
I. INTRODUCTION 

In order to make air freight more profitable, 
one is interested in maximizing the mass of goods 
loaded. However, the arrangement of the containers 
in the cargo holds affects the position of the center of 
gravity of the aircraft, which in tum has an impact 
on'aircraft drag. One therefore wants to balance 
the load so that the aircraft will fly more safely, fly 
faster, and use less fuel. We are concemed here with 
the problem of optimizing the layout of containers 
within the cargo holds so as to take into account 
these conflicting objectives. To give an idea of the 
relevance of the problem: a displacement of the center 
of gravity of less than 75 cm in a long-range aircraft 
yields, over a 10,000 !an flight, a saving of 4,000 kg 
of fuel. (Clearly, when a displacement of the center 
of gravity can also be achieved via an automatic 
fuel transfer system-available, for instance, on the 
Airbus family-the approach described in the current 
paper could still prove useful to allow more flexibility 
and/or to improve results.) Note also that, a s  it is 
observed in [l] ,  another application of the balanced 
loading problem is the loading of trucks. Indeed, in 
order to minimize the maximum axle weight, one 
equivalently attempts to load a truck so that the center 
of gravity is as close as possible to the mid-point 
between two axles. 

Attention has been focused during the last two 
decades on automation of the load planning process 
in order to expedite the plane's departure and/or to 
account for last minute change of the list of containers 
to be loaded. Airliners currently proceed heuristically 
through experienced ground personnel trying to 
obtain an acceptable loading (i.e., satisfying the above 
stability and structural constraints), by manual trial 
and error process, possibly with the aid of computer 
assistance, at best with interactive computerized 
graphics. 

the manual and the computer-assisted approaches to 
the aircraft load planning problem developed before 
1985. He observed that the emphasis has been on 
computer assistance, rather than automation of the 
load planning. The main objective of the planners 
was also to generate a feasible plan rather than an 
optimal one. Center of gravity considerations are 
generally dealt with via pyramid loading (assign 
successively the heaviest items to the central positions, 
altemately working towards the front and back of the 
aircraft). Further, Martin-Vega notes that computer 
assistants such as CARLO [3], AALPS [4] (or, more 
recently, [5]), and DMES [6]  were exceptions in what 
he considered a manually dominated process. (TO 
summarize, CARLO, for the Boeing 747 Combi, and 
AALPS, for the C-130, C-l41B, and C-5A aircrafts, 
are interactive, heuristic, computerized procedures, 
as is DMES, for the C-130, C-l41B, and C-5A, 
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which moreover incorporates graphics and. minumicro 
computer technology). The unique mathematical 
programming approach of practical relevance 
reported by Martin-Vega is that of I. Brosh [7]. His 
optimization formulation of the problem is different 
from'the one we propose in the current paper: Brosh 
assumes having L types of homogeneous cargo (such 
as mail, bulk, etc.) yielding a continuous optimization 
problem (whereas we are dealing here with the 
combinatorial optimization problem of determining 
which containers are to.be loaded, and at which of 
the predetermined locations in the holds).,This easib 
continuous optimization framework allows Brosh, to 
incorporate,finer modeling of the linear constraints 
specifying.feasible positions of the center of gravity 
in terms the, aircraft gross weight. These linear 
constraints involving the positions of the center of 
gravity yield nonlinear constraints in the formulation. 
By conirist, we are content with simple upper- and.' 
lower-bound'constraints on.the positions of the center 
of gravity (this is acceptable for the'application we 
consider, 'the long-range aircraft Airbus A340-300), 
which gives linear constraints in our formulation. 

We now describe previous work which has been 
reported in the literature since 1985. A simple greedy 
heuristic (with an error bound on the deviation 
from a target position of the center of gravity) is 
proposed in [I].for the following specia1,case. First, 
all given containers must be loaded, and secondly, the 
containers are to be positioned on a one-dimensional 
hold. Further related work was reported in [81 for a 
military application. The problem considered there. . 
was to airlift cargo, which again must be entirely 
loaded, in a specified prioritized sequence (via a 
goal-programming formulation solved by branch 
and bound, and the method relied on "taking into 
account the expertise of highly trained loadmasters"). 
More recently, another simple greedy heuristic 
was proposed [9] for the same special case as 
that considered in [ 11, with the difference that the 
algorithm in [9] has a better worst-case performance 
than that in [I]. Finally, in [IO], Thomas, et al. 
proposed an integer programming formulation of the 
problem. They addressed in fact a difficult variant 
of the aircraft loading problem: they are specifically 
concerned with the loading of lighter aircrafts. Such 
aircrafts are more fuel efficient, but at a cost of 
tighter structural and weight limits: shear limits (shear 
being a measure of the downward forces exerted 
on the plane) are in this,case extremely sensitive 
to the loading, a problem not experienced in the 
heavier aircrafts:As a consequence, there is no static 
limits on the weight to be placed in each caigo zone: 
the zone limits on the weight are a stepwise-linear 
function of the center of gravity. This yields nonlinear 
constraints on the position of the center of gravity. 
This is in contrast with our context of application ' 
(A340-300, one of Airbus' long-range commercial 
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carriers). In order to avoid an integer nonlinear 
programming problem, they assume, in a phase-I 
subproblem, that the list of containers to be loaded is, 
again, known a priori. This phase-1 subproblem must 
then repeatedly be solved after removing containers 
from the list until a feasible packing is found. The 
method they presented is a heuristic. They use a 
spreadsheet interface in order to find a solution which 
satisfies the constraints (rather than maximizing 
the weight loaded). When this is not possible in 
phase 1,  then the ground crew must select one or 
more containers to remove from the set (and repeat 
phase 1). Preferred-positions constraints are then- 
added in phase 2. Such constraints are recursively 
removed until a feasible load plan is found. 

Related .problems dealing with containers to be 
loaded in ships or trains are addressed in the literature. 
Recent instances include [I I] which describes 
postprocessing heuristic approaches to produce .good 
loading arrangements with an even weight distribution 
of the cargo. In [12], the authors discuss models and 
algorithms to facilitate rapid transfers of the containers 
between trains. Finally, [13] deals with expert systems 
to expedite the unloading and loading of container 
vessels in the Port of Singapore. 

The purpose of the work presented here is to 
introduce a new method for addressing aircraft 
container loading. We shall see that the mathematical 
programming formulation we propose can be solved 
to optimality (our method is not a heuristic), in a 
time which is acceptable for practical applications. 
The advantages of the method are twofold. Firstly, 
as opposed to previous work [I, 8, 91 presented 
in the literature, our method does not rely on the 
assumption that the containers to be loaded are 
known a priori (our method decides which containers 
are to be loaded and which are to be left on the 
ground for a subsequent flight). Secondly, we have 
demonstrated that the formulation we propose can 
be solved using real data in.a reasonable amount of 
time: it can be solved by off-the-shelf integer linear 
programming software, it involves little memory, and 
can therefore be run on a PC within ten min. These 
were specific requests from Airbus France, which 
wanted to propose an accompanying container loading 
software to its customers. The specific problem we are 
addressing in the current paper is as follows. Given 
a list of containers, with their respective weight and 
volume, we must assign (a subset of) the containers to 
a finite number of possible container locations (also 
given, for the specific aircraft under consideration) 
in the cargo holds, so that the two following (often 
contradictory) objectives are optimized. First, as much 
weight as possