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ABSTRACT

The purpose of this paper is to analyze the conditions
under which a hybrid of clustering and canonical analysis
for image classification produce optimum results. The
approach involves generation of classes by clustering for
input to canonical analysis. The importance of the number
of clusters input and the effect of other parameters of the
clustering algorithm (ISOCLS) were examined. The approach
derives its final result by clustering the canonically
transformed data. Therefore the importance of number of
clusters requested in this final stage was also examined.
The effect of these variables were studied in terms of the
average separability (as measured by transformed divergence)
of the final clusters, the transformation matrices resulting
from different numbers of input classes, and the accuracy of
the final classifications.

The research was performed with Landsat MSS Data over the
Hazleton/Berwick Pennsylvania area. Final classifications
were compared pixel by pixel with an existing geographic
information system to provide an indication of their accuracy.

The results show that both the number of clusters input
to canonical analysis and the number of clusters the
canonically transformed data is clustered into effect the
classification accuracy. Inputting sixty clusters to
canonical analysis and clustering the transformed data into
thirty clusters provided the best results for the informational
categories studied (urban, including commercial/industrial,
and residential, agriculture, water, and surface mining)
i.e., spectrally very difficult to separate classes.

A definite relationship between the number of clusters
input to canonical analysis and the resulting transformation
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coefficients was also observed. Specifically, those input
numbers of clusters resulting in the highest level of
agreement with the CIS Data also produced transformation
coefficients most different from those produced by other
numbers of input clusters. The separability analysis also
tended to support the higher classification accuracies
associated with clustering the transformed data into
intermediate numbers of clusters as well as the differences
associated with the number of clusters input to canonical
analysis.

INTRODUCTION

Various authors have reported significant improvements
in classification accuracy associated with the use of a non-
traditional unsupervised classification procedure. These
accuracy improvements have been identified for both areal
estimates and pixel by pixel comparisons with ground truth
(Brumfield et al., 1981, Witt et al., 1982).

The procedure involves canonical analysis of the
statistics derived from an iterative clustering algorithm.
The transformation matrix thus developed is used to transform
the original data which is then subjected to the same
clustering procedures. The procedure provides all of the
advantages of using clustering to derive training class
statistics (and unsupervised classification in general)
(Fleming and Hoffer, 1977) while at the same time incorpoarting
the noise reduction and transformation optimization
characteristics of canonical analysis (Brumfield et al, 1981).

Although the approach requires very little analyst
involvement, decisions must be made regarding the number of
classes input to the canonical analysis and the number of
classes into which the resulting transformed data should be
clustered.

The purpose of this paper is to examine the relationship
between these variables and the resulting classification
accuracy. Various other indicators of the performance of the
procedure are also considered.

DISCUSSION OF METHODS AND PROCEDURES

1. DATA SETS
The remote sensing data used in the experiments were a

thirty-four (3*J) kilometer square subset of the Landsat MSS
scene 1350-15190, dated July 8, 1973, covering the Hazleton-
Berwick, Pennsylvania area. The MSS data were observed to
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exhibit variable haze cover, radiometric striping, and a small
amount of random noise. The study site, dissected by the
Susquehanna River, is comprised of forested mountains
separated by rolling valleys that have been put to a variety
of agriculture usages. Major coal mining activities and the
associated open pit mines, in all stages of operation,
reclamation, and abandonment, are also found in the area. The
industrial/commercial activities and residential sprawl of
varying densities are also well represented in the area.

Two sets of color infrared photography flown in January
and August of 1973 were used as reference data.

A vector (polygon formatted) data base, part of the
Environmental and Land Use Data System (ELUDS) of the
Pennsylvania Power and Light Company was used as ground truth
for performing accuracy assessments. The following categories
are coded in the vegetation/landcover layer: urban land,
barren land, agricultural land, tree plantations, needle leaf
forest, broad leaf forest, mixed forest, scrub land, meadow,
forested wetland, unforested wetland, and waterbody.

2. EQUIPMENT
The experiments were carried out using the Interactive

Digital Image Manipulation System (IDIMS) (Electromagnetic
Systems Laboratory 1981) at the Eastern Regional Remote
Sensing Applications Center (ERRSAC), NASA/Goddard Space
Flight Center, Greenbelt, MD. This system consists of several
components including a Hewlett-Packard Model 3000 mini-
computer, a Comtal and Deanza image display terminal, a Talos
coordinate digitizer table, and the associated software. The
Environmental Systems Research Institute (ESRI) polygon to
grid conversion software also played an important role in the
research (ESRI, 1979). Canonical analysis was performed by the
program CANAL developed by the Office of Remote Sensing For
Earth Resources (ORSER) at the Pennsylvania State University
(Turner et al, 1978).

3. PREPARATION OF DATA SETS
In order to allow comparison of the MSS data with the

landcover information coded in the ELUDS data base the two
were altered so as to correspond to a common grid system.
Prior to altering the geometric characteristics of the Landsat
data a histrogram matching algorithm was applied to remove
the six line striping in the data. The Landsat data were then
resampled to a grid system referenced to the universal
transverse mercator (UTM) map projection (the same map
projection ELUDS polygons are referenced to). The
transformation coefficients driving the resampling were
derived from a third order fit of 30 ground control points



(ordered pairs of Landsat pixel addresses and UTM grid system
coordinates). RMS error for these ground control points was
less than 0.5 pixel. The cell size of the grid system was
chosen to be 6? meters. A gridded version of the ELUDS data
base, with the same UTM origin and grid cell size as the
Landsat Data was created by determining for each grid cell the
data value of the polygon occupying the largest part of the
grid cell.

1|. INITIAL CLUSTERING
The first step in the procedure is to separate the remote

sensing data into spectral clusters for input to the
canonical analysis program.

The IDIMS program ISOCLS was used for this step. ISOCLS
is a clustering algorithm which either splits or combines
clusters in each iteration depending on the requirements set
by the analyst for the maximum standard deviation within a
cluster (STDMAX) and the minimum euclidean distance between
clusters (DLMIN). ISOCLS can be seeded with class means
provided by the analyst or with a single cluster defined by
the mean vector of the data set to be clustered. In the
latter case, this initial cluster is successively split in
consecutive iterations until the resulting clusters are less
variable than STDMAX. If STDMAX is set low enough the
splitting will continue until the maximum number of clusters
(also set by the analyst) is met; at which point ISOCLS will
iterate assignment of pixels to the clusters and recalculation
of the cluster mean vectors until the maximum number of
iterations (set by the analyst) is reached. In this way,
ISOCLS can be forced to approximate a K-means clustering
algorithm (Moik, 1980).

ISOCLS was applied to the entire data set (512 lines by
512 samples). The maximum number of clusters was set to be
10, 20, 30, 40, and 60 in five separate runs. STDMAX was set
at 1.5 thus forcing ISOCLS to split the initial clusters until
the maximum number of clusters was reached in each case and
iterate on that number of clusters as discussed above.

ISOCLS was also applied to supervised (pure) samples of
water, strip mines, forest, agriculture, and urban. The
supervised samples contained multiple training sites and were
selected on the basis of analyst judgement to be as
representative of the cover types mentioned as possible. Each
sample was clustered separately, and the maximum number of
clusters was set at six for each sample, resulting in 30
clusters total. This method of generating classes for input
to canonical analysis is not part of the nontraditional
unsupervised classification procedure and was included
primarily to serve as a point of comparison.
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5. DATA TRANSFORMATION
This part of the procedure utilizes a linear transformation

of the data. The coefficients for the transformation are
calculated by the canonical analysis algorithm developed at
ORSER. The algorithm determines the translation, rotation, and
rescaling of the data that maximizes the among cluster
variability while setting the within cluster variability
equal to unity (Merembeck et al., 1978). The resulting
canonical transformation maximizes the separability of the
clusters based upon the within cluster and among cluster
varibility.

The means and convariance matrices for each set of
clusters derived from the procedures outlined above were
input to the ORSER program CANAL to develop a transformation
matrix for each set (Table II). Each transformation matrix
was then input to the IDIMS program KLTRANS to perform matrix
multiplications with the original data set to generate the
transformed data for each case (Brumfield et al., 1981).

6. CLUSTERING OF TRANSFORMED DATA
The final step of the procedure is to classify the

transformed data by separating the data into groups with
clustering.

The transformed data sets derived from the above
procedures were clustered using only the first and second
transformed axes (axes one and two contain over 98 percent of
the variability in the data). The STDMAX parameter in ISOCLS
was set at 0.1, again forcing ISOCLS to emulate a K-means
clustering algorithm. ISOCLS was used to generate 15, 20, and
30 clusters for each transformed data set discussed above.
ISOCLS was also used to generate *JO clusters for the
transformed data set based on 60 clusters. Table I shows the
various combinations of clusters input to canonical analysis
and output from clustering the transformed data sets. The
clusters in each clustered transformed data set were then
grouped into informational categories by comparing the cluster
results with color infrared photography. Each cluster output
was displayed and colored up on a color display screen to
effect the comparison. The grouping process was also assisted
by examination of two dimensional plots of the cluster means
and covariances.

