapter 6] we have that
⋃
Vi is dense in the Hilbert-Sobolev space H = Wd

2

(
[a, b]

)
, and hence

⋃
(Vi ∩ P) is dense in Wd

2

(
[a, b]

)
∩ P. (As before, P denotes the set of nonnegative functions in H.)

The sequence {Vi} is not necessarily nested, however it is not difficult to create a subclass that forms

a nested or asymptotically nested sequence. For instance we may start from one interval [a, b], and

then recursively add the midpoint of the rightmost longest interval to the set of knots. This way we

have splines that have an almost homogeneous set of knots as the distances between adjacent knot
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points are either l or 2l for some real number l. Similar schemes may be constructed when knots are

chosen based on data zi; in this case, of course the number of knots should grow with the number of

available data. The most straightforward way to obtain an asymptotically nested sieve is to consider

knot point sequences that subdivide [a, b] evenly.

In this way we have a nested (or asymptotically nested) sequence of polynomial splines in

Wd
2

(
[a, b]

)
. Now in each spline space S(d,a) there may be a number of different convex cones

that encode some type of shape constraint. Let us for the moment concentrate on the cone

P [d,a] def
= S(d,a) ∩ P of nonnegative functions in S(d,a). With the notations of Chapter 2, this cone

is P
[a0,a1]
d+1 × · · · × P

[am−1,am]
d+1 intersected with an affine subspace for the required continuity of the

derivatives. Therefore, P [d,a] is a convex, but in general non-polyhedral, cone.

We may wish to deal with cones of nonnegative splines that are polyhedral. Ramsey, as stated

earlier, suggests working with cones generated by B-splines which form a nonnegative basis for

splines with excellent numerical properties. We can also use the (polyhedral) cone of piecewise

Bernstein polynomial splines. In Section 3.3.2 we prove that this cone contains the one generated

by B-splines, therefore, the optimization problem with piecewise Bernstein polynomial splines in

general provide lower values of loss functional. Furthermore, both cones generated by B-splines and

Bernstein polynomials induce conic sieves. In the computational section of this chapter (Section 3.5),

we concentrate on polynomial spline computations and compare the piecewise Bernstein polynomial

cones and the full cone of nonnegative polynomial splines.

Example: Trigonometric polynomials

For many applications, in particular in signal processing, trigonometric polynomials may be the

appropriate finite-dimensional choice. These functions are of the form fi(t) =
∑i

k=0 ak sin(kt) +

bk cos(kt). Well-known trigonometric identities imply that the cone of nonnegative trigonometric

polynomials is a nonsingular linear image of the cone of nonnegative polynomials over the entire

line. (As it would take us far from our current discussion, we shall defer the proof of this claim to

Section 5.1, where we also discuss some important theoretical consequences of this result.) Therefore,

any representation or algorithmic method of optimization for the cone of nonnegative polynomials

can easily be applied to the nonnegative trigonometric polynomials. For this reason we will not

discuss trigonometric polynomials separately in this chapter.
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Example: Complete Chebyshev systems

A Chebyshev system is a set of linearly independent univariate functions {u0, u1, . . . , ud}, ui : [a, b]→

R, such that no linear combination of them has more than d zeros. A complete Chebyshev system is

an infinite sequence of functions {ui}
∞
i=0, such that for each k, the set {u0, u1, . . . , uk} is a Chebyshev

system. Clearly, if Vk = span{u0, . . . , uk}, then {Vk} is a nested sequence of functional spaces, and

the cones Pu
k of nonnegative functions in Vk form a conic sieve in the functional Hilbert space in

which {ui}
∞
i=0 is a Riesz basis. Karlin and Studden [KS66] thoroughly study Chebyshev and related

systems, including the corresponding cones of nonnegative functions.

Sieves of monotone, convex, and concave functions

When considering sufficiently differentiable functions, many shape constraints mentioned before

reduce to the nonnegativity (or nonpositivity) of the derivatives. Hence, sieves of monotone non-

increasing or non-decreasing, convex or concave functions using polynomial approximations can be

defined analogously to the sieves of nonnegative functions.

3.3 Representations of nonnegative polynomials and splines

3.3.1 Representations involving semidefinite and second-order cone constraints

In this section we apply the results presented in Chapter 2 to characterize nonnegative splines. We

have summarized the main results on the semidefinite representation of nonnegative polynomials

over an interval in Proposition 2.6. This easily extends to a characterization of nonnegative splines

over [a0, am]. As mentioned in the previous section, this immediately gives rise to analogous charac-

terizations of non-increasing, non-decreasing, concave, and convex splines, by imposing nonnegativity

on the derivatives of the spline.

An additional useful property of quadratic and cubic splines is that their characterization involve

semidefinite constraints of 2×2 matrices. Positive semidefiniteness of 2×2 matrices can be translated

to linear and quadratic (second-order cone) constraints using the following, well-known fact:

Proposition 3.2. The matrix ( x0 x1
x1 x2

) is positive semidefinite if and only if (x0+x2, x0−x2, 2x1)
T ∈

Q3, where Qn+1 =
{
(x0, . . . , xn) : x0 ≥

∥
∥(x1, . . . xn)

T
∥
∥
2

}
is the (n + 1)-dimensional second-order

cone (or Lorentz cone).

Linear constraints and semidefinite constraints (that is, constraints of the form X < 0) can

be handled by some nonlinear optimization and modeling software, such as CVX [GB07], SeDuMi
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[Stu99], and SDPT3 [TTT03] very effectively. However, currently none of these software packages

can handle an arbitrary convex nonlinear objective function, which is necessary for applications such

as maximum likelihood density estimation.

Second-order cone constraints, that is, constraints of the form x ∈ Qn+1 can be handled by most

state-of-the-art convex optimization software, which also handle arbitrary convex objective functions,

too. While carrying out the numerical experiments of this paper, we found the solvers KNITRO

[Zie], LOQO [Van06], and CPLEX [ILO] especially effective and useful. The theoretical complexity

of optimization problems involving only linear and second-order cone constraints is the same as that

of linear optimization [AG03].

The equalities (2.2) and (2.3) suggest that while working with piecewise nonnegative splines, we

may run into numerical problems if the interval widths (that is, the distances between adjacent knot

points) are very small, or of different orders of magnitude. This can be avoided by scaling : apply

separately an affine transformation (change of variables) on each polynomial piece p(i) that maps the

interval [ai, ai+1] (the domain of p(i)) to [0, 1], and represent each p(i) by the coefficients of the thus

transformed polynomial, rather than by the original coefficients. The resulting scaled representation

of splines is then the following.

S(x) = p(i)(x) =

n∑

k=0

p
(i)
k

(
x− ai

ai+1 − ai

)k

∀x ∈ [ai, ai+1]. (3.2)

Analogously, we can use any other basis U = {u0, . . . , un} of polynomials of degree n in place of the

monomial basis used above. The scaled representation of splines using basis U is then

S(x) = p(i)(x) =

n∑

k=0

p
(i)
k uk

(
x− ai

ai+1 − ai

)

∀x ∈ [ai, ai+1]. (3.3)

For example, here is the complete list of constraints that characterize a nonnegative cubic spline

of continuity C2, with knot points a0, . . . , am, with its pieces represented in the monomial basis:

Theorem 3.3. The coefficients p
(i)
k , i = 0, . . . ,m− 1, k = 0, . . . , 3 in (3.2) represent a nonnegative

cubic spline over [a0, am] if and only if there exist real numbers x
(i)
ℓ , y

(i)
ℓ , i = 0, . . . ,m− 1, ℓ = 0, 1, 2

satisfying the following constraints for all i = 0, . . . ,m − 1 (up to only m − 2 for the last three

constraints).

p
(i)
0 = y

(i)
0 (3.4a)

p
(i)
1 = 2y

(i)
1 + x

(i)
0 − y

(i)
0 (3.4b)
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p
(i)
2 = y

(i)
2 + 2x

(i)
1 − 2y

(i)
1 (3.4c)

p
(i)
3 = x

(i)
2 − y

(i)
2 (3.4d)

(x
(i)
0 + x

(i)
2 , x

(i)
0 − x

(i)
2 , 2x

(i)
1 )T ∈ Q3 (3.4e)

(y
(i)
0 + y

(i)
2 , y

(i)
0 − y

(i)
2 , 2y

(i)
1 )T ∈ Q3 (3.4f)

p
(i+1)
0 =

3∑

j=0

p
(i)
j (3.4g)

1

ai+2 − ai+1
p
(i+1)
1 =

3∑

j=1

j

ai+1 − ai
p
(i)
j (3.4h)

2

(ai+2 − ai+1)2
p
(i+1)
2 =

3∑

j=2

j(j − 1)

(ai+1 − ai)2
p
(i)
j (3.4i)

3.3.2 Sieves of polyhedral spline cones

In this section we examine sieves comprised of polyhedral approximations. As before, we concentrate on

polynomial approximations of nonnegative functions. Even though we gave a complete characterization

of nonnegative splines suitable for tractable optimization models, there are still a number of reasons

to consider polyhedral approximations – even in the univariate case.

Certain combinations of shape constraints admit a polyhedral representation, especially when

splines of low degree are used. In these cases the results of the previous section are unnecessary.

Consider, for example, a twice differentiable concave and nonnegative function f over [a, b]. Because

f is concave, f(x) ≥ 0 for every x ∈ [a, b] if and only if min{f(a), f(b)} ≥ 0; this can be expressed

by two linear inequalities. If f is approximated by a cubic spline, then the concavity constraint

f ′′(x) ≥ 0 (x ∈ [a, b]) also simplifies to a finite number of linear inequalities. Note, however, that

nonlinear constraints are unavoidable to describe nonnegative convex cubic polynomials (and splines),

as that cone is not polyhedral.

We concentrate on models of the following form: we fix a basis U = {u0, . . . , un} of nonnegative

polynomials of degree n, and then consider splines whose coefficients p
(i)
k in the scaled representation

(3.3) are all nonnegative. Let P(U,a) denote the set of such splines with knot point sequence a.

These are clearly a subset of all nonnegative splines.

Our first result is a sufficient condition for a sequence of polyhedral polynomial approximations

to form a sieve. For convenience, we introduce the following notation: the length of the longest

subinterval in the knot point sequence a (sometimes called the mesh size of a) is denoted by ‖a‖.

Theorem 3.4. Consider a basis U = {u0, . . . , un} of polynomials of degree n ≥ 1 such that each
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ui is nonnegative over [a, b], and assume that 1 ∈ int cone(U), where 1 denotes the constant one

polynomial. Furthermore, let {ai} be an asymptotically nested sequence of knot point sequences

satisfying lim ‖ai‖ = 0. Then the set
⋃

i P(U,ai) is a dense subcone of P ∩ C([a, b]), the cone of

nonnegative functions over [a, b].

Proof. Without loss of generality we can assume that [a, b] = [0, 1]. We start the proof by showing

that for every polynomial p of degree n, strictly positive over [0, 1], there exist nonnegative constants

Ci such that p+ Ci ∈ P(U,ai) for every i, and limCi = 0.

Fix i, and consider two adjacent knot points ak and ak+1 from the knot point sequence ai.

The polynomial p can be represented as a piecewise polynomial spline of degree n with knot point

sequence ai; its scaled representation (3.2) has p(k)(x) = p((ak+1 − ak)x+ ak). Collecting terms in

the standard basis, we have

p(k)(x) = p((ak+1 − ak)x+ ak) = p(ak) +

n∑

i=1

q
(k)
i xi

with some q
(k)
i = O((ak+1−ak)

i), i = 1, . . . , n. By assumption, p(ak) > 0, because p is strictly positive

on [0, 1]. All other coefficients q
(k)
i are of order O(ak+1−ak). By the assumption on U ,

∑n
j=0 αjuj ≡

p(ak) for some positive α0, . . . , αn. Now, if we express p(k) in the basis U : p(k) =
∑
p
(k)
j uj , we

have that p
(k)
j = αj − δ

(k)
j with |δ

(k)
j | = O(ak+1 − ak), consequently p(k) + p(ak)maxj(|δ

(k)
j |/αj)

has positive coefficients in the basis U . Applying the same argument for every k, we obtain that

p+ Ci ∈ P(U,ai) for

Ci = max
k:ak∈ai

(
p(ak)max

j
(|δ

(k)
j |/αj)

)
.

Finally, as |δ
(k)
j | = O(ak+1 − ak) and p is bounded, Ci → 0 as ‖ai‖ → 0.

The same argument can be used prove that for every strictly positive spline over [0, 1], with knot

point sequence a, and for every sequence {ai} consisting of subdivisions of a satisfying lim ‖ai‖ = 0,

there exist nonnegative constants Ci such that s+ Ci ∈ P(U,ai) for every i, and limCi = 0.

Consequently,
⋃

i P(U,ai) is a dense subset of nonnegative splines of degree n.

Finally, let us consider an arbitrary nonnegative function f ∈ C([a, b]). By the approximation

theory of splines (see for example [Sch81, Theorem 6.27]), for every n there exists a constant Mn > 0,

depending only on n, but not on f , such that for every knot point sequence a there exists a (not

sign-constrained) spline s ∈ S(n,a) satisfying

‖f − s‖∞ ≤Mnωn(f, ‖a‖), (3.5)
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where ωn is the nth modulus of smoothness of f in L∞([a, b]), satisfying limtց0 ωn(f, t) = 0 for every

n ≥ 1, provided that f is continuous on [a, b]. Let ε denote the right-hand side of (3.5). Because f is

nonnegative, the spline s′ = s+ ε is strictly positive, and it satisfies

‖f − s′‖∞ ≤ 2Mnωn(f, ‖a‖). (3.6)

Hence, there are strictly positive splines s′i ∈ P ∩ S(n,ai) satisfying lim ‖f − s′i‖∞ = 0.

We already saw that if lim ‖ai‖ = 0, and {ai} is asymptotically nested, then the positive spline

s′i with knot point sequence ai can be approximated with arbitrarily small error by some spline in

S(U,aj) with a sufficiently high j. By (3.6), the same holds for f .

As Bernstein polynomials of every given degree sum to the constant polynomial 1, we can

construct, for every n, a sieve that consists of polyhedral cones of n times differentiable polynomial

splines.

Corollary 3.5. For every n, the cone of piecewise Bernstein polynomial splines of degree n is a

dense polyhedral subcone of nonnegative continuous functions over [a, b] consisting entirely of n− 1

times differentiable functions.

Let us also remark that Theorem 3.4 has straightforward generalization to multivariate splines

defined piecewise over a rectilinear grid of patches. This allows us to construct polyhedral and

sum-of-squares cones of splines that are dense in the set of continuous multivariate nonnegative

functions. (See Section 4.1.)

Our next observation about polyhedral sets of splines is about B-splines. B-splines are particularly

popular in the approximation and engineering literature because of their excellent theoretical and

computational properties. However, as the following theorem shows, cones generated by B-splines of

a given degree and knot point sequence form a proper subcone of splines with nonnegative coefficients

in their scaled representation (3.3) with the Bernstein polynomial basis as U . Hence, we do not

consider B-splines any further.

Theorem 3.6. For every positive integer n, the cone of functions generated by B-splines of degree

n with knot points a is a subset of the cone of piecewise Bernstein polynomial splines of the same

degree, with knot points a. For n ≥ 2 this containment is strict.

Proof. B-splines are commonly represented as a linear combination of the B-spline basis functions,

whose supports are intervals between non-consecutive knot points. Recall the famous Cox–de Boor
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recursion formula [Boo01]: if fn,i, i = 0, . . . ,m denote the B-spline basis functions of degree n with

knot points 0, . . . ,m− 1, then for every i = 0, . . . ,m,

f0,i(x) =







1 i ≤ x < i+ 1

0 otherwise

, and (3.7a)

fn,i(x) =
x− i

n
fn−1,i(x) +

(i+ n+ 1)− x

n
fn−1,i+1(x) n ≥ 1. (3.7b)

To prove our claim, we need a characterization of B-splines of degree n as splines of the form

S(Un,a) with some basis Un of degree n polynomials. First, we obtain a recursion on the appropriate

Un from (3.7), and then we establish a recursive formula on the basis transformation matrix between

Un and the degree n Bernstein polynomial basis. We complete the proof by showing that each entry

of that matrix is nonnegative.

A B-spline segment between two consecutive knot points can be written as a nonnegative linear

combination of the same segment of the B-spline basis functions. We can assume without loss of

generality that the knot points in question are at 0 and 1, and to simplify the calculations we consider

scaled Bernstein polynomials with leading coefficients ±1, that is, the ith Bernstein polynomial of

degree n is bn,i(x) = xi(1− x)n−i.

Note that the basis functions fn,0, . . . , fn,m are shifted copies of each other: fn,i(x) = fn,0(x− i).

Hence the B-spline segment between knot points 0 and 1 is a nonnegative linear combination of the

functions fn,0(x+ i), i = 0, . . . ,m, or more precisely, of the functions

gn,i(x)
def
= fn,0(x+ i) ∀ i = 0, . . . , n,

as fn,0(x + i) is identically zero for i > n. Hence, Un = {gn,0, . . . , gn,n}. Rewriting the recursion

(3.7b) in terms of gn,i we obtain

gn,i(x) = fn,0(x+ i)

=
x+ i

n
fn−1,0(x+ i) +

(n+ 1)− (x+ i)

n
fn−1,1(x+ i)

=
x+ i

n
fn−1,0(x+ i) +

(n+ 1)− (x+ i)

n
fn−1,0(x+ (i− 1))

=
x+ i

n
gn−1,i(x) +

(n+ 1)− (x+ i)

n
gn−1,i−1(x), ∀ i = 0, . . . , n,

(3.8)

with g0,0 = 1.

Using this recursion we can also find a recursive formula for the matrix of the basis transformation
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from the polynomials gn,i to the Bernstein polynomials bn,i. Let An,k,i,j be the coefficient of bn,j in

the unique representation of gk,i in the basis {bn,0, . . . , bn,n}, and Bn,k,i,j be the coefficient of bn,j in

the unique representation of x→ xgk,i(x) in the same basis. Then we have

An+1,n,i,j = An,n,i,j +An,n,i,j−1 (3.9)

from the identity bn+1,j−1 + bn+1,j = bn,j , and

Bn+1,k,i,j = An,k,i,j−1 (3.10)

from the identity xbn,j−1(x) = bn+1,j(x). (The coefficients An,k,i,j are defined to be zero whenever

the indices are “out of bounds”, in particular when j < 0.) Using (3.9) and (3.10), the recursion

(3.8) on gn,i translates to

nAn,n,i,j = Bn,n−1,i,j + iAn,n−1,i,j + (n+ 1− i)An,n−1,i−1,j −Bn,n−1,i−1,j

= An−1,n−1,i,j−1 + iAn,n−1,i,j + (n+ 1− i)An,n−1,i−1,j −An−1,n−1,i−1,j−1

= An−1,n−1,i,j−1 + iAn−1,n−1,i,j + iAn−1,n−1,i,j−1 + (n+ 1− i)An−1,n−1,i−1,j+

+ (n+ 1− i)An−1,n−1,i−1,j−1 +An−1,n−1,i−1,j−1

= iAn−1,n−1,i,j + (n+ 1− i)An−1,n−1,i−1,j+

+ (i+ 1)An−1,n−1,i,j−1 + (n− i)An−1,n−1,i−1,j−1

for every n ≥ 1 and 0 ≤ i, j ≤ n. Every coefficient on the right-hand side is nonnegative. Since

A0,0,0,0 = 1 ≥ 0, this implies that An,n,i,j ≥ 0 for every 0 ≤ i, j ≤ n by induction.

To see that the containment is strict when n ≥ 2, it is sufficient to exhibit a Bernstein polynomial

that is not a nonnegative linear combination of Un. Since bn,k(0) = bn,k(1) = 0 for every k =

1, . . . , n − 1, but gn,i(0) + gn,i(1) > 0 for every i = 0, . . . , n, it follows that every bn,k is such a

polynomial for k = 1, . . . , n− 1.

3.4 Shape-constrained statistical estimation models

This section summarizes a number of univariate non-parametric statistical estimation problems

where the techniques of Sections 3.2 and 3.3 are directly applicable. Numerical illustrations follow in

Section 3.5.
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3.4.1 Non-parametric regression of a nonnegative function

One of the most fundamental problems in statistics is univariate regression, the problem of estimating

a univariate function f based on data zi = (xi, yi) i = 1, . . . , N , assumed to have come from the

model

yi = f(xi) + εi ∀ i,

where f is the unknown function to be estimated, and εi are independent, identically distributed

random variables with mean zero.

The function f is assumed to belong to a class of functions H, and is estimated by finding a

function in H that fits the data at least as well as any other function in H. The goodness-of-fit of f

to the data is measured by some loss functional of the form L(f |z1, . . . zN ) = d(f) + s(f), where the

term d(f) measures the distance of the function values f(xi) and yi, while s(f) is a penalty term

that penalizes non-smooth or in other ways overly complex solutions.

The most common choice for d(f) is the residual sum of squares d(f) =
∑N

i=1(f(xi)− yi)
2, which

is popular for many reasons: it is simple, easy to handle analytically, often leads to models that can

be solved by a closed form formula, and it appears in maximum likelihood models if εi are normally

distributed.

The smoothing term s(f) is often omitted, especially if H already consists of smooth functions

only. If present, it is typically
∫
|f ′|,

∫
|f ′′|, or

∫
(f ′′)2 [EL01].

When there are additional shape constraints on the function f , and when we are estimating f

by splines of degree three or less, then all the above choices of s(f) + d(f) lead to optimization

models with only linear and second-order cone constraints. (Higher degree splines lead to general

semidefinite constraints.)

We should note that in the case of nonnegative regression using least squares error model, or

assuming that the error is normally distributed with mean zero, implies that while we are looking for

a nonnegative estimator, the observations can be negative. If we assume that observations are also

nonnegative, then the normal error model is not appropriate.

3.4.2 Isotonic, convex, and concave non-parametric regression

Suppose the estimator of the unknown function f belongs to a linear space of sufficiently differentiable

functions whose derivatives lie in a space where nonnegativity is easily characterized. Then monotonic-

ity, concavity, and convexity constraints on the estimator can be added to the optimization models

without any difficulty. In particular, monotone, convex, and concave splines can be characterized.
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When using cubic splines, convexity and concavity can be expressed by linear constraints.

3.4.3 Unconstrained density estimation

One can formulate the estimation of probability density functions as a shape constrained optimization

problem. The problem is to estimate an unknown probability distribution from a finite set of

independent samples {X1, . . . , Xn} of that distribution.

A PDF must be nonnegative and integrate to one. Formally, we assume that the PDF to be

estimated has finite support, say [a0, am], and that it is continuous, therefore it can be approximated

by nonnegative polynomial splines of a fixed degree. When using a spline model, the condition that

the PDF should integrate to one simplifies to a linear constraint, since the integral of a polynomial

on a given interval is a linear function of the coefficients of the polynomial. For example, a cubic

spline model can be constructed by adding to (3.4) the constraint

m−1∑

i=0

3∑

j=0

ai+1 − ai
j + 1

p
(i)
j = 1

Finally, the objective function needs to be determined. The most common and straightforward

approach is maximum likelihood estimation. If the unknown PDF is denoted by f , this amounts

to maximizing the likelihood function
∏n

i=1 f(Xi). This objective function will cause numerical

problems, and it is not necessarily a concave function either. Instead, we will use the log-likelihood

function
∑n

i=1 log f(Xi) as the objective function, which is concave if f is a polynomial spline of a

given knot sequence. It is also important to note that by constraining f to be a polynomial spline, the

above maximum likelihood optimization problem is always well-defined. (It has an optimal solution

for any fixed set of knot points.)

Alternatively, one may wish to estimate a cumulative distribution function of a distribution

supported on [a0, am]. Then the constraints to be added are: p(a0) = 0, p(am) = 1 (these are

two linear constraints), and the nonnegativity of p′, another system of constraints that express the

nonnegativity of a polynomial. The nonnegativity of the CDF itself is then superfluous, and the

objective function has to be changed, too. We omit the details and instead focus on PDF estimation.

