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Abstract—A belief Rule-base Inference Methodology using the
Evidential Reasoning approach (RIMER) has been developed re-
cently, where a new belief rule representation scheme is proposed
to extend traditional IF–THEN rules. The belief rule expression
matrix in RIMER provides a compact framework for representing
expert knowledge. However, it is difficult to accurately determine
the parameters of a belief rule base (BRB) entirely subjectively,
particularly, for a large-scale BRB with hundreds or even thou-
sands of rules. In addition, a change in rule weight or attribute
weight may lead to changes in the performance of a BRB. As such,
there is a need to develop a supporting mechanism that can be used
to train, in a locally optimal way, a BRB that is initially built using
expert knowledge. In this paper, several new optimization models
for locally training a BRB are developed. The new models are
either single- or multiple-objective nonlinear optimization prob-
lems. The main feature of these new models is that only partial
input and output information is required, which can be either
incomplete or vague, either numerical or judgmental, or mixed.
The models can be used to fine tune a BRB whose internal struc-
ture is initially decided by experts’ domain-specific knowledge or
common sense judgments. As such, a wide range of knowledge
representation schemes can be handled, thereby facilitating the
construction of various types of BRB systems. Conclusions drawn
from such a trained BRB with partially built-in expert knowledge
can simulate real situations in a meaningful, consistent, and locally
optimal way. A numerical study for a hierarchical rule base is
examined to demonstrate how the new models can be implemented
as well as their potential applications.

Index Terms—Belief rule base (BRB), decision making, eviden-
tial reasoning (ER), expert system, inference, multiple-objective
optimization, uncertainty.
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I. INTRODUCTION

I T HAS become increasingly important to model and analyze

decision problems using both numerical data and human

judgmental information that is likely to be incomplete and can

hardly be accurate. This is due to the fact that human beings

hold ultimate responsibilities in most decision situations, and

their preferences play an irreplaceable role in making final

decisions. In addition, many decision problems are of one-off

nature and are associated with the control of future events.

As such, complete historical data of any statistical significance

may not be available to support traditional “objective” decision

analysis, and the prediction of future impact of any decision

could hardly be accurate. On the other hand, analytical tech-

niques and scientific procedures should always be employed,

if at all possible and practical, to support effective, consistent,

and informative decision making and to avoid making costly

wrong decisions. For example, to analyze system safety in

design and operations of large engineering systems of high-

level innovation, experts’ judgmental information may have

to be used at certain stages due to lack of historical data. In

modeling and assessing the quality of consumer products such

as food and drinks, experts’ judgments on product characteris-

tics and consumers’ perceived quality attributes must be taken

into account, which cannot always be measured using hard or

accurate data.

In recognition of the need to handle hybrid information with

uncertainty in human decision making, a new belief rule base

(BRB) inference methodology [Rule-base Inference Method-

ology using the Evidential Reasoning approach (RIMER)] has

been proposed [28] to represent inference in rule-based sys-

tems using the evidential reasoning (ER) approach [20]–[22],

[25]–[27], [29]. This methodology is developed on the basis of

the Dempster–Shafer theory of evidence [3], [16], the decision

theory [4], and rule-based systems. In the RIMER approach,

a generic knowledge representation scheme is proposed using

a belief structure. A rule base that is designed on the basis of

the belief structure and called BRB is used to capture nonlin-

ear causal relationships as well as continuity, incompleteness,

and vagueness. Relevant knowledge representation parameters,

including the weights of both attributes and rules, are also

taken into account in the scheme. RIMER is developed on

the basis of and to enhance conventional IF–THEN rule-based

systems. Both RIMER and conventional rule-based systems can

model and simulate explicit expert knowledge using IF–THEN

rules, but RIMER can model both discrete and continuous

relationships with uncertainty, such as ignorance [28], [29]. The

unique feature of the RIMER method, which differentiates it
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from other existing modeling methods, is that it can explicitly

model and infer with ignorance (incompleteness) that may exist

either inside the model structure (rules) or in the input data

[28]. Ignorance can be caused by incomplete or missing data, or

the inability of experts or decision makers to provide complete

or accurate judgments, which is common in situations where

human knowledge needs to be used.

In an established BRB, the input of an antecedent is trans-

formed into a distribution on the referential values of this

antecedent. Such a distribution describes the degree of the

antecedent being activated. Moreover, the antecedents of an

IF–THEN rule form an overall attribute, which is called a

packet antecedent attribute. The activation weight of a rule

can be generated by aggregating the degrees to which all

the antecedents in the rule are activated. In this context, an

IF–THEN rule can be considered as an evaluation problem of a

packet antecedent attribute being assessed to an output term in

the consequent of the rule with certain degrees of belief. Finally,

the inference of a rule-based system is implemented using the

ER approach. RIMER has already been applied to the safety

analysis of offshore systems [10], [11] and the leak detection of

oil pipelines [19].

A BRB can be represented as a belief rule expression matrix,

which forms a basis in the inference mechanism of RIMER and

provides a framework for representing expert knowledge in a

compact format. However, it is difficult to accurately determine

the parameters of a BRB entirely subjectively, particularly, for

a large-scale rule base with hundreds or thousands of rules.

In addition, a change in rule weight or attribute weight may

lead to changes in the performance of a BRB. As such, there

is a need to develop a method that can generate an optimal

rule expression matrix using both judgmental information and

statistical data, both of which could be incomplete and vague.

RIMER provides scopes and flexibility for such rule learning

and updating.

In this paper, several new optimization models for locally

training the parameters of a belief rule expression matrix and

other knowledge representation parameters in RIMER are pro-

posed. The new models are either single or multiple-objective

nonlinear optimization problems. The optimization models are

further extended to train hierarchical BRB systems. In a BRB,

input data, attribute weights, and rule weights are combined to

generate activation weights for rules, and all activated belief

rules are then combined to generate appropriate conclusions

using the ER algorithm. This combination process is formulated

as nonlinear objective functions to minimize the differences

between observed outputs and the outputs of a BRB. Parameter-

specific limits and partial expert judgments can be formulated

as constraints. The optimization problems can be solved using

existing tools such as the optimization tool box that is provided

in Matlab.

This paper is organized as follows: RIMER is briefly re-

viewed in Section II. Optimal learning models for training

the parameters of an initial BRB constructed using expert

knowledge are proposed in Section III. Extended optimal learn-

ing models for hierarchical BRB systems are investigated in

Section IV. Section V presents a numerical study. This paper

is concluded in Section VI.

II. BRB INFERENCE METHODOLOGY USING

THE ER APPROACH (RIMER)

A. BRB Structure and Representation

The RIMER approach is summarized in this section. More

details can be found in [28]. The starting point of constructing

a rule-based system is to collect IF–THEN rules from hu-

man experts or through data mining based on domain-specific

knowledge. A knowledge base and an inference engine are then

designed to infer useful conclusions from rules and observation

facts that are provided by users.

A rule-based model can be formally represented as follows:

R = 〈X,A,D, F 〉

where X = {Xi; i = 1, . . . , T} is the set of antecedent at-

tributes, with each of them taking values (or propositions)

from an array of sets A = {A1, A2, . . . , AT }. Ai = {Aij , j =
1, . . . , Ji = |Ai|} is a set of referential values (or proposi-

tions) for an attribute Xi(i = 1, . . . , T ) with Aij referred to

as a referential value, which can be taken as different types

of value, including linguistic or numerical value. The array

{X1 → A1,X2 → A2, . . . , XT → AT } defines a list of finite

conditions representing the elementary states of a problem

domain, which may be linked by AND and OR connectives.

D = {Dn, n = 1, . . . , N} is the set of all consequents, which

can be conclusions or actions. F is a logical function, reflect-

ing the relationship between conditions and their associated

conclusions. More specifically, the kth rule in a conventional

rule base in forms of a conjunctive IF–THEN rule can be

written as

Rk : IF Ak
1 and Ak

2 and · · · and Ak
Tk

THEN Dk. (1)

Ak
i (∈ Ai, i = 1, . . . , Tk) is the referential value of the ith an-

tecedent attribute that is used in the kth rule, and Tk is the

number of the antecedent attributes that are used in the kth rule.

