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Abs t r ac t  The generalized layout optimization method is ap- 

plied to nonlinear problems. The algorithm was originally in- 
vented by BendsCe and Kikuchi (1988), where an admissible de- 

sign domain is assumed to be composed of periodic microstruc- 

tures with tiny cavities; the sizes and the rotational angle of the 

cavities are defined as design variables which are optimized to 

minimize the applied work. The macroscoic material tensor of the 

porous material is calculated by the homogenization method for 
the sensitivity analysis. In order to apply it to nonlinear prob- 

lems, we present a 2-D database of the material tensor calculated 

by the elasto-plastic homogenization method and an interpolation 
technique of the database for the practical computation. Several 

numerical examples of 2-D structures and a thin shell are shown to 

demonstrate the effectiveness of our algorithms. The algorithm is 
also extended to the finite deformation problems, and a practical 

optimized design is exhibited. 

1 I n t r o d u c t i o n  

The generalized layout optimization method, proposed by 

Bendsce and Kikuchi (1988), can determine the optimal de- 

sign for the topology and shape problems. In this method, pe- 

riodic microstructures with rectangular cavities are assumed 

in the admissible domain; the sizes and rotational angle of 

the cavities are specified as the design variables to minimize 

the applied work. For the sensitivity analysis, the macro- 

scopic material tensor of the porous material is computed by 

the homogenization method presented by Lions (1981), and 

Guedes and Kiknchi (1990). 

Several optimized designs of the elastic structures com- 

puled by the method were exhibited by Suzuki and Kikuchi 

(1991). The algorithm was applied to the elastic shell by 

Suzuki and Kikuchi (1992) and extended into dynamic prob- 

lems by Diaz and Kikuchi (1992); Ma et al. (1993, 1995). 

Yuge and Kikuchi (1995) developed the optimization for a 

frame structure subjected to a nonlinear deformation, where 

the elasto-plastic homogenization method formulated by Ter- 

ada et el. (1995); Terada et al. (1996) was used. 

In this paper, the generalized layout optimization method 

is applied to 2-D structures and a thin shell subjected to plas- 

tic deformation. Firstly, the main idea of the optimization 

is briefly discussed. In order to apply the method to nonlin- 

ear problems, a database of the macroscopic material tensor 

is presented using the elasto-plastic homogenization method 

and its interpolation technique is proposed for the sensitivity 

analysis. It is shown by numerical examples for 2-D prob- 

lems that the plastic collapse load of the optimized structure 

becomes much higher than that of the initial design. It is 

also exhibited that the optimized designs for nonlinear and 

linear problems are different from each other. Secondly, our 

method is applied to a thin shell and a numerical example 

is demonstrated. The numerical example displays that the 

optimal material distribution is determined to sustain plastic 

deformation in the whole admissible design domain. Finally, 

the method is applied to the finite deformation infinitesimal 

strain problems, and a practical design of the reinforcement 

member of a structure is presented to demonstrate the effec- 

tiveness of our algorithm. 

2 A l g o r i t h m  

In this section, the main idea of the generalized optimiza- 

tion method is briefly explained. Then application to two- 

dimensional nonlinear problems is presented. 

2.1 Main idea of the optimization 

Suppose an admissible design domain is composed of peri- 

odic microstructures with cavities, as shown in Figs. la and 

b. Boundary conditions and applied loads are given to the 

macroscopic structure. After the sensitivity analysis, the car- 

ity sizes and the angles of the microstructures are determined 

to increase the stiffness of the macroscopic structure. That is 

to say, the cavity sizes are reduced in areas with high strain 

energy density and increased in areas with low strain energy 

density; the angles are rotated to the same angles of the prin- 

cipal stresses, as shown in Figs. lc and d, respectively. After 
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the iteration for the optimization, we can obtain the micro- 

scopic and the macroscpic layouts simultaneously, as depicted 

in Figs. lb-d. For the sensitivity analysis, the macroscopic 

material tensor for the porous material is computed by the 

homogenization method. For the practical calculation of non- 

linear problems, we construct the database of the material 

tensor and present the interpolation technique. 

In this paper, a size of the cavity (l-a) and a rotational an- 

gle of the microstructures 0 are defined as design variables as- 

suming microstructures with square cavities, square-type mi- 

crostructures, as shown in Fig. 2a. Not requiring the third pa- 

rameter (l-b) in rectangular-type microstructures presented 

by Bendsee and Kikuchi (1988), as shown in Fig. 2b, carries 

a great advantage for making the database of the homoge- 

nized material tensor. If linear elastic problems are assumed, 

triangular-type microstructures, as shown in Fig. 2c, have 

more of an advantage since they have isotropy and require 

the only parameter (l-a). But it was shown by Yuge and 

Kikuchi (1996) that the isotropy disappeared when plastic 

deformation was applied. In addition, Yuge et al. (1997) ex- 

hibited that the ultimate strength of the optimized design 

with triangular-type microstructures was slightly less than 

that with square-type microstruetures. Therefore, we employ 

square-type microstructures and design variables are (l-a), 

and O. 

u r e  

(b) Initial distffoution 

of microstructures 

(c) Microstmctures 

for large strain aera 

(d) Mierostmemres 
for small strain area 

Fig. 1. Optimization by the homogenization method. (a) Ini- 
tial design of a macroscopic structure; (b) optimized design of a 
macroscopic structure; (b) initial distribution of microstructures; 
(c) microstructures in areas with high strain energy density; (d) 
microstructures in areas with low strain density 

The optimization problem with constraints is defined as 

minimize F subjected to h < O, a_ G a i G -d . (1) 

External work done by the applied load is defined as an ob- 

jective function F, expressed by 
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y=x/e (a) 

(b) (c) 

Fig. 2. Design variables in microstructures with periodic cavities. 
(a) Square type, (b) rectangular-type employed by Bendsee and 
Kikuchi, (c) regular triangular type 

" , ; 1  

(2) 

In (2), f denotes the external force vector, u represents the 

displacement vector, Au indicates the incremental displace- 

ment by the applied force increment, j expresses the j - th 

load-incremental step, and N s t e p  means the total number of 

the load-incremental steps. Bendsee et al. (1993) interpreted 

that the objective function F is minimized when a prescribed 

force is given to the structure, and it is maximized when a 

prescribed displacement is applied. The constraint of the to- 

tal amount of material, h, is expressed by 

h= f { 1 - ( , - < , ) ' }  = 
,f? 

N E  

E f{2a,-a~} d~-~o < O. 
i = l ~ e  

(a) 

In (3), a i represents the parameter of the cavity size, which 

is determined as a constant value in an element; subscript i 

means element number; N E  denotes the total number of the 

global elements; a'20 expresses the total volume of the material 

which can be used in the admissible design domain /2. The 

minimum and the maximum value of a i are expressed by a_ 

and ~ (i.e. a=O,~ = 1.0). 

The Lagrange function for the constrained optimization 

problem is defined as 

N E  

L - - - - F + ~ h + E { a i ( a - a i ) + f l i ( - d - a i )  } , 

i=1 

(4) 
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where A, % and fl are Lagrange multipliers. The Kuhn- 

Tucker conditions for the optimized solution are expressed 

by 

o Jr , ,Oh 
Oa'---~ + Oa i = ~  fli (i = 1,2,.  , N E ) ,  (5) 

ah=0,  (6) 

a i ( a - a i ) = 0  ( i =  I , 2 , . . . , N E )  (7) 

~ i ( g , a i ) = O  ( i = I , 2 , . . . , N E )  (8) 

A O, a i>_O, /~ i>O ( i = 1 , 2 , .  , N E ) .  (9) 

According to Yuge and Kikuchi (1995), the sensitivity of F 

with respect to a i.in (5) is expressed as, 

OF = O f n  : dE a n  = o ( In  v i . t  an) (lo) 
Oai Oa i Oa i 

In the above equation, Uin t denotes the internal work in the 

loading process. If we assume that the strain is small and 

increases monotonously, Uin t can be calculated by 

Nstep 

Uint = E [ ~r(j) + I / 2 C H ( j ) :  A~] :A~.  (11) 

j= l  

where 

J 

z(J) = ~ [cH(k) :  •  

k=] 

(12) 

E 

~ -  N ~ t e ~  (13) 

In (13), e denotes total strain in the vicinity of the reference 

points at the end of the load-incremental analysis. The math- 

ematically averaged nonlinear material tensor of the porous 

material C H is computed by the homogenization method, 

which is summarized later. Subscripts j and k refer to in- 

cremental step numbers. Partial differential of Uin t with re- 

spect to a i is calculated by the finite difference method. The 

derivative of h can be obtained by 

O h  O f i / ( 2 a i _ a 2 )  d n _ n o _  - 

Oai aai i= l~  e 

f ( 2  - 2ai) dO. (14) 

The optimality criteria approach is adopted to satisfy the 

Kuhn-~cker  conditions. The numerical formulation is ex- 

plained precisely by Bendsoe and Kikuchi (1988); Suzuki and 

Kikuchi (1991); Ma et al. (1993). 

2.2 Outline of the elasto-plastic FEM based on the homog- 

enization method 

The elasto-plastic FEM based on the homogenization method 

is conducted to obtain the averaged material tensor of the 

porous material. According to Yuge and Kikuchi (1995); Ter- 

add et al. (1995), Terada et al. (1996), the incremental for- 

mulation is summarized, where linearity is instantaneously 

assumed. 

We suppose a macroscopic structure consists of periodic 

microstructures, as shown in Figs. 3a and b. The microstruc- 

tures are composed of unit cells, which are the smallest struc- 

tures as far as they have periodic geometry, as depicted in 

Fig. 3c. The different scale coordinates are defined, x for the 

macroscopic structure, y for the microscopic structures. The 

relationship between x and y are specified by y = x/e, where 

r is a very small number. This indicates that the microstruc- 

tures (or the unit cells) are very small. 

| )l 

l 

y=x& 

(C) Unit cell (a) Macroscopic structure (b) Microstmctures 

Fig. 3. Composite material with periodical microstructures. (a) 
Macroscopic structure, (b) micrcostructures, and (c) unit cell 

The incremental displacement at an arbitrary point in the 

microstructures is supposed to be expressed as 

Aue(x, y) = Au0(x) + ~Aul (x ,y ) .  (15) 

Where Au ~ and A u l ( x , y )  are the macroscopic (averaged) 

and the microscopic (local) displacement increment, respec- 

tively; Aul(x ,  y) is decomposed into 

Aul(x ,  y) = --XPkq(x, y) 0Au(x)O (16) 
OXq ' 

here X is the characteristic displacement in the microstruc- 

tures. 

The macroscopic weak form governing equation is given 

by 

F 

(17) 

In (17), the homogenized material tensor CH(x) is defined 

by 

H 
C~jkZ(X ) = 

[ 0"k l l  
1 C,jkl(X, y) y " - c iJ~q(x'  a ] (is) 



X 2 

/ 

In (18), c E P ( x ,  y) is the elasto-plastic material tensor of the 

solid material in the microstructures, which is defined by 

ME at ,'~E t 
EP E 'Jijab ab~qrkg~ (19) 

Cijk~ = Cijk~ - Y H I t E t ' 
+ O'rnnCmnopO'op 

where 

--- ~re(x, y) - ~ [trite(x, y)] I ,  (20) O .  ! 

H l _ EE t  
E - E t (21) 

In (19)-(21), C E is the elastic material tensor; ~e(x, y) de- 

notes the current stress in the microstructures; E and E t are 

the modulus of elasticity and the tangent modulus, respec- 

tively. If the material is yielded, y = 1, otherwise y = 0. 

In (18), X is obtained as the solution of the next weak form 

equation for the unit cell in the microstructures, 

/ 0 6 A u ~  [ E p  x EP  y ) ~ ]  dy 0. 
_ _  .. Cijpq(X, yq J Oyj C'jkg( ' y) - = (22) 

y 

Calculation of Aae(x,  y) is given by 

= E P  E P  AtT~j(X, y) Cijkg(X ,y)  - Cijpq(X, yq j xg (23) 

According to the load-incremental method, the current stress 

and the displacement are calculated as 

ere(J)(x, y) = o-e(J-1)(x, y) + Ao'e(x, y ) ,  (24) 

u0(J)(x, y) = u0( j -1)(x ,  y) + Au0(x, y) .  (25) 

The numerical procedure of the above formulation is il- 

lustrated as follows: 

1. Discretize the unit cells, in addition to the macroscopic 

structure, 

2. Solve (22) for X kg of each degree of freedom in y (unit 

cell) with periodic boundary conditions, 

3. Substitute X kg into (18), yielding the homogenized mate- 

rial tensor C H, 

4. Solve the macroscopic equation (17) for Au 0 using C H, 

2.3 Database of the homogenized material tensor and the 

interpolation technique 

For effective computation of nonlinear problems, the homog- 

enized material tensor C H is determined by the interpolation 

of the database, where monotonous loading and small strain 

problems are assumed, since more than 99 percent of the 

computational time is consumed by the calculation of C H if 

the homogenization method is directly used. 

A thin plate subjected to biaxial loads is assumed to be 

a macroscopic structure, as shown in Fig. 4a. We suppose 

the macroscopic structure consists of square-type microstruc- 

tures, as shown in Fig. 4b. The database for 2-D nonlinear 

problems has three parameters: cavity size (1 - a), combina- 

tion of the macroscopic principal stresses (al ,  c~2) and rota- 

tional angle to the one of the principal stress r as defined in 

Fig. 4c. Discretizations of the unit cells with several cavity 

sizes are shown in Fig. 5. The solid portion of the microstruc- 

tures is assumed to be mild steel, that is, E --- 205.8 MPa~ 

ay = 294 MPa, u = 0.3. The tangent modulus Et has a 

proportional limit at 80 percent of the yield stress, as shown 

in Fig. 6. If the microscopic equivalent stress exceeds the 

proportional limit, a plastic constitutive equation is adopted, 

y = 1 in (19). Data points on the cr I - c~ 2 plane at specified 

"a" and r are shown schematically in Fig. 7a. 

,G ,f2 

. . . . .  v 

_f, ::i• il ::iiXi i: 

(a) Macroscopic structure (b) 
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(c) Unit cell 

Microstmctures 

Fig. 4. Thin plate subjected to biaxial loads. (a) Macroscopic 
structure, (b) microstructures, and (c) unit cell 

5. Calculate ere(J)(x, y) using (23)-(24) and check yielding, The procedure of making the database is summarized as 

follows. 

6. Repeat Steps 2 to 5 during load incremental steps. 1. Conduct the elasto-plastic FEM based on the homoge- 
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�9 I I I }  

Ill, ............ , , ,  

(a) a=0.2 (b) a=0.4 (r a=0.6 

~Sq-H-+++~ 

(d) a=0.8 (e) a=l .0  

Fig. 5. Discretization of the unit cells. (a) a = 0.2, (b) a = 0.4, 

(c) a = 0.6, (d) a = 0.8, and (e) a = 1.0 

E~ 

l 

.,..,m,_,:) 
�9 _. ._... 

o a/a, 0.8 1 

Fig. 6. Tangent modulus of solid material 

nization method from O to H by way of H I, shown in 

Fig. 7a. The innermost  ellipse expresses the propor t ional  

limit, the outermost  one s tands for the place where the 

homogenized tangent  modulus becomes zero. 

2. Store C H at the sampling points on the segment H I - H.  

Figure 7b exhibits examples of plastic areas of a unit  cell 

at those sampling points. 

3. Change the rat io of a l  to c~ 2 (or 1 > r then repeat  Steps 

1 to 2. We determine the rat ios as ~1 : ~r2 = cos a : sin a ,  

where 

a = - 3 7 / 4 , - 5 r / S , . . . , r / 4 .  