3.4.4 Unimodal density estimation

Further constraints can be added to these models for unimodal density estimation. If the mode is

known, we can place one of the knot points on the mode, and then add constraints that the spline
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is increasing from the first knot point to the mode, and decreasing from the mode to the last knot

point.

If the mode is unknown, we have a non-convex problem: the set of unimodal functions is not

convex simply because sum of two unimodal functions is not necessarily unimodal. In this situation

an approximate solution to the problem can be found by solving a sequence of optimization models,

each with a different mode, and comparing the optimal solutions that correspond to the different

modes. Finding the exact solution this way is still nontrivial, as the maximum likelihood function

(as a function of the mode) is not unimodal, let alone concave.

Owing to the unimodality constraints, the nonnegativity constraints may be simplified: it is

sufficient to require the PDF to be nonnegative at the first and last knot point.

3.4.5 Log-concave density estimation

Another frequently useful shape constraint that appears in many applications is log-concavity. In this

section we investigate how to apply the methods discussed in the previous sections to the maximum

likelihood estimation of log-concave densities. Distributions with log-concave density include many

common parametric family of continuous probability distributions, such as the normal, uniform, χ2

distributions (for all parameter values), the beta and Gamma distributions (for some parameter

values). They are known for a variety of applications, for example, in econometrics, reliability theory,

and mechanism design (see [BB05] for a detailed exposition and references), as well as in stochastic

programming [Pré71].

Recall that a nonnegative function f is log-concave (or logarithmically concave) if f(x)λf(y)1−λ ≤

f(λx+ (1− λ)y) for every λ ∈ [0, 1] and x, y ∈ dom f . Alternatively, f is log-concave if f = exp(g)

for some concave function g : dom f → [−∞,+∞). We consider the following basic setup: given

independent and identically distributed observations x1, . . . , xn, our goal is to find a probability

density function f that maximizes the log-likelihood
∑n

i=1 log f(xi) among smooth logarithmically

concave density functions.

It was independently shown recently both in [PWM07] and [Ruf07] that without the smoothness

requirement the maximum likelihood estimator is unique, and that its logarithm is a piecewise

linear function whose knot points are the observations xi. The R package logcondens implements

two algorithms that find this estimator. The consistency and the rate of convergence of this

estimator are established in [DR09]. A piecewise linear estimator for the logarithm, however, may be

unsatisfactory if we are looking for a smooth estimator. Kernel methods with smooth kernels yield
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smooth estimators, but they necessitate expensive cross-validation for the bandwidth parameter,

and there is no guarantee that the resulting estimator is optimal in any sense. Moment problems

with log-concavity and unimodality constraints are also well studied, see for example [Pré90, SSP09]

for an optimization-based approach to the univariate discrete moment problem (with and without

shape constraints), and [MNP04] for a study on the multivariate case. Discrete moment problems

are outside the scope of this thesis.

The set of log-concave functions is not convex, and hence it is generally difficult to optimize over

them directly. Instead, the logarithm of the density can be estimated, whose concavity is a convex

constraint. All algorithms in the papers cited above use the same approach, and we shall adopt it,

too.1 In the remainder of this section we show that finding a maximum likelihood polynomial spline

estimator for the logarithm of the unknown density amounts to solving a simple convex nonlinear

optimization problem.

Let f = exp(g) be the probability density function over [a, b] ⊂ R. Choosing g to be the variable of

our optimization problem raises some difficulty: the linear constraint
∫ b

a
f = 1 becomes the nonlinear

equality
∫ b

a
exp(g) = 1. However, as the next lemma shows, the latter constraint can be changed to

∫ b

a
exp(g) ≤ 1 without loss of generality, and as we show below (see Lemma 3.8) this change leads to

a convex programming formulation.

Lemma 3.7. Let [a, b] ⊆ R a closed interval, and K be a cone containing only integrable functions

over [a, b], at least one of which is strictly positive. Given numbers x1, . . . , xn ∈ [a, b], consider the

optimization problem

maximize

n∑

i=1

log f(xi) (3.11a)

subject to

∫ b

a

f(t)dt ≤ 1 (3.11b)

f ∈ K (3.11c)

If the optimal solution exists, then it satisfies (3.11b) with equality.

Proof. Let f be a feasible solution to (3.11), and I =
∫ b

a
f(t)dt. If I = 0, then the problem is

unbounded, because λf is also feasible for every λ > 0. If 0 < I < 1, then f cannot be optimal,

1We realize that in this case we are using an approach that we criticized in the introductory section, namely we
are employing a nonlinear transformation of the function. However, in the case of log-concavity constraint, there are
no general tractable methods without this transformation. As such, the range of problems that can be solved is also
limited. For instance, we cannot have many more linear equality constraints, since in the f → exp(f) transformation
linearity and convexity are lost.
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because f/I is also feasible to (3.11), with higher objective function value. Hence, every optimal

solution must satisfy I = 1.

In our application, K is the set of functions of the form f = exp(g), where g is a concave spline of

a given degree, positive over [a, b], with a given set of knot points. Problem (3.11) is now equivalent

to

maximize
n∑

i=1

g(xi) (3.12a)

subject to

∫ b

a

exp(g(t))dt ≤ 1 (3.12b)

g ∈ P ∩ S(d,a) (3.12c)

for the d and a of our choice.

Since (3.12b) is a convex constraint (see below), the set of feasible solutions to this problem is

convex, closed, and non-empty. It must also be bounded, because otherwise there would be a nonzero

spline that is nonnegative over [a, b], and which integrates to zero. Consequently (3.12) always has

an optimal solution.

It only remains to show that (3.12b) is indeed a convex constraint. This is an immediate

consequence of the next lemma, which we state in a slightly more general form than we need, so it

can be applied to other spaces of functions, such as trigonometric polynomials.

Lemma 3.8. Given any interval [a, b] ∈ R and componentwise integrable function u : [a, b] → Rn,

the function F : Rn → R defined by the formula

F (p) =

∫ b

a

e〈p,u(t)〉dt

is convex in p.

Proof. Using Hölder’s inequality and the weighted version of the inequality of arithmetic and geometric
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means we obtain that for every 0 < λ < 1,

F (λp1 + (1− λ)p2) =

∫ b

a

e〈λp1+(1−λ)p2,u(t)〉dt

=

∫ b

a

eλ〈p1,u(t)〉e(1−λ)〈p2,u(t)〉dt

≤

(
∫ b

a

e〈p1,u(t)〉dt

)λ(∫ b

a

e〈p2,u(t)〉dt

)1−λ

≤ λ

∫ b

a

e〈p1,u(t)〉dt+ (1− λ)

∫ b

a

e〈p2,u(t)〉dt

= λF (p1) + (1− λ)F (p2).

Setting the components of u to be a basis of S(d,a) in Lemma 3.8 shows that the inequality

(3.12b) is indeed a convex constraint.

3.4.6 Arrival rate estimation

The recent paper [AENR08] gives the details of several maximum likelihood models for estimating

the arrival rate of a non-homogeneous Poisson process using nonnegative splines. The models are

different primarily in their assumptions on how the data are given: by exact arrival times, or by the

number of arrivals in fixed, short, intervals. Furthermore, slightly different models can be obtained if

we assume that the arrival rate function is periodic with a fixed period length.

Compared to the regression model with a nonnegativity constraint, the nonnegative spline model

for the arrival rate approximation problem is only different in its objective function. The least

squares objective function is replaced by a likelihood (or log-likelihood) function, and minimization by

maximization. The natural log-likelihood approach directly leads to a tractable model with concave

objective function, the details can be found in [AENR08]. We show a multivariate version of this

approach Chapter 4.

The same paper also compares the shape constrained spline approach to a number of other

approaches. Hence, in Section 3.5 we only compare the SOCP-based model to the linearly constrained

model (using Bernstein polynomials), on simulated data, and also on the same dataset of email

arrivals as the one used in [AENR08].
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3.4.7 Knot point selection

In each of the spline models above we have assumed that a fixed sequence of knot points a0, . . . , am

is given. Finding the best selection of knot points is a central, but very difficult, problem. Ideally,

we would make the knot points variables, and optimize over them as well as the coefficients of the

polynomials, but this would result in a intractable, non-convex optimization problem.

A common practice is to use evenly distributed knot points. While this is a very crude method, it

is also very simple, and it results in simplified optimization models. (For example, from (3.4) we can

eliminate the parameters ai entirely.) It also fits the conic sieve framework discussed in Section 3.2,

as splines with uniform knot points give rise to an asymptotically nested sieve as we increase the

number of knot points. Since our primary goal is to show that our shape constrained spline models

are competitive with the most commonly used kernel methods in all of the applications mentioned

above, we decided to use this simple knot point selection method. As shown in Section 3.5, this was

already sufficient for good results.

Another knot point selection method commonly used in regression problems is to place knot

points at the data points. A theoretical result supporting this idea is that the optimal solutions to

certain optimization models (least squares regression with a penalty term for smoothing) are natural

cubic splines [Wah90]. Even when such a result is not available for our problem, we can start with a

trivial subdivision (with two knot points, one at each endpoint of the domain), and add knot points

one by one, at each step subdividing one of the intervals with the largest number of data points in it.

Finally, we must also decide on the number of knot points. We can accomplish this task by any of

the common model selection procedures: validation on a test set (if there is one), cross-validation or

k-folding (if there is none), or by measuring the trade-off between goodness-of-fit and the number of

estimated parameters using either the Akaike or the Bayesian Information Criterion (AIC and BIC,

respectively) [BA02, BA04]. For more on the details of various common cross-validation methods,

see [AC10].

While cross-validation and k-folding are much more time consuming than computing a score such

as AIC or BIC, all models proposed in this chapter are solvable efficiently enough that even using

leave-one-out cross-validation was computationally feasible in the examples where cross-validation of

parameters was necessary.

When the knot point sequences were not nested, but asymptotically nested, we used leave-one-

out cross-validation. Smoothing parameters in objective functions were cross-validated similarly.

Whenever we used nested sieves, and the objective function had no smoothing penalty, we used
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AICc for model selection for simplicity.2

3.5 Numerical examples

In this section we have compiled results of a number of numerical experiments in which the SOCP-

based sieves of cubic and quartic splines (nested and asymptotically nested) were compared to

piecewise Bernstein polynomial spline models, and also to kernel methods, and in some cases to

parametric methods, whenever these were available. The reader should keep in mind that owing to

the large number of models and problems, these results are meant only as numerical illustrations,

which demonstrate the wide applicability and computational feasibility of the models of Sections 3.3

and 3.4.

Acronyms are used to refer to the models in the tables. PM refers to Parametric Model, the

precise meaning is explained in each section, as different parametric models are used in different

problems. The acronyms for spline-based models are combinations of the letters C, Q, N, I, and V,

which stand for Cubic, Quartic, Nonnegative, Increasing, and concaVe splines, respectively.

The optimization models described in Sections 3.3 and 3.4 were implemented using the AMPL

modeling language [FGK02], and were solved using the nonlinear solvers KNITRO [Zie], version 5.1,

or CPLEX [ILO], version 11.2.

3.5.1 Isotonic and convex/concave regression

We compared various shape-constrained spline models to parametric approaches using a dataset

arising from applications as well as simulated data. In this, and also in each of the following, sections

we will indicate the reference to the parametric model which arose from real applications, whenever

available, along with the datasets used. For parametric models from simulated data we use simple

one and two parameter families of functions which contain the known true function used to simulate

the data.

2AICc is a variant of AIC with an additional second-order term that becomes necessary when the number of
estimated parameters is small [BA02]. When the number of estimated parameters tends to infinity, the difference
between the values of AICc and AIC tends to zero, so AICc is justified regardless of the number of parameters.
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Isotonic regression with simulated data

We simulated noisy data using the model Y = f(X) + ε, where f is a smooth step function given by

the formula

f(x) = 5 +

4∑

i=1

erf(15i(x− i/5)) x ∈ [0, 1], (3.13)

where erf(x) = 2√
π

∫ x

0
e−x2

is the error function, and ε is normally distributed with mean 0. The

standard deviation σ of ε was varied in different experiments. The function f was chosen so that it

is increasing, yet it has a number of essentially flat sections, as well as strictly increasing sections of

various slopes. As a result, this function is likely to expose the shortcomings of regression methods

that do not include monotonicity as a constraint in their model. This function also exposes the

oscillation problems that often arise in estimation with polynomials.

Random samples of size 100 were drawn uniformly from the interval [0, 1]. Optimal cubic spline

estimators were selected from the unconstrained and monotone increasing cubic splines with up

to 30 uniformly placed knot points. We compared the estimators by measuring the L2, L1, and

L∞ distances of the true function f and the estimators. This process was repeated 100 times with

σ = 0.15 and 100 times with σ = 0.3. The means and standard deviations of the L2, L1, and L∞

distances are reported in Tables 3.1 and 3.2. In the table headings µp and σp denote the estimated

mean and standard deviation of the Lp distance; p ∈ {1, 2,∞}.

We also considered smoothing splines: cubic splines that minimize the penalized residual sum of

squares objective function

d(f) + s(f) =

N∑

i=1

(f(xi)− yi)
2 + λ

∫ 1

0

(f ′′(x))2 dx,

where λ > 0 is the smoothing parameter. The optimal number of knot points and the optimal λ

were both determined by cross-validation.

model 102µ2 102σ2 µ∞ σ∞ 10µ1 10σ1

unconstrained 1.634 1.014 0.459 0.230 0.880 0.148
monotone 1.344 0.412 0.481 0.114 0.749 0.118
smoothing 1.678 0.825 0.455 0.159 0.904 0.166
monotone, smooth 0.807 0.477 0.339 0.127 0.610 0.113

Table 3.1: Comparison of the unconstrained and the monotone spline estimators, with and without
smoothing penalty, for the regression curves of a dataset simulated using the model (3.13) with
σ = 0.15. µi and σi are the estimated mean and standard deviation of the Li errors based on 100
experiments.

Sample plots of some of the optimal estimators are shown in Figure 3.1. These plots are typical
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model 102µ2 102σ2 µ∞ σ∞ 10µ1 10σ1

unconstrained 4.619 7.798 0.659 0.513 1.475 0.237
monotone 4.426 0.911 0.715 0.110 1.478 0.177
smoothing 5.359 7.279 0.737 0.536 1.581 0.388
monotone, smooth 4.052 7.799 0.581 0.307 1.290 0.679

Table 3.2: Comparison of the unconstrained and the monotone spline estimators, with and without
smoothing penalty, for the regression curves of a dataset simulated using the model (3.13) with
σ = 0.3. µi and σi are the estimated mean and standard deviation of the Li errors based on 100
experiments.

in that the unconstrained splines generally showed considerably more oscillation than the monotone

estimators (which, of course, cannot oscillate).
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Figure 3.1: Unconstrained and monotone spline estimators for the regression curve of a simulated
dataset (with σ = 0.3). The function (3.13), to be estimated, is shown in black (thin line), the
thick blue curves are the estimators. Top: best least-squares fits. Bottom: smoothing splines. Left:
unconstrained splines. Right: monotone splines.

It is important to note that the unconstrained model did not yield a monotone estimator in

any of the 200 experiments. In fact, even unconstrained smoothing splines did not yield monotone

estimators. As smoothing did not yield significant improvement in these experiments (nor it helps

satisfying the shape constraints), we did not consider smoothing splines in further experiments.

Mixed shape constraints – the rabbit eye–age data

This data is from [DM61], collected in a study to find the relationship between the weight of the eye

lens and the age of rabbits in Australia. The 71-sample dataset was retrieved from the OzDASL

data library [OzD]. The same data was used recently in [BD07] for comparison of shape-constrained
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regression methods, as biological evidence suggests that the relationship between the age and the

size of rabbits is both monotone and concave.

A further difficulty is that the data appears to be heteroscedastic. (The weight and size of adult

rabbits presumably has more variation than those of young rabbits.) The original solution in [DM61]

is based on parametric least-squares regression, after an ad-hoc transformation of the variables that

reduces the heteroscedasticity of the data. The model for regression is a = A · 10−B/(w+C) + ε, where

the response variable a is the age and the covariate w is the dried eye lens weight of the rabbits; A,

B, and C are the unknown nonnegative parameters. This parametric model also yields nondecreasing

functions for all parameter values, and concave functions whenever B ≤ 2C. The solution reported

in [DM61] was A = 288.27, B = 60.1912, C = 41, indeed increasing and concave; close to the best

ordinary least squares fit of this model, which is A = 279.8278, B = 55.4063, C = 36.0437. Below we

demonstrate that a shape-constrained non-parametric approach, combined with techniques to reduce

the effect of heteroscedasticity, can yield a comparably good fit.

We added both shape constraints, separately and together, to the nested sieve of quartic splines.

(Each added knot point subdivides the interval with the largest number of samples as evenly as

possible.) To reduce the effect of heteroscedasticity, we used a weighted residual sum of squares

loss function with weights determined by the iteratively re-weighted least squares heuristic of

Schlossmacher [Sch73].

Plots of the estimated regression curves are shown on Figure 3.2. It is clear that both shape

constraints are necessary to obtain an increasing and concave estimator, that is, both constraints are

active at the solution of the optimization problem.

Mixed shape constraints – simulated data

We simulated noisy data using the model Y = f(X) + ε, where f(x) = 1
1+e−10x , x ∈ [0, 1], and ε is

normally distributed with mean 0 and standard deviation 0.2. This function was chosen so that the

function has a nearly linear, increasing, and a long, nearly horizontal part on the domain – this way

it is likely that explicit monotonicity and concavity constraints will be required for a good quality fit.

Random samples of size 50 were drawn uniformly from the interval [0, 1]. For each sample the

least-squares optimal model from the one-parameter family fb(x) =
1

1+e−bx +ε and the two-parameter

family fa,b(x) =
1

a+e−bx + ε were computed. In this section we refer to these reference models as

parametric models PM1 and PM2. Since these least-squares problems are non-convex optimization

problems, we verified (by brute-force) that the locally optimal solutions found are indeed globally
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Figure 3.2: Parametric and shape-constrained spline estimators for the regression curves of the
Rabbit data (scaled to [0, 1]). Top left: original estimator from [DM61] (red, solid), and the ordinary
least squares estimator (blue, dashed). Top right: IQ estimator. Bottom left: VQ estimator. Bottom
right: IVQ estimator. (See the beginning of the Section 3.5 for the explanation of acronyms.)

optimal. We compared these models to different shape-constrained polynomial spline models by

measuring the L2, L1, and L∞ distances of the true function f and the estimators, together with

their estimated numbers of parameters and their AICc . This process was repeated 100 times. The

means and standard deviations of the distances are reported in Table 3.3. In the table headings

µp and σp denote the estimated mean and standard deviation of the Lp distances; p ∈ {1, 2,∞}.

Similarly, µAIC and σAIC are the mean and standard deviation of the AICc scores of the estimators.

PM1 and PM2 are the least-squares solution to the parametric models above, the remaining acronyms

in this table are explained at the beginning of Section 3.5.

model 103 · µ2 103 · σ2 103 · µ1 103 · σ1 µ∞ σ∞ µAIC σAIC

PM1 0.972 1.516 15.685 12.268 0.054 0.050 −20.727 11.443
PM2 7.552 3.051 65.173 15.911 0.265 0.100 −12.934 11.513
NC 5.635 4.675 55.616 21.907 0.201 0.148 −13.523 11.418
NIC 2.768 2.992 36.890 18.938 0.133 0.099 −11.022 11.486
NVC 3.277 2.942 43.397 18.716 0.128 0.067 −11.826 11.423
NIVC 2.243 2.309 34.466 17.964 0.111 0.076 −10.602 11.480
NIVQ 2.613 2.567 36.431 17.667 0.138 0.102 −8.220 11.385

Table 3.3: Comparison of parametric and spline estimators for the regression curves of a simulated
dataset. µi and σi are the estimated mean and standard deviation of the Li error based on 100
experiments. The remaining acronyms in the table headings are explained in the beginning on
Section 3.5.

It is immediate from Table 3.3 that the estimators benefit from each added shape constraint. Both

the increasing and the concave cubic splines are considerably better estimates than the (otherwise
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unconstrained) nonnegative splines, and the concave increasing spline is better than both of them,

with respect to every distance measure considered. Obviously, the AICc scores worsen as we add

more constraints to the model. Quartic splines, on the other hand, are not any better than cubic

ones in this example. Notice that the best models outperform even the parametric model PM2 with

respect to every measure of goodness-of-fit, except for AICc, the latter owing to the larger number of

parameters. The optimal NIVC model usually had 5 or 6 effective parameters compared to the 2

fixed parameters of PM2. As expected, the single-parameter model PM1 proved to be hard to match.

3.5.2 Density estimation

The following tests were conducted to compare our methods to a wide range of kernel methods. The

choice of benchmark distributions, as well as the experimental design is based on [EL01, Chapter 8].

The probability density functions of the benchmark distributions are:

f1(x) =
9

10
φ1/2(x− 5) +

1

10
φ1/2(x− 7), (3.14a)

f2(x) = φ1(x− 5), (3.14b)

f3(x) =
1

5
U([3, 8]), (3.14c)

f4(x) =
1

5
ψ1.4,2.6

(
1

5
(x− 0.3)

)

(3.14d)

f5(x) =
1

4
φ9/5(x− 6) +

4

5
φ1/10(x− 2) (3.14e)

f6(x) =
1

2
φ1/2(x− 3.5) +

1

2
φ1/2(x− 6.5), (3.14f)

where φσ(x) is the pdf of the normal distribution with mean zero and standard deviation σ, U([a, b])

is the pdf of the uniform distribution on [a, b], and ψα,β is the pdf of the Beta density with parameters

α and β. (See Figure 3.3).

For completeness we included the uniform distribution from [EL01], even though f3 is not

continuous, hence the theoretical justification of our sieve methods (Section 3.2) does not apply.

Another rather comprehensive, but less recent, simulation study of kernel density estimates can be

found in [BD94].

Following [DG85], the authors of [EL01] argue that the most meaningful comparison between

estimates of probability densities is the L1 distance of their PDFs, and they report only this measure

of goodness-of-fit in their benchmark. Hence in this section we do the same when comparing our

methods and theirs.

For each benchmark density, random samples of size 100 were generated. Then the optimal cubic
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Figure 3.3: Benchmark distributions (3.14) from [EL01].

spline densities were determined using the Bernstein polynomial based and the SOCP based methods

outlined in Sections 3.3.1 and 3.3.2, and compared to the kernel estimates of [EL01], which employ

the Epanechnikov kernel and the normal density kernel, and thirteen(!) bandwidth selection methods.

These bandwidth selection methods include the “optimal method”, which simply determines the

bandwidth that minimizes the L1 error. This is clearly not a rational method, as it requires the

knowledge of the estimated PDF, but it serves as a perfect benchmark, as it is an upper bound on

the performance of all possible bandwidth selection methods. The process was repeated 100 times,

the means and standard deviations of the L1 distances of the estimators and the true PDFs are

reported in Table 3.4.

To avoid repeating all the results of the book, we refer the reader to the tabulated numerical results

of [EL01, pp. 326–327]. In our table we only show the L1 errors of the “optimal method”. Columns

OP-E and OP-N show the results of the optimal method using the Epanechnikov and the normal

density kernel, respectively. The columns Bernstein and SOCP contain the results of the least-squares

best fitting piecewise Bernstein polynomial and nonnegative cubic splines, respectively. The rows

µ(i) and σ(i) show the mean and the standard deviation of the L1 errors from the experiments with

the density fi.