Dk(∈ D) is the consequent in the kth rule.

A basic rule base is composed of a collection of such simple

IF–THEN rules. To take into account a degree of belief in

a consequent, attribute weights, and a rule weight, a simple

IF–THEN rule is extended to a so-called belief rule with all

possible consequents associated with belief degrees. A collec-

tion of belief rules consists of a BRB defined as follows:

Rk :

IF Ak
1 and Ak

2 and · · · and Ak
Tk

THEN

{(D1, β1,k), (D2, β2,k), . . . , (DN , βN,k)} ,

(

N
∑

i=1

βi,k≤ 1

)

,

with rule weight θk

and attribute weights δ1k, δ2k, . . . , δTkk, k ∈ {1, . . . , L}

(2)

where βi,k(i ∈ {1, . . . , N}) is the belief degree to which Di

is believed to be the consequent if, in the kth rule, the
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TABLE I
BELIEF RULE EXPRESSION MATRIX FOR A BRB

input satisfies the antecedent referential value vector Ak =
{Ak

1 , A
k
2 , . . . , A

k
Tk
}. θk is the relative weight of the kth rule,

and δ1k, δ2k, . . . , δTkk are the relative weights of the Tk an-

tecedent attributes that are used in the kth rule. L is the number

of all belief rules that are used in the BRB. If
∑N

i=1
βi,k = 1,

the kth belief rule is said to be complete; otherwise, it is

incomplete. Suppose that T is the total number of antecedent

attributes that are used in the rule base.

A BRB given in (2) represents functional mappings between

antecedents and consequents possibly with uncertainty. It pro-

vides a more informative and realistic scheme than a simple

IF–THEN rule base for knowledge representation. Note that the

degrees of belief βi,k and the weights could be assigned initially

by experts and then trained or updated using dedicated learning

algorithms if system input and output information is available.

It is the purpose of this paper to develop such optimal learning

models. Once a BRB is constructed and trained, its knowledge

can be used to perform inference from given inputs.

A BRB can be represented in a compact format as fol-

lows: First, the kth rule can be represented as the following

vector form:

Rk : IF X is Ak THEN D with belief degree βk (3)

where X represents the antecedent attribute vector

(X1,X2, . . . , XTk
), Ak is the antecedent referential value

vector {Ak
1 , A

k
2 , . . . , A

k
Tk
}, D is the consequent vector

(D1,D2, . . . , DN ), and βk is the vector of the belief degrees

(β1,k, β2,k, . . . , βN,k) for k ∈ {1, . . . , L}. The preceding rule

reads that the referential value vector Ak of the antecedent

attribute vector X is assessed to a consequent Di with a belief

degree of βk. So, this assessment can be further represented by

S(Ak) = {(Di, βi,k), i = 1, . . . , N} (4)

which is a distribution assessment.

Suppose that all L rules are independent of each other, which

means that the antecedent referential value vectors A1, . . . , AL

are independent of each other. A BRB that is given by (4) can

then be summarized using a belief rule expression matrix, as

shown in Table I, where wk is an activation weight of Ak,

which measures the degree to which the kth rule is weighted

and activated.

B. Belief Rule Inference Using the ER Approach

In the belief rule expression matrix, the degree of activation

of the kth rule wk is calculated by

wk =

θk
Tk
∏

i=1

(

αk
i,j

)δ̄i

L
∑

l=1

[

θl
Tl
∏

i=1

(

αl
i,j

)δ̄i

] and δi =
δi

max
i=1,...,Tk

{δi}
(5)

where θk(∈ R
+, k = 1, . . . , L) is the relative weight of the kth

rule, and δi(∈ R
+, i = 1, . . . , Tk) is the relative weight of the

ith antecedent attribute that is used in the kth rule. θk and δi can

be assigned to any value in R
+ because wk will be eventually

normalized, so that wk ∈ [0, 1] using (5). Without loss of gen-

erality, however, we assume that θk ∈ [0, 1](k = 1, . . . , L), and

δi ∈ [0, 1](i = 1, . . . , Tk). αk
i,j(i = 1, . . . , Tk), which is called

the individual matching degree, is the degree of belief to which

the input for the ith antecedent attribute belongs to its jth
referential value Ak

i,j in the kth rule. αk =
∏Tk

i=1
(αk

i,j)
δ̄i is

called the normalized combined matching degree. αk
i,j could

be generated using various ways, depending on the nature

of an antecedent attribute and data that are available such

as a qualitative attribute using linguistic values. To facilitate

data collection, a scheme for handling various types of input

information is summarized for the following cases [25], [28]:

1) quantitative attribute that is assessed using referential

terms:

a) rule- or utility-based equivalence transformation tech-

niques for quantitative data;

b) transformation based on fuzzy membership function.

1) quantitative attributes that are assessed using interval;

2) qualitative attributes that are assessed using subjective

judgments;

3) symbolic attributes that are assessed using subjective

judgments.

Note that the referential values of an attribute and the types of

input information are problem specific; thus, their definitions

depend on the problems in hand. More discussions about this

issue can be found in [10], [11], [19], and [28].

A referential value of an attribute may in general be regarded

as an evaluation grade. An input x∗i for an attribute Xi can be

equivalently transformed to a distribution over the referential

values that are defined for the attribute using belief degrees as

follows [25]:

S(x∗i)={(Aij , αij), j = 1, . . . , Ji} , i = 1, 2, . . . , T
(6)

where Aij is the jth referential value of the attribute Xi, αij is

the degree to which the input for Xi belongs to the referential

value Aij with αij ≥ 0 and
∑Ji

j=1
αij ≤ 1(i = 1, 2, . . . , T ),

and Ji is the number of the referential values that are used

for describing the ith antecedent attribute Xi. The preceding

distributed assessment reads that the input for the attribute Xi

is assessed to the referential value Aij with the degree of belief

of αij (j = 1, 2, . . . , Ji and i = 1, 2, . . . , T ). If a BRB has T
antecedent attributes, then the rules in the rule base will be
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normally constructed by taking all possible combinations of the

referential values for the T attributes. Hence, αk
i in the kth rule

can be generated in correspondence to (2) as follows:

(

Ak
1 , α

k
1

)

and
(

Ak
2 , α

k
2

)

and · · · and
(

Ak
Tk
, αk

Tk

)

(7)

where Ak
i ∈ {Aij , j = 1, . . . , Ji}, and αk

i ∈ {αij , j =
1, . . . , Ji}.

As a result, each input can be represented as a distribution on

referential values using a belief structure. The main advantage

of doing so is that precise data, random numbers, and subjective

judgments with uncertainty can be consistently modeled under

the same framework. However, the focus of this paper is to train

a BRB and its weights. The details on how to get the individual

matching degree αk
i are discussed in [25] and [28].

Having represented each belief rule using (4), the ER ap-

proach can be directly applied to combine activated belief rules

and generate final conclusions as follows. Note that the kth rule

is activated if wk > 0. First, transform the degrees of belief

βik for all i = 1, . . . , N , k = 1, . . . , L into basic probability

masses and then aggregate all activated rules to generate the

combined degree of belief in each possible consequentDj inD
using the ER algorithm [18], [25], [26]. Using the ER analytical

algorithm [18], the final conclusion O(Y ) that is generated by

aggregating all rules that are activated by the actual input vector

x∗ can be represented as follows:

O(Y ) = f(x∗) = {(Dj , βj), j = 1, . . . , N} (8)

where (9), shown at the bottom of the page, holds and

µ =





N
∑

j=1

L
∏

k=1

(

wkβj,k + 1 − wk

N
∑

i=1

βi,k

)

−(N − 1)

L
∏

k=1

(

1 − wk

N
∑

i=1

βi,k

)]−1

where wk is calculated by (5). Note that βj is a function

of the belief degrees βi,k (i = 1, . . . , N, k = 1, . . . , L), the

rule weights θk (k = 1, . . . , L), the attribute weights δi (i =
1, . . . , T ), and the input vector x∗.

The logic behind the approach is that, if the consequent in the

kth rule includesDi with βj,k > 0 and the kth rule is activated,

then the overall output must be Di to a certain degree. The

degree is measured by both the degree to which the kth rule

is important to the overall output and the degree to which the

antecedents of the kth rule are activated by the actual input x∗.

It can be seen from (5) and (9) that the activation weight and

belief degrees in each rule play an essential part in the inference

Fig. 1. Illustration of optimal learning process.

procedure. The degree to which the final output can be affected

is determined by the magnitude of the activation weight and the

belief degrees of each rule. On the other hand, if the parameters

of a BRB such as βi,k, θk, and δi are not given a priori or

only known partially or imprecisely, they could be trained using

observed input and output information. This is exactly the topic

for the rest of this paper.

III. OPTIMAL LEARNING MODELS AND

PROCEDURES FOR TRAINING BRBS

A. Generic Learning Framework

Beliefs in a rule base may initially be provided by human

experts based on individuals’ experiences and personal judg-

ments, and then optimally trained if observed input–output data

are available. In other words, βi,k can be trained if appropriate

data become available. In addition, a change in rule weights

θk and attribute weights δi may have significant impact on the

performance of a BRB system [28], so they also need to be

trained for achieving desirable performances.

In this section, optimization models and procedures are

investigated in the RIMER framework to help search for op-

timally trained belief rules and weights simultaneously. Fig. 1

shows the process of training a BRB, where x̂m is a given input;

ŷm is the corresponding observed output, either measured using

instruments or assessed by experts; ym is the simulated output

that is generated by the BRB system; and ξ(P ) is the difference

between ŷm and ym, as defined later.

It is desirable that ξ(P ) is as small as possible where P

is the vector of training parameters including βi,k, θk, and δi.
This objective is difficult to achieve if a BRB is constructed

using expert judgments only. Several optimal learning models

are designed to adjust the parameters in order to minimize the

difference between the observed output ŷm and the simulated

output ym, i.e., ξ(P ). Such an optimally trained BRB may then

be used to predict the behavior of the system. In general, the

optimal learning problem can be represented as the following

nonlinear (multiple objective) programming problem:

min f(P )

s.t. A(P ) = 0, B(P ) ≥ 0 (10)

βj =

µ ∗

[

L
∏

k=1

(

wkβj,k + 1 − wk

N
∑

i=1

βi,k

)

−
L
∏

k=1

(

1 − wk

N
∑

i=1

βi,k

)]

1 − µ ∗

[

L
∏

k=1

(1 − wk)

] , j = 1, . . . , N (9)
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where f(P ) is the objective function, P is the training parame-

ter vector, A(P ) is the equality constraint functions, and B(P )
is the inequality constraint functions.

In the learning process, a set of observations on the system

inputs and outputs is required. In the following, we assume that

a set of observation pairs (x,y) is available, where x is an input

vector and y is the corresponding output vector. Both x and y

can be either numerical, judgmental, or both. The format of the

objective function is important for the parameter optimization.

Depending on the type of input and output, the optimal learning

model can be constructed in different ways, as discussed in

detail in the next sections.

B. Optimal Learning Model Based on Numerical Output

In this case, it is assumed that a set of observed training data

is provided in the form ofM input–output pairs (x̂m, ŷm) (m =
1, . . . ,M), with ŷm being a numerical value. The output that is

shown in (8) is represented as a distribution, and its average

score is given by

y =

N
∑

j=1

u(Dj)βj (11)

where the utility (or score) of an individual consequent Dj is

denoted by u(Dj) [25].

Note that the score u(Dj)is used for characterizing an assess-

ment but not for aggregation. u(Dj) can be either given using

a scale or estimated using the decision maker’s preferences.

Without loss of generality, suppose that the least preferred

consequent having the lowest score is D1 and the most pre-

ferred consequent having the highest score isDN , i.e., u(Di) <
u(Dj) if i < j for all i, j = 1, . . . , N .

Since the output in the training data set is numerical, the

output of the BRB system is also given as the scores that were

defined by (11); the objective of the optimal training model is

thus to determine the belief rule matrix ((βi,k)N×L), the rule

weights (θk), the attribute weight vector (δi), and the scores

u(Dj) of the individual consequents Dj , which are denoted

as P = P (βi,k, δi, θk, u(Dj)), in order to minimize the total

mean squared error that is defined as follows:

min
P

{ξ(P )} (12)

where ξ(P ) = (1/M)
∑M

m=1
(ym − ŷm)2 is the total mean

squared error, ym =
∑N

j=1
u(Dj)βj(m) is the expected score

of the output of the BRB system for the mth input, and βj(m)
is given by (9) for the mth input (m = 1, . . . ,M). M is the

number of the input–output pairs, ŷm is the observed output,

and (ym − ŷm) is the residual for themth training data set.

The construction of the constraints of the learning model are

given here.

1) A belief degree (subjective probability) must not be less

than zero or more than one, i.e.,

0 ≤ βj,k ≤ 1, j = 1, . . . , N ; k = 1, . . . , L.
(12a)

2) If the kth belief rule is complete, its total belief degree in

the consequent will be equal to one, i.e.,

N
∑

j=1

βj,k = 1. (12b)

Otherwise, the total belief degree is less than one.

3) A rule weight is normalized, so that it is between zero and

one, i.e.,

0 ≤ θk ≤ 1, k = 1, . . . , L. (12c)

4) An attribute weight is normalized, so that it is between

zero and one, i.e.,

0 ≤ δi ≤ 1, i = 1, . . . , T. (12d)

5) The more preferred a consequent, the higher its score, i.e.,

u(Di) < u(Dj) if i < j, i, j = 1, . . . , N. (12e)

6) For qualitative output, the score (utility) of a consequent

can be normalized, so that it is between zero and one, i.e.,

0 ≤ u(Dj) ≤ 1, j = 1, . . . , N. (12f)

Note that, if
∑N

j=1
βj,k = 1 is required for each rule, then

the trained rule base will be complete. The number of training

parameters is given by S1 = N × L+ L+ T +N , and the

number of constraints is given by S2 = N × L+ 2L+ T +
2N − 1, excluding the nonnegativity constraints of the param-

eters. The objective function that was defined in (12) is a

nonlinear function of the training parameters as the βj(m) that

is given in (9) is a nonlinear function of P . Equation (12) is

therefore an S1 variable and S2 constraint continuous nonlinear

optimization problem, and can be solved using existing opti-

mization software packages, such as the Matlab Optimization

Toolbox [2].

C. Optimal Learning Model Based on Subjective Output

In this case, a set of observed training data is assumed to be

composed ofM input–output pairs (x̂m, ŷm) (m = 1, . . . ,M),
with ŷm being subjective and represented using a distributed

assessment with different degrees of belief as follows:

ŷm =
{

(Dj , β̂j(m)), j = 1, . . . , N
}

(13)

where Dj is a referential (linguistic) term in the consequent

part of a rule, and β̂j(m) is the degree of belief to which Dj is

assessed for the mth pair of observed data. This is indeed the

default output format of RIMER, which provides a panoramic

view about output variations. This format is useful to describe

truly subjective output in a natural way.

A subjective conclusion that is generated by aggregating

the activated rules can also be represented using the same

referential terms as for the observed output ŷm as follows:

y = {(Dj , βj), j = 1, . . . , N} (14)
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where βj is generated by the BRB using (9) for a given

input. It is desirable that, for a given input x̂m, the BRB

system can generate an output, which is represented as ym =
{(Dj , βj(m)), j = 1, . . . , N}, which can be as close to ŷm
as possible. In other words, for the mth pair of the observed

data (x̂m, ŷm), the BRB is trained to minimize the difference

between the observed belief β̂j(m) and the belief (βj(m)) that

is generated by the BRB system for each referential term. Such

a requirement is true for all pairs of the observed data. This

leads to the definition of the objectives for all referential output

terms as follows:

min
P

ξj(P ) j = 1, . . . , N (15a)

where

ξj(P ) =
1

M

M
∑

m=1

(

βj(m) − β̂j(m)
)2

, j = 1, . . . , N

(15b)

(βj(m) − β̂j(m)) is the residual at themth data point, and P =
P (βi,k, δi, θk) is the training parameter vector without u(Dj)
because Dj does not need to be quantified in this case.

The optimal training problem that is formulated in

Section III-B is to minimize the numerical difference between

the observed output and the simulated output. It is therefore

a single-objective optimization problem. The training problem

for the subjective output is a multiple objective nonlinear

optimization problem with N objectives that are defined as in

(15a) and (15b), S1(N × L+ L+ T ) training parameters as

given by (βi,k, θk, δi), and S2(N × L+ 2L+ T ) constraints,

as defined in (12a)–(12d).

This multiple-objective optimization problem can be solved

using various methods. For example, the following minimax

formulation can be used to generate efficient solutions [9],

[15], [17]:

min
P

max
ξj

{

ωj

ξj(P ) − ξ∗j

ξ+j − ξ∗j
, j = 1, . . . , N

}

s.t. (12a) − (12d) (16)

where ωj is the weighting parameter representing the relative

importance of the jth referential term and can be regulated, so

that 0 ≤ ωj ≤ 1,
∑N

j=1
ωj = 1, or simply set to be equivalent

for all terms, i.e., ωj = 1/N for j = 1, . . . , N . ξ+j and ξ∗j are

the maximal feasible residual and the minimal feasible residual

for the jth referential term, respectively.

The minimax method [2], [13], [14], [24] is also called ideal

point method. It is composed of three computational steps.

Step 1) Generate a payoff matrix by solving the following

single-objective optimization problems using con-

ventional methods such as the FMINCON function

in Matlab, i.e.,

min
P

ξj(P )

s.t. (12a) − (12d) (17)

for all j = 1, . . . , N . Suppose that P j is the opti-

mum of the jth problem. Then, a payoff matrix can

be formulated by defining ξ+j = max{ξj(P
i), i =

1, . . . , N} and ξ∗j = ξj(P
j) for j = 1, . . . , N .

Step 2) Set the relative weight vector ω = (w1, . . . , ωN ).
For example, set equal weights for all terms or ωj =
1/N for j = 1, . . . , N .

Step 3) Reformulate the problem (16) as the following

equivalent problem, and solve it:

min r

s.t. ωj

ξj(P ) − ξ∗j

ξ+j − ξ∗j
≤ r, j = 1, . . . , N

(12a) − (12d). (18)

The process can be repeated if the relative weights

need to be regulated in an interactive fashion.

D. Optimal Learning Model Based on Mixed Output

In the mixed case, a set of observed training data is composed

of M input–output pairs (x̂m, ŷm) (m = 1, . . . ,M), with ŷm
being either a numerical value or a subjective judgment that

is represented as a distribution. Without loss of generality,

suppose that the first M1 pairs of training data are subjective

judgments, and the last M2 =M −M1 pairs of training data

are numerical values. In this case, the optimization problem can

be formulated as the following multiple-objective optimization

problem for minimizing the differences between the outputs of

the BRB system and the corresponding observed outputs in both

the numerical and subjective formats:

min
P

{ξ1(P ), ξ2(P ), . . . , ξN (P ); ξ(P )}

s.t. (12a) − (12f) (19)

where P is the training parameter vector, and ξj is the total

mean squared error for the jth referential term that is given as

follows:

ξj =
1

M1

M1
∑

m=1

(

βj(m)−β̂j(m)
)2

, j=1, . . . , N. (19a)

β̂j(m) is the observed belief degree for the jth consequent

Dj corresponding to the mth observed output in the training

data set (m = 1, . . . ,M1), and βj(m) is the belief degree for

Dj that is given by (9) corresponding to the mth input of the

training data set. ξ is the total mean squared error for all the

numerical data set given as follows:

ξ =
1

M2

M
∑

m=M1+1

(ym − ŷm)2 (19b)

where ym =
∑N

j=1
u(Dj)βj(m), βj(m) is given by (9) for the

mth input in the numerical training data set, and ŷm is the

observed numerical output (m =M1 + 1, . . . ,M).
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The objective that is given by (19) has N + 1 nonlinear

objective functions and can be solved using the following

minimax formulation to generate efficient solutions:

min
P

max
ξj

{

ωj

ξj(P ) − ξ∗j

ξ+j − ξ∗j
, j = 1, . . . , N + 1

}

s.t. (12a) − (12f) (19c)

where ξ+j and ξ∗j are defined as follows. The computa-

tional steps of the minimax method for solving the multiple-

objective optimization problem that is given in (19) are

summarized here.

Step 1) Solve the following single-objective optimization

problems:

min
P

ξj(P )

s.t. (12a) − (12d) (20a)

for j = 1, . . . , N . Suppose that P j is the opti-

mum of the jth problem. In addition, solve the

following single-objective problem and formulate a

payoff table:

min
P

ξ(P )

s.t. (12a) − (12f). (20b)

Suppose that P N+1 is the optimum of the preced-

ing problem (20b). Then, a payoff table can be

formulated by defining ξ+j = max{ξj(P
i), i = 1,

. . . , N + 1} and ξ∗j = ξj(P
j) for j = 1, . . . ,

N + 1.

Step 2) Set the relative weight vector ω = (w1, . . . ,
ωN ;ωN+1). For example, one possible way to set

the weight vector is given as follows:

ω1 = · · · = ωN =
M1

N
ωN+1 =M2. (21)

This means that the importance of one type of objec-

tive function depends on the number of training data

sets corresponding to this type of objective function.

Step 3) Reformulate the single-objective problem (16) into

the following equivalent problem, and solve it:

min r

s.t. ωj

ξj(P ) − ξ∗j

ξ+j − ξ∗j
≤ r, j = 1, . . . , N + 1

(12a) − (12f). (22)

The process can be repeated if the relative weights

need to be regulated in an interactive fashion.

A BRB system can be initialized either by experts or arbitrar-

ily, depending on initial information that is available. In the for-

mer case, the domain-specific knowledge of experts is used to

assign the initial belief-rule-base matrix and the weights, which

are refined using the preceding models when more information

becomes available. In the latter case, the initial BRB matrix

Fig. 2. Simple hierarchical structure.

and the weights are arbitrarily generated and then refined using

the preceding models. However, a trained BRB with arbitrary

initialization may generate intuitively wrong conclusions if not

all rules are trained, which may be the case if the observed

data set does not cover all possible regions where the BRB is

designed to operate. This problem is discussed in more detail in

Section V-D.

The optimization models that are proposed in this section

are for a single-level BRB system. The same principle can be

applied to handle more complex multilevel systems, in which

the consequent of a rule may be used as the antecedent of

another rule. The optimization models for hierarchical BRB

system are investigated in the next section.

IV. OPTIMAL LEARNING MODELS

FOR HIERARCHICAL BRBS

The rules of a knowledge base for a complex decision-

making problem can be of a hierarchical structure. In general, a

bottom-up approach can be used to solve such a problem. Pieces

of evidence for the bottom-level rule bases are aggregated

into evidence for the second lowest level rule bases, which is

in turn aggregated to produce evidence for higher level rule

bases. Fig. 2 shows a hierarchical knowledge base having three

subrule bases: subrule base 1, subrule base 2, and subrule

base 3.

Information is propagated from the bottom-level states (X ,

Y , G, H , and Z) up to the goal state W . Subrule base 1 and

subrule base 2 are assumed to be independent of each other.