7. SEPARABILITY ANALYSIS
The first indicator used to check for differences related

to the number of classes input to and output from the procedure
was interclass separability. A modified version of the IDIMS
function diverge was used to calculate the average transformed
divergence (Swain and Davis, 1978) of those class pairs which
yielded transformed divergence values less than 1500
(transformed divergence takes on values between 0 and 2000,
where 2000 indicates maximum separability). This average
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separability of the least separable classes was calculated for
each set of clusters input to the nontraditional unsupervised
procedure as well as for each set output from the procedure
and is graphed in Figure I.

8. DETERMINATION OF LEVELS OF AGREEMENT
The second indicator of differences associated with the

number of classes input to and output from the procedure was
level of agreement with ground truth. The land cover layer of
the ELUDS Data Base served as ground truth for this study.

The classes in each clustered transformed data set were
grouped into five informational categories (urban, strip
mines, agriculture, forest, and water) for comparison with
the ELUDS landcover information. The grouping was
accomplished by renumbering each cluster in each clustered
transformed data set to the number chosen to represent the
assigned category. The 12 ELUDS landcover classes were
grouped into the same informational categories and renumbered
to reflect the same coding scheme. Each renumbered clustered
transformed data set was then compared pixel by grid cell
with the renumbered ELUDS landcover layer to produce a
contingency table showing the number of pixels in agreement
and disagreement by category. Percentages of agreement were
calculated by category and are shown in Table III. Percentage
of agreement was calculated by dividing the number of pixels
in agreement for the category in question by the total number
occurring in the data base for that category. Overall
agreement was calculated by dividing the total number of
pixels correctly classified by the total number in the data
base. These figures are being referred to as levels of
agreement instead of accuracy because of the fact that ground
verified test sites were not used to calculate them. The
ELUDS Data Base is undoubtedly fairly accurate. However, to
the knowledge of the authors, no quantitative estimate of its
accuracy exists.

RESULTS

1. TRANSFORMATION COEFFICIENTS
The transformation coefficients for Axis 1 and Axis 2

resulting from canonical analysis of the various numbers of
input classes are shown in Table II. The coefficients seem
to fall into four unique sets, those based on 10 clusters,
those based on 20, 30 and ^0 clusters, those based on 60
clusters, and those based on the 30 clusters from supervised
samples. Without question both the number and source of the
class statistics input to canonical analysis affect the
resulting transformation coefficients.
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2. SEPARABILITY ANALYSIS
The average separability of the least separable classes

for each set of input and output clusters is shown in Figure I.
Three main trends can be seen from this graph. First, the
average separability of the least separable classes tends to
increase as the number of clusters increases. Second, for any
given number of output classes the average separability of the
output classes is constant or decreases slightly as the
number of input classes increases. Third, there is a slight
increase in separability as the number of output classes is
increased for any given number of input classes. Unfortunately,
the magnitude of the third trend cannot be viewed as being
significant due to the inherent variability associated with
calculating transformed divergence from class statistics
(Swain and King, 1973). Interestingly, this increased
separability of the 60 cluster set of input classes over the
20, 30 and 40 cluster sets (firsttrend) does concur with the
changes observed in the transformation coefficients resulting
from those sets.

3. PERCENTAGE OF AGREEMENT
The percentage of agreement of each set of output classes

with the ELUDS Data Base is shown in Table III. As is
evidenced by the low percentages of agreement for urban and
barren, separating these categories from the other categories
with MSS Data in this area is very difficult. However, of
greater relevance to the scope of this paper are the trends
observed in the levels of agreement. Perhaps the most
obvious difference is the difference in overall agreement
between 15 classes output and 20 or 30 classes output. This
decreased overall agreement is consistent with the decreased
average separability discussed earlier. The three highest
overall levels of agreement were obtained from the 60/30, 60/40,
and 30(supervised)/30 sets. Furthermore, with the exception
of the 10/20 set, the highest agreement for barren were also
obtained with the 60/30, 60/40, and 30(supervised)/30 sets.
The results also show that there is an interplay between the
number of classes input and the number of classes output.
Although, 10 classes input produced an overall level of agreement
of 74.7 percent for 20 classes output, it produced only 72.7
percent for 15 classes and 30 classes output. Similarly 60
classes input produced 16.4 and 12.5 percent agreement for
barren for 30 and 40 classes output but 0 percent for 20
classes output. Finally, the source of the classes has a
definite influence on level of agreement. Thirty input
classes from supervised samples produced higher overall
agreement than 30 input classes from a systematic sample of the
data, regardless of the number of output clusters used in the
latter case.
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CONCLUSIONS