It is safe to conclude that in all but one of these examples both the Bernstein polynomial-based

and the SOCP methods give results comparable to those of the kernel methods. Except for the

density f5 (a bad mixture of normal distributions) both methods nearly match, break even with, or

outperform even the optimal kernel method. The results are easy to interpret: the less smooth the

estimated PDF is, the higher the disadvantage of cubic splines to the kernel methods. The difference

between Bernstein polynomial-based and the SOCP methods is too small to be considered significant,

their performance is essentially identical in all the examples.
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OP-E OP-N Bernstein SOCP

µ(1) 0.158 0.160 0.150 0.159

σ(1) 0.053 0.053 0.049 0.045

µ(2) 0.127 0.129 0.064 0.075

σ(2) 0.054 0.054 0.069 0.060

µ(3) 0.217 0.218 0.171 0.179

σ(3) 0.042 0.042 0.069 0.075

µ(4) 0.162 0.164 0.148 0.153

σ(4) 0.041 0.041 0.065 0.064

µ(5) 0.335 0.335 0.649 0.643

σ(5) 0.055 0.055 0.022 0.051

µ(6) 0.187 0.189 0.227 0.226

σ(6) 0.053 0.053 0.031 0.026

Table 3.4: Estimated means and standard deviations of the L1 errors of kernel and spline estimates
of the densities (3.14). µ(i) and σ(i) are the mean and standard deviation of the L1 errors from 100
experiments with fi; see the text for details and the interpretation of the column headings.

3.5.3 Arrival rate estimation

The paper [AENR08] gives detailed numerical evaluation of the SDP/SOCP approach and they show

that it compares very favorably to some wavelet-based methods. We only compare the SDP/SOCP

approach and the nonnegative basis approach using Bernstein polynomials; first using the same email

arrival data that was used introduced in [AENR08], and then using simulated arrival data.

Email Arrival Data. We first present results obtained for a dataset of 10,150 e-mail arrivals recorded

in a period of 446 days. As described in [AENR08], the arrival times were rounded to the nearest

second. It was assumed that the arrival rate is periodic with a period of one week. The details of the

appropriate maximum likelihood model using nonnegative cubic splines is also given in [AENR08], and

using cross-validation the authors of [AENR08] found that the optimal number of evenly distributed

knot points to be used is 48.

We determined the optimal nonnegative spline as well as the optimal piecewise Bernstein poly-

nomial spline with 7k, (k = 3, . . . , 14) knot points, and with the quoted 48 knot points. We found

that with 28 knot points there was some small but visible difference between the two corresponding

splines. Not surprisingly, the differences occur during night times (when the arrival rate is close to

zero) and in the subsequent mornings. In all the other experiments, when the number of knot points

were different from 28, the two splines were identical.

Simulated Data. Simulated experiments were carried out in the following manner. Arrival times

were simulated by our implementation of the thinning method [LS78], using a simple arrival rate
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function,

λ(t) = 4000(cos(6πt+ 0.2) + 2.16 sin(4πt+ 3.8) + 2.6),

which demonstrates several properties that can potentially make the approximation difficult: it gets

near zero, it has a high and narrow peak, and it also has a long flat part. It was also chosen to be

periodic with period 1, as most practical applications assume periodic arrival rate function.

Assuming that the interval [0, 1] represents a week, arrival times were rounded to the nearest

minute. Then the optimal cubic spline arrival rates were determined using the Bernstein polynomial

based and the SOCP based methods outlined in Sections 3.3.1 and 3.3.2, with AICc used in knot

point selection. This process was repeated a hundred times. Figure 3.4 shows the 95% empirical

confidence bands plotted against each other and the true arrival rate function. The red curve is λ(t),

the blue band corresponds to the SOCP approach, and the green band corresponds to the nonnegative

basis approach. It is apparent that the difference between the results of the two approaches is quite

small. Figure 3.5 shows the widths of the confidence bands plotted against each other. It is clear

from this plot that the quality of the SOCP-based model is nearly pointwise better than that of the

nonnegative basis approach.
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Figure 3.4: Comparison of the 95% empirical confidence bands of the results from SOCP and
nonnegative basis approaches. The blue curve corresponds to the SOCP approach, and the green one
to the piecewise Bernstein polynomial splines.

3.6 Summary and conclusion

Two optimization-based approaches using conic sieves of low-degree splines were presented, and

compared to each other and to popular kernel methods in various applications of shape constrained

estimation problems, including those with a mixture of shape constraints.

Theoretically, the SDP/SOCP approach, which requires solving optimization problems with linear

and second-order cone constraints, is clearly superior to the basic nonnegative basis approach (which
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Figure 3.5: The bandwidths of the 95% empirical confidence bands of the results from SOCP and
nonnegative basis approaches. The blue curve corresponds to the SOCP approach, and the green one
to the piecewise Bernstein polynomial splines.

employs only linear constraints to represent polyhedral sieves), as in univariate problems it allows us

to optimize precisely over the set that we want: the set of nonnegative splines. Using polyhedral

sieves results in simpler, linearly constrained models, but in most cases it only allows us to optimize

over a strictly smaller or larger set than is necessary.

In many instances the two approaches gave very similar results, but we have also found several

examples where the SOCP approach is superior in practice, too. On the other hand, we exhibited a

few cases when the two approaches are provably equivalent.

The optimization models obtained from both approaches were easily solvable in a fraction of a

second using readily available nonlinear solvers. From the viewpoint of computational feasibility,

these approaches are competitive even with closed-form formulae, which are only available for very

restricted special cases.

Previously it has been established that for arrival rate estimation our approach yields superior

results to methods using wavelets. In our experiment we found that we can also match, and frequently

outperform state-of-the-art kernel methods in density estimation problems.
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Chapter 4

Multivariate function estimation with

shape constraints

Our aim in this chapter is to extend the ideas introduced in the previous chapter to multivariate

estimation problems. This extension is far from straightforward for a number of reasons.

• First, the nonnegativity constraint becomes formally “intractable” for multivariate problems,

and is very difficult to handle even in problems involving bi- or trivariate splines of low degree.

• Some of the most basic constraints on the shape of the estimator will no longer reduce

conveniently to nonnegativity. Convexity is perhaps the simplest example, which directly

translates (for twice differentiable functions) to the positive semidefiniteness of the Hessian.

Hence, we need a more general notion of nonnegativity that brings shape constraints of

multivariate functions under one umbrella. We investigate this problem in Section 4.3. As

an additional benefit, the tools we develop for such problems also allows us to revisit some

univariate problems we were not able to solve before.

• Finally, we shall note that our methods (or any other spline-based method for that matter)

cannot be applied to very high-dimensional problems, as the number of pieces the estimator

consists of inevitably becomes enormous. In fact, solving the proposed optimization problems

becomes difficult, if not impossible, even for some problems of very low dimension, owing to the

size of the problem. In Section 4.2 we shall explore the application of decomposition methods

that exploit the structure of our models and enable us to solve very large-scale spline estimation

problems.
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4.1 Multivariate nonnegative and sum-of-squares splines

In this section we outline how conic sieves of shape-constrained splines can be applied to solve

multivariate shape-constrained statistical estimation problems when the shape constraints reduce to

nonnegativity. This topic has been studied less than the univariate estimation problems of Chapter 3,

and the existing methods are typically direct generalizations of the heuristic methods common in

the univariate literature. For example, when investigating a bivariate estimation problem with

bound constraints on the estimator, Villalobos and Wahba [VW87] suggest that the constraints

0 ≤ s(x) ≤ 1 (∀x ∈ ∆) on the spline estimator s be replaced by 0 ≤ s(xi) ≤ 1 (i = 1, . . . , N), where

xi are the points of a fine enough grid in ∆. However, there is no guarantee that the resulting

estimator will indeed satisfy the bounds everywhere regardless of how the grid points xi are chosen.

At best, the right mesh-size must be found by trial and error.

If instead we wish to tackle the nonnegativity constraint directly, we must remember that deciding

whether a multivariate polynomial is nonnegative over a given polyhedral region is NP-hard, even if

the region is a very simple fixed region, such as the unit cube, even for degree two (Proposition 2.11).

If both the number of variables and the degree are kept small (and are considered constant), the

recognition of nonnegative polynomials becomes polynomial-time solvable [Ren92], but it requires

further investigation how the resulting quantifier-free first-order representations of nonnegative

polynomials can be incorporated into a tractable optimization model. (They generally translate to a

large collection of non-convex constraints.) However, Section 3.3 provides us with two approaches

that can be generalized to the multivariate setting:

1. Following Section 3.3.2, we may consider a basis of polynomials or splines which consists of

nonnegative functions, and confine the search for an optimal estimator to the nonnegative

linear combination of these. Specifically, we may use multivariate Bernstein polynomials.

2. Following Proposition 2.5, it has been proposed in the constrained polynomial programming

literature that constraints of the form

p(x) ≥ 0 ∀x ∈ X = {x | gi(x) ≥ 0, i = 1, . . . I},

where g1, . . . , gI are given polynomials (and p is the unknown polynomial) be replaced by the

(stronger) constraints

p =

I∑

i=1

gi

Ni∑

j=1

r2ij (rij ∈ Vi), (4.1)
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where V1, . . . , VI are some fixed (finite-dimensional) linear spaces of polynomials. Polynomials

p of the form (4.1) are called weighted-sum-of-squares (or WSOS ) polynomials; recall also the

theorems of Schmüdgen and Putinar, and the representations (2.4) and (2.5).

It is perhaps worth mentioning that the first approach is the special case of the second approach,

when {gi} is chosen to be be a nonnegative basis of polynomials, and each Vi is the one-dimensional

space of constant polynomials.

We may also consider splines that are piecewise WSOS polynomials. The nonnegativity of a

spline s can be imposed by considering piecewise WSOS polynomial splines, where the weights gi of

each piece are chosen to be (usually affine) polynomials that define the domain of the piece.

Regardless of how we choose the weights and the spaces Vi, constraints of the form (4.1) on p

can be translated to linear and semidefinite programming (SDP) constraints on the coefficients of p

[Nes00], just like in the univariate case. However, in the multivariate setting there is no analogue of

Proposition 2.5: the cone of SOS multivariate polynomials is always a proper subset of nonnegative

polynomials, aside from the cases mentioned in Proposition 2.10. Similarly, cones of piecewise WSOS

splines are proper subsets of nonnegative splines. Since we have complete freedom in choosing the

subdivision of the domain as well as the spaces Vi in defining the weighted-sum-of-squares cone in

(4.1), care needs to be taken so the piecewise WSOS polynomial splines used in our conic sieve are

dense in some “rich enough” space of functions H, to which the ideal estimator s is assumed, or

known, to belong. In the remaining of this section we give a practical sufficient condition when this

is the case.

To keep things simple, let us assume that ∆ is the m-dimensional interval [0, 1]m, and consider

splines of total degree d over a rectilinear subdivision of ∆. Formally, a rectilinear subdivision of

∆ is given by a list of vectors (of possibly different dimensions) A = (ai,j), i = 1, . . . d, j = 1, . . . ℓi

such that the knot point sequence (ai,1, . . . , ai,ℓi) defines the subdivision of ∆ along the ith axis.

Then each region of the subdivision is affinely similar to ∆, and we can represent a spline by the

coefficients of its polynomial pieces scaled to ∆.

For each dimension i = 1, . . . , d we fix a basis {u
(i)
0 , . . . , u

(i)
mi} of polynomials of degree mi, with

domain [0, 1]. The spline s is then given piecewise by

s(x) = q(j)(x) ∀x = [a1,j1 , a1,j1+1]× · · · × [ad,jd , a1,jd+1],

for each multi-index j = (j1, . . . , jd); and each polynomial piece q(j) is represented by the coefficients
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p
(j)
k , k ∈ {0, . . . ,m1}× · · ·×{0, . . . ,mk}, of its affinely scaled counterpart p(j) : [0, 1]d → R satisfying

q(j)(x) =
∑

k

p
(j)
k

d∏

i=1

u
(i)
ki

(
xi − ai,ji

ai,ji+1 − ai,ji

)

. (4.2)

It is clear that s(x) ≥ 0 for every x ∈ ∆ if and only if p(j)(x) ≥ 0 for every j and x ∈ ∆. We refer to

this representation of s by the coefficients p
(j)
k as the scaled representation of s.

The mesh size of a subdivision A is defined as ‖A‖ = maxi,j(ai,j+1 − ai,j). Nestedness of

subdivisions can also be defined analogously to the univariate case. Let us fix gi and Vi, and let us

denote by W the convex cone of piecewise WSOS polynomials over ∆ defined by (4.1). For a given

subdivision A and WSOS set W , P(W,A) denotes the set of piecewise WSOS polynomial splines

over the subdivision A whose pieces (when scaled to ∆) belong to W . Again, P(W,A) is a convex

cone. We have the following theorem.

Theorem 4.1. Assume that 1 ∈ intW , where 1 denotes the constant one polynomial. Furthermore,

let {Ai} be an asymptotically nested sequence of subdivisions of ∆ satisfying lim ‖Ai‖ = 0. Then the

set
⋃

i P(W,Ai) is a dense subcone of P ∩ C(∆), the cone of nonnegative continuous functions over

∆.

We need not prove this theorem directly; instead, we can prove, analogously to Theorem 3.4, a

stronger assertion using polyhedral cones; see Theorem 4.2 below.

A sufficient condition for a polynomial to be nonnegative over ∆ is for it to have nonnegative

coefficients in a basis U = {u0, . . . , um} that consists of polynomials nonnegative over ∆, that is, for

it to belong to cone(U) for a nonnegative basis U . Similarly to the piecewise WSOS polynomial

splines above we can define a piecewise U -spline as a piecewise polynomial spline whose pieces (in

the scaled representation) belong to cone(U). The set of piecewise U -splines with subdivision A is

denoted by P(U,A).

Theorem 4.2. Consider a basis U = {u0, . . . , um} of d-variate polynomials of multi-degree m =

(m1, . . . ,md) such that each ui is nonnegative over ∆ = [0, 1]d, and assume that 1 ∈ int cone(U),

where 1 denotes the constant one polynomial. Furthermore, let A1,A2, . . . be an asymptotically

nested sequence of subdivisions with mesh sizes approaching zero. Then the set
⋃

i P(U,Ai) is a

dense subcone of the cone of nonnegative functions over ∆.

Proof. First we show that for every polynomial p of degree m, strictly positive over [0, 1], there exist

nonnegative constants Ci such that p+ Ci ∈ P(U,Ai) for every i, and limCi = 0.
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Fix i, and consider a piece in the subdivision from the knot point sequence Ai:

[a1,j1 , a1,j1+1]× · · · × [ad,jd , ad,jd+1].

The polynomial p can be represented as a piecewise polynomial spline of degree m with knot point

sequence Ai; its scaled representation is

p(j)(x1, . . . , xd) = p((a1,j1+1 − a1,j1)x1 + a1,j1 , . . . , (ad,jd+1 − ad,jd)xd + ad,jd).

Collecting terms in the standard basis, we see that every coefficient in the above expression is of order

O(‖Ai‖), except for the constant term, which is p(a1,j1 , . . . , ad,jd). By assumption, this constant

term is positive, because p is strictly positive on [0, 1]. By the assumption on U ,
∑m

k=0 αkuk ≡

p(a1,j1 , . . . , ad,jd) for some positive α0, . . . , αm. Now, if we express p(j) in the basis U : p(j) =
∑
p
(j)
k uk,

we have that p
(j)
k = αk−δ

(j)
k with |δ

(j)
k | = O(‖A‖), consequently p

(j)+p(a1,j1 , . . . , ad,jd)maxk(|δ
(j)
k |/αk)

has positive coefficients in the basis U . Applying the same argument for every j, we obtain that

p+ Ci ∈ P(U,Ai) for

Ci = max
j

(
p(a1,j1 , . . . , ad,jd)max

k
(|δ

(j)
k |/αk)

)
.

Finally, as |δ
(j)
k | = O(‖A‖) and p is bounded, Ci → 0 as ‖Ai‖ → 0.

The same argument also proves that for every strictly positive spline over [0, 1], with knot point

sequence A, and for every sequence {Ai} consisting of subdivisions of A satisfying lim ‖Ai‖ = 0,

there exist nonnegative constants Ci such that s+ Ci ∈ P(U,Ai) for every i, and limCi = 0.

Consequently,
⋃

i P(U,Ai) is a dense subset of nonnegative splines of multi-degree m.

Now our assertion follows from the fact that tensor product splines (of every given order of

differentiability) in ∆ = [0, 1]d are dense in the space of continuous functions over ∆; see [Sch81,

Theorem 13.21].

Note that the conditions 1 ∈ int Σ and 1 ∈ int cone(U) are sufficient and necessary for the desired

conclusion. For example, the cone of polynomials with nonnegative coefficients in the standard

monomial basis is a WSOS cone with weights nonnegative over [0, 1]d. It does not satisfy the condition,

as the constant 1 is on the boundary of this polynomial cone. Incidentally, the corresponding cone of

splines consists of functions that are monotone nondecreasing in every variable, hence it is not dense

in the cone of nonnegative continuous functions over [0, 1]d.

As in the univariate case, a simple example is provided by the multivariate Bernstein polynomials.
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(Multivariate Bernstein polynomials are of the form
∏

iBni,ki
(xi), where each Bni,ki

is a univariate

Bernstein polynomial.) The cone of polynomials whose coefficients are nonnegative in the Bernstein

polynomial basis contains 1 in its interior, hence the piecewise Bernstein polynomial splines are dense

in the cone of nonnegative functions in C(∆).

As a final remark, we shall clarify in what sense the second, polyhedral approximation, approach is

a special case of the WSOS approach. The cone cone(U) for a nonnegative polynomial basis U can be

considered a WSOS cone defined in (4.1) with weights in U , whose spaces Vi are the one-dimensional

linear spaces consisting only of constant polynomials. Furthermore, for every WSOS cone satisfying

the conditions of Theorem 4.1 one can find a basis U such that the corresponding polyhedral spline

cone satisfies the conditions of Theorem 4.2.

4.1.1 Numerical illustration – posterior probability estimation

We conclude this section with a numerical illustration. This problem is borrowed from Villalobos

and Wahba [VW87], and is an extension of two-class classification: posterior probability estimation.

Consider two m-dimensional random variables: X1 and X2 with (unknown) density functions

f1 and f2, respectively. The random vector variable Y is an observation from either X1 or X2; if it

is from Xi, it has density function fi. Let pi be the (known or unknown) prior probability that Y

belongs to Xi. Our goal is to estimate the posterior probability of X1,

f(y)
def
= Pr(X1 | Y = y) =

p1f1(y)

p1f1(y) + p2f2(y)
,

based on a collection of i.i.d. samples from Y , {y1, . . . ,yn} with known class information: zi = 0 if

and only if yi belongs to X1, otherwise zi = 1.

If the prior probabilities pi are unknown (which is the case in most applications), we can estimate

them by the proportion of samples that belong to population Xi. Denoting these proportions by p̂i,

we consider the problem of estimating

f̂(y) =
p̂1f1(y)

p̂1f1(y) + p̂2f2(y)
.

Following [VW87], observe that if Z is the indicator variable that assumes value i− 1 when Y is

from population i, then E(Z|Y = y) = f̂(y). Hence, we can think of values zi as “noisy” values of
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Figure 4.1: Posterior probability estimation example. Left: the true posterior probability. Right: the
contour plots of the true posterior probability (dashed) and the smoothing spline estimator (solid).
The blue dots and red ‘+’ signs are samples from the two populations (scaled to [0, 1]2).

f̂(yi). This motivates the following optimization models: find a spline s : ∆→ R that satisfies

0 ≤ s(y) ≤ 1 ∀y ∈ ∆, (4.3)

and which minimizes the residual sum of squares loss function L(s) =
∑n

i=1(zi − s(yi))
2, or the loss

function with smoothing penalty,

Lλ(s) =

n∑

i=1

(zi − s(yi))
2 + λJk(s) (λ > 0),

where

Jk(s) =
∑

α1+···+αm=k

k!

α1! · · ·αm!

∫

· · ·

∫ (
∂ks

∂yα1
1 · · · ∂y

αm
m

)2

dy1 · · · dym.

It is easy to show that Jk is a convex quadratic function of s if s is a polynomial of total degree

k. In particular, minimizing Lλ(s) where s is a multivariate spline over a fixed subdivision of the

domain ∆ amounts to solving a convex quadratic optimization problem. By applying piecewise

weighted-sum-of-squares approximation to (4.3), we obtain a semidefinite-representable problem.

Turning to the numerical example of [VW87], let N(µ1, µ2;σ1, σ2) denote the bivariate un-

correlated normal distribution with mean (µ1, µ2) and covariance matrix diag(σ1, σ2), and let

p1 = p2 = 1/2, and

f1 ∼ N(0, 0; 1, 1) and f2 ∼
1

2
N(1.5,−2.5; 1, 1) +

1

2
N(1.5, 2.5; 1, 1).

The true posterior probability function is shown on the left-hand side of Figure 4.1.
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We generated 70 samples from both populations, and scaled them so that the axis-parallel

bounding box of the samples became the unit square [0, 1]2. The right-hand side of Figure 4.1 shows

the sample points and the contours of the true function and of the optimal piecewise Bernstein

polynomial smoothing spline, with uniform subdivision of [0, 1]2. The optimal number of pieces, as

well as the smoothing parameter λ were determined by cross-validation.

In this example, the estimator follows the contours of the true function, but it is smoother than

the true function. The example also shows a drawback of the using a uniform rectangular subdivision

of the domain: unexpected behavior of the estimator may occur in regions where there are no samples.

This is a problem also to be expected in regression problems (where the extrapolation is meaningless),

but can be somewhat remedied by smoothing techniques, or by bounding the derivatives of the

estimator at the boundary, as in natural splines [Wah90], or by using subdivisions of the domain

that are adapted to the data. The effects of choosing different subdivisions (which also necessitates a

generalization of Theorem 4.1) is subject to future research.

4.2 A decomposition method for multivariate splines

As we mentioned in the introduction of this chapter, the size of the optimization models involving

multivariate splines prohibits the solution of these models when the mesh size is small. On the other

hand, these problems have a very regular and sparse structure amenable to decomposition methods.

In this section we outline an augmented Lagrangian decomposition method with particularly good

convergence properties for spline estimation problems, and illustrate it by estimating the (two-

dimensional) weekly arrival rate of car accidents on the New Jersey Turnpike.

There is a vast literature on decomposition methods for both linear and nonlinear convex

optimization problems, an area initiated by Dantzig and Wolfe [DW60] and Benders [Ben62], and we

can only choose to give a very brief review of the fundamental ideas relevant in our context.

Most methods are directly based on Lagrangian duality (see, for example, [Las70, Chapter 8] or

[Ber99, Chapter 4] for an overview of the basic methods). They associate Lagrange multipliers to

the linear “complicating” or “coupling” constraints, and solve the resulting Lagrangian relaxation,

which is automatically decomposable. The different methods primarily differ in their strategies to

iteratively update the Lagrange multipliers until the optimal multipliers, with which the Lagrangian

relaxation is equivalent to the original problem, is found. Drawbacks of these methods include the

non-differentiability of the dual functional and the problem that reconstruction of the solutions of

the original problem from the optimal solution of the Lagrangian relaxation is not trivial [Rus95].
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Replacing the Lagrangian dual by the augmented Lagrangian, as in [Hes69], which includes in the

objective an extra quadratic penalty term for constraint violation, solves these problems, and has the

added advantage of making the dual multiplier updates very easy [Rus05]. The same reasons motivate

proximal point methods, which also use a quadratic regularizing term. However, the quadratic terms

introduced by these approaches are not decomposable even if the constraints in the problem are linear.

Hence, several methods have emerged based either on linearizations of the augmented Lagrangian,

such as [WNM76, Rus95], or on linearization in proximal point methods [Roc76, KRR99].

Next, we shall describe the method we shall use for spline estimation problems. It is a simplified

version of the augmented Lagrangian-based method from [Rus95] specifically designed for sparse

problems. Since some of the details of our specific problems might obscure the main ideas of the

algorithm, we shall discuss the method in a slightly more abstract form than necessary for our

purposes.