The output of subrule base 1D and the output of subrule base 2

R, together with the independent input state Z, are taken as the

input states to subrule base 3. Each of the three subrule bases

constitutes a basic rule base and can be dealt with using the

RIMER approach, where subrule base 1 and subrule base 2

are solved first, followed by the solution of subrule base 3.

The optimal training for this hierarchical rule-based system is

to systematically adjust the belief rule expression matrices and

the weights of all the three subrule bases simultaneously using

training data for the inputs at the bottom level and the overall

output at the top level.

A. Construction of a Hierarchical BRB System

Given an input vector X = {X1, . . . , Xn}, a hierarchical

BRB system having Z levels can be described as follows.

Without loss of generality, suppose that each upper level subrule
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base has several independent inputs and is linked to a lower

level subrule base. Other models with an upper subrule base

linked to multiple lower level subrule bases can be represented

in a similar way.

Suppose that the first level has n1 independent input variables

X1, . . . , Xn1
and an output variable Y1, which is later used as

an intermediate variable in the hierarchy. The subrule base can

be expressed as follows:

R1
l : IF X1 is Al

1 and · · · and Xn1
is Al

n1
,

THEN Y 1 is
{(

D1
j , β

1
j,l

)

, j = 1, . . . , N1

}

(23a)

and the output can be described as follows:

O(Y 1) =
{(

D1
j , β

1
j,l

)

, j = 1, . . . , N1

}

(23b)

where l = 1, . . . , L1, L1 is the total number of rules at the first

level of the hierarchical system, D1
j is the jth referential value

for assessing Y 1, N1 is the total number of referential values

for Y 1, and β1
j,l is the belief degree to which the output Y 1 is

assessed to D1
j in the lth rule.

Suppose that the ith level subrule base (i > 1) has ni (ni ≥
1) independent input variables XKi+1 and an intermediate

input variable Y i−1, which are used to construct the following

rules:

Ri
l : IF XKi+1 is Al

Ki+1 and · · · and XKi+ni
is Al

Ki+ni

and Y i−1 is
{(

Di−1
j , βi−1

j

)

, j = 1, . . . , Ni−1

}

THEN Y i is
{(

Di
j , β

i
j,l

)

, j = 1, . . . , Ni

}

(24)

where Ki =
∑i−1

j=1
nj , l = 1, . . . , Li, Li is the total number

of rules at the ith level, Ni is the total number of referential

values for Y i, and βi
j,l (j = 1, . . . , Ni) is the belief degree

to which the output could be assessed to Di
j in the lth rule

at the ith level. Al
k (k = Ki + 1, . . . ,Ki + ni) is the refer-

ential value for assessing Xj in the lth rule at the ith level.

Di−1
j (j = 1, . . . , Ni−1) is the referential value for assessing

Y i−1, and βi−1
j is inferred from the (i− 1)th level subrule base.

Consequently, the output for Y i is given by

O(Y i) = fi
(

XKi+1, . . . , XKi+ni
, Y i−1

)

=
{(

Di
j , β

i
j

)

, j = 1, . . . , Ni

}

. (25)

At the top level i = Z with
∑Z

j=1
nj = n, the overall output

Y Z can be represented as follows:

O(Y Z) =
{(

DZ
j , β

Z
j

)

, j = 1, . . . , NZ

}

(26)

where DZ
j is a referential value for describing Y Z , βZ

j is the

belief degree to which the output could be DZ
j , and NZ is the

total number of referential value for assessing Y Z .

In the hierarchical inference process, the first-level subrule

base aggregates n1 input variablesX1, . . . , Xn1
into one output

variable Y 1, which is then used as an input to the second-level

subrule base. In the second level, other n2 independent input

variables Xn1+1, . . . , Xn1+n2
and the intermediate variable

Fig. 3. Three-input two-level structure.

Y 1 are aggregated into the second-level output variable Y 2,

which is then used as an input to the third-level subrule base.

The process continues until the overall output is generated at

the top level.

For illustration purposes, we use three input variables

(X1,X2,X3), one intermediate output Y 1, one overall output

Y 2, and two subrule bases to demonstrate the construction

of a hierarchical rule-based system step by step, as shown

in Fig. 3.

Step 1) Before the inference can be started, input values

need to be equivalently transformed and represented

in terms of the referential values using belief degrees

to which the values belong to the referential values.

Such a belief degree is regarded as the individ-

ual matching degree corresponding to each rule, as

shown in (6).

Step 2) Using (5) and (9), the output of the first-level subrule

base is given by

O(Y 1) = f1(X1,X2) =
{(

D1
j , β

1
j

)

, j = 1, . . . , N1

}

(27)

where D1
j is the jth referential value for Y 1, N1 is

the number of the referential values for Y 1, and β1
j

is the inferred belief to which Y 1 is believed to be

assessed to D1
j .

Step 3) The output of the second-level subrule base is given

by S(Y 2) = f2(X3, Y
1). Suppose that the inputX3

is transformed to a distribution on the referential

values for X3 using belief degrees as follows:

S(X3) = {(A3j , α3j), j = 1, . . . , J3} (28)

where A3j is the jth referential value for X3, α3j

is the degree to which X3 belongs to the referential

valueA3j , and J3 is the number of referential values

that are used for assessing X3. The second-level

subrule base for generating Y 2 is given by

IF X3 and Y 1 THEN Y 2

where X3 is given by (28) and O(Y 1) is

given by (27).

Based on (7), the input corresponding to the lth
rule is expressed as follows:

(

Al
3, α

l
3

)

and
(

D1
l , β

1
l

)

(29)
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where l = 1, . . . , L2, Al
3 ∈ {A3j , j = 1, . . . , J3},

αl
3 ∈ {α3j , j = 1, . . . , J3}, D1

l ∈ {D1
j , j = 1, . . . ,

N1}, and β1
l ∈ {β1

j ; j = 1, . . . , N1}. Therefore, the

activation weight for the lth rule of the second

subrule base is calculated by (5) as follows:

w2
l =

θ2l × α2
l

L2
∑

k=1

[θ2k × α2
k]

(30)

where α2
k = (αk

3)
δ̄2

X3 × (β1
k)

δ̄2

Y1 is the combined

matching degree in the lth rule.

It is clear from the preceding process that the

output of the first-level subrule base [or O(Y 1)]
becomes the input of the second-level subrule base.

Equation (30) shows that the belief distribution

O(Y 1) is directly combined with the belief distribu-

tion S(X3) to obtain the activation weight for each

rule of the second-level subrule base.

Step 4) The overall hierarchical output Y 2 is generated as

follows:

O(Y 2)=f(X1,X2,X3)=f2 (f1(X1,X2),X3) (31)

where f1 and f2 are each defined by (5) and (9),

respectively.

B. Optimal Learning Models for a Hierarchical System

Case 1) Suppose that the overall output of a hierarchical

rule based system is in numerical form. Then, the

objective function of the optimal learning model can

be expressed as follows:

min{ξ} (32)

where ξ = (1/M)
∑M

m=1
(ym − ŷm)2, ym =

∑Nz

j=1
u(DZ

j )βZ
j (m) is the expected utility (or

score) of the output O(Y Z) corresponding to the

mth input, and βZ
j (m) is given by (26) for the mth

input in the training data set (m = 1, . . . ,M). M
is the number of the training data sets, ŷm is the

observed output, and (ym − ŷm) is the residual at

themth data set.

Similar to (12a)–(12f), the constraints for a hier-

archical rule-based system are given by

0 ≤βi
j,l ≤ 1, j = 1, . . . , Ni; l = 1, . . . , Li;

i = 1, . . . , Z (32a)

Ni
∑

j=1

βi
j,l = 1, l = 1, . . . , Li; i = 1, . . . , Z (32b)

0 ≤ δit ≤ 1, t = 1, . . . , Ti; i = 1, . . . , Z (32c)

0 ≤ θil ≤ 1, l = 1, . . . , Li; i = 1, . . . , Z (32d)

0 ≤u
(

DZ
j

)

≤ 1, j = 1, . . . , NZ (32e)

u
(

DZ
j

)

<u
(

DZ
j

)

if i < j, i, j = 1, . . . , NZ (32f)

where Ti is the number of antecedent attributes in

the ith level.

Case 2) Suppose that the output is in the form of subjective

judgment. Then, the multiobjective function of the

optimal learning model can be expressed as follows:

min
P

max
{ξj}

{ξj(P ), j = 1, . . . , NZ}

s.t. (32a) − (32d) (33)

where

ξj(P ) =
1

M

M
∑

m=1

(

βZ
j (m) − β̂Z

j (m)
)2

, j = 1, . . . , NZ .

(33a)

P is the parameter vector, β̂Z
j (m) is the expected

belief corresponding to the individual consequent

DZ
j , and (βZ

j (m) − β̂Z
j (m)) is the residual at the

mth data point.

Case 3) Suppose that the output is in the form of both

numerical value and subjective judgment. Then,

the multiobjective function of the optimal learning

model can be expressed as follows:

min
P

{ξ1(P ), ξ2(P ), . . . , ξNZ
(P ), ξ(P )}

subject to (32a) − (32f) (34)

where ξ(P ) is given by (32), and ξj(P ) (j =
1, . . . , NZ) are given by (33a). This multiple-

objective optimization problem can also be solved

using the minimax approach, as discussed in the

previous section.

V. NUMERICAL STUDY

A. Problem Description

A numerical example is studied in this section to demonstrate

the implementation and potential applications of the proposed

training models. Several case studies for applying the BRB

systems and the training models to real-world problems are re-

ported in other published papers [10], [11], [19]. This example

is based on a fuzzy rule base for an exploratory expert system

that is discussed by Hodges et al. [5] and was also used to

demonstrate how a BRB system could be built [28]. More detail

about this example can be found in these references.

In this example, it is aimed to determine confidence degrees

to which the system believes that a container may contain

graphite. So, the output variable is the confidence degree

to which a container contains graphite. The input variables

that are defined in the exploratory expert system include the

following:

• accuracy of the weight measurement;

• degree to which the calculated density is consistent with

graphite;

• observer’s experience;

• observer’s confidence that the real-time radiography

(RTR) shows graphite.
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Fig. 4. Hierarchical structure of a small exploratory expert system.

For illustration purposes, each of these input variables and the

output variable are all assessed using linguistic terms such as

high (H), medium (M), or low (L). However, they could be

assessed in various ways such as different linguistic terms,

numerical values, random numbers, intervals, or fuzzy sets [28].

The system structure is shown in Fig. 4. The parameters in

Fig. 4 are defined as follows:

X1 Observer’s experience.

X2 Accuracy of the fill height determination.

X3 Accuracy of the weight measurement.

X4 Accuracy of the calculated density.

X5 Consistency of the calculated density with graphite.

X6 Confidence that the density indicates graphite.

X7 Observer’s confidence that the RTR shows graphite.

X8 Confidence that the RTR shows graphite.

X9 Confidence that the container contains graphite.

This example uses four input variables (X1,X3,X5,X7) and

four intermediate variables (X2,X4,X6,X8) to predict X9 in

terms of qualitative linguistic terms. The expert knowledge is

coded as IF–THEN rules that are hierarchically organized in

five subrule bases [28].

The BRB is constructed on the basis of the original IF–THEN

rule base that is provided by Hodges et al. [5]. Belief degrees

were initially assigned to each rule by the researchers by

examining the original rule base and perceiving the expert’s

way of making the judgments [28]. For example, in terms

of the original rule base in [5], the expert’s final confidence

in the verification of the graphite code tends to be quite low

in the presence of a piece of negative information, such as

inexperience of the observer. Such human reasoning processes

can be closely imitated by, for example, assigning weights

to antecedent attributes and/or by adjusting belief degrees in

the consequents of rules in a systematic manner [28]. This

is one of the prominent features of a BRB, which can also

be optimally trained in the ways that were investigated in the

previous sections and is to be demonstrated in this section.

B. Training Data

To train the BRB for the preceding example, 12 sets of

training data are used and listed in Table II [28]. In Table II, the

original input and output data were all provided as numerical

numbers, as shown in columns 2–6. In the last column, the out-

TABLE II
TRAINING DATA SET (INPUT AND OBSERVED OUTPUT VALUES)

TABLE III
TRANSFORMATION OF INPUT TRAINING DATA

put data are equivalently transformed into the belief structures.

This is accomplished by using the information transformation

technique for numerical data [25], [28], with the three linguistic

terms high (H), medium (M), and low (L) quantified by 1, 0.5,

0, respectively, i.e., u(H) = 1, u(M) = 0.5, and u(L) = 0,

respectively. For the third data set, for example, the observed

output X9 was originally expressed by 0.6, i.e., X9 = 0.6. It

can also be expressed using the distribution (belief structure)

S(X9 = 0.6) = {(H, 0.2), (M, 0.8), (L, 0)}, as shown in the

last column of Table II. The two expressions (assessments) are

said to be equivalent in the sense that the expected value of the

distribution is equal to 0.6, i.e., X9 = u(H) × 0.2 + u(M) ×
0.8 + u(L) × 0.2 = 1 × 0.2 + 0.5 × 0.8 + 0 × 0 = 0.6.

The given values for the four input variables

(X1,X3,X5,X7) can also be transformed into the belief

structures with respect to the defined three linguistic terms

using the information transformation technique. In training

data set 5, for example, the input data for the input variable

X1 is given by 0.4, i.e., X1 = 0.4. This can be equivalently

transformed to the distribution (belief structure) of {(high,

0), (medium, 0.8), (low, 0.2)}. By equivalence, we mean

that the expected value of the distribution is equal to

0.4, i.e., X1 = u(H) × 0 + u(M) × 0.8 + u(L) × 0.2 =
1 × 0 + 0.5 × 0.8 + 0 × 0.2 = 0.4. Similarly, for input data

set 5, X3 = 0.98, X5 = 0.6, and X7 = 0.8 can be equivalently

transformed to {(high, 0.96), (medium, 0.04), (low, 0)}, {(high,

0.2), (medium, 0.8), (low, 0)}, and {(high, 0.6), (medium, 0.4),

(low, 0)}, respectively, as shown in Table III. The other given

input training data sets can be transformed in a similar way.

C. Hierarchical Rule Based System and Optimal

Learning Models

Note that the training data are given in two types of out-

put form, i.e., numerical values and judgments with beliefs,

as shown in Table II. They are used to demonstrate the
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optimization models for numerical output that is given in (32)

and for judgmental output that is given in (33), respectively.

As discussed in [28], the BRB system has five subrule bases,

so Z = 5. In the first subrule base, for example, since there is

only one input (X1), we have T1 = 1 and one attribute weight

(δ11). As its input (X1) and output (X2) are both assessed using

three linguistic terms, we haveN1 = 3 and three possible belief

rules (or L1 = 3) for this subrule base, which are defined as

follows:

R1 : IF X1 is high

THEN X2 is {
(

high, β1
H1

)

,
(

medium, β1
M1

)

,
(

low, β1
L1

)

R2 : IF X1 ismedium

THEN X2 is {
(

high, β1
H2

)

,
(

medium, β1
M2

)

,
(

low, β1
L2

)

R3 : IF X1 is low

THEN X2 is {
(

high, β1
H3

)

,
(

medium, β1
M3

)

,
(

low, β1
L3

)

with the rule weights that are given by θ11 , θ12 , and θ13 . The train-

ing parameters for this subrule base include nine belief degrees

(β1
Hl, β

1
Ml, β

1
Ll, l = 1, 2, 3), three rule weights (θ1l , l = 1, 2, 3),

one attribute weight (δ11), and the utilities of the linguistic terms

(u(H), u(M), u(L)), which need to be trained if numerical

output values are given and the single-objective model (32) is

used.