4. Change r then repeat  Steps 1 to 3, specifying r as r = 

-',r/4, -rr /8,  O, rr/8. 

5. Change "a", then repeat  Steps 1 to 4, defining "a" as 

a = 0.2, 0.4, 0.6, 0.8, 1.0. 

Figures 8a-d depict  some examples of the yield surfaces of 

the obtained database,  where the yield surfaces correspond 

with the outermost  ellipse in Fig. 7a. It can be seen tha t  the 

yield surfaces depend upon "r in addi t ion to "a". Other ex- 

amples calculated with the t r iangular- type microstructures 

are depicted for reference, as shown in Figs. 8e-f. It is ob- 

served that  the yield surfaces are different from those of 

square-type microstructures,  while the same parameters  are 

used. It is also shown tha t  bo th  the square-type and the 

t r iangular- type mierostructures  have anisotropy for plastic 

problems. Figure 9 exhibits  the histories of the yielded ar- 

eas in the unit  cells during the plastic deformation.  You can 

easily see tha t  the histories depend on the three parameters.  

Figure 10 shows a set of (1,1,1,1) components of the obtained 

C H with various combinations of the principM stresses at 

specified "r and "a". It  should be noted that  if linear elas- 

tic problems are assumed, only the parameter  "a" is required. 

@ 
@ 

~1= 

~lastic area 

ae unit cell 

Interpolation with r 

I respect to 'a" and 

r 

-1 

1 

(c) Data points on the al-c~ 2 

plane at arbitrarily "a" and r 

Fig.  7. Data points on a al - as plane. (a) Data points on the 

~rl - a2 plane at specified "a" and r (b) plastic areas in the unit 

cell, and (c) data points on the al - a2 plane at arbitrary "a" and 
r 

2.4 Interpolation of the database 

An interpolat ion technique of C H for 2-D nonlinear prob- 

lems is presented in this section. The interpolat ion has to be 

conducted at  any i terat ive and incremental  steps within the 

whole domain,  because not only the design variables in the 

microstructures are upda ted  within the whole macroscopic 

domain at every i terat ive step of the optimization,  but  con- 

s t i tut ive equations are altered during the plastic deformation. 

Linear interpolat ion with respect to "a", r and (Crl, cr2) 

is presented. This procedure is summarized as follows. 

1. The interpolat ion with respect to "a" is executed. 

2. The coordinates t ransformat ion for the macroscopic stress 

is conducted by 0, a ro ta t ional  angle of microstructure 
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(f) a=0.2, r 
t r i a n g u l a r - t y p e  

F ig .  8. Yield surfaces of the database ,  corresponding with the 

outer  most  da ta  points. (a) a = 0.2, r = 0~r; (b) a = 0.2, ~b = 

-7r /4 ;  (c) a = 0.8, r = 07r; (d) a --- 0.8, r = -7r /4 ;  (e) a = 0.2, 

r = 07r, t r iangular- type;  and (f) a = 0.2, r = -~r /6 ,  t r iangular-  

type 

w i t h  r e spec t  to  t h e  m a c r o s c o p i c  c o o r d i n a t e  (F ig .  4c).  

W h e r e  

~o = T ( 0 ) ~ ,  (26) 

cos 2 0 s in  2 0 2 cos 0 sin 0 ] 

T(0) = sin 2 0 cos ~ 0 - 2  cos 0 sin 0 ] (27) 

- c o s 0 s i n 0  c o s 0 s i n 0  cos 2 0 - s i n  2 0  

~r = {~rl l ,G22,0-12} T " (28) 

3. T h e  p a r a m e t e r s  r a n d  (0-1,0-2) a re  c a l c u l a t e d  as fol lows:  

1 1(--20-0,12 ) 
r = ~ tan-  , (29) 

\0-0,11 - 0-0,22 

(a) a=0.2, ~--0~, o 1:02=1:0 

1 ~ ,~ 1111111 : : ' 111,'~ H 

(b) a=0.2, r Ol:O2=l: 1 

I t l l l l l l l l l  

I I I I I l l l l l l  
I I I I I l I I I I I  

(c) a=0.2,  r  6 F 0 2 = 1 : 0  

(d) a=0.8, ~Og,  ~1:02=1:0 

F i g .  9, Histories of the plast ic areas in the unit  cells. (a) a = 0.2, 

r = 07r, ~rl:a2 = 1:0; (b) a = 0.2, r = 0r ,  ~rl:a2 = 1:1; (c) a = 0.2, 

r = --7r/4, ~rl:a2 =1:0;  (d) a = 0.8, r = 0~r, ~rl :or 2 = 1:0 

(3 

250" / / 

2 0 0 " / / ~ g . .  

s~ oo O" >~ 

g a~p. 

F i g .  10.  Pa r t  of the da t a  base on a a l  - a 2  plane (a = 0.8, r = 0) 

erl, 0," 2 _ 
~(0-0,11+0-0,22) 2 0-0,11 + 0-0,22 :t: + ~r 2 

2 2 0,12 " 

(30) 

4. T h e  d a t a b a s e  is i n t e r p o l a t e d  w i t h  r e spec t  to  r N o t i n g  

t h a t  t h e  m i c r o s t r u c t u r e s  h a v e  s y m m e t r y  of  7r/2 r o t a t i o n ,  



292 

r is transformed into r = r _ nrr/2 where - r r /4  ~ r 

rr/4, if necessary. 