Clearly the number and source of classes input to and
output from the nontraditional unsupervised technique has
an impact on the resulting classification accuracy. The
results indicate the best overall classification will be
obtained when the classes input to canonical analysis
sufficiently subdivide the total spectral variability in the
data set. In this experiment it was necessary to cluster a
systematic sample of the data into 60 clusters or
separately cluster supervised samples of the data into six
clusters each to accomplish that subdivision. Although
certain lower numbers of input classes may produce good
results when used in combination with certain other numbers
of output classes (e.g. 10/20 in this experiment) it will be
difficult to predict these combinations in advance. By
subdividing the data set into a large number of clusters
the likelihood of representing spectral groupings associated
with informational categories is increased. The results also
show that separating the transformed data into an intermediate
number of clusters is sufficient to obtain the best
classification. In this experiment no significant increase
in level of agreement was obtained as the number of output
classes was increased from 30 to 40. Furthermore, comparable
results were obtained when 30 classes were output from the
transformed data based on 60 clusters from a systematic
sample and from the transformed data based on 30 clusters
from supervised samples.

The optimum numbers of clusters will undoubtedly vary from
data set to data set. However, it is doubtful that any data
set will contain categories more difficult to separate than
urban, strip mines, agriculture, and water as contained in the
data set used in this experiment. On this basis the 60/30
combination should provide nearly optimal results for any
MSS data set.
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TABLE I.

Combinations of number of clusters
input to/ and output from the

nontraditional classification proc<procedure.

Input Clusters

10 20 30 40 60
0 1 5 X X X
u
t
P
u 20 X X X X X
t

C
1 3 0 X X X , S X X
u
s
t
e 40 X
r
s

X-Input clusters generated by clustering entire data set.
S-Input clusters generated by clustering supervised samples
of the data.
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TABLE II.

Transformation Coefficients
for axes one and two, as

produced toy canonical analysis.

I
n
P
u
t

C
1
u
s
t
e
r
s

10

20

30

40

60

301

10

20

30

40

60

301

Band 1
-.1193

-.2471

-.2496

-.2405

-.1183

-.0988

Band 1
-.0320

.0265

.0540

.0788

.2451

.2096

Axis 1
Band 2
-.0260

-.1096

-.1686

-.1639

-.1610

-.0344

Axis 2
Band 2
.1386

.2879

.3468

• 3538

.4197

.2146

Band 3
.077̂

.1189

.0743

.0644

.2535

.1775

Band 3
.0769

.1752

.179̂

.2319

.2394

.1148

Band 4
.0670

• 2525

.3607

.4217

.4760

.2820

Band 4
-.0128

-.0142

.0097

-.0182

-.0086

-.0251

From supervised samples.
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TABLE III.

Percentage of agreement of
classifications with the

ELUDS data base.

Input/
Output

10/15

20/15

30/15

10/20

20/20

30/20

40/20

60/20

10/30

20/30

30/30

40/30

60/30

Urban

19.8

20.8

22.5

22.3

16.3

16.0

16.0

13-5

18.7

31.3

31.2

30.1

27-1

Strip

0.0

0.0

0.0

20.9

0.0

0.0

0.0

0.0

0.8

3.4

3-1

3-5

.16. 4.

Agri.

57.2

57.4

57.4

75.5

77.5

75.9

77.2

79.1

68.4

60.6

64.1

65.8

72.3

Forest

93.3

92.2

93.3

88.2

89-3

90.5

89.4

89.4

89.4

93-5

92.0

91.0

90.1. _

Water

73.1

72.6

72.7

53-9

70.3

70.5

70.2

67.4

66.8

65.4

66.4

65.1

63-5

Overall

72.7

72.1

72.9

74.7

74.5

74.9

74.5

74.7

72.7

74.3

74.2

73-9

75-5

60/40 24.2 12.5 70.7 91-5 65.8 76.1

30/30 25-4 15.8 73-4 90.9 63.8 75.9

Generated by clustering of supervised samples.
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