In the second subrule base, there are two input variables X2

andX3. So, we have T1 = 2 and two attribute weights (δ21 , δ
2
2).

Since its inputs and the output (X4) are all assessed using

three linguistic terms, we have N2 = 3 and nine possible belief

rules (or L2 = 9) for this subrule base, which are defined as

follows:

R4: IF X1 is high AND X2 is high

THEN X4 is {
(

high, β2
H4

)

,
(

medium, β2
M4

)

,
(

low, β2
L4

)

R5: IF X1 is high AND X2 ismedium

THEN X4 is {
(

high, β2
H5

)

,
(

medium, β2
M5

)

,
(

low, β2
L5

)

R6: IF X1 is high AND X2 is low

THEN X4 is {
(

high, β2
H6

)

,
(

medium, β2
M6

)

,
(

low, β2
L6

)

R7: IF X1 ismedium AND X2 is high

THEN X4 is {
(

high, β2
H7

)

,
(

medium, β2
M7

)

,
(

low, β2
L7

)

R8: IF X1 ismedium AND X2 ismedium

THEN X4 is {
(

high, β2
H8

)

,
(

medium, β2
M8

)

,
(

low, β2
L8

)

R9: IF X1 ismedium AND X2 is low

THEN X4 is {
(

high, β2
H9

)

,
(

medium, β2
M9

)

,
(

low, β2
L9

)

R10: IF X1 is low AND X2 is high

THEN X4 is

{
(

high, β2
H10

)

,
(

medium, β2
M10

)

,
(

low, β2
L10

)

R11: IF X1 is low AND X2 ismedium

THEN X4 is

{
(

high, β2
H11

)

,
(

medium, β2
M11

)

,
(

low, β2
L11

)

R12: IF X1 is low AND X2 is low

THEN X4 is

{
(

high, β2
H12

)

,
(

medium, β2
M12

)

,
(

low, β2
L12

)

with the rule weights θ24 , θ25 , θ26 , θ27 , θ28 , θ29 , θ210, θ211, and θ212,

respectively. The training parameters for the second subrule

base include 27 belief degrees (β2
Hl, β

2
Ml, β

2
Ll), l = 4, . . . , 12),

nine rule weights (θ2l , l = 4, . . . , 12), and two attribute weights

(δ21 , δ
2
2).

Similarly, for the other three subrule bases, we have T3 =
T4 = T5 = 2; N3 = N4 = N5 = 3, and L3 = L4 = L5 = 9.

Their possible rules can be listed in the same way. The belief

degrees βi
j,l in the consequents of the output variables, the rule

weights θil , and attribute weights δit are the parameters to be

trained.

The optimization model framework is given in Section IV-B.

To solve the single-objective model that is given by (32),

existing optimization tools such as the FMINCON function in

Matlab can be used. In this example, the calculations are done

using a medium-scale algorithm in FMINCON, and all the re-

sults are generated using the sequential quadratic programming,

quasi-Newton, and line-search methods that are provided in

FMINCON. To solve the multiobjective model that is given

by (33), existing optimization tools such as the FMINIMAX

function in Matlab can be used.

D. Experimental Results Based on Numerical Data

If beliefs and weights are initially given by experts, we

consider two cases.

1) Initial beliefs and weights are assigned and manually

tuned by experts (denoted as Expert 1).

2) Initial beliefs and weights are assigned but not fine tuned

by experts (denoted as Expert 2).

If beliefs are not given by experts, their values in each rule

are initialized randomly with their sum added to one (denoted

as random).

The initial beliefs and weights for Expert 1, Expert 2, and

random are listed in Table IV. The trained beliefs and weights

for Expert 1, Expert 2, and random are given in Table VI.

The initial and trained utilities of the linguistic terms for X9

are shown in Table V. In the example, the error tolerance is

set to 0.000001, and the maximum iteration is set to 60 to

avoid dead loop in the optimal learning process. The test results

are illustrated in Fig. 5(C1)–(C4), where the comparisons are

shown between the observed output and the simulated output

that is generated using the trained BRB system, with the output

assigned and fine tuned by experts (Expert 1), assigned but

not fine tuned by experts (Expert 2), or generated randomly

(random).

It is evident that there is great difference between the ini-

tial system output and the observed output that is shown in

Fig. 5(C4). This difference is caused by the fact that the

initial output is randomly generated. There are also significant

differences between the initial system output and the observed

output that is shown in Fig. 5(C2) and (C3). Although the

difference in Fig. 5(C2) is quite small due to the small size of

this BRB, it would be difficult and time consuming to manu-

ally generate relatively accurate beliefs and weights for large
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TABLE IV
INITIAL BRBS AND RULE WEIGHTS

systems. As shown in Fig. 5(C1), the trained BRB system can

simulate the real system with great accuracy, which is strongly

nonlinear.

This study shows that a BRB system can be initially con-

structed using partial knowledge, either numerical or judgmen-

tal, which, if not wrong in general, could help generate logical

conclusions even in untrained regions. With the accumulation

of new knowledge, the system can be progressively trained and

updated to better mimic a real system. Note that the training

data in this example do not cover the full range of regions

where the BRB is designed to operate. For example, Rules

19–21 were not trained at all as the belief degrees and rule

weights of these rules remain unchanged after the training, in

whichever ways the BRB was initialized, as marked in gray

in both Tables IV and VI. When activated, such rules that are

untouched during training could lead to irrational conclusion

if they were initially assigned randomly or without care. For

example, if the BRB is randomly built initially as in Table IV,

then the three rules would lead to intuitively wrong conclusions

if they were later activated after the training of the rule base,

as shown in Table VI. If there are a number of such rules in

TABLE V
INITIAL AND TRAINED UTILITY OF THE CONSEQUENT

TERM {H, M, L} FOR X9

a BRB that are untouched during a training process, which

are not initially assigned by experts, such a trained BRB will

still be very likely to generate irrational conclusions. On the

other hand, if a BRB is initialized using appropriate expert

knowledge such as in case 2 (Expert 2) and case 3 (Expert 1)

shown in Tables IV and VI, the untrained rules would not lead

to intuitively wrong conclusions if activated. In addition, note

that the optimization models may have multiple optima, and

using expert initialization could help to achieve a trained BRB

that is closer to expert expectations, leading to better results in

extrapolation.
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Fig. 5. Comparisons of test results.

TABLE VI
TRAINED BRBS AND RULE WEIGHTS
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TABLE VII
COMPARISON BETWEEN OBSERVED AND TRAINED RESULTS

TABLE VIII
EFFECT OF EXPERT KNOWLEDGE ON THE LEARNING RESULTS

Fig. 6. Learning rate comparison between Expert 1 and random.

E. Effect of Experts’ Knowledge on the Experimental Results

In Table VII, the learning results for two cases are compared,

in which either expert initialization (Expert 1) or random ini-

tialization (random) is used. In both cases, the final numerical

results for X9 are similar after training, although the costs to

achieve these results are rather different, so are the generated

rules. In Table VIII, “Iterations” means the number of iterations

that were taken in the training process, “FuncCount” is the

number of function evaluations, “LR-Expert” is the learning

rate based on initial beliefs that are provided by Expert 1, and

“LR-Random” is the learning rate based on randomly generated

initial beliefs.

Fig. 6 shows the learning rate comparisons between Expert 1

and random. It is clear from these experimental results that

TABLE IX
COMPARISON OF TEST RESULTS BASED ON JUDGMENTAL OBSERVATIONS

prior expert knowledge can help to improve the performance of

the training process and also avoid generating obvious illogical

conclusions in cases where available training data do not cover

the full range of regions in which the trained system is supposed

to operate.

F. Experimental Results Based on Judgmental Assessments

Table IX shows the comparison between the observed (trans-

formed) assessments and the trained results. In this example,

the error tolerance for the single-objective optimal training

model of each subrule base is set to 0.0001, and the maximum

iteration number is set to 60. The error tolerance for the

multiobjective optimal training model is set to 0.001, and the

maximum iteration is set to 60 to avoid dead loop in the optimal

training process. The initial beliefs and weights are based on

Expert 1.