5. The material tensor for the arbitrary combination of the 

principal stresses, C H is given by 
arb ' 

4 
H 

Carb = Z N j ( r  (31) 

j = l  

as shown in Fig. 7c. Where Nj (~, rl) are shape functions. 

Nondimensional parameters ~ and r/ are determined by 

the Newton-Raphson method. Note that  Ci / /on  the o" 1 - 

~r 2 plane, as shown in Fig. 7c, has been interpolated with 

respect to "a" and r 

6. If Ct is substituted for r by r = r _ nTr/2 in Step 4, the 

coordinates of the strain are also rotated by nTr/2. 

7. The coordinates for the macroscopic strain are rotated by 

0. 

Steps 6 and 7 are expressed by 

C ~ = R(o)TR(n~2)TC~bFt(nr/2)R(O),  (32) 

here 

cos 2 0 sin 2 0 cos 0 sin 0 ] 

R(0) = sin 2 0 cos 2 0 - cos0s in0 ] . 

- 2  cos0s in0 2cos0s in0  cos 2 0 - s i n  20 

(33) 

It should be noted that procedures 2 to 6 are not required if 

linear elastic problems are considered. 

The ultimate strength of a 2-D cantilever with square- 

type mierostructures, as shown in Fig. 11, is calculated to 

verify the present interpolation technique. The cavity size 

parameters are specified as a = 0.2, 0.:4, 0.6, 0.8, 1.0, while 

the rotational angle as 0 = 0. A prescribeddisplacement 

is given to the centre node on the.r ight  end of the lever, 

while the left side is fixed. The obtained load displacement 

curves are shown in Fig. 12. The results are plotted with the 

displacement as abscissa against the load as ordinate. The 

displacement E is normalized by the length of the beam L. 
chl2 

The load P is normalized by Mp/L, where Mp = a_h/2 O'yXl 

dx, t = 1. Dotted lines denote the results calculated directly 

by the homogenization method; solid lines indicate the solu- 

tions by the database. It can be observed that  the results 

using the database are in good agreement with the solutions 

reached by the homogenization method. It should be noted 

that the result calculated by the homogenization method at 

a = 1.0 (solid material) is exactly the same as that  obtained 

by the normal elasto-plastic analysis. 

The effectiveness of the database is shown by this numer- 

ical example. The computational  times for the calculations 

using the database become 1/1000 to 1/10000 of those ob- 

tained directly by the homogenization method, depending on 

the degree of freedom of the unit ceils shown in Fig. 5. There- 

fore, the database is indispensable to practical computation 

of nonlinear problems because not only the iterative calcula- 

tions for the optimization but the load-incremental calcula- 

tions are required. 

L=5 
4 i 

[]*x. I' 

Fig. 11.2-D cantilever subjected to a concentrated load 

2.0 

1.5 

1.0 

0.5 

0.0 
0 .000  

I ' ' ' ' I ' ' * ' I ' ' ' 

: Data Base (D. B.) 

: Homogenization Method (H.M.) 

,~a=1.0 ,  D. B. 

"~" a---0.8, D. B ]  

x.a=0.4, D. B. 

. ~ f  - - "~--a--0.6, H. M. 

/ /" / g a--0.2,D_. B. 

0.005 0.010 0.015 0.020 

Displacement 5/1. 

Fig. 12. Load displacement curves of a 2-D cantilever calculated 

by the homogenization method (dotted lines) and the data base 
(solid lines) 

3 N u m e r i c a l  e x a m p l e s  for  2 -D p r o b l e m s  

Numerical examples for nonlinear 2-D problems are shown 

in order to demonstrate the effectiveness of the present al- 

gorithm. Linear elastic optimized designs are also exhibited 

for comparison. Square-type microstructures are assumed in 

this section and the following sections. Material properties 

of the solid material in the microstructures are assumed as 

those of the mild steel. Prescribed displacements are given 

to the structures as applied loads in the following examples; 

therefore, the reaction forces are maximized by the optimiza- 

tion. 

3.1 Canlilever 

The optimization problem of a 2-D cantilever subjected to a 

nonlinear deformation is demonstrated. An admissible design 

domain a'2 is assumed within the whole domain of the can- 

tilever, as shown in Fig. 13. The admissible design domain is 



uniformly filled with square- type microstructures  at the first 

i terat ive step of the opt imizat ion.  A mater ia l  restr ict ion is 

f20/[2 = 0.6, where ~20 is the to ta l  amount  of solid mater ia l  

which can be dis t r ibuted in the admissible domain.  

L=IO0 

Fig. 13. Model of a cantilever subjected to a concentrated load 

with boundary conditions 

Fig. 14. History of the distribution of material densities o:[ a can- 

tilever. (a) n = 1, (b) n = 2,'(c) n = 4, (d) n = 15 (optimized 

design), (e) linear elastic optimization (N = 20) 