4.2.1 Augmented Lagrangian decomposition for sparse problems

Let L ≥ 2, and let Xi (i = 1, . . . , L) be a nonempty compact subset of Rni . Finally, let fi : Xi → R

be convex. With these given, we consider the convex optimization problem

minimize f(x)
def
=

L∑

i=1

fi(xi) (4.4a)

subject to

L∑

i=1

Aixi = b (4.4b)

xi ∈ Xi i = 1, . . . , L. (4.4c)

As a specific example, we can model shape-constrained optimization problems in this framework: the

optimality of the estimator is typically defined piecewise, and so are the shape constraints, under

some continuity assumptions. (For example, if the estimator is assumed to be continuous, then it is

monotone increasing if and only if it is piecewise monotone increasing.) Thus, we can set L to be the

number of pieces, (4.4c) are the constraints on the shape of the estimator (now defined piecewise),

and (4.4b) includes the continuity of the estimator and perhaps the continuity of its derivatives, as

well as periodicity, interpolation constraints, as needed for the problem.

Alternatively, if the estimator is a polynomial spline over a rectilinear grid we can set L = 2, since

all constraints connect only pieces of two disjoint class, following a chessboard-like pattern. The

same is true for some other regular subdivisions as well, including a regular simplicial subdivision.
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This property can be exploited by some methods. We shall focus on a direct consequence of this

observation: that in our spline estimation problems all of the coupling constraints in (4.4b) involve

variables corresponding to only two different Xi. We must immediately add the only exception to the

rule: density estimation problems (Section 3.4.3) include the constraint that the estimator integrates

to one, which is a single linear equation that involves every variable. (Arrival rate estimation

problems also involve an integral, but in the objective function, which decomposes as a sum of

integrals, computed piecewise.)

The condition that the sets Xi be bounded is a rather technical condition, as one can always find

reasonable bounds on the spline coefficients based on the data. In problems where the integral of

the estimator is explicitly given, this is easy, and it is also straightforward in regression problems

when the estimator is fitted to a finite number of points. The case of arrival rate estimation is more

interesting, we shall return to this question in Section 4.2.2.

The method proposed in [Rus95] associates multipliers π to the linear coupling constraints, and

considers a separable approximation Λapx of the augmented Lagrangian of (4.4),

Λ(x,π) = f(x) + 〈π,b−Ax〉+
̺

2
‖b−Ax‖2,

in which the bilinear terms in the quadratic penalties are linearized around a point x̃ ∈ R
∑L

i=1 ni :

Λapx(x, x̃,π)
def
=

L∑

i=1

Λi(xi, x̃i,π)
def
=

L∑

i=1

fi(xi)− 〈A
T
i π,xi〉+

̺

2

∥
∥
∥b−Aixi −

∑

j 6=i

Aj x̃j

∥
∥
∥

2

. (4.5)

The approach then is to fix a set of multipliers, find an approximate minimizer of the corresponding

augmented Lagrangian problem by iteratively minimizing Λapx and updating x̃ so as to approximate

the optimal solution better. The components Λi of the approximate Lagrangian can be optimized

separately, and even in parallel (in a Jacobi, rather than a Gauss–Seidel, fashion), which is a

very desirable property when infrastructure for massively parallel computations is available. (For

the author’s experiments it was not.) Once an approximately optimal solution to the augmented

Lagrangian is found, we can update the multipliers as in the original multiplier method. The formal

definition of the method is given in Algorithm 1, which requires two parameters: the augmented

Lagrangian coefficient ̺, and a step size parameter τ .

It can be shown that for every ̺ > 0 and 0 < τ < 1/(N − 1) Algorithm 1 is convergent. For the

inner loop this is a special case of Theorem 1 in [Rus95], and for the outer loop this follows from the
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Algorithm 1: Simplified augmented Lagrangian decomposition

parameters: ̺ > 0, τ > 0
1 initialize π /* arbitrary initial value */

2 repeat

3 π ← π + ̺(b−Ax)
4 foreach i = 1, . . . , L do solve minxi∈Xi

Λi(xi, x̃,π) /* parallel */

5 if Aixi 6= Aix̃i for any i = 1, . . . , L then

6 x̃← x̃+ τ(x− x̃)
7 go to step 4

8 end if

9 until Ax = b
10 return x

convergence of the method of multipliers [Roc76]. Perhaps the most attractive feature of Algorithm 1

is that its speed of convergence depends very highly on the largest number N of variable blocks xi

linked by a coupling equality constraint, favoring problems with a sparse neighborhood structure.

(In our spline estimation examples N = 2, and generally we have 2 ≤ N ≤ L.) Let us measure the

progress of the algorithm by the difference

∆(k) def
= Λ(x̃(k),π(k))−min

x∈X
Λ(x,π(k)),

where the superscript k refers to the number of times the outer loop of Algorithm 1 has been executed.

The following theorem establishes the rate of convergence under a technical assumption.

Theorem 4.3. Assume that there is a γ > 0 such that for every π and every x ∈ X ,

Λ(x,π)−min
x∈X

Λ(x,π) ≥ γ dist(x, argmin
x∈X

Λ(x,π))2,

and let α = maxi ‖Ai‖2. Then for every ̺ > 0 and 0 < τ < 1/(N − 1),

∆(k+1) ≤

(

1−
τ(1− τ(N − 1))

1 + 2̺α2(N − 1)2γ−1

)

∆(k). (4.6)

Proof. This is a special case of Theorem 2 in [Rus95].

The first condition of the theorem is the quadratic growth condition of [Rus95], and is satisfied by

every problem considered in this thesis. Theorem 4.3 also suggests a way to set the parameter τ :

minimizing the coefficient on the right-hand side of (4.6) we obtain that τ = (2(N − 1))−1 is the

recommended choice, regardless of ̺. (The theory does not provide guidance in the selection of ̺.)
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4.2.2 Numerical illustration – NJ Turnpike accidents

We consider the two-dimensional point process of car accidents on the New Jersey Turnpike (NJTP).

The two dimensions are time (with an assumed weekly periodicity) and location along the road. It

is not entirely clear whether this is indeed a Poisson process, as accidents may change the traffic

pattern, which in turn affects the distribution of the accidents. Furthermore, coincidences in the

location (such as accidents at a temporary construction site) have likelihood zero in every Poisson

model. However, as the accidents are relatively rare (serious accidents that change the traffic pattern

for a long period of time are even more so), and major highways are assumed to have no easy-to-hit

objects, a Poisson model may be a reasonable approximation. The fact that accidents may occur

more frequently close to exits does not contradict the non-homogeneous Poisson model.

The data. We obtained car accident data from the New Jersey Department of Transportation. The

raw data contained information on every car accident in 2009 recorded at the accident locations by

police officers. The time of the accident is rounded to the nearest minute, but it is not clear whether

the recorded time is the approximate time of the accident, the time the police were notified of the

accident, or the time the officers attended to the accident. Hence, we can consider this as noisy

data, despite the apparent precision of the time data. The location is given by the Standard Route

Identifier of the road segment and an approximate milepost reading (variably rounded, apparently to

the nearest 0.05 mile or to the nearest mile).

We removed all entries from the data that corresponded to accidents in roads other than the

NJTP segment marked I-95. This is an approximately 78 miles long segment stretching between

two state borders (with Pennsylvania and New York, respectively) with no forks or joins. We also

removed entries with missing milepost information. Date and time were present for every entry.

While we could take these accidents into account directly in a maximum-likelihood approach (and

their time and date information we shall not discard), such incomplete entries were few, and it is

reasonable to assume that accidents whose milepost is not recorded follow the same milepost and time

distribution as the entries with complete information. Hence, we simplify our model, and estimate

the arrival rate based only on the entries with specified milepost. We can then divide the obtained

arrival rate with the ratio of entries with complete information to account for accidents discarded

because of missing milepost value. We also removed all accidents that happened on ramps while

entering or leaving the highway, as they are confounding in multiple ways. Finally, this left us with

4138 accidents.
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The optimization model. Setting up the optimization model is relatively easy. The nonnegativity

constraints for the spline estimator are replaced by weighted-sum-of-squares constraints, exactly as in

Section 4.1.1. As objective, we seek to maximize a log-likelihood function detailed below. (Since we

have a large number of arrivals, using the maximum likelihood approach is justified.) Furthermore

we assume that the arrival rate is periodic with a weekly period.

Since exact arrival information is not available (both coordinates are rounded), we consider the

following setup, similar to the univariate aggregated model of [AENR08]: the possible range of

arrivals ∆ is divided into small regions (representing the arrivals that would be rounded to the same

point), and the data is the number of arrivals within each region. Suppose the data are aggregated in

regions ∆i, i ∈ I, and let the number of arrivals recorded in region i be ni. Finally, let N =
∑

i∈I ni.

Then in the non-homogeneous Poisson model the likelihood associated with the arrival rate λ is

Ln(λ) = Pr(number of arrivals = N |λ) · Pr(distribution of exactly N arrivals = n |λ)

=
IN

N !
e−I ·

N !
∏

i∈I ni!

∏

i∈I

(∫

∆i
λ

I

)ni

=
e−I

∏

i∈I ni!

∏

i∈I

(∫

∆i

λ

)ni

, where I =

∫

∆

λ,

provided all the integrals in the above formulae exist (which they do, of course, if λ is a polynomial

spline). Hence, maximizing the likelihood function is equivalent to maximizing

f(λ)
def
= ln

((
∏

i∈I
ni!

)

Ln(λ)

)

= −

∫

∆

λ+
∑

i∈I
ni ln

∫

∆i

λ. (4.7)

This is the objective function of our optimization model. As the following observation shows, further

simplification is possible.

Lemma 4.4. Let K be a cone of nonnegative functions over ∆ whose restrictions to each ∆i are

integrable. Define f : K → R as in (4.7), and assume that there exists a λ0 ∈ K satisfying
∫

∆
λ0 > 0.

Then every function λ̂ ∈ argminλ∈K f(λ) satisfies
∫

∆
λ̂ = N . Thus, the expected number of arrivals

corresponding to the maximum likelihood estimator from K equals the observed number of arrivals.

Proof. Suppose λ̂ is an optimal solution (implying
∫

∆
λ̂ > 0), and consider feasible solutions cλ̂ with

c > 0. We have f(cλ̂) = −c
∫

∆
λ̂ + N ln c +

∑

i∈I ni ln
∫

∆i
λ, and by assumption d

dcf(cλ̂)
∣
∣
c=1

= 0.

The last equation gives
∫

∆
λ̂ = N , in which case c = 1 indeed maximizes f(cλ̂).

Taking K to be any cone of piecewise weighted-sum-of-squares polynomial splines the conditions

of the Lemma are clearly satisfied.

Note that f is a concave function. Furthermore, if the partition (∆i)i is a refinement of the
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subdivision corresponding to the pieces of the sought spline estimator, then the objective function

f is separable, leading to an optimization model of the form (4.4). (Except, of course, that we are

maximizing a concave function instead of minimizing a convex one.)

Lemma 4.4 allows us to remove the first term of the objective function, provided we add the

equation
∫

∆
λ = N to our constraints. We shall not transform our model this way, as it would

adversely affect the performance of the decomposition algorithm. (The constraint on the integral

involves every decision variable.) Nevertheless, this lemma is necessary to meaningfully bound the

feasible set of the decomposed problems (the sets Xi with the notation of (4.4)). So far Xi has been

a weighted-sum-of-squares polynomial cone (nonnegative over a polyhedron), but by Lemma 4.4

we may restrict it (without loss of generality) to those weighted-sum-of-squares polynomials which

integrate to at most N .

Numerical results. In our example ∆ = [0, T ]× [0, X]; T = 1 week, X = 77.96 miles. Considering

the format of the data, the regions I in the objective function can be rectangles no smaller than

1 minute by 0.1 miles, but even considerably larger rectangles are reasonable, given the rounding

errors.

Figure 4.2 shows a biquadratic spline estimator with 28× 13 pieces (so each piece corresponds to

6 hours and roughly 6 miles), the regions I were 1 minute by 1 mile rectangles. The estimator was

obtained using an AMPL [FGK02] implementation of Algorithm 1, in which the subproblems were

solved by a (size-limited version of) KNITRO [Zie].

Figure 4.2: A piecewise biquadratic sum-of-squares spline estimator of the NJTP accident rate
obtained using Algorithm 1. Left: three-dimensional plot. Right: contour plot.
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4.3 Generalized sum-of-squares cones

In this section we generalize the results of [Nes00] on the semidefinite representability of sum-of-

squares and weighted-sum-of-squares real-valued functions. We consider sums of squares of vectors

in an arbitrary linear space equipped with a bilinear multiplication (mapping pairs of vectors to a

possibly different linear space), and show how this serves as a semidefinite representable restriction of

a number of intractable constraints arising in shape-constrained optimization, as well as in a number

of other settings.

This section is primarily motivated by shape-constrained optimization problems, but the general

theory we develop also has immediate applications in other areas. We give a brief outlook by

showing a simple application to combinatorial optimization and polynomial programming (POP) in

Section 4.3.3.

As the following examples show, not all shape constraints can be translated naturally to nonnega-

tivity of some linear transform of the shape constrained real valued function.

1. (Convexity of a multivariate function.) A twice continuously differentiable real valued function

f is convex over S ⊂ Rn if and only if its Hessian H is positive semidefinite over S, which we

denote by H(x) < 0, ∀x ∈ S. Magnani et al. [MLB05] consider this problem in the special

case when f is a multivariate polynomial, and suggest the following approach: H(x) < 0 for

every x ∈ S if and only if h(x,y) = yTH(x)y ≥ 0 for every x ∈ S and y ∈ Rn. Since h is also

a polynomial, the constraint is reduced to the nonnegativity of a multivariate polynomial. This

reduction, however, is not entirely satisfying for two reasons. First, it calls for doubling the

number of variables at the outset. Second, if f is not a polynomial, and H is not a polynomial

matrix, then H is still a linear transform of f , however, h(x,y) may belong to an entirely

different functional system, in which it is generally difficult to establish a connection between

nonnegativity and being sum-of-squares.

2. (Covariance matrix estimation.) The above problems become even more evident in the case of

covariance matrix estimation. Constraints of the form P(t) < 0 for every t ∈ R or for every

t ∈ [a, b] are semidefinite representable for polynomial matrices P. (Over the entire real line

this follows from a theorem of Youla, see Proposition 4.19, and for intervals we shall prove this

later in this section, in Theorem 4.21.) On the other hand, the previous approach turns these

constraints into nonnegativity of bivariate polynomials, which in general is not tractable.

3. (Functions with bounded curvature.) Consider a problem in which we are trying to find a twice
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differentiable curve given by its parametric representation x(s) ∈ Rn, where s ∈ [0, S] is the

arc-length parameter, under the constraint that the curvature of the curve must be bounded

above by some constant C ≥ 0. This constraint can be written as

‖x′′(s)‖ ≤ C ∀ s ∈ (0, S),

where x′′ is the component-wise second derivative of the vector-valued function x, and ‖ · ‖ is

the Euclidean norm [Str88, Section 1-4]. Equivalently, the constraint can be written as

(
C

x′′(s)

)

∈ Qn+1 ∀ s ∈ (0, S),

where Qn+1 is the (n+ 1)-dimensional second-order cone, or the Lorentz cone [AG03].

The examples suggest that the notion of nonnegativity should be extended beyond real numbers

to more general spaces. One such extension to higher dimensional linear spaces uses the partial order

induced by a proper cone, that is a closed, pointed, convex and full-dimensional cone K. (See the

Appendix for details.) In this case our constraints are of the form f(x) ∈ K, ∀x ∈ S, where f is

a (perhaps multivariate) vector-valued function. Such requirements are called cone-nonnegativity

or K-nonnegativity constraints. This will generally be an intractable constraint, but we can try to

find a tractable approximation for it in the form of f being “sum-of-squares” with respect to some

multiplication of vector-valued functions. This is particularly appealing when K is a symmetric cone,

as symmetric cones are cones of squares with respect to a Euclidean (or, equivalently, formally real)

Jordan algebra multiplication [FK94]. Kojima and Muramatsu [KM07] consider this problem in the

special case when f is a vector-valued polynomial whose coefficients are multiplied according to a

Euclidean Jordan algebra multiplication, and derive a semidefinite programming characterization

for these sum-of-squares polynomials. Multivariate sum-of-squares matrix polynomials are also

considered in [Koj03].

In this section we consider the following, even more general problem. We take an arbitrary bilinear

mapping ⋄ : A×A→ B, where A and B are fixed finite-dimensional real linear spaces, and show that

the set of vectors that are sums of squares of vectors from A (with respect to the multiplication ⋄) is

a linear image of positive semidefinite matrices. The linear transformation is explicitly constructed

using a polynomial number of multiplications. This generalizes the above-mentioned results from

[Nes00] and [KM07].

Since in this section the objects we handle are all vectors from a number of different linear spaces
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and algebras, we shall not typeset vectors and matrices in bold face, as customary in linear algebra.

Instead, only in this section, all scalars, vectors, and matrices from abstract spaces and algebras are

typeset italic (lightface), and boldface characters are reserved for tuples of vectors.

4.3.1 Semidefinite characterization of sums of squares

Consider two finite-dimensional real linear spaces A and B, and a bilinear mapping ⋄ : A×A→ B.

We define the cone of sum-of-squares vectors Σ ⊆ B by

Σ⋄
def
=

{
N∑

i=1

ai ⋄ ai

∣
∣
∣
∣
∣
N ≥ 1; a1, . . . , aN ∈ A

}

.

Alternatively, we may say that a Σ⋄ defined this way is a sum-of-squares cone, or SOS cone for short.

Clearly, Σ⋄ is a convex cone, but it not necessarily proper, as it may have an empty interior, and it

may contain lines. We will drop the subscript ⋄ and simply write Σ if the multiplication in question

is understood from the context. Note that the extreme rays of Σ are among perfect squares ai ⋄ ai.

Therefore, by the conic version of Carathéodory’s theorem [Roc70, Corollary 17.1.2], each element of

Σ can be written as sum of at most dim(B) squares.

Let E = {e1, . . . , em} be a basis of A, and V = {v1, . . . , vn} be a basis of a vector space B′ ⊇ B.

Furthermore, let the vector λij ∈ Rn (i, j = 1, . . . ,m) be the coefficient vector of ei ⋄ ej ∈ B in the

basis V :

ei ⋄ ej =
∑

ℓ

λijℓvℓ. (4.8)

Finally, we define the linear operator Λ: Rn → Rm×m, coordinate-wise, by the formula

(Λ(w))ij
def
= 〈w, λij〉 ∀w ∈ Rn (i, j = 1, . . . ,m); (4.9)

its adjoint operator is denoted by Λ∗. If ⋄ is commutative, then Λ attains only symmetric values,

and it is more natural to define Λ as an Rn → Sm operator, where Sm is the space of m×m real

symmetric matrices.

Our main theorem is the characterization of the sum-of-squares cone Σ as a linear image of

the cone of positive semidefinite matrices. Such sets are called semidefinite representable (see also

Definition A.9 in the Appendix).

Theorem 4.5. Let u = (u1, . . . , un)
T ∈ Rn be arbitrary. Then

∑n
ℓ=1 uℓvℓ ∈ Σ if and only if there

exists a real symmetric positive semidefinite matrix Y ∈ Rm×m satisfying u = Λ∗(Y ).
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Proof. Let us assume first that
∑n

ℓ=1 uℓvℓ ∈ Σ, that is,

n∑

ℓ=1

uℓvℓ =

N∑

k=1

ak ⋄ ak

for some ak ∈ A. Each ak can be written in the basis E as ak =
∑m

j=1 y
(k)
j ej , with y

(k)
j ∈ R. By

choosing Y =
∑N

k=1 y
(k)y(k)

T
, which is clearly positive semidefinite, we obtain

n∑

ℓ=1

uℓvℓ =

N∑

k=1

ak ⋄ ak =

N∑

k=1





(
m∑

i=1

y
(k)
i ei

)

⋄

(
m∑

j=1

y
(k)
j ej

)



=
N∑

k=1

m∑

i=1

m∑

j=1

y
(k)
i y

(k)
j (ei ⋄ ej)

=
m∑

i=1

m∑

j=1

Yij (ei ⋄ ej) =
m∑

i=1

m∑

j=1

Yij

n∑

ℓ=1

λijℓvℓ,

where the last equation comes from Equation (4.8). Using the symbol 1ℓ for the ℓ-th unit vector

(0, . . . , 0, 1, 0 . . . , 0) ∈ Rn, the last expression can be simplified further:

m∑

i=1

m∑

j=1

Yij

n∑

ℓ=1

λijℓvℓ =

n∑

ℓ=1

〈Y,Λ(1ℓ)〉vℓ =

n∑

ℓ=1

〈Λ∗(Y ), 1ℓ〉vℓ.

Since {vℓ} is a basis, comparing the coefficients in
∑

ℓ uℓvℓ to those in the last expression yields

u = Λ∗(Y ), completing the proof in the “if” direction.

To prove the converse claim, reverse the steps of the above proof: if u = Λ∗(Y ), and Y is positive

semidefinite, then obtain vectors y(k) satisfying Y =
∑

k y
(k)y(k)

T
(for example, from the spectral

decomposition of Y ), and use the above identities to deduce

n∑

ℓ=1

uℓvℓ =
∑

k





(
m∑

i=1

y
(k)
i ei

)

⋄

(
m∑

j=1

y
(k)
j ej

)

 ∈ Σ.

After fixing the basis V = {v1, . . . , vn} for B
′, the cone Σ is naturally identified with the cone

{u |
∑n

ℓ=1 uℓvℓ ∈ Σ}. It shall raise no ambiguities that we denote the latter cone by Σ, too.

In optimization applications it is necessary to characterize the dual cone of Σ, denoted by Σ∗.

Using our main theorem, and the well-known fact that the cone of positive semidefinite matrices

is self-dual (in the space of symmetric matrices), Σ∗ is easily characterized, especially when ⋄ is

commutative.
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Theorem 4.6. Using the notation above,

Σ∗ =
{
v
∣
∣ ∃S < 0, A = −AT : Λ(v) = S +A

}
.

In particular, if ⋄ is commutative, then

Σ∗ = {v | Λ(v) < 0}.

Proof. By definition, a vector v ∈ Rn is in Σ∗ if and only if 〈u, v〉 ≥ 0 for every u ∈ Σ. By

Theorem 4.5, u ∈ Σ if and only if u = Λ∗(Y ) for some Y < 0, consequently v ∈ Σ∗ if and only if

〈u, v〉 = 〈Λ∗(Y ), v〉 = 〈Y,Λ(v)〉 ≥ 0 (4.10)

for every Y < 0. The dual cone of positive semidefinite matrices (embedded in Rn×n as opposed to

Sn) is the cone of matrices that can be written in the form of S +A, where S is positive semidefinite

and A is skew-symmetric. This proves our first claim.

If ⋄ is commutative, then Λ(v) is symmetric for every v. Hence, in the decomposition Λ(v) = S+A

we must have A = 0. This proves the second part of the theorem.

Without loss of generality we can assume that ⋄ is commutative, because the sum-of-squares cone

Σ⋄2
with respect to the multiplication ⋄2 defined by x ⋄2 y = 1

2 (x ⋄ y + y ⋄ x) is identical to Σ⋄, and

⋄2 is commutative.

The definition of the cone Σ is applicable to every bilinear operation. Not all operations result in

interesting cones, however. We start with to trivial examples to see what the issues are.

Example 4.7. Let A = B = B′ = C, the algebra of complex numbers, viewed as a two-dimensional

space over R, with ⋄ being the usual multiplication:
( a1

b1

)
⋄
( a2

b2

)
=
(
a1a2−b1b2
a1b2+a2b1

)
. Using the standard

basis as V , we obtain that Λ(w) = (w1 w2
w2 −w1

), and that

Σ =
{(

Y11−Y22

2Y12

) ∣
∣
(
Y11 Y12

Y12 Y22

)
< 0
}
= R2

is the entire space. We conclude that every complex number is sum-of-squares, in concordance with

the fact that every complex number is, in fact, a square. Similar situation holds for quaternions and

octonions.