The trained outputs in terms of belief degrees to the linguistic

terms are very close to the observed outputs. This shows the

capability of the BRB system to simulate real systems using

mixed numerical values (input in this case) and judgmental

information (output in this case).

G. Validation of Learning Results Based on Numerical Data

To validate the trained models, the available data are parti-

tioned into a training data set and a test data set. The training

data set is used for training the system parameters. The trained

BRB system is then used to generate outputs for the test

input data.

For illustration purposes, the first six sets of data, as shown

in rows 1–6 in Table II, are used as the training data for

parameter estimation. The initial beliefs and rule weights are

given by Expert 1 (Column Expert 1 in Table IV). The initial

attribute weights are all set to be equivalent. After training, the

remaining six sets of data, as shown in rows 7–12 in Table II,

are used for validation. The observed and simulated outputs

are listed in Table X. The test results in Table X indicate

that over 90% of the results are correct within the specified

tolerance of 0.05.
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TABLE X
OBSERVED AND SIMULATED VALUES OF THE OUTPUT

VI. CONCLUSION AND DISCUSSION

Several new optimization models were proposed in this paper

for training the parameters of a BRB system that is initially

built using expert knowledge. These optimal learning models

provide a systemic mechanism to enhance the capability of

the recently developed BRB inference methodology (RIMER)

to simulate systems where both expert knowledge and partial

input–output data are available. It can be used to handle a

range of knowledge representation schemes, thereby facili-

tating the construction of various types of BRB systems. A

numerical example for a hierarchical rule-based expert system

was examined to demonstrate how these new models can be

implemented.

There are several features in the proposed models. First,

due to the use of belief rules, the RIMER method provides an

analytical description of relationships between system’s inputs

and outputs that could be discrete or continuous; complete or

incomplete; linear, nonlinear or nonsmooth; or their mixtures.

This enables a BRB system to act as a generic functional

mapping from system inputs to outputs and allows powerful

learning techniques to be used for parameter training and

system updating on the basis of both numerical data and human

judgements. A hierarchical BRB system could be constructed

to simulate complex systems. Second, a BRB system pro-

vides a non-black-box simulator that can explicitly represent

expert’s domain-specific knowledge as well as common-sense

judgments and thus can avoid generating obviously irrational

conclusions. Once new knowledge becomes available, the new

learning models can be used to fine tune the system in order

to achieve better performances in simulating a real system.

Third, the new models are capable of accommodating input

and output information that can be numerical or judgmental

or both, thereby providing a flexible way to represent and a

rigorous procedure to deal with hybrid information to arrive at

rational conclusions. Finally but by no means least importantly,

the new models can be used to process incomplete or vague

information. It may be appropriate to claim that the unique

feature of these training models is their capabilities to handle

ignorance, as powered by the ER algorithm-based rule aggrega-

tion process, in order to support the development of BRBs with

incomplete or mixed training information. The aforementioned

features allow BRB systems, which are equipped with the

new learning models, to be capable of simulating a range of

real systems.

The BRB system methodology and the proposed optimal

training models have been applied to develop knowledge-based

systems using both numerical data and judgmental information,

such as analyzing the safety of engineering systems [10], [11]

and detecting leaks in oil pipelines [19]. In such applications,

various types of information may be available, either mea-

sured using instruments or generated by trained experts or

untrained consumers. The proposed methodology can provide

a nonblack-box simulator with learning capability to support

retrofit product design and manufacture, and faulty diagnosis.

For instance, in the development of a BRB system for leak

detection in oil pipelines [19], human experts specialized in

fine tuning the parameters of a model for detecting oil pipeline

leaks, provided initial incomplete knowledge to establish a

preliminary BRB system. The initial system worked reasonably

well but could not provide precise predictions when there

were sizable leaks in the pipeline operating data. By using

the proposed optimal learning methods to train the preliminary

belief rules, the BRB system can learn from the online-collected

pipeline operating data, the relationship between leak sizes,

and the pipeline flow and pressure readings. For pipeline leak

detection systems based on mass balance principles, identifying

the relationship between flow difference and pressure changes

is very important and involves intensive parameter tuning. It

is a time-consuming process and pipeline specific. The self-

learning capability of the BRB system can significantly reduce

the parameter tuning time and improve the performance of the

system.

However, the validation of training results needs to be ex-

tensively investigated for larger systems. Note that the local

optimization models that are proposed in this paper are used

to fine tune the parameters of a BRB that is initially built

using expert knowledge. They are not yet equipped with the

ability to automatically identify and rectify conflicting rules that

may exist. In our current applications [10], [11], [19], experts

are expected to inspect whether there are obvious irrational

or conflicting rules based on their domain-specific knowledge.

If conflicting rules are identified by experts or certain rela-

tionships among rules are required, then additional constraints

could be added to the optimization models to avoid conflicts

and to meet the requirements. For large systems or systems with

little prior expert knowledge, however, there may be a need to

develop new global optimization models to check inconsistency

in a BRB.

Note that, for a complex real-world problem, prior knowl-

edge may be limited, which may lead to the construction of

an incomplete or even inappropriate initial BRB structure. If

there are too many belief rules in an initial rule base, the

training task may become too complicated to handle, or it is

possible to result in overfitting. On the other hand, if there

are too few rules in the initial rule base, this may lead to

underfitting, and consequently, the system may not be able

to achieve overall optimal performance. To achieve an overall

optimal BRB, it may not be sufficient to just statistically tune

parameters on given rules, but the structure of a BRB system

may need to be adjusted as well. The final performance of a

supervised BRB learning system therefore depends on both its

system structure and system parameters. However, generating

globally optimal system performance in general circumstances

would also require the development of global optimization

models.

The current local optimization models are constructed

as conventional nonlinear single- or multiple-objective opti-

mization problems. The numbers of variables, constrains, and
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objectives of such problems are analyzed as in the paragraphs

following equation (12f) and problem (15). So, these problems

can be readily solved using existing nonlinear optimization

software such as the Matlab optimization tool box, LINDO, and

Excel solver. Note that if global optimization models are de-

veloped in the future with the structure of BRBs also subject to

changes, then there may be a need to deal with discrete and even

nonsmooth optimization problems. To solve such problems, it

would be beneficial to design hybrid algorithms by combining

mathematical programming techniques with adaptive search

or heuristic methods, such as genetic algorithms or simulated

annealing.

Fuzzy neural networks (FNNs) are a powerful tool to model

systems with inaccurate input–output data. Indeed, it is claimed

to be capable of modeling any nonlinear systems without

requiring assumptions on functional structures among system

inputs and outputs. However, it is in essence a black-box

modeling approach, and its internal structure does not allow

the explicit representation of subjective expert knowledge. As

such, it entirely relies on the quality of data samples for its

prediction performance. RIMER is not developed to compete

against FNNs in situations where the latter one can perform

well, for example, where a complete range of data samples

of high quality is available. Rather, RIMER is designed to

allow direct intervention of human experts in deciding the

internal structure of a BRB. The optimization training models

and suggested algorithms that are reported in this paper are

used to fine tune a BRB system that is initially built using hu-

man knowledge. As such, they provide performance-enhancing

mechanism for RIMER, which could be used wherever partial

input–output data are available. The benefits of the strategy in

allowing direct expert intervention were discussed in the last

paragraph of Section V-D. It is possible that the construction

of a BRB could be entirely based on human knowledge in

the form of IF–THEN rules with beliefs and does not nec-

essarily depend on the availability of numerical input–output

data. On the other hand, it may be suggested that RIMER

could also be used as a black-box simulator using input–output

data without human intervention in structuring a BRB, which

however requires further extensive research to ensure that sta-

tistically correct and intuitively meaningful belief rules can be

generated.
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