Figures 14a-d show the history of the mater ia l  distr ibu- 

t ion at the same displacement for the nonlinear problem. The 

grey scale expresses the densi ty  of the solid mater ia l  in each 

element, defined as fs2c 1 - ( 1 - a )  2 dI2. The number of the it- 

eration of the opt imizat ion is expressed as "n". It can be seen 

macroscopically tha t  mater ia l  gradual ly  moves to the area 

with higher s train densi ty from the area with lower energy 

density during the i teration.  Figure 14e shows the optimized 

design for the elastic problem. Both op t imal  designs become 
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Fig.  16. History of external work of a cantilever 

symmetr ical  with respect to the neutral  axes. However, the 

greater amount  of mater ia l  is placed at the root of the lever 

for the nonlinear problem because higher mater ial  density 

at the root of the lever provides against  the plastic hinge, 

in which most  of the energy is absorbed.  The difference of 

the opt imal  design for the nonlinear problem from that  of the 

linear problem should become larger if the displacement is in- 

creased, because the opt imal  designs for nonlinear problems 

are dependent  on the load while those for linear problems are 

not. It should be noted tha t  we cannot cut off the low density 

area since the area sustains mainly shear stress. 
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The history of the load displacement curves is shown in 

Fig. 15. The displacement is depicted in abscissa, and the 

reaction force is plotted in ordinate. The ultimate strength of 

the lever is gradually improved through the iteration since the 

prescribed displacement is applied. The ultimate strength of 

the optimized lever becomes 2.8 times as much as that of the 

initial design. 

The history of the external work, or the objective func- 

tion, is shown in Fig. 16. The horizontal axis expresses the 

number of iterations of the optimization. The vertical axis 

shows the applied external work from 5/L = 0 to 5/L = 0.02 

at each iteration, which are normalized by the external work 

at the initial iteration. It can be seen that the function is 

maximized by the optimization since the prescribed load is 

applied, and converged smoothly for both problems. 

3.2 Extremely short lever 

The extremely short lever, as shown in Fig. 17, is optimized. 

The material restriction is f20/~? = 0.3. 

Fig. 18. Optimized designs of an extremely short lever. (a) 
Nonlinear optimization (n = 39), (b) linear elastic optimization 
(n = 3s) 

Fig. 17. Model of an extremely short lever subjected to concen- 
trated load with boundary conditions 

The optimal designs for the nonlinear problem and the 

linear elastic problem are depicted in Figs. 18a and b, respec- 

tively. It can be shown that the nonlinear design is the same 

as the linear elastic one, because the optimized designs be- 

come the structure whose members support only axial forces. 

The history of the load displacement curves are drastically 

changed by the optimization, shown in Fig. 19, because g20/f2 

is rather low. 
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Fig. 19. History of load displacement curves of an extremely short 
lever 

4 Appl i ca t ion  to  a th in  shell  

The current optimization technique is applied to a thin shell 

based on the layered approach in this section. The optimized 

design of a cylindrical cantilever is shown as a numerical ex- 

ample. 

4.1 Thin shell element 

The bilinear shell element based on the layered approach is 

shown in Fig. 20. The global coordinates with primes are 

fixed in the space; elemental coordinates are rotated with 

the element. Components of the displacement of each layer 

are expressed by 

u ( i )  ) 

u2 4 uli)[ 
u3 
01 = E N(i)(~,r]) , oli) '+ 
02 i=1 I 

;!; j 



/ 
e~ ~) 

4 --01 i) 

~ zX(O(~,~) o 
"~ 0 

0 

0 

(34) 

where N(i)(~, ~) are shape functions, i represents the nodal 

number in the element, and z denotes the distance with sign 

between the neutral axis and the layer concerned. 
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of the cylinder is assumed as an admissible design domain, 

as depicted in Fig. 21. The left bot tom of the cylinder is 

fixed; prescribed vertical displacements are uniformly applied 

at the all nodes on the right bottom. The material constraint 

is Y20/Y2 = 0.6. 

Fig. 21. Cylindrical cantilever subjected to distributed load 

The optimized designs for the nonlinear problem and the 

linear elastic problem are shown in Figs. 22a and b. The dis- 

placements expressed in the figures are magnified by 10 and 

750 for the nonlinear and the linear problems, respectively. 

It is observed that  the material is placed mainly at the root 

and the outside regions from the neutral axis for both prob- 

lems. The difference is the distribution near the neutral axis, 

which is the same result as that  of the 2-D cantilever. 

Fig. 20. Bilinear shell element based on the layered approach 

The selective integration method is adopted, where the 

in-plane stress is evaluated at 2 by 2 Gaussian points on each 

layer, and the out-of-plane shear stress is calculated at the 

centre of the element to prevent the locking. Both consti- 

tutive equations for the in-plane stress and the out-of-plane 

shear stress are determined individually. If we assume 2-D 

periodic microstructures on each layer of the shell, the 2-D 

' b database can e applied to the in-plane stiffness on each layer 

by 

H ~ij = C~dkgekl, ( i , j , k , t  = 1,2),  (35) 

where cHki is determined by interpolation of the 2-D 

database. If we suppose that  the out-of-plane shear stress 

is always elastic, the constant stiffness is given as a penalty 

term, expressed by 

~ij = c P ( s i j + c j i )  ( i = 1 , 2 ;  j = 3 ) .  (36) 

Here C P is a proper constant, for example, 

c p  - E 
2 ( 1 + . ) "  (37) 

4.2 Numerical example 

The optimized design of a cylindrical cantilever with four 

layers is demonstrated in this section. The whole domain 

Fig. 22. Optimized designs of a cylindrical cantilever. (a) Non- 
linear problem, (b) linear elastic problem 

The histories of the load displacement curves are depicted 

in Fig. 23. It is observed that  the load at the same displace- 

ment increases gradually during the iteration of the optimiza- 

tion, which shows similar results as those for 2-D problems. 