Example 4.8. Consider any finite-dimensional anticommutative algebra (A, ⋄) over R, that is,
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assume x ⋄ y = −y ⋄ x for every x, y ∈ A. Each vector ai in such algebras satisfies ai ⋄ ai = 0, and it

follows that Σ = {0}, and Σ∗ = A.

To avoid trivial examples such as the first one, it is useful to consider when Σ is a pointed cone. A

convex cone K is pointed if it does not contain a line, or equivalently, if 0 6= x ∈ K implies −x 6∈ K.

As the following lemma shows, a condition sufficient to obtain a pointed Σ is that the multiplication

⋄ be formally real: ⋄ is said to be formally real if for every a1, . . . , ak ∈ A,
∑k

i=1(ai ⋄ ai) = 0 implies

that each ai = 0.

Lemma 4.9.

1. If ⋄ is formally real, then Σ⋄ is pointed.

2. Conversely, if Σ⋄ is pointed and there are no nonzero nilpotent elements of degree two, then ⋄

is formally real.

Proof. First suppose that ⋄ is formally real and that for some vector x both x and −x are in Σ⋄.

Then 0 = x+ (−x) ∈ Σ⋄ is sum-of-squares: 0 =
∑

i

ai ⋄ ai

︸ ︷︷ ︸

x

+
∑

i

bi ⋄ bi

︸ ︷︷ ︸

−x

, implying that each ai and bi

is zero. Consequently x = 0 confirming that Σ⋄ is pointed.

Conversely, if Σ⋄ is pointed and
∑

i ai ⋄ ai = 0 for some ai, then each ai ⋄ ai = 0, and thus ai = 0

by assumption. This proves that ⋄ is formally real.

Another special case of Theorem 4.5 is Nesterov’s well-known characterization of sum-of-squares

functional systems [Nes00].

Example 4.10. Let f1, . . . , fn be arbitrary functions mapping a set ∆ to R, andA = span({f1, . . . , fn}).

Then Σ ⊆ span({f21 , f1f2, . . . , f
2
n}). The semidefinite characterization of Σ obtained from Theorem 4.5

is identical to the one in [Nes00].

Example 4.11. As a special case of the previous example we can assume A to be the set of k-variate

polynomials of degree at most n, and B the set of k-variate polynomials of degree at most 2n. In

that case Σ = Σ2n,k is the cone of SOS k-variate polynomials of degree 2n.

Example 4.12. As a further specialization, let A be the set of univariate polynomials of degree n,

and B the set of univariate polynomials of degree 2n, with ⋄ representing multiplication of polynomials.

Representing the polynomials by their coefficient vectors in the standard basis {1, t, . . . , tn} for A

and {1, t, . . . , t2n} for B, Λ(w) is the Hankel matrix corresponding to w, that is
(
Λ(w)

)

ij
= wi+j .

Note that this proves the last part of Proposition 2.3.
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If A′ is a proper subspace of A, then the sum-of-squares cone Σ′
⋄ corresponding to the restriction

of ⋄ to A′ is a subset of Σ⋄, but it need not be a proper subset. If it is not, the cones Σ⋄ and Σ∗
⋄ can

be represented by smaller semidefinite matrices. A non-trivial example is given by the Cracovian

algebra [Koc04].

Example 4.13. (Cracovian algebra.) Let A = Rr×k and B = Rr×r, then the productM ⋄N =MNT

is formally real. In this case it is obvious that Σ⋄ is identical to the cone of positive semidefinite (real,

symmetric) r × r matrices. If we follow the process of Theorem 4.6 for the Cracovian multiplication,

then Λ(w) will be represented by an nr × nr matrix; but we know that r × r matrices should suffice

in this case. We obtain a representation with r × r matrices if we consider a restriction of ⋄ to Rr.

In this case Σ′ = Σ the set of symmetric positive semidefinite matrices and the Λ′(w) is an r × r

matrix rather than rk × rk.

Weighted-sum-of-squares cones

The above theory extends to the semidefinite representability of weighted-sum-of-squares vectors.

Before we begin, let us recall the notion of a left multiplication operator.

Definition 4.14. Given a bilinear operation ⋄ : A×A→ B, for each element x ∈ A there is a linear

operator L⋄(x) that maps every y ∈ A to x ⋄ y. We call L⋄(x) the left multiplication operator of x.

We shall drop the subscript ⋄ when the multiplication is clear from the context. This operator

can be represented by an n × m matrix (also denoted by L⋄(x) or L), where m = dim(A) and

n = dim(B).

Lemma 4.15. Let Σ⋄ be the SOS cone corresponding to ⋄ : A×A→ B, and let w ∈ B. In addition,

let there be another bilinear operation ◦ : B ×B → C. Then the cone Σw def
= w ◦ Σ⋄ is an SOS cone.

Moreover, if L◦(w) is injective, then Σw is linearly isomorphic to Σ⋄ (that is, there exists a linear

bijection between Σw and Σ⋄).

Proof. For the first claim, observe that the multiplication ⋆ : A×A→ C defined by x⋆y
def
= w◦(x⋄y) is

linear in both x and y, and Σ⋆ = Σw. If L◦(w) is injective, it defines a bijective linear transformation

from B to L◦(w)(B), which is a subspace of C containing Σw. Thus, restriction of L◦(w) to a linear

transformation from B to L◦(w)(B) is a bijection; applying this bijection to Σ⋄ gives Σw proving

their linear isomorphism.

Finally, we are ready define the (generalized) weighted-sum-of-squares cones.
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Definition 4.16. Let w = (w1, . . . , wr) ∈ Br, and let Σwi = wi ◦i Σ⋄i
, where ⋄i : A × A → B

and ◦i : B × B → C, for some finite-dimensional real linear spaces A, B, and C. Then the

weighted-sum-of-squares cone Σw corresponding to A with weights wi is

Σw def
= Σw1 + · · ·+Σwr , (4.11)

where + denotes the Minkowski sum of sets.

Since the Minkowski sum of semidefinite representable sets is also semidefinite representable (this

comes from the definition; for details see the Appendix), we find that the weighted-sum-of-squares

cones are also semidefinite representable. The explicit semidefinite representation is also easy to

construct, essentially identically to the proof of Theorem 4.5:

Theorem 4.17. The weighted-sum-of-squares cone Σw defined in (4.11) is semidefinite representable.

Specifically, there are r linear operators Λk : R(dimA)×(dimA) → C, k = 1, . . . , r, such that u ∈ C if

and only if there exists real symmetric positive semidefinite matrices Y (1), . . . , Y (r) ∈ Rm×m satisfying

u =
∑r

k=1(Λ
k)∗(Y (k)).

Proof. The proof is driven by the same idea as the proof of Theorem 4.5, and for computational

applications it is particularly helpful to develop it in a basis-dependent manner, by explicitly

constructing the linear and semidefinite constraints in the semidefinite representation.

In addition to the notation introduced for (4.11), let {e1, . . . , em} be a basis for A, {f1, . . . , fn}

be a basis of C, and let λkij ∈ Rm be the coefficient vector of wk◦k (eki ⋄k e
k
i ):

wk ◦k (ei ⋄k ej) =
∑

ℓ

λkijℓfℓ,

and define Λk by the formula

(Λk(·))ij
def
= 〈·, λkij〉 (i, j = 1, . . . ,m; k = 1, . . . , r).

Expressing all vectors from A in the above basis, and collecting terms analogously to the proof of

Theorem 4.5, we obtain the following chain of identities:

n∑

ℓ=1

uℓfℓ =

r∑

k=1

(

wk ⋄

(
Nk∑

ℓ=1

(akℓ ⋄ a
k
ℓ )

))

=
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=

r∑

k=1



wk ⋄





Nk∑

ℓ=1





m∑

j=1

y
(k)
ℓj ej



 ⋄





m∑

j=1

y
(k)
ℓj ej













=

r∑

k=1



wk ⋄





Nk∑

ℓ=1

m∑

i=1

m∑

j=1

y
(k)
ℓi y

(k)
ℓj (ei ⋄ ej)









=
r∑

k=1

Nk∑

ℓ=1

m∑

i=1

m∑

j=1

y
(k)
ℓi y

(k)
ℓj (wk ⋄ (ei ⋄ ej))

=
r∑

k=1

m∑

i=1

m∑

j=1

Y
(k)
ij (wk ⋄ (ei ⋄ ej))

=
r∑

k=1

m∑

i=1

m∑

j=1

Y
(k)
ij

n∑

ℓ=1

λ
(k)
ijℓfℓ

=

r∑

k=1

n∑

ℓ=1

〈Y (k),Λk(1ℓ)〉fℓ

=
n∑

ℓ=1

r∑

k=1

〈(Λk)∗(Y (k)), 1ℓ〉fℓ.

Comparing the coefficients of the first and last expression yields

u =

r∑

k=1

(Λk)∗(Y (k)).

Nesterov [Nes00] considers the weighted functional systems Σw = w1(x)Σ1+ · · ·+wk(x)Σk, where

each Σi is the SOS cone corresponding to the ordinary multiplication in the space spanned by a set of

linearly independent functions f1i, . . . , fmii, all defined on a set ∆. First, for a single w(x)Σ he sets

Aw = span
{√

w(x)f1(x), . . . ,
√

w(x)fm(x)
}
. Then clearly, the square functional system induced by

Aw is w(x)Σ, where Σ is the SOS cone corresponding to A = span{f1, . . . , fm}. He then uses the

SD-representability of the Minkowski sum of SD-representable sets to show that w1Σ1 + · · ·+wlΣl is

also SD-representable. This approach assumes that each wi(x) is nonnegative on ∆. Our development

does not assume that we have access to “square roots” of wi, nor does it rely on any notion of

“nonnegativity”.

4.3.2 Application to vector-valued functions

While many of the examples in the previous sections can be regarded as basic, they serve as building

blocks of some truly non-trivial results, such as the semidefinite characterization of (weighted) sums

of squares of vector-valued functions and positive semidefinite matrix polynomials. All the results
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of this section could be obtained by the direct application of Theorem 4.5; however, the following

lemma considerably simplifies their presentation.

Recall that the tensor product of spaces A1 = span({ei}) and A2 = span({fj}) is defined as

span({ei ⊗ fj}), where ⊗ denotes the Kronecker product. As before, let Ai and Bi, i = 1, 2 be

finite-dimensional real linear spaces, and ⋄i : Ai × Ai → Bi be bilinear mappings. We define the

tensor product ⋄ : (A1 ⊗ A2) × (A1 ⊗ A2) → (B1 ⊗ B2) of ⋄1 and ⋄2 by first defining it for tensor

products: for u1, u2 ∈ A1 and v1, v2 ∈ A2,

(u1 ⊗ v1) ⋄ (u2 ⊗ v2)
def
= (u1 ⋄1 u2)⊗ (v1 ⋄2 v2).

The definition of ⋄ is then extended to all elements of A1⊗A2 by (the unique) bilinear extension. The

semidefinite representation of Σ⋄ can be obtained from those of Σ⋄i
using the following observation.

Lemma 4.18. Using the notation of Theorem 4.5 and (4.9), for every w1 ∈ B1 and w2 ∈ B2 we

have Λ⋄(w1 ⊗ w2) = Λ⋄1
(w1)⊗ Λ⋄2

(w2). Thus, Λ⋄ = Λ⋄1
⊗ Λ⋄2

.

Proof. As above, let {ei} be a basis of A1 and {fi} be a basis of A2. Then

(
Λ⋄(w1 ⊗ w2)

)

(i1,i2),(j1,j2)
=
〈
w1 ⊗ w2, (ei1 ⊗ fi2) ⋄ (ej1 ⊗ fj2)

〉

=
〈
w1 ⊗ w2, (ei1 ⋄1 ej1)⊗ (fi2 ⊗ fj2)

〉
=
〈
w1, ei1 ⋄1 ej1

〉〈
w2, fi2 ⋄2 fj2

〉

=
(
Λ⋄1

(w1)
)

i1,j1

(
Λ⋄2

(w2)
)

i2,j2
=
(
Λ⋄1

(w1)⊗ Λ⋄2
(w2)

)

(i1,i2),(j1,j2)
.

As an application, we can simplify the characterization of SOS cones of vector-valued functions

whose multiplication decomposes to the multiplication of the coefficients and the multiplication of

the underlying functional basis. In particular, we can handle SOS cones of the form

{
g1(x) ⋄ g1(x) + · · ·+ gn(x) ⋄ gn(x) | gi(x) = pi1f1(x) + · · ·+ pimfm(x), with pij ∈ A

}
,

where the fi are real valued functions, by considering separately the SOS cone corresponding to

multiplication in A and the SOS cone corresponding to the multiplication of the fi.

In functional cones of Example 4.10, the cone of nonnegative functions is in general a proper

superset of the cone of sum-of-squares functions. We have seen that in some exceptional cases, the

two cones coincide. The most prominent example is the set of nonnegative univariate polynomials.

There is an important extension of this result to symmetric-matrix-valued univariate polynomials; it

relies on a consequence of Youla’s spectral factorization theorem [You61]. For completeness we recall
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the specific corollary we use.

Proposition 4.19 ([You61, Theorem 2 and Corollary 2]). Let P be an m × m real symmetric

univariate polynomial matrix, and let r be the largest integer such that P has at least at least one

minor of order r that does not vanish identically. Then there exists an m× r polynomial matrix Q

satisfying the identity P (t) = Q(t)Q(t)T identically.

Let us define

PS
m

n =
{
(P0, P1, . . . , Pn) ∈ (Sm)n+1 | P0 + P1t+ · · ·+ Pnt

n
< 0 for all t ∈ R

}
(4.12)

PS
m

n,[a,b] =
{
(P0, P1, . . . , Pn) ∈ (Sm)n+1 | P0 + P1t+ · · ·+ Pnt

n
< 0 for all t ∈ [a, b]

}
(4.13)

Youla’s theorem states that PS
m

n is the SOS cone with respect to the Cracovian multiplication

of polynomial matrices. Applying Lemma 4.18 along with the semidefinite representation of non-

negative polynomials and Youla’s theorem yields a semidefinite characterization analogous to the

characterization of complex semidefinite matrix polynomials in [GHND03]:

Theorem 4.20. The m×m matrix polynomial P (t) =
∑2n

i=0 Pit
i is positive semidefinite for every

t ∈ R if and only if there exists a positive semidefinite block matrix Y ∈ R(n+1)m×(n+1)m consisting

of blocks Yij, i, j = 0, . . . , n of order m such that Pℓ =
∑

i+j=ℓ Yij for each ℓ = 0, . . . , 2n.

Proof. By Proposition 4.19, P (t) is positive semidefinite for every t ∈ R if and only if it is sum-

of-squares with respect to the multiplication R(t) ⋄ S(t) = R(t)S(t)T. We have characterized

separately the sum-of-squares cone of the coefficient matrices (with respect to the Cracovian

multiplication) in Example 4.13 and the sum-of-squares cone of ordinary polynomials (with re-

spect to the ordinary polynomial multiplication) in Example 4.12. Now, the theorem follows from

Lemma 4.18 and Theorem 4.5.

Finally, we can generalize Proposition 2.4 to symmetric matrix-valued polynomials.

Theorem 4.21. For every n ≥ 1,m ≥ 1 the cones PS
m

n,[a,b] and P
S
m

n,[a,∞] are weighted sum-of-squares

cones, specifically

PS
m

n,[a,∞] = P
S
m

n + (t− a)PS
m

n ,

PS
m

n,[a,b] = (t− a)PS
m

n−1 + (b− t)PS
m

n−1 when n is odd,

PS
m

n,[a,b] = (t− a)(b− t)PS
m

n−2 + P
S
m

n when n is even.
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Proof. For simplicity we assume (a, b) = (0, 1), the argument for general intervals is essentially

identical. (The general results can also be obtained from the special cases by a change of variables.)

We will use the notation A⋄2 for squaring a matrix A with respect to the Cracovian multiplication.

First, suppose P ∈ PS
m

n,[0,∞], and consider the polynomial Q defined by Q(t) = Q(t2). By

assumption, Q is positive semidefinite everywhere, hence Q =
∑

iQ
⋄2
i by Youla’s theorem (Proposition

4.19). Grouping the terms of the Qi by the parity of their degrees we write Qi(t) = Ri(t
2) + tSi(t

2),

and since Q has no odd degree terms,

P (t2) = Q(t) =
∑

i

(
Ri(t

2)
)⋄2

+ t2
∑

i

(
Si(t

2)
)⋄2

.

Taking R =
∑

iR
⋄2
i and S =

∑

i S
⋄2
i we have P (t2) = R(t2) + t2S(t2), implying P (t) = R(t) + tS(t)

with sum-of-squares matrices R and S, as claimed. The bounds on the degrees of follow from the

fact that the degree of each Ri is at most n.

Next, suppose P ∈ PS
m

n,[0,1], and consider the polynomial Q(t) = (1+t)nP (t/(1+t)): by assumption

it is positive semidefinite for all t ≥ 0, and so by the first claim of our theorem, Q(t) = R(t) + tS(t)

identically for some R =
∑

iR
2
i of degree at most n and S =

∑

i S
2
i of degree at most n− 1.

Observe that P (t) = (1− t)nQ(t/(1− t)). If n = 2k + 1, then this yields

P (t) = (1− t)2k+1
∑

i

R⋄2
i (t/(1− t)) + (1− t)2k+1 t

1− t

∑

i

S⋄2
i (t/(1− t))

= (1− t)
∑

i

(
(1− t)kRi(t/(1− t))

)⋄2
+ t
∑

i

(
(1− t)kSi(t/(1− t))

)⋄2
.

If n = 2k, then

P (t) = (1− t)2k
∑

i

R⋄2
i (t/(1− t)) + (1− t)2k

t

1− t

∑

i

S⋄2
i (t/(1− t))

=
∑

i

(
(1− t)kRi(t/(1− t))

)⋄2
+ t(1− t)

∑

i

(
(1− t)k−1Si(t/(1− t))

)⋄2
.

The degree bounds come from the degree bound in the first claim of the theorem.

Similarly, Lemma 4.18 can be used to characterize the sums of squares of arbitrary vector-valued

functions, not only of semidefinite valued matrix polynomials. More precisely, let (A, ◦) be a (not

necessarily commutative or associative) finite-dimensional algebra, f1, . . . , fn be given real valued

functions, and let A be the space {
n∑

i=0

vifi | vi ∈ A

}

.
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Then the cone Σ = A2 is semidefinite representable via Theorem 4.5, and a representation can be

conveniently constructed using Lemma 4.18. This generalizes Lemma 2 of [KM07], where a similar

characterization is obtained in the special case when fi = ti, and (A, ◦) is a Euclidean (or formally

real) Jordan algebra.

4.3.3 Further applications

Smallest Enclosing Ellipsoids of Curves

The smallest enclosing ball (SEB) and the smallest enclosing ellipsoid (SEE) (also often called

minimum enclosing ball and ellipsoid) problems ask for the sphere or ellipsoid of minimum volume

that contains a finite set of given points. These problems have been thoroughly studied, partly because

of their important applications in machine learning, see for example [Bur98, CVBM02, KMY03].

Both of them admit simple second-order cone programming (SOCP) and semidefinite programming

(SDP) formulations: denoting the input points by Y = {y1, . . . , ym}, the smallest sphere, with center

x and radius r, containing Y is determined by the SOCP

minimize r subject to ‖x− yi‖ ≤ r, i = 1, . . .m,

while the ellipsoid of smallest volume is determined by the SDP

maximize (detA)(1/n) subject to A < 0; ‖x−Ayi‖ ≤ 1, i = 1, . . .m.

Equivalently, the objective function can be replaced by ln detA, which results in a convex

optimization problem with an SD-representable feasible set and a convex (but not SD-representable)

objective function.

We consider the following generalization of the SEB and SEE problems: given a closed parametric

curve p(t), t ∈ [a, b] find the sphere or ellipsoid of minimum volume that contains all points of the

curve. Replacing the finite set of constraints involving yi by the constraints involving p(t) we obtain

optimization problems with a continuum of constraints over the cone Qn+1 = {(x0, x̄) : x0 ∈ R, x̄ ∈

Rn, and x0 ≥ ‖x̄‖}. It is well known that Qn+1 is a symmetric cone; in fact it is the cone of squares

of the Jordan algebra (Rn+1, ◦) with binary operation (x0, x̄) ◦ (y0, ȳ) = (〈x̄, ȳ〉+ x0y0, x0ȳ + y0x̄).

Now, if p belongs to any class of functions whose cone of nonnegative functions is linearly isomorphic

to the cone of nonnegative polynomials (for examples see also Section 5.1.4), then the set {p | p(t) ∈

Q ∀ t ∈ ∆} is an SOS cone for appropriate intervals ∆, and thus it is SD-representable.
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Example 4.22. Figure 4.3 shows a parametric curve

(x(t), y(t)) =

n∑

k=1

p2k−1 sin(kt) + p2k cos(kt), t ∈ [0, 2π]

with n = 3 and coefficient vectors p1, . . . , p6 that are independent random vectors chosen uniformly

from the interval [−1, 1]2. Since p is a trigonometric polynomial with coefficients in Rn+1, by the

preceding discussion the condition ‖x − Ap(t)‖ ≤ 1 is SD-representable. The minimal circle and

minimal ellipse containing {p(t) | t ∈ [0, 2π]} is shown in Figure 4.3. Obviously this example can be

extended to arbitrary dimensions, as well as to enclosing a (finite) collection of curves, without any

difficulty.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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1

Figure 4.3: A trigonometric polynomial curve (blue, solid) together with its smallest enclosing circle
(green, dashed) and its smallest enclosing ellipsoid (red, dot-dashed).

Polynomial Programming and Combinatorial Optimization

For a very brief section we shall wander away from our central topic to illustrate how general

Theorems 4.5 and 4.17 are, and why we hope that it will find applications in entirely different areas

of optimization, other than optimization with shape constraints.

Polynomial multiplication with respect to a (fixed) polynomial ideal is a bilinear operation. The

application of Theorem 4.5 to the space of polynomials of a given degree yields simplified SDP

relaxations and hierarchies to polynomial programs with equality constraints. Consider the POP

maximize f(x) subject to hi(x) = 0, i = 1, . . .m, (4.14)
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where f and each hi are given n-variate polynomials. An equivalent formulation is

minimize c subject to f(x)− c ≥ 0 ∀x ∈ {x : hi(x) = 0, i = 1, . . .m}.

This problem is NP-hard, but the following restriction may be tractable:

minimize c subject to f(x)− c ∈ Σ, (4.15)

where Σ is the sum-of-squares cone with respect to polynomial multiplication modulo the ideal

I generated by {hi}. Depending on {hi}, the bottleneck in the solution of (4.15) may be the

computation of Λ, which involves finding a Gröbner basis of I, and a large number of multivariate

polynomial divisions.

This method can be very effective when hi form a Gröbner basis, and division modulo I is simple,

as in the following example.

Example 4.23. Consider a graph G = (V,E) with |V | = n vertices and |E| = m edges. Letting

f(x) =
∑n

i=1 xi and hij(x) = xixj , ij ∈ E, the solution to the problem (4.14) is the stability number

of G. A sequence of semidefinite relaxations to the stable set problem is obtained if we replace (4.14)

by (4.15), and constrain f − c to be a sum of squares of polynomials of a given total degree. (Higher

degrees give tighter relaxations.) Theorem 4.6 gives the dual SDPs of these relaxations, which are

identical to Laurent’s simplified characterization [Lau03] of the Lasserre hierarchy [Las01a] applied

to the stable set problem. This also serves as a new, simpler, proof of [Lau03, Lemma 20].