The history of the objective function is shown in Fig. 24. 

The history of the nonlinear problem, denoted by black dots, 

has a slight vibration because of the nonlinearity. The his- 

tory of the the linear elastic problem, depicted by white dots, 

converges very smoothly. 

An effect of the out-of-plane shear stress ~ij (i = 1,2; 

j --- 3) is examined. The histories of the nonlinear and the 

linear elastic problems are shown by a black line and a dotted 

line in Fig. 24, respectively, where the out-of-plane stiffness 
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t r ibut ion of the optimized cylinder becomes nearly the same 

as tha t  of the ordinary cylinder which is made of solid mate- 

rial, as depicted in Fig. 25d. This shows tha t  the optimized 

structure can sustain almost the same stress as that  of an 

ordinary cylinder. 
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Fig. 24 History of the external work ratio of a cylindrical can- 

tilever 

is assumed to be proport ional  to the mater ia l  density. The 

histories are almost the same as those of the original algo- 

ri thm. In addition, the opt imized designs also become the 

same as the original ones. I t  is shown tha t  the influence of 

the out-of-plane shear stress is small  and negligible. 

The history of the dis t r ibut ion of the equivalent stress at 

the same displacement during the i terat ion for the optimiza- 

tion is shown in Figs. 25a-c. I t  can be seen that  the stress 

increases gradually through the i terat ion,  unti l  the stress dis- 

Fig.  25. Distributions of equivalent stress of a cylindrical can- 

tilever (6/L = 0.015). (a) n = 1, (b) n = 5, (c) n = 14 (optimized 

design), and (d) ordinary cylinder (solid material) 

The history of the yielded area is shown in Figs. 26a-d. 

The depth of the grey scale expresses the rat io of the number 

of the macroscopic plastic integrat ion points to the number 

of the to ta l  integrat ion points in the element. The definition 

of "macroscopic plastic" is one or more integration point(s) 

in the unit  cell i s /a re  yielded. At  the first i terat ion for the 

optimization,  the dis t r ibut ion is much different from that  of 

the ordinary cylinder, shown in Fig. 26e, since square-type 

microstructures are uniformly distr ibuted in the admissible 

domain. At  the next i teration,  the plastic area becomes dras- 

t ically small because unit  cells rota ted to the directions of the 

principal  stresses al though the macroscopic mater ial  distribu- 

t ion is al tered very slightly. Then,  the plastic area becomes 

larger during the i terat ion.  After the optimization,  almost 

the whole admissible domain is yielded, as shown in Fig. 26d. 

The result indicates tha t  the opt imal  mater ial  distr ibution is 

determined to sustain plastic deformation within the whole 

admissible domain.  

5 A p p l i c a t i o n  t o  f i n i t e  d e f o r m a t i o n  p r o b l e m s  

The present method is applied to finite deformation infinites- 

imal s train problems in this section. An optimized design of 

the reinforcement member  is exhibi ted to demonstrate  the 

effectiveness of our method.  
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Fig. 26. Plastic areas of a cylindrical cantilever (5/L = 0.015). 
(a) n = 1, (b) n = 2, (c) n = 5, (d) n = 14 (optimized design), 

and (e) ordinary cylinder (solid material) 

5,1 Finite deformation infinitesimal strain problems 

We assume finite deformation infinitesimal strain problems. 

According to the total Lagrangian approach, the macroscopic 

governing equation is defined by 

f OSu i Oi~ i 
OXj OX k Tjk d D +  

D 

06Ui--eP Oitk d(2 

g2 F~ 

where 

--ep 1 

! (Tikej e + Ti~Sjk ) . (39) 
2 

In (38), u denotes the displacement vector, T expresses the 

Cauehy stress tensor, t means the first Piola-Kirchhoff stress 

vector, 5 exhibits a variational symbol, and F t denotes the 

mechanical boundary. In (39), 5 represents Kronecker's delta. 

The present database is applied to C ep in (39) although 

the constitutive equation is, strictly speaking, dependent on 

the history of the stress, because it is well-known that  the 

influence of the history upon the constitutive equation is 

not so large if the load is monotonously given. Practically, 

it has been shown that  the difference is very small for the 

elasto-plastic problems between the solution calculated by 

the database and the exact solution calculated directly by 

the homogenization method with respect to the history of 

the stress, as depicted in Fig. 12. This fact is usually valid 

for finite deformation problems if some specified conditions, 

e.g. the buckling of thick members, etc., are excepted. In ad- 

dition, since our algorithm distributes the material mainly at 

the area with higher strain energy density, almost the same 

design is obtained even if the stiffness is not very precisely 

calculated. Therefore, the current database is employed and 

the same interpolation technique is used for the finite defor- 

mation problems. 

A plastic buckling problem of a thin shell with 6 layers 

is calculated to verify the matter, as shown in Fig. 27. The 

thickness is defined as 1/10 of the width of an element. An 

initial imperfection is applied by a sinusoidal displacement 

whose amplitude is 1/1000 of the length of the model. The 

obtained load displacement curves are depicted in Fig. 28. 

The ordinate represents the applied load; the abscissa de- 

notes deflection. When solid material is assumed, a = 1.O, it 

can be shown that  the calculation with the database is almost 

the same as the solution calculated directly by the homoge- 

nization method, as depicted by white triangles and a dotted 

line, respectively. When a = 0.6, the results are the same, as 

expressed by black triangles and a solid line. This example 

shows that  the history of the stress, including local unload- 

ing, does not have a significant effect on the global stiffness 

of the thin shell subjected to a plastic deformation for finite 

deformation infinitesimal strain problems. 

Thickness: 0.1 

k l ~  7 

% 

Fig. 27. Finite element model for buckling 

5.2 Numerical example 

A reinforcement member on the joining of a cylinder to an 

/-shaped beam is optimized. The model is divided into the 

admissible and the nonadmissible design domain, as depicted 

in Fig. 29. The hatched area consists of 8 layers, where the 

total thickness is 20 mm; the central 4 layers are defined as 

the nonadmissible domain, where solid material is assumed; 

both upper 2 layers and lower 2 layers are defined as the 

admissible design domains in which the material constraint 
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Fig. 28. Load displacement curves of buckling 

is X?0/X? = 0.3. The nonhatched area is specified as the 

nonadmissible domain with 8 layers, where solid material is 

assumed; its total thickness is 10 ram. 

A dead load P1 -- Py/4 is applied on the top of the cylin- 

der, where Py = S~y; S denotes the cross-section; ay is the 

yield stress of the solid material. Then, the prescribed finite 

displacement is applied to the end of the beam by the load 

incremental method. The history of the load displacement 

curves is shown in Fig. 30. The longitudinal axis represents 

reaction force at the end of the beam; the transverse axis 

denotes the displacement on the top of the cylinder by the 

dead load. At the first iteration of the optimization (n = 1), 

the load decreases after the maximum point because partial 

buckling has occurred near the joining on the cylinder. Dur- 

ing the following iterations, the buckling load becomes larger. 

At the final iteration, the load reduction almost disappears. 

In addition, it can be seen that the displacement is decreased 

by the optimization. 

The optimized design of the reinforcement member is 

shown in Fig. 31a. It can be observed that almost all mate- 

rial is distributed near the joining on the cylinder in order to 

prevent the deflection which causes the buckling. It can also 

be seen that very little material is placed on the root of the 

flanges of the lever. This indicates that the strength of the 

original design of the lever has been sufficient. Additionally, 

the optimal design for the linear elastic infinitesimal problem 

is also exhibited in Fig. 31b. In this problem, the prescribed 

displacement on the lever is reduced to 1/1000 of the previ- 

ous problem. Note that the displacement which is depicted 

in the figure is multiplied by 100. It is shown that material 

is distributed on the upper and the lower side of the joining 

on the cylinder, and the layout is much different from that 

for the finite deformation problems. 

In the previous examples, some of the macroscopic out- 

lines of the optimized structures were not so clear since mi- 

P1 

M N i ' ~ ,  

: Non-admissible 

design domain 

Thickness=l 0 

l 
: Admissible and 

non-admissible 

design domain 

Thickness=20 

~ ~ d m i s s i b l e  domain 

L~ ........................... -admissible domain 

Fig. 29. Joining of a cylinder to an/-shaped beam 

crostructures with larger cavities were distributed at the ar- 

eas with lower strain energy density. In this problem, the 

obtained outlines are much clearer because the admissible 

domain is restricted to 4 out of 8 layers, and solid material 

is assumed at the remaining 4 layers. 

6 Conc lud ing  r e m a r k s  

A nonlinear optimization method for the shape and the 

topology problem was presented. The original algorithm is 

based on the generalized layout optimization method, where 

a macroscopic domain is supposed to consist of microstruc- 

tures with periodic cavities; the sizes and the rotational an- 

gle of the cavities were defined as the design variables; the 

averaged material tensor of the macroscopic structure was 

computed by the homogenization method for the sensitivity 

analysis�9 We constructed the database of the material tensor 

and presented an interpolation technique to apply the opti- 

mization method to 2-D nonlinear problems. Our method 

was extended to a thin shell and its finite deformation prob- 

lems. Several numerical examples showed: 

1. The ultimate strength of the optimized structures became 

much higher than that of the initial designs; 



299 

450 

400 

35O 

30O 

250 

o 200 

.~ 150 

100 

50 

0 
0.000 

' ' ' ' [ ' ' ' ' l ' ' ' ' l ' ' ' ' l ' ' ' ' l ' ' ' ' l ' ' ' '  

n=21 

. . . . . .  

I / . -  .......................... 

, I ~ , , , I , , i , I , , , i I i i i i I t i i i I i i t i 

0.000 0.002 0.003 0.004 0.005 0.006 0.007 

Displacement at the cylinder top ~/I-I 

Fig. 30. History of the load displacement curves of the joining of 

a cylinder to an / - shaped  beam 

Fig. 31. 

ing of a 

problem, 

Optimized designs of reinforcement members on the join- 

cylinder to an /-shaped beam. (a) Finite deformation 

(b) linear elastic infinitesimal problem 

2. The optimized designs for the linear elastic, the nonlinear,  

and the finite deformation problems were different from 

each other; 

3. The opt imal  mater ia l  d is t r ibut ion was determined to sus- 

tain plastic deformation within the whole admissible do- 

main; 

4. The influence of the out-of-plane shear stress of the thin 

shell upon the opt imizat ion was small  and negligible; 

5. When a reinforcement member  was optimized, clearer 

macroscopic outlines were obtained.  
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