4.4 Conclusion

We considered several aspects of shape-constrained spline estimation in the multivariate setting. We

introduced piecewise weighted-sum-of-squares splines and gave a condition for them to approximate

continuous functions uniformly as the mesh size tends to zero. We proposed a decomposition method

based on a partial linearization of the augmented Lagrangian for optimizing nonnegative splines

with a very large number of pieces. Some illustrative numerical examples were included. Finally,

we introduced the notion of weighted-sum-of-squares cones in arbitrary real linear spaces, and

showed that they are semidefinite representable. This result has applications in both univariate and

multivariate shape-constrained optimization.
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Chapter 5

Direct optimization methods for

nonnegative polynomials

While the cones of positive polynomials P2n+1 and P
[a,b]
n+1 and their dual cones are semidefinite

representable, translating optimization problems involving these cones to the corresponding semidef-

inite constraints is not completely satisfactory. Recall from Proposition 2.3 that the semidefinite

characterization of a vector in P2n+1 requires a general (n+1)×(n+1) symmetric matrix to represent

a (2n+ 1)-dimensional vector; hence this approach effectively squares the number of variables. A

second argument against this approach is that the semidefinite characterization of the moment cones

M2n+1 andM
[a,b]
n+1 involve positive semidefinite Hankel matrices, which are notoriously ill-conditioned

[Tyr94, Bec97]. In this chapter we investigate how the two most common general approaches to

conic optimization problems, barrier methods and homotopy methods, can be adapted to positive

polynomials and moment cones.

Until very recently, the only approach to this problem in the existing literature has been the

application of the universal barrier function of Nesterov and Nemirovskii [NN94] to the cone of

nonnegative polynomials, or more generally, nonnegative functions in Chebyshev systems. However,

computing the universal barrier function and its derivatives for these cones appears to be difficult.

Faybusovich gives a simplified formula to evaluate the universal barrier in [Fay02], but this formula

involves the evaluation of the Pfaffian of a matrix whose entries given by integrals of general rational

functions. (Furthermore, evaluation of the derivatives of the universal barrier is not discussed.)

Evaluating the Pfaffian (determinant) is computationally very expensive, and it cannot be considered

a really practical method; see [FMT08] for numerical experiments with this algorithm. No similar
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formula is known for moment cones.

In addition to barrier methods, another large family of interior-point algorithms are homotopy

methods. These methods solve a system of equations derived from the complementary slackness

conditions of the problem at hand. The equations from the optimality conditions are perturbed, and

the perturbed system is solved (approximately) by some general purpose method, such as Newton’s

method. In each iteration the perturbation is made smaller, and the approximate solution to the

previous system is used as an initial solution to find an approximate solution to the less perturbed

system. After a number of such iterations the approximate solution of the slightly perturbed system

approximates the optimal solution to the original optimization problem.

In Section 5.1 we follow this approach, and examine the complementary slackness conditions

for the cones P
[a,b]
n+1 andM

[a,b]
n+1. However, the main result of this section is negative: we show that

the complementary slackness conditions for these cones cannot be written in as simple a way as

for the first orthant, the second-order cone, or the semidefinite cone. More precisely, we show that

any form of the complementary slackness conditions contains at most two linearly independent

bilinear equations. As simple corollaries we also derive analogous results for cones of nonnegative

trigonometric polynomials and their duals. These complement the main result in [Rud09, Chapter 3],

that the number of linearly independent bilinear optimality conditions for P2n+1 is at most four.

In Section 5.2 we return to the evaluation of barrier functions. We show that a self-concordant

barrier function for the moment coneM
[a,b]
n+1 (derived from its semidefinite representation) together

with its gradient and Hessian can be computed in O(n2 log n) time using fast Fourier transform. This

allows us to optimize over nonnegative polynomials (or moments) using semidefinite programming as

before, but without increasing the number of variables, and with substantial reduction in the running

time. For example, this subroutine reduces the time of the short-step path-following method [Ren01]

from O(n6) to O(n3) per iteration, while maintaining the iteration complexity of the algorithm.

Fast Fourier transform (or equivalently, fast polynomial multiplication) is available only for

polynomials represented in specific bases. One such basis is the standard monomial basis; however,

that is usually not the optimal choice for numerical computations. Another basis for which fast

Fourier transform is available is the Chebyshev basis (of the first kind). We show that the gradient

and the Hessian of the same barrier function can be computed with the same running time if the

Chebyshev polynomial basis is used in place of the monomial basis.
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5.1 Optimality conditions for nonnegative polynomials

Let K ⊆ Rn be a proper convex cone, and consider the following set:

C(K)
def
= {(x, s) | x ∈ K, s ∈ K∗, 〈x, s〉 = 0}.

The set C(K) is called the complementarity set of the cone K. From the complementary slackness

conditions of conic optimization problems (see Proposition A.5 in the Appendix) we have that if x

and (y, s) are feasible solutions to the primal-dual pair

maximize 〈c,x〉 maximize 〈b,y〉

subject to Ax = b subject to c−ATy = s

x <K 0 s <K∗ 0,

and 〈x, s〉 = 0, then x and (y, s) are optimal solutions to the primal and dual problem, respectively.

Conversely, under certain regularity conditions, if either problem has a feasible solution, then both

problems have optimal solutions x and (y, s) satisfying (x, s) ∈ C(K). Consequently, having a good

characterization for C(K), at least in principle, may allow us to solve conic optimization problems by

solving the feasibility problem

Ax = b, c−ATy = s, (x, s) ∈ C(K).

Let us recall a few familiar examples.

Linear programming. In linear programming we have K = K∗ = Rn
+ (the first orthant), and

(x, s) ∈ C(K) if and only if x ≥ 0, s ≥ 0, and xisi = 0 for i = 1, . . . , n. Note that the system

Ax = b, c−ATy = s, xisi = 0, i = 1, . . . , n

consists of as many, 2n+m, independent equations as the number of variables. Finding a solution to

this system by homotopy methods is the basic idea of a number of interior-point methods for linear

programming.

Second-order cone programming. In second-order cone programming we have K = K∗ = Qn+1 (the

second-order cone or Lorentz cone), and using the notation x = (x0, . . . , xn)
T and s = (s0, . . . , sn)

T,
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the complementarity relation (x, s) ∈ C(K) holds if and only if x ∈ Qn+1, s ∈ Qn+1, and

(

〈x, s〉

x0s+ s0x

)

=

(

0

0

)

.

As in the previous example, solving the system

Ax = b, c−ATy = s,

(

〈x, s〉

x0s+ s0x

)

=

(

0

0

)

by homotopy methods is the basic idea in a number of interior-point methods for second-order cone

programming.

Semidefinite programming. In semidefinite programming we have K = K∗ = Sn+ (the cone of

n × n positive semidefinite real symmetric matrices), and the complementarity relation 〈X,S〉 =

∑

i,j XijSij = 0 holds if and only if XS+ SX = 0. Hence, the heart of the optimality conditions for

semidefinite programming is the system

Ax = b, c−ATy = s, XS+ SX = 0.

That such an approach might be fruitful for every proper convex cone K is indicated by the

following theorem.

Proposition 5.1 ([RNPA]). For every proper cone K ⊆ Rn, C(K) is an n-dimensional manifold

homeomorphic to Rn.

While this theorem is known in the conic optimization community, it appears that there is no

written account on any proof of it. A proof, attributed to Osman Güler, is contained in the Appendix

of the forthcoming paper [RNPA].

Intuitively this result is somewhat surprising even after the concrete examples above, since

in a “generic” setting one would expect the complementarity set, the intersection of a (2n − 1)-

dimensional space and a 2n-dimensional cone, to be a (2n − 1)-dimensional manifold. Instead,

Proposition 5.1 suggests that there may be n− 1 independent valid equations for C(K) in addition

to the complementarity condition for every proper convex cone K, not only for symmetric cones.

In all of the above examples we can endow the underlying linear space V (V = Rn
+, Qn+1,

and Sn+, respectively) with a bilinear multiplication ◦, such that the in the definition of C(K) the
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complementarity relation 〈x, s〉 = 0 can be replaced by x ◦ s = 0. In the above examples the algebras

(V, ◦) are the Euclidean Jordan algebras [FK94, Koe99] which have been extensively studied and

used in the design and analysis of (primal-dual) interior-point methods for optimization problems

involving these cones [Fay97, AS00]. This (and the fact that establishing algebraic independence of

general polynomial equations is extremely hard, but is easy for bilinear forms, which also appear in

the optimality conditions of symmetric cones) motivated the further study of optimality conditions

that are expressible by bilinear forms alone in the report [ANR05] and the thesis [Rud09]. To make

the discussion on such optimality conditions precise, we need the following definitions.

Definition 5.2. Let K ∈ Rn be a proper cone. The matrix Q ∈ Rn×n is a bilinear complementarity

relation for K if every (x, s) ∈ C(K) satisfies xTQs = 0.

Note that the bilinear complementarity relations for a cone form a linear space. Motivated by

Proposition 5.1 and the examples in the beginning of this section, we are interested in those cones

that possess at least n linearly independent bilinear complementarity conditions.

Definition 5.3. The bilinearity rank of a proper cone K, denoted by β(K), is the dimension of

the space of its bilinear complementarity relations. A proper cone K ⊆ Rn is said to be bilinear if

β(K) ≥ n.

The main result in [ANR05] and [Rud09, Chapter 3] is the following.

Proposition 5.4 ([ANR05]). The cones P2n+1 andM2n+1 are not bilinear, unless n = 1. Moreover,

for every n ≥ 2, β(P2n+1) = β(M2n+1) = 4.

In this section we use techniques similar to those in [Rud09] to show that β(P
[a,b]
n+1) = β(M

[a,b]
n+1) = 2

for every positive integer n and reals a < b. We also show an analogous result for two types of

trigonometric polynomials, and for “almost all” Müntz polynomials.

5.1.1 Preliminary observations

We start with three trivial observations.

Proposition 5.5. For every proper cone K, β(K) = β(K∗).

Proof. The complementarity sets of K and K∗ are congruent: (x, s) ∈ C(K) if and only if (s,x) ∈

C(K∗).

Proposition 5.6. If two proper cones are linearly isomorphic (that is, if there is a non-singular

linear transformation mapping one onto the other), then their bilinearity ranks are the same.
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Proof. Let A be a nonsingular linear transformation such that A(K1) = K2. Then K
∗
2 = A−T(K∗

1).

Furthermore, Qi (i = 1, . . . ,m) are linearly independent bilinear complementarity conditions for

K1 if and only if A−TQiA
T (i = 1, . . . ,m) define linearly independent bilinear complementarity

conditions for K2.

As an example, one can easily show that β(P
[a,b]
n+1) = β(P

[0,1]
n+1).

Corollary 5.7. Every cone P
[a,b]
n+1 is linearly isomorphic to P

[0,1]
n+1 . Hence, β(P

[a,b]
n+1) = β(P

[0,1]
n+1).

Proof. The polynomial p is nonnegative over [a, b] if and only if the polynomial q defined by

q(t) = p( t−a
b−a ) is nonnegative over [0, 1]. Furthermore, the coefficients of q can be obtained by a

nonsingular linear transformation from the coefficients of p.

Our next observation suggests a method to bound the bilinearity rank of a cone from above in a

constructive manner.

Proposition 5.8. For every proper cone K,

β(K) = codim
(
span{sxT | (x, s) ∈ C(K)}

)
.

Proof. The matrix Q is a bilinear complementarity condition for K if and only if

0 = xTQs = 〈sxT,QT〉 ∀ (x, s) ∈ C(K).

Corollary 5.9. Suppose K ⊆ Rn is a proper cone. If there are k pairs of vectors (xi, si) ∈ C(K),

i = 1, . . . , k, such that the matrices six
T
i are linearly independent, then β(K) ≤ n2 − k. In particular,

if k > n2 − n, then K is not bilinear.

This is the approach used in [RNPA] to determine the bilinearity rank of polyhedral cones:

Theorem 5.10 ([RNPA]). Let K be a polyhedral cone. Then β(K) = n if and only if K is linearly

isomorphic to Rn
+. Otherwise β(K) = 1.

As it is not closely related to our discussion, we omit the proof.

In the upcoming proofs, we are not going to follow the method directly suggested by Corollary 5.9;

instead, it will be easier to construct an infinite family of pairs (x, s) ∈ C(K) which are then shown

to contain k pairs that correspond to linearly independent matrices six
T
i , i = 1, . . . , k. Considering

that (x, s) ∈ C(K) can only hold if x ∈ bd(K) and s ∈ bd(K∗), we have the following corollary of

Proposition 5.8.
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Corollary 5.11 ([RNPA]). Suppose K ⊆ Rn is a proper cone. If

dim
(
span

({
xsT | x ∈ bd(K), s ∈ bd(K∗)

}))
≥ k,

then β(K) ≤ n2 − k. In particular, if k > n2 − n, then K is not bilinear.

5.1.2 Nonnegative polynomials over a finite interval

Now we turn our attention to P
[a,b]
n+1 , and prove our main theorem of this section, which is β(P

[a,b]
n+1) = 2

for every positive integer n and finite interval [a, b]. The lower bound is easy to establish, using the

following observation.

Lemma 5.12. Suppose Q is a bilinear complementarity relation. Then the equation xTQs = 0 is

satisfied by every (x, s) ∈ C(K) if and only if it is satisfied by every (x, s) ∈ C(K) such that x is an

extreme vector of K and s is an extreme vector of K∗. The same is true if we replace “extreme” with

“boundary”.

Proof. The only if direction is obvious. To show the converse implication, recall that every x ∈ K

and s ∈ K∗ can be expressed as a sum of finitely many extreme (or boundary) vectors of K and K∗,

respectively. Furthermore, if x =
∑k

i=1 xi and s =
∑ℓ

j=1 sj , then 〈x, s〉 = 0 if and only if 〈xi, sj〉 = 0

for every 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ. Therefore, if 〈x, s〉 = 0, and the complementarity relation is satisfied

by every orthogonal pair of extreme (boundary) vectors, then 〈xi, sj〉 = 0 for every 1 ≤ i ≤ k,

1 ≤ j ≤ ℓ, and

xTQs =

(
k∑

i=1

xi

)T

Q





ℓ∑

j=1

sj



 =

k∑

i=1

ℓ∑

j=1

xT
i Qsj = 0.

Lemma 5.13. For every integer n ≥ 1 and real numbers a < b, β(P
[a,b]
n+1) ≥ 2.

Proof. We show that the following bilinear complementarity relations are satisfied by every (p, c) ∈

C(P
[a,b]
n+1):

n∑

i=0

pici = 0, (5.1a)

n−1∑

i=0

(n− i)pici+1 − (a+ b)

n−1∑

i=1

ipici − ab

n∑

i=1

ipici−1 = 0. (5.1b)

It is easy to see that these conditions are indeed linearly independent. The equation (5.1a) is

simply the orthogonality condition, which always holds by the definition of C(P
[a,b]
n+1).
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By Lemma 5.12 it is enough to show that (5.1b) is satisfied for pairs of vectors (p, c) ∈ C(P
[a,b]
n+1)

where c is a boundary vector ofM
[a,b]]
n+1 .

Let p ∈ P
[a,b]
n+1 be a polynomial, and p its coefficient vector. By the definition of M

[a,b]
n+1, every

boundary vector ofM
[a,b]
n+1 is of the form c = αcn+1(t0) for some α > 0 and t0 ∈ [a, b]. (Recall the

notation from Definition 2.16.) Furthermore, cn+1(t0) is orthogonal to p if and only if
∑

i pit
i =

p(t0) = 0. Therefore, (p, c) ∈ C(P
[a,b]
n+1) implies p(t0) = 0.

Since p(t) ≥ 0 for every t ∈ [a, b], every root of p has even multiplicity, except possibly for a and

b, and hence

(t0 − a)(b− t0)p
′(t0) = 0.

Finally, this last equality and p(t0) = 0 together imply

nt0p(t0) + (t0 − a)(b− t0)p
′(t0) = 0,

equivalent to (5.1b), since

nt0p(t0)+(t0 − a)(b− t0)p
′(t0) =

=

n∑

i=0

npit
i+1
0 +

n∑

i=1

(t0 − a)(b− t0)ipit
i−1
0

=

n−1∑

i=0

(n− i)pit
i+1
0 − (a+ b)

n−1∑

i=0

ipit
i
0 − ab

n∑

i=1

ipit
i−1
0

=

n−1∑

i=0

(n− i)pici+1 − (a+ b)

n−1∑

i=1

ipici − ab

n∑

i=1

ipici−1.

Finding matching the upper bounds is more tedious. They can be obtained separately for

polynomials of even and odd degree, and the different representations of the extreme rays suggest

that a unified proof might be difficult. The key ideas of both proofs are the same, but the details of

the odd degree case are considerably more involved.

We will need the following elementary fact from linear algebra.

Lemma 5.14. Let k be a positive integer and let B = {b1, . . . , bk} be a set of linearly independent

vectors in a real vector space. For a set {m1, . . . ,mk} ⊂ span(B) consider the coordinates αi,j ∈

R (i, j = 1, . . . , k) uniquely defined by the representations mi =
∑k

j=1 αi,jbj . (We refer to this as the
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B-representation of mi.) If the conditions

αi,i 6= 0 for all 1 ≤ i ≤ k,

αi,j = 0 for all 1 ≤ i < j ≤ k

hold, then the set {m1, . . .mk} is also linearly independent.

Proof. Observe that the matrix (αi,j)k×k is lower triangular with a nonzero diagonal, so it is

non-singular.

We are going to use the following, formally more general version of the above lemma:

Corollary 5.15. Let B ⊂ R[x1, . . . , xn] be a finite set of linearly independent polynomials and

consider a set M ⊂ span(B) with coordinates αm,b (m ∈ M , b ∈ B) defined by the representations

m =
∑

b∈B
αm,bb. Assume that there exists an injection ϕ : B → M and a linear order ≺ on ϕ(B)

such that

αϕ(b),b 6= 0 for all b ∈ B,

αϕ(b),d = 0 for all b, d ∈ B satisfying ϕ(b) ≺ ϕ(d).

Then dim (span (M (Rn))) = |B|, where M (Rn)
def
= {(m(x))m∈M |x ∈ Rn}.

Proof. Let k = |B|. It is well-known that for a vector P = (p1, . . . , pk) ∈ (R[x1, . . . , xn])
k consisting

of linearly independent polynomials we have dim (span (P (Rn))) = k, therefore it suffices to find a k-

element linearly independent subset of M . As ϕ is injective, there exists an indexing B = {b1, . . . , bk}

such that ϕ(b1) ≺ · · · ≺ ϕ(bk). Let mi = ϕ(bi) ∈ M (for all i = 1, . . . , k). It is easy to verify that

the sets {b1, . . . , bk} and {m1, . . . ,mk} satisfy the conditions of Lemma 5.14. Consequently the set

{m1, . . . ,mk} ⊂ M is linearly independent, which implies our claim.

Theorem 5.16. The cone P
[a,b]
2n+1 is not bilinear. More specifically, for every n, β(P

[a,b]
2n+1) = 2.

Proof. We have seen that β(P
[a,b]
2n+1) ≥ 2, only the ≤ direction needs proof.

Consider the matrix valued functions M : Rn+2 7→ R(2n+1)×(2n+1) defined as

M(t1, . . . , tn;α, β) = c2n+1(t1)p
T + αc2n+1(a)p

T
a + βc2n+1(b)p

T
b ,

where p,pa,pb ∈ P
[a,b]
2n+1 are the coefficient vectors of the polynomials p(x) =

∏n
k=1(x − tk)

2,

pa(x) = x− a, and pb(x) = b− x, respectively. It is easy to verify that the entries of M = (mi,j)
2n
i,j=0
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satisfy the polynomial equation

2n∑

j=0

mi,jx
j ≡ ti1

n∏

k=1

(x− tk)
2 + αai(x− a) + βbi(b− x). (5.2)

The polynomials p(x), pa(x) and pb(x) are clearly nonnegative over [a, b], and by Proposition 2.19,

〈pa, c2n+1(a)〉 = 〈pb, c2n+1(b)〉 = 〈p, c2n+1(t1)〉 = 0. We need to show that dim(span(M(Rn+2))) =

(2n+ 1)2 − 2, then the theorem follows from Corollary 5.11. Finally, we will show this equality using

the sufficient condition presented in Corollary 5.15, with the set {mi,j} playing the role of set M .

For the rest of the proof, let us assume that a = 0, b = 1; Corollary 5.7 guarantees that this is

without loss of generality. By convention, a0 = 1 in the rest of the proof.

Let us define the n-variate polynomials Π(k, ℓ) by

Π(k, ℓ)(t1, . . . , tn)
def
=

∑

0≤α2,...,αn≤2
α2+···+αn=ℓ

tk1

n∏

j=2

(−2)(αj mod 2)t
αj

j , (5.3)

whenever 0 ≤ k ≤ 2n+ 2 and 0 ≤ ℓ ≤ 2n− 2; for values of k and ℓ outside these ranges let us define

Π(k, ℓ) to be the zero polynomial. Let M be the set of entries of the matrix M , and let B be the set

B =
{
α, β

}
∪
{
Π(k, ℓ) | 0 ≤ k ≤ 2n+ 2, 0 ≤ ℓ ≤ 2n− 2

}
.

The elements of B are considered as polynomials of n + 2 variables, t1, . . . , tn, α, β. The set B is

linearly independent, because no two polynomials in it share a common monomial. It follows from

these definitions that for every 0 ≤ i, j ≤ 2n,

mi,j = Π(i, 2n− j) + Π(i+ 1, 2n− 1− j) + Π(i+ 2, 2n− 2− j) +m′
i,j , (5.4)

where

m′
i,j =







β j = 0

α− β i = 0, j = 1

−β i ≥ 1, j = 1

0 otherwise

. (5.5)

We now introduce an injection ϕ : B 7→ M by defining its inverse (where it exists): let mi,j be the
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image of the polynomial

ϕ−1(mi,j) = qi,j
def
=







Π(i, 2n− j) j ≥ max{2, i}

Π(i+ 2, 2n− 2− j) j ≤ min{i− 1, 2n− 2}

β i = 0, j = 0

α i = 0, j = 1

not defined otherwise

. (5.6)

Note that, ϕ−1 assigns a polynomial to every entry mi,j of M except for m1,1 and m2n,2n−1, and it

assigns different polynomials to different entries of M . Consequently, ϕ is indeed an injection, and

Equations (5.4) and (5.5) show that the coefficient of qi,j in the B-representation of mi,j is 1.

Let us define a linear order ≻ on ϕ(B) in the following way: mi1,j1 ≻ mi2,j2 precisely when one

of the following four conditions holds:

1. (i1, j1) = (0, 1);

2. i1 − j1 ≥ 1 > i2 − j2;

3. i1 − j1 ≥ 1, i2 − j2 ≥ 1, and either i1 > i2, or i1 = i2 but j1 < j2;

4. i1 − j1 < 1, i2 − j2 < 1, and either j1 < j2, or j1 = j2 but i1 > i2.

An easy case analysis using Equations (5.4), (5.5), and (5.6) shows that if mi1,j1 ≻ mi2,j2 , then the

coefficient of qi1,j1 in the B-representation of mi2,j2 is zero.

1. If (i1, j1) = (0, 1), then qi1,j1 = α, and this polynomial has a nonzero coefficient exclusively in

the B-representation of m0,1.

2. The case (i2, j2) = (0, 1) is impossible.

3. If (i1, j1) = (0, 0), then only the fourth condition is satisfied by (i1, j1), so mi1,j1 ≻ mi2,j2

implies i2 − j2 < 1, which in the light of (5.6) yields j2 ≥ 2. Consequently, by (5.5), q0,0 = β

has zero coefficient in the B-representation of mi2,j2 .

4. If (i2, j2) = (0, 0), then mi1,j1 ≻ mi2,j2 implies i1 − j1 ≥ 1, so the degree of qi1,j1 is larger than

the degree of mi2,j2 . Consequently, qi1,j1 has zero coefficient in the B-representation of m0,0.
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5. If i1 − j1 ≥ 1 > i2 − j2, then Equations (5.4) and (5.6) show that the three terms of mi1,j1

have higher degree than those of mi2,j2 , so in particular Π(i1 + 2, 2n− 2− j1) does not appear

in the B-representation of mi2,j2 .

6. If both i1 − j1, i2 − j2 ≥ 1, then either i1 + 2 > i2 + 2, or i1 = i2 and 2n− 2− j1 > 2n− 2− j2.

In either case, by Equation (5.4), Π(i1 +2, 2n− 2− j1) does not appear in the B-representation

of mi2,j2 .

7. If both i1 − j1, i2 − j2 ≤ 0, then either i1 > i2 and 2n− j1 = 2n− j2, or 2n− j1 > 2n− j2. In

either case, by Equation (5.4), Π(i1, 2n− j1) does not appear in the B-representation of mi2,j2 .

The injection mi,j 7→ qi,j and the linear order ≻ satisfy the conditions of Corollary 5.15, therefore,

by Equation (5.6),

dim(span(M(Rn+2))) =
∣
∣B
∣
∣ = (2n+ 1)2 − 2,

which completes the proof.

The proof of the odd degree case is along the same lines, but it requires a considerably more

complicated construction to replace the polynomials Π and the injection ϕ in the above proof.

Theorem 5.17. The cone P
[a,b]
2n+2 is not bilinear. More specifically, for every n, β(P

[a,b]
2n+2) = 2.

We have seen β(P
[a,b]
2n+2) ≥ 2, only the ≤ direction needs proof. We first prove our claim for the

case n = 1.

Lemma 5.18. The cone P
[a,b]
4 is not bilinear. More specifically, β(P

[a,b]
4 ) ≤ 2.

Proof. Following the construction suggested by Corollary 5.9, we present a set S of 14 pairs of vectors

(x, s) ∈ C(P
[a,b]
4 ) such that the vectors vec(sxT) are linearly independent. Using Corollary 5.7 we

can fix a and b arbitrarily; we will use a = 1 and b = 6.

For every i = 1, . . . , 6, let p(i)(x) = (x − 1)(x − i)2, q(i)(x) = (6 − x)(x − i)2, and define two

additional polynomials p(0)(x) = (x− 1) and q(0)(x) = (6− x). Now let S be the set consisting of

the following orthogonal pairs:

•
(
p(i), c2n+2(i)

)
i = 1, . . . , 6,

•
(
q(i), c2n+2(i)

)
i = 1, . . . , 6,

•
(
p(0), c2n+2(1)

)
,

•
(
q(0), c2n+2(6)

)
.
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The fact that the 14 vectors vec(sxT) for each (x, s) ∈ S are indeed linearly independent can be

verified by direct calculation (possibly with the help of a computer algebra system).

Proof of Theorem 5.17. If n = 1, then our claim is the previous lemma. From now on, let us assume

n ≥ 2. Consider the matrix valued functions M : R2n+2 7→ R(2n+2)×(2n+2), where the entries of

M(t1, . . . , tn; s1, . . . , sn;α, β) = (mi,j)
2n+1
i,j=0 are defined as

M(t1, . . . , tn; s1, . . . , sn;α, β) = c2n+2(t1)p
T + c2n+2(s1)r

T + αc2n+2(a)p
T
a + βc2n+2(b)p

T
b ,

where p, r,pa,pb ∈ P
[a,b]
2n+2 are the coefficient vectors of the polynomials p(x) = (x−a)

∏n
k=1(x− tk)

2,

r(x) = (b − x)
∏n

k=1(x − sk)
2, pa(x) = x − a, and pb(x) = b − x, respectively. The entries of

M = (mi,j)
2n+1
i,j=0 satisfy the polynomial equation

2n+1∑

j=0

mi,jx
j ≡ ti1(x− a)

n∏

k=1

(x− tk)
2 + si1(b− x)

n∏

k=1

(x− sk)
2 + αai(x− a) + βbi(b− x). (5.7)

The polynomials p(x), pa(x), pb(x), and r(x) are nonnegative over [a, b], and by Proposition 2.19,

〈pa, c2n+2(a)〉 = 〈pb, c2n+2(b)〉 = 〈p, c2n+2(t1)〉 = 〈r, c2n+2(s1)〉 = 0.

We need to show that dim(span(M(R2n+2))) = (2n + 2)2 − 2, then the theorem follows from

Corollary 5.11. Finally, we will show this equality using the sufficient condition presented in

Corollary 5.15.

Let us define the (2n+ 2)-variate polynomials Π1(k, ℓ) and Π2(k, ℓ) by

Π1(k, ℓ)(t1, . . . , tn; s1, . . . , sn;α, β)
def
=

Π(k, ℓ)(t1, . . . , tn)− aΠ(k, ℓ− 1)(t1, . . . , tn), and

Π2(k, ℓ)(t1, . . . , tn; s1, . . . , sn;α, β)
def
=

bΠ(k, ℓ− 1)(s1, . . . , sn)−Π(k, ℓ)(s1, . . . , sn),

(5.8)

where Π(k, ℓ) is defined by Equation (5.3) for 0 ≤ k ≤ 2n+ 3, 0 ≤ ℓ ≤ 2n− 2, otherwise Π(k, ℓ) = 0.

For the rest of the proof, let us assume that a = 0, b = 1; Corollary 5.7 guarantees that this is

without loss of generality.
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Let M be the set of entries of M , and let B denote the set

B =
{
α, β

}
∪
{
Π(k, ℓ)(t1, . . . , tn) | 3 ≤ k ≤ 2n+ 3, 0 ≤ ℓ ≤ 2n− 2, k + ℓ ≥ 2n+ 1

}
∪

∪
{
Π(k, ℓ)(s1, . . . , sn) | 3 ≤ k ≤ 2n+ 3, ℓ = 2n− 2

}
∪

∪
{
Π(k, ℓ)(s1, . . . , sn) | 2n ≤ k ≤ 2n+ 1, 0 ≤ ℓ ≤ 1

}
∪

∪
{
Π(k, ℓ)(s1, . . . , sn) | 0 ≤ k ≤ 2n− 1, 0 ≤ ℓ ≤ 2n− 2, k + ℓ ≤ 2n

}
.

Since n ≥ 2, the last three sets in the union are disjoint. It follows from the definition that the set B

is linearly independent, because no two polynomials in B share a common monomial. The coefficient

of x2n+1−k−ℓ in the polynomial (x− a)
∏n

j=1(x− tj)
2 is

∑2
k=0 Π1(k, ℓ). Similarly, the coefficient of

x2n+1−k−ℓ in the polynomial (b−x)
∏n

j=1(x− sj)
2 is

∑2
k=0 Π2(k, ℓ). From this observation and (5.7)

it follows immediately that for every 0 ≤ i, j ≤ 2n+ 1,

mi,j = Π1(i, 2n+ 1− j) + Π1(i+ 1, 2n− j) + Π1(i+ 2, 2n− 1− j)+

+ Π2(i, 2n+ 1− j) + Π2(i+ 1, 2n− j) + Π2(i+ 2, 2n− 1− j)+

+m′
i,j ,

(5.9)

where m′
i,j is defined in Equation (5.5).

We now introduce an injection ϕ : B 7→ M by defining its inverse (where it exists): let mi,j be the

image of the polynomial

ϕ−1(mi,j) = qi,j =







α i = 0, j = 1

Π(i+ 2, 2n− 1− j)(t1, . . . , tn) 1 ≤ j ≤ min{i, 2n− 1}

Π(i+ 2, 2n− 2)(s1, . . . , sn) i ≥ 1, j = 0

β i = 0, j = 0

Π(i, 2n+ 1− j)(s1, . . . , sn) j ≥ 3, j > min{i, 2n− 1}

not defined otherwise

. (5.10)

In particular, we assign a polynomial to each entry except for m0,2 and m1,2, and we assign different

polynomials to different entries of M , by an argument essentially identical to that in the proof

of Theorem 5.16. Consequently, each polynomial in B is equal to qi,j for at most one pair (i, j),

and Equations (5.9) and (5.10) show that (assuming a = 0 and b = 1) the coefficient of qi,j in the

B-representation of mi,j is 1 or −1.
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Let us define a linear order ≻ on ϕ(B) in the following way. Let us say that a polynomial qi,j is of

type k for some k = 1, . . . , 5, if it is defined in the kth branch of the right-hand side of (5.10). Then,

mi1,j1 ≻ mi2,j2 for some (i1, j1) 6= (i2, j2) precisely when one of the following four conditions holds:

1. qi1,j1 is of smaller type than qi2,j2 ;

2. qi1,j1 and qi2,j2 are both of type 2, and either i1 > i2, or i1 = i2 but j1 < j2;

3. qi1,j1 and qi2,j2 are both of type 3, and i1 > i2;

4. qi1,j1 and qi2,j2 are both of type 5, and either j1 < j2, or j1 = j2 but i1 > i2.

Clearly this is indeed a linear order on ϕ(B). An easy case analysis using (5.9), (5.5), and (5.10)

shows that if mi1,j1 ≻ mi2,j2 , then the coefficient of qi1,j1 in the B-representation of mi2,j2 is zero:

1. If (i1, j1) = (0, 1), then qi1,j1 = α, and this polynomial has a nonzero coefficient exclusively in

the B-representation of m0,1. In the remaining cases we assume (i1, j1) 6= (0, 1).

2. The case (i2, j2) = (0, 1) is impossible.

3. If (i1, j1) = (0, 0), then mi1,j1 ≻ mi2,j2 implies j2 ≥ 3 (with a similar argument as in the proof

of Theorem 5.16), so q0,0 = β has zero coefficient in the B-representation of mi2,j2 .

4. If (i2, j2) = (0, 0), then mi1,j1 ≻ mi2,j2 implies i1 ≥ 1, so qi1,j1 = Π(k, ℓ) with some k ≥ 3.

Consequently, qi1,j1 has zero coefficient in the B-representation of m0,0. In the remaining cases

we assume both (i1, j1) and (i2, j2) are different from (0, 0) and (0, 1).

5. If qi1,j1 and qi2,j2 are of the same type, then i1 > i2 or j1 < j2, and from Equations (5.9) and

(5.10) we are done.

6. The case when qi1,j1 is of type 2 or 3 and qi2,j2 is of type 4 can be settled by comparing the

degrees of qi1,j1 and mi2,j2 .

7. The only remaining case is when qi1,j1 is of type 2 and qi2,j2 is of type 3. Then i1 + 2 > i2 + 2,

and hence qi1,j1 = Π(i1 + 2, 2n− 1− j) has coefficient zero in the B-representation of mi2,j2 .

We conclude that the injection mi,j 7→ qi,j and the linear order ≻ satisfy the conditions of

Corollary 5.15, therefore, by Equation (5.10),

dim(span(M(R2n+2))) =
∣
∣B
∣
∣ = (2n+ 2)2 − 2,

which completes the proof.
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5.1.3 Müntz polynomials

Consider a vector λ = (λ0, . . . , λn), where 0 < λ0 < · · · < λn are real numbers. Functions of the form

t→
∑n

i=0 αit
λi are called Müntz polynomials of type λ, and they share many properties of ordinary

polynomials. In particular, they form an extended Chebyshev system over (0,∞) [KS66, Chapter 1],

so it is natural to ask whether the results of the previous sections generalize to the cone of Müntz

polynomials nonnegative over (0,∞), denoted by

Pλ def
=
{

a |

n∑

i=0

ait
λi ≥ 0 for all t ≥ 0

}

.

In this section we show that the answer is at least “generically” yes. Similarly to the case of ordinary

polynomials, if ti ≥ 0 is a root of a nonnegative Müntz polynomial p(t), then it is also a root of

t d
dtp(t). This will lead to a non-trivial optimality constraint:

Proposition 5.19. β(Pλ) ≥ 2.

Proof. Notice that the operator t d
dt maps the set of Müntz polynomials of type λ onto itself. (Consider

d
dt to be the linear operator of formal differentiation to avoid problems when t = 0.) It follows from

the general theory of Chebyshev systems that the nonzero extreme vectors of the dual cone of Pλ are

vectors of the form α(tλ0 , . . . , tλn)T and α(0, . . . , 0, 1)T, where t ≥ 0 and α > 0. Using the notation

c(t) = (tλ0 , . . . , tλn)T, the coefficient vector p of some p ∈ Pλ is orthogonal to c(t) if and only if t is

a root of p. Consequently (p, c(t)) ∈ C(Pλ) implies p(t) = 0; in this case either p′(t) = 0 or t = 0

must also hold, implying t d
dtp(t) = 0. The equations p(t) = 0 and t d

dtp(t) = 0 translate to the linearly

independent bilinear complementarity relations

n∑

i=0

pici = 0,

n∑

i=0

λipici = 0.

It is easily verified that these relations are also valid for pairs (p, c) ∈ C(Pλ) when c = (0, . . . , 0, 1)T.

Let Λn+1 =
{
(λ ∈ Rn+1

∣
∣ 0 < λ0 < · · · < λn

}
denote the space of exponent vectors for Müntz

polynomials. We say that λ ∈ Λn+1 is generic if the following condition holds:

The differences λi − λj are different for each pair (i, j) with i 6= j; furthermore, there exist indices

0 ≤ i1 < i2 ≤ n such that for all j ∈ {0, . . . , n} \ {i1, i2} the value λi1 + λi2 + λj can be decomposed

uniquely as a sum of three different elements of the set {λ0, . . . , λn}.
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We remark that almost all vectors in Λn+1 are generic, including those with algebraically

independent coordinates.

Theorem 5.20. If λ is generic, then we have β(Pλ) = 2 for every n ≥ 4.

Proof. We present a proof for n = 2k. The case when n is odd requires separate treatment using

analogous arguments, similarly to what we have seen for ordinary polynomials over the half-line.

According the previous proposition it suffices to show that β(Pλ) ≤ 2 for generic λ.

Along the lines of the previous proofs, let M : Rn 7→ R(2k+1)×(2k+1) be the matrix-valued function

given by

M(t1, . . . , tk) = cpT,

where p ∈ Pλ is the coefficient vector of the Müntz polynomial p with roots t1, . . . , tk defined by the

determinant

p(t) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

tλ0
1 λ0t

λ0−1
1 · · · tλ0

k λ0t
λ0−1
k tλ0

...
. . .

...

tλ2k
1 λ2kt

λ2k−1
1 · · · tλ2k

k λ2kt
λ2k−1
k tλ2k

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

while c = c(t1) = (tλ0
1 , . . . , tλ2k

1 ) is an extreme vector of the dual cone corresponding to the first root

of p.

The nonnegativity of p is a corollary of the fact that Müntz polynomials form an extended

Chebyshev system over (0,∞) [KS66, Chapter 1]. Since t1 is a root of p, we have 〈p, c〉 = p(t1) = 0,

implying (p, c) ∈ C(Pλ). Using Corollary 5.11 it only remains to show that dim(span(M(Rk))) ≥

(2k + 1)2 − 2 holds if λ is generic.

The coefficient of tλj in p(t) is

∑

π∈Πj

λπ2
λπ4
· · ·λπ2k

t
λπ1+λπ2−1
1 t

λπ3+λπ4−1
2 · · · t

λπ2k−1
+λπ2k−1

k ,

where Πj denotes the family of all permutations of the set {0, . . . , 2k} \ {j}. The (i, j) entry of the

matrix M(t1, . . . , tk) can then be expressed as

mi,j =
∑

π∈Πj

λπ2
λπ4
· · ·λπ2k

t
λi+λπ1+λπ2−1
1 t

λπ3+λπ4−1
2 · · · t

λπ2k−1
+λπ2k−1

k .

Since λ > 0, all monomials in the above formula have a nonzero coefficient.
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The sum of the exponents in each monomial of entry mi,j is λi − λj +
∑2k

ℓ=0 λℓ − k. Let λ be

generic. Since the pairwise differences λi − λj (i 6= j) are different, the non-diagonal entries mi,j ,

when viewed as Müntz polynomials of variables t1, . . . tk, are all linearly independent, as they do

not share a common monomial. Furthermore, since λ is generic, monomials containing the term

t
λi1+λi2+λj

1 do not appear in diagonal entries mi,i, unless i ∈ {i1, i2, j}. Hence the diagonal entries

mj,j satisfying j 6= i1 and j 6= i2, and the off-diagonal entries are all linearly independent Müntz

polynomials, and dim(span(M(Rk))) ≥ (2k + 1)2 − 2; that is, β(Pλ) ≤ 2 in the generic case.

5.1.4 Cones linearly isomorphic to nonnegative polynomials over an interval

As we have seen in Proposition 5.6, applying a nonsingular linear transformation A to a cone K

preserves its bilinearity rank. In addition, any change of basis for the cone of polynomials will result

in a cone linearly isomorphic to it. Thus, for instance, the set of vectors of coefficients of nonnegative

polynomials expressed in any orthogonal polynomial basis (e.g., Laguerre, Legendre, Chebyshev, etc.),

or the Bernstein polynomial basis are linearly isomorphic to the cone of nonnegative polynomials

in the standard basis. This fact is useful in numerical computations since the standard basis is

numerically unstable and we may need to work with a more stable basis.

We have already stated in Corollary 5.7 that for all a < b and n, the cones P
[a,b]
n+1 and P

[0,1]
n+1 are

linearly isomorphic. More generally:

Lemma 5.21. Let f be a function with domain ∆ ⊆ R and range Ω ⊆ R; also suppose that the set

of functions
{
1, f, f2, . . . , fn

}
is linearly independent. Then the cone

Pf =






a = (a0, . . . , an)

∣
∣
∣
∣
∣
∣

n∑

j=0

ajf
j(t) ≥ 0 for all t ∈ ∆







is linearly isomorphic to the cone of ordinary polynomials nonnegative over Ω.

From this observation, and using change of basis as needed, we can prove linear isomorphism of a

number of cones of nonnegative functions over well-known finite-dimensional bases with P2n+1 or

P
[0,1]
n+1 . Below we present a partial list. Most of the techniques used below are quite simple, and they

are used by Karlin and Studden [KS66] and Nesterov [Nes97] for other purposes.

Rational functions

The basis
{
t−m, t−m+1, . . . , tn−1, tn

}
for nonnegative even integers n and m spans the set of rational

functions with a degree n numerator and denominator tm. Since
∑n

i=−m pit
i = t−m

∑n+m
i=0 pit

i,
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the cone of rational functions with numerator of degree n and denominator tm nonnegative over

∆ = R\{0} is linearly isomorphic to the cone of nonnegative polynomials of degree n + m, and

therefore its bilinearity rank is 4.

Nonnegative polynomials over [0,∞)

Consider the basis B =
{
tn, tn−1(1− t), . . . , t(1− t)n−1, (1− t)n

}
of polynomials of degree n. Clearly

the cone {

(p0, . . . , pn)

∣
∣
∣
∣
∣

n∑

i=0

pit
i(1− t)n−i ≥ 0 ∀ t ∈ [0, 1]

}

,

which consists of coefficient vectors of polynomials nonnegative over [0, 1], expressed in basis B, is

linearly isomorphic to P
[0,1]
n+1 . On the other hand we have:

Proposition 5.22 ([Nes97]). A polynomial p0(1− t)
n + p1t(1− t)

n−1 + · · ·+ pnt
n is nonnegative

over [0, 1] if and only if the polynomial p0 + p1t+ · · ·+ pnt
n is nonnegative over [0,∞).

This follows from
∑

k

pkt
k(1− t)n−k = (1− t)n

∑

k

pk

(
t

1−t

)k

and the fact that [0, 1] is mapped to [0,∞) under f(t) = t
1−t . We thus get the following result.

Corollary 5.23. The cone P
[0,∞)
n+1 is linearly isomorphic to P

[0,1]
n+1 . Therefore β

(
P

[0,∞)
n+1

)
= 2 for

every positive integer n.

Cosine polynomials

Consider the cone

Pcos
n+1

def
=

{

c ∈ Rn+1

∣
∣
∣
∣
∣

n∑

k=0

ck cos(kt) ≥ 0 for all t ∈ R

}

.

To relate this cone to the cones we have discussed before, first observe that cos(kt) can be expressed

as an ordinary polynomial of degree k of cos(t) using the well-known Chebyshev polynomials of the

first kind [MH03]. This follows immediately from applying the binomial theorem to the identity
(
cos(t) + i sin(t)

)k
= cos(kt) + i sin(kt):

cos(kt) =

⌊k/2⌋
∑

j=0

(
k

2j

)

cosk−2j(t)
(
1− cos2(t)

)j
(5.11a)
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sin(kt) = sin(t)

⌊k/2⌋
∑

j=0

(
k

2j + 1

)

cosk−2j−1(t)
(
1− cos2(t)

)j
(5.11b)

From (5.11a) we see that cos(kt) is a polynomial of cos(t) of degree k. (This polynomial

is known as the k-th Chebyshev polynomial of the first kind; see also Definition 5.28.) Thus,

every vector c representing the cosine polynomial c(t) =
∑n

k=0 ck cos(kt) is mapped to a vector

p representing the ordinary polynomial p(s) =
∑n

k=0 pks
k through the identity

∑n
k=0 ck cos(kt) =

p
(
cos(t)

)
. Furthermore, this correspondence between c and p is one-to-one and onto, since for each

k the function cos(kt) is a polynomial of degree k in cos(t) the matrix mapping c to p is lower

triangular with nonzero diagonal entries. Now c(t) = p
(
cos(t)

)
≥ 0 for all t if and only if p(s) ≥ 0 for

all s ∈ [−1, 1]. Recalling that P
[−1,1]
n+1 is linearly isomorphic to P

[0,1]
n+1 , we have the following result.

Corollary 5.24. The cone Pcos
n+1 is linearly isomorphic to P

[0,1]
n+1 . Therefore β

(
Pcos
n+1

)
= 2 for every

n ∈ N.

Trigonometric polynomials

Consider the cone

Ptrig
2n+1 =

{

r ∈ R2n+1 | r0 +

n∑

k=1

(
r2k−1 cos(kt) + r2k sin(kt)

)
≥ 0 for all t ∈ R

}

=
{

r ∈ R2n+1 | r0 +
n∑

k=1

(
r2k−1 cos(kt) + r2k sin(kt)

)
≥ 0 for all t ∈ (−π, π)

}

To transform a trigonometric polynomial r(t) = r0 +
∑n

k=1

(
r2k−1 cos(kt) + r2k sin(kt)

)
into one of

the classes of polynomials already discussed we make a change of variables t = 2arctan(s). With this

transformation we have

sin(t) =
2s

1 + s2

cos(t) =
1− s2

1 + s2

Using (5.11) we can write

r(t) = Tn
(
1−s2

1+s2

)
+ 2s

1+s2Un−1

(
1−s2

1+s2

)
(5.12)

where Tn and Un−1 are ordinary polynomials of degree n, and n− 1, respectively (the Chebyshev

polynomials of the first and second kind [MH03]); Tn is obtained from (5.11a) and Un−1 is obtained
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from (5.11b). Multiplying by (1 + s2)n we see that

r(t) = (1 + s2)−np(s)

for some ordinary polynomial p. Substituting (5.11a) and (5.11b), the polynomial p can be expressed

in the following basis:

{

(1+s2)n, (1+s2)n−1(1−s2), . . . , (1−s2)n
}

∪
{

s(1+s2)n−1, s(1−s2)n−2(1−s2), . . . , s(1−s2)n−1
}

It is straightforward to see that this is indeed a basis. We need to simply observe that those terms

that are not multiplied by s form a basis of polynomials with even degree terms, and those that

involve s form a basis of polynomials with odd degree terms. Therefore, the correspondence between

vector of coefficients r of the trigonometric polynomial r(t) and the vector of coefficients p of the

ordinary polynomial p(s) in the above basis is one-to-one and onto. Furthermore, since the function

tan(t/2) maps (−π, π) to R, it follows that trigonometric and ordinary polynomials of the same

degree are linearly isomorphic.

Corollary 5.25. The cone Ptrig
2n+1 is linearly isomorphic to Pn+1. Therefore, β

(
Ptrig
2n+1

)
= 4 for

every n ∈ N.

Exponential polynomials

One could ask if the results of trigonometric polynomials extend to hyperbolic functions sinh and

cosh or to exponential functions. The situation is actually simpler here. Consider the cone

Pexp def
=
{

e |

n∑

k=−m

ek exp(kt) ≥ 0 for all t ≥ 0
}

.

First, there is no loss of generality if we assume m = 0 since every such polynomial can be multiplied

by exp(mt). Now clearly e(t) = e0 + e1 exp(t) + · · ·+ en exp(nt) ≥ 0 for all t ∈ R if and only if the

ordinary polynomial e0 + e1s+ · · ·+ ens
n is nonnegative over [0,∞]. Recalling that P [0,∞) is linearly

isomorphic to P [0,1] we have shown the following:

Corollary 5.26. The cone Pexp is linearly isomorphic to P [0,1]. Therefore, β
(
Pexp

)
= 2.
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5.2 A barrier method for moment cone constraints

In this section we return to barrier methods tailored for nonnegative polynomials, which may be used

to circumvent the use of semidefinite programming in solving polynomial optimization problems. We

concentrate on the univariate case, generalizing the results of this section to the multivariate setting

is subject of future research.

Consider a conic optimization problem involving K moment cones in the following form:

minimize
∑

i

〈ci,xi〉

subject to
∑

i

Aixi = b

xi ∈M2n+1 i = 1, . . . ,K

Using the semidefinite representation ofM2n+1 (Proposition 2.18), the equivalent semidefinite

program is obtained by replacing the conic constraints with

H(xi) ∈ Sn+1
+ i = 1, . . . ,K,

where H(x) is the Hankel matrix defined in (2.6), that is, H(x) = (xi+j)i,j=0,...,n.

Path-following interior-point methods solve the above semidefinite programming problem by

following (approximately) the curve consisting of the (unique) minimizers of the constrained convex

problems

minimize
∑

i

〈ci,xi〉+ µ ln(det(H(xi)))

subject to
∑

i

Aixi = b

in the direction µց 0. In each iteration of the (short-step) path-following algorithms the vectors xi

are updated by reducing µ by some factor and taking one Newton step from the current approximate

solution towards the optimal solution of the problem obtained using the reduced µ. The bottleneck

of the Newton step is the solution of an unstructured system of a linear equations, which takes

O(n3) time. However, setting up the equations requires an evaluation of the objective function of

the above problem, its gradient, and its Hessian—which takes O(n6) time without using the special

structure of H(x). Hence, the difficulty in accelerating the path-following interior-point methods lies
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in computing the gradient and Hessian of the objective function fast, preferably in subcubic time,

which reduces to computing the gradient ∇xf and the Hessian ∇2
xf of the function f = ln(det(H(·)))

for arguments x that yield a positive definite Hankel matrix H(x).

Other dual methods, such as long-step barrier methods also require the computation of the

gradient and the Hessian of f as one of the key steps of each iteration of the algorithm. By carrying

out these computations in subcubic time, the complexity of every iteration of each of these algorithms

also reduces to O(n3).

5.2.1 Fast computation of the gradient and the Hessian

It is well-known (and easily established) that the gradient of the function X→ ln(det(X)) (where

X ∈ Rn×n is a matrix with positive determinant) is given by the formula

∇X ln(det(X)) = (XT)−1.

We need to apply this formula to matrices of the form X = H(x) =
∑2n

i=0 Eixi, where Ei ∈

{0, 1}(n+1)×(n+1) (i = 0, . . . , 2n) is the matrix having a 1 at those positions (j, k) which satisfy

j + k = i.

Let X = H(x), where x = (x0, . . . , x2n)
T. Using the chain rule we obtain

∂

∂xi
ln(det(H(x))) =

〈

∇X ln(det(X)),
∂

∂xi
H(x)

〉

=
〈
H(x)−1,Ei

〉
, i = 0, . . . , 2n.

That is, the ith entry of ∇xH(x) is the sum of the ith reverse diagonal entries of the inverse matrix

of H(x). Special algorithms are available to compute the inverse of a Hankel matrix in O(n2) time

and space, or even faster, see below; consequently ∇xH(x) can be computed in O(n2) time.

To obtain the Hessian, we differentiate ∇xH(x) with respect to x. The identity for the derivative

of the inverse in differential form can be written as follows:

dX−1 = −X−1(dX)X−1,

which yields that

d(H(x)−1) = −H(x)−1
(

d
(∑

j

Ejxj

))

H(x)−1 = −
∑

j

(H(x)−1EjH(x)−1)dxj ,
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that is, for every pair (i, j),

∂2

∂xi∂xj
ln(det(H(x))) = −〈H(x)−1EjH(x)−1,Ei〉, i, j = 0, . . . , 2n.

Let zij denote the (i, j)-th entry of H(x)−1. Then the matrix H(x)−1EjH(x)−1 can be written as

H(x)−1EjH(x)−1 =

(
∑

k+l=j

zakzlb

)

a,b=0,...2n

,

which in turn yields

−
∂2

∂xi∂xj
ln(det(H(x))) = 〈H(x)−1EjH(x)−1,Ei〉 =

∑

a+b=i
k+l=j

zakzlb =
∑

a+b=i
k+l=j

zakzbl,

where the last equality holds because H(x)−1 is symmetric.

The last summation shows that the negative of the Hessian is the convolution of H(x)−1 by itself;

equivalently, −∇2
x ln(det(H(x))) is the coefficient matrix of the square of the bivariate polynomial

whose coefficient matrix is H(x)−1. If H(x)−1 is already computed, then this convolution can be

computed by a single bivariate polynomial multiplication.

The complete algorithm is summarized in the following theorem and its proof.

Theorem 5.27. The gradient and the Hessian of the function x→ ln(det(H(x))) can be computed

in O(n2 log n) time.

Proof. The inverse of the Hankel matrix H(x) can be computed in O(n2) time by practical special

purpose algorithms such as the ones in [HJ90] and [Pan01, Chapter 5]. (In fact, the inverse of a

Hankel matrix can even be computed in O(n log2 n) time, see the same sources, but the algorithms

that achieve subquadratic complexity, sometimes referred to as “superfast” algorithms, are only

asymptotically fast, and are not practical, unless n is extremely large.)

Based on the above calculations, we compute the ith component of the gradient by adding the

entries of H(x)−1 along the ith reverse diagonal (i = 0, . . . , 2n). To find the Hessian, consider

the polynomial p(x, y) =
∑n

i,j=0 zijx
iyj , where zij is the (i, j)-th entry of H(x)−1. Compute the

coefficients qij of the polynomial

q(x, y) = −p2(x, y) =

2n∑

i,j=0

qijx
iyj .

The matrix (qij)i,j=0,...,2n is the Hessian.
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The bottleneck of the algorithm is the computation of p2(x, y), which can be carried out in

O(n2 log n) time using two-dimensional fast Fourier transform.

5.2.2 Alternative bases

Representing polynomials in the standard basis frequently results in serious numerical problems

when the degree of the polynomials is high enough. In practice, current SDP solvers that use IEEE

double precision arithmetic reliably handle positive polynomial constraints up to degree 8-12. From

the dual point of view, Hankel matrices are known to have large condition numbers [Tyr94, Bec97],

and computing the inverse of a positive definite Hankel matrix in every iteration of the algorithm is

problematic even if we use special purpose algorithms that exploit the Hankel structure. Consequently

moment conic constraints of high dimension cannot be handled easily.

To alleviate the numerical difficulties we can represent the positive polynomials in some other

basis known to be more suitable for numerical computations, for example, in some orthogonal basis.

The proof of Theorem 5.27 carries over to any other basis as long as the following hold:

• the square of a polynomial, expressed in the new basis; either directly, or via a basis transfor-

mation from the new basis to the standard monomial basis, can be computed in O(n2 log n)

time;

• the computations involving Hankel matrices can be replaced by analogous computations

involving some other family of structured matrices, for which matrix inversion can be carried

out in O(n2 log n) time.

One such basis is the Chebyshev polynomial basis.

Definition 5.28. Let Tn be the nth Chebyshev polynomial of the first kind, defined by the recursion

T0(x) = 1, T1(x) = x, Tn(x) = 2xTn−1(x)− Tn−2(x) (n ≥ 2).

For this orthogonal basis we define the cone of nonnegative Chebyshev polynomials as

PCh
2n+1 =

{

(p0, . . . , p2n)
T

∣
∣
∣
∣

2n∑

i=0

piTi(x) ≥ 0 ∀x ∈ R

}

,

and the cone of Chebyshev moments as

MCh
2n+1 = cl cone

({
(T0(x), . . . , T2n(x))

T | x ∈ R
})
.
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Clearly, these cones are the duals of each other, and they are simply linear transformations of

P2n+1 andM2n+1, respectively, hence they are semidefinite representable. We have the following

theorem, analogously to the well-known semidefinite representation of positive polynomials and

moments.

Theorem 5.29. Let Λ: R2n+1 → R(n+1)×(n+1) be the linear operator satisfying Λ(c) = (λij)i,j=0,...,n

with

λij =
ci+j + c|i−j|

2
i, j = 0, . . . , n,

and let Λ∗ be its adjoint. Then for every p ∈ R2n+1, p ∈ PCh
2n+1 if and only if there exists a positive

semidefinite matrix X such that Λ∗(X) = p. Furthermore, for every c ∈ R2n+1, c ∈MCh
2n+1 if and

only if the matrix Λ(c) is positive semidefinite.

Proof. It is possible to derive this result from the semidefinite representation of positive polynomials

represented in the standard basis (recall Proposition 2.3). Alternatively, since nonnegative polynomi-

als are the same as sum-of-squares polynomials (regardless of the basis they are represented in), the

claim is a special case of Theorem 4.5. To complete the proof we need construct the operator Λ as in

(4.9). Using the identity TiTj = 1
2 (Ti+j + T|i−j|), see [MH03, Section 2.4], we obtain immediately

that the Λ defined in (4.9) is the one defined in the claim. The characterization of the dual cone

comes from Theorem 4.6.

Notice that the matrix Λ(c) in Theorem 5.29 is a Toeplitz+Hankel matrix, that is, it can be

written as a sum of a Toeplitz matrix and a Hankel matrix. The inverse of a Toeplitz+Hankel matrix

can be computed in O(n2) time [Pan01]. Furthermore, extensions of the fast Fourier transform to

Chebyshev polynomials are also known [MH03, Chapter 4]. Consequently, the algorithm given in the

proof of Theorem 5.27 carries over to positive Chebyshev polynomials and Chebyshev moments, and

the running times are the same.

5.3 Conclusion

Our goal was to see if there is a way to solve optimization problems involving conic constraints of the

form p ∈ P
[a,b]
n+1 or c ∈M

[a,b]
n+1 without formulating them as semidefinite programs. This question led

us to consider first the simplest form of complementarity relations, bilinear equations, for nonnegative

polynomials and moment vectors. For the first orthant, the second-order cone, and the semidefinite

cone bilinear complementary relations suffice to represent complementarity, and this leads to efficient
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homotopy methods for the corresponding conic programs. However, we have found that bilinear

relations alone are not sufficient to represent complementarity between nonnegative polynomials and

moment vectors; in fact, no more than two linearly independent bilinear relations hold for pairs from

the complementarity set C(P
[a,b]
n+1). We have found similar theorems for a number of related cones.

In the second half of the chapter we turned towards barrier methods. The universal barrier

function (and its derivatives) appear to be very difficult to evaluate for nonnegative polynomials and

moments. On the other hand, we have found that the logarithmic barrier function of the semidefinite

cone, along with its gradient and Hessian, can be evaluated for Hankel matrices and Toeplitz+Hankel

matrices very fast. Hence, moment cone constraints can be handled efficiently by simulating SDP

interior point iterations and projections to the space of Hankel matrices in subcubic time and space,

without carrying out the lifting to the space of symmetric matrices.
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Chapter 6

Conclusions and Open Problems

We have seen that the semidefinite and second-order cone representation of nonnegative polyno-

mials provide practical models (that are also theoretically efficient) for several shape-constrained

spline estimation problems. In practice, these models are applicable to very large scale univariate

estimation problems with bound constraints, monotonicity and convexity constraints, interpolation

and periodicity constraints on the estimator, even combined with cross-validation of parameters.

We demonstrated that polyhedral approximations, while popular in the statistics literature, are

not necessary for such statistical estimation problems, as they can be solved directly and equally

efficiently.

Polyhedral approximations to these nonlinear models have been proposed by several authors in

the literature, sometimes without justification that the approximate models indeed provide good

approximation. We examined this problem, and gave a necessary and sufficient condition for a cone

of piecewise polynomial splines with nonnegative coordinates in a nonnegative basis to be dense in

the cone of nonnegative continuous functions.

In the multivariate setting such approximations are unavoidable on complexity grounds. We

considered both polyhedral and spectrahedral (semidefinite) approximations derived from weighted-

sum-of-squares representation of nonnegative polynomials. With a generalization of the univariate

density result, theoretical justification was provided for the approximations suggested.

Theoretically, splines of any degree and order of differentiability can be used regardless of the

objective of the estimation (least-squares, maximum likelihood, or maximum penalized likelihood),

but the lack of off-the-shelf modeling tools and solvers simultaneously supporting arbitrary convex

objective functions and semidefinite constraints makes some of the models somewhat less practical
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than others. This is especially true for multivariate problems.

Even when ready-made solvers are available, algorithms designed specifically for the estimation

problems could greatly increase the practicality of the proposed models, especially in the multivariate

case. The thesis contains some results in this direction, but several questions remain open. A better

understanding of low-degree nonnegative polynomials over low-dimensional polyhedra could lead to

better approximations. Experimenting with decomposition schemes different from the one proposed

in the thesis could also lead to even more efficient solutions of large-scale multivariate models.

We have seen that some constraints on the shape of the estimator cannot be translated to

nonnegativity. Laying the groundwork for future computational research in this area, we presented a

semidefinite characterization of sum-of-squares and weighted-sum-of-squares cones that is considerably

more general than those in the literature. We hope that this result will also have an audience outside

the area of function estimation.
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Appendix A

Background material

This appendix is a summary some of the fundamentals of conic optimization, positive semidefiniteness,

and semidefinite programming, which are used throughout the thesis. A large number introductory

texts and survey papers are available in each of these topics, see for example [HJ85], [WSV00], and

[Ren01].

A.1 Conic optimization

Definition A.1 (cone, convex cone). A non-empty subset K of a real linear space V is called a cone

if for every λ ≥ 0 and x ∈ V , x ∈ K implies λx ∈ K; K is a convex cone, if it is also convex, for

which it is sufficient that x+ y ∈ K whenever x ∈ K and y ∈ K.

Definition A.2 (vector order, positive cone). A vector order of a real linear space V is a partial

order < such that x+ z < y+ z and λx < λy for every λ ≥ 0 and x,y, z ∈ V satisfying x < y. If <

is a vector order, then the set {x | x < 0} is a convex cone, and it is called the positive cone of <.

Conversely, if K is a convex cone, then we can define a relation <K by setting x <K y if and only if

x−y ∈ K. This is a partial order, and we say that it corresponds to the convex cone K. The relation

x <K y can also be written as y 4K x.

The correspondence in the above definition is one-to-one.

Proposition A.3 ([KN63, §1.2.4]). Every vector order is the partial order corresponding to its

positive cone. Conversely, every convex cone is the positive cone of its corresponding partial order.

The partial order <K is not particularly meaningful unless 0 6= x < 0 prohibits −x < 0. Cones

with this property are called pointed.
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Consider now a space V equipped with an inner product 〈·, ·〉. For the purposes of this thesis

it is sufficient to consider cones in finite-dimensional spaces, hence, we will assume that V = Rn

for some n ≥ 1. Consequently, the inner product is of the form 〈x,y〉 = xTQy for some positive

definite matrix Q. The basic object of conic optimization (also called conic programming) is the

conic optimization problem in standard form:

minimize 〈c,x〉

subject to Ax = b

x <K 0

, (A.1)

where the matrix A ∈ Rm×n and the vectors b ∈ Rm and c ∈ Rn are given. If we choose K = Rn
+,

the first orthant, we obtain the familiar linear programming problem. The objective “minimize” must

be understood in the “inf” sense, since (unlike in linear programming) the minimum may not exist

even if the set {x | Ax = b} ∩ K is non-empty, and K is closed.

It is usually assumed that K is closed. Furthermore, it is often convenient to assume that it is

full-dimensional, that is span(K) = V = Rn. Note that this is not an intrinsic property of the cone

itself, but it depends on its representation, in other words, on the space it is embedded in. Closed,

convex, full-dimensional cones are called proper cones.

The dual of the optimization problem (A.1) can also be cast as a conic optimization problem

involving the dual cone of K, denoted by K∗:

K∗ def
= {y | 〈x,y〉 ≥ 0 ∀x ∈ K} .

The name “dual cone” is justified by the facts that K∗ is indeed a cone, and that if K is a proper

cone, then (K∗)∗ = K. (Note that the dual cone also depends on the space K is embedded in.) The

dual of (A.1) is the following optimization problem:

maximize 〈b,y〉

subject to ATy 4K∗ c

(A.2)
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Equivalently, we can write the dual problem in the following form:

maximize 〈b,y〉

subject to c−ATy = s

s <K∗ 0

(A.2′)

As in linear programming, the original problem (A.1) is commonly referred to as the primal problem.

Similarly to the duality theory of linear programming, we have the following simple fact.

Proposition A.4. If x is a feasible solution to (A.1), and (y, s) is a feasible solution to (A.2′), then

〈c,x〉 − 〈b,y〉 = 〈x, s〉 ≥ 0.

As a corollary, we have a sufficient condition for optimality.

Proposition A.5. If x is a feasible solution to (A.1), (y, s) is a feasible solution to (A.2′), and the

complementarity condition 〈x, s〉 = 0 holds, then x and (y, s) are optimal solutions to the primal

problem (A.1) and dual problem (A.2′), respectively.

A.2 Positive semidefinite matrices

We only consider real symmetric positive semidefinite matrices. They are characterized by several

key properties; the ones used in the proofs in this thesis are summarized in the following proposition.

Proposition A.6 ([HJ85, Chapter 7]). Let A be a real symmetric n× n matrix. Then the following

properties are equivalent.

1. For every x ∈ Rn, xTAx ≥ 0.

2. All eigenvalues of A are nonnegative. (Recall that all eigenvalues of a real symmetric matrix

are real numbers.)

3. There exists an n×m matrix B such that A = BBT.

4. There exists an n× n lower triangular matrix L such that A = LLT.

5. The matrix A is a nonnegative linear combination of matrices of the form xxT,x ∈ Rn.
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If A possesses any of these properties, it is said to be positive semidefinite. Decompositions of

A as a product LLT with a lower triangular square matrix L is called a Cholesky factorization or

Cholesky decomposition of A.

The set of n× n real symmetric matrices is denoted by Sn, the set of n× n positive semidefinite

real symmetric matrices is denoted by Sn+. To avoid cumbersome notation, the superscript is dropped

whenever the dimension is clear from the context. For the same reason, the vector order corresponding

to Sn+ (see Definition A.2) is simply denoted by <, rather than <Sn+
.

Using either definition from Proposition A.6 we see that Sn+ is a convex cone. A few of its key

properties are given in the following proposition; these are also direct consequences of Proposition A.6.

Proposition A.7. The set of n× n positive semidefinite matrices is a closed, convex, and pointed

cone. When embedded in Sn, it is also a proper cone. Its boundary consists of the rank one matrices

in the cone.

The dual cone of Sn+ can also be derived using Proposition A.6.

Proposition A.8. When embedded in Sn, (Sn+)
∗ = Sn+. When embedded in Rn×n, (Sn+)

∗ = Sn++{A ∈

Rn×n | A = −AT}. (In the second equation the symbol + denotes the Minkowski sum of sets.)

A.3 Semidefinite and second-order cone programming

A semidefinite optimization problem or semidefinite program (SDP for short) is a problem of the

form (A.1) with K = Sn+. A second-order conic program (or SOCP for short) is a problem of the form

(A.1) in which K is the direct product of second-order cones. The n+ 1-dimensional second-order

cone (also known as Lorentz cone, or simply ice cream cone) is the cone

Qn+1
def
= {(x0,x) ∈ R× Rn |x0 ≥ ‖x‖}.

Since both Qn+1 and Sn+ are self-dual, the duals of SOCPs and SDPs are also SOCPs and SDPs,

respectively.

Semidefinite representable problems. Using a theorem of Haynsworth [Hay68] on the Schur com-

plement of positive semidefinite matrices it is not hard to show that (x0,x) ∈ Qn+1 if and only if

the corresponding arrow-shaped matrix

(
x0 xT

x
. . .

x0

)

is positive semidefinite. Thus, SDP generalizes

SOCP, which in turn generalizes convex quadratic (and linear) programming. Nevertheless, special

purpose algorithms developed for SOCP outperform the SDP algorithms on SOCPs in practice.
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An optimization problem is second-order cone representable (or semidefinite representable) if,

possibly by the introduction of new variables, it can be written equivalently as an SOCP (or SDP,

respectively). For conic optimization problems this translates to the representability of the underlying

cone K by linear matrix inequalities.

Definition A.9. We say that a set X is semidefinite representable (or SD-representable) if

X =
{
x ∈ Rn | ∃u ∈ Rk satisfying C(x) +D(u) < 0

}

for some affine mappings C,D with range in Sm.

In particular, affine images and affine pre-images of positive semidefinite matrices are semidefinite

representable. Furthermore, intersections and Minkowski sums of semidefinite representable sets are

also semidefinite representable.

There is a vast literature on SOC- and SD-representable sets and functions, for an overview of

the most important results the reader is referred to [BTN01, Chapters 3 and 4].

Algorithms and implementations. Both Qn+1 and Sn+ are convex cones with known self-concordant

barrier functions for them. Hence, most of the standard interior-point methods [NN94, Ren01]

are applicable to them. Furthermore, both cones are symmetric, that is, they are self-dual and

homogeneous (their automorphism group acts transitively on their interior) [FK94]. This rich algebraic

structure has been exploited in the development of algorithms for SOCPs and SDPs, starting with

the interior point methods of [Fay97]. See also [AS00] for a survey on word-for-word translations of

linear programming algorithms to SOCPs and SDPs, and [AG03] for efficient and numerically stable

algorithms for SOCP. The theoretical complexity of optimization problems involving only linear and

second-order cone constraints is the same as that of linear optimization [AG03].

Currently a number of implementations of various algorithms are available to solve SOCPs and

SDPs. Many general purpose nonlinear solvers support SOCP constraints, including KNITRO [Zie],

which the author used for most of the numerical experiments in this thesis.

SDPs are more difficult, and most optimization modeling languages and convex optimization

solvers do not support semidefinite constraints. However, a number of Matlab [Mat] packages are

available for solving SDPs, the ones most commonly used in the literature are Sedumi [Stu99] and

SDPT3 [TTT99]. (Both of these are free, except for the fact that they require the commercial

software Matlab.) The packages YALMIP [Löf04] and CVX [GB07] are designed to help translating

SD-representable optimization problems to the standard form input these solvers require. CSDP
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[Bor99] is an open source C library (now part of the COIN-OR project [LH03]) implementing a

predictor-corrector interior point algorithm. SDPA [YFK03] is a multi-platform SDP solver designed

specifically with sparse problems in mind. A common disadvantage of all of these solvers is that they

can only handle problems that can be equivalently written in the standard form (A.1), but cannot

handle general (not SD-representable) convex constraints.
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package for semidefinite programming, version 1.3. Optimization Methods and Software,
11–12(1–4):545–581, 1999. doi:10.1080/10556789908805762. → pp. 8 and 118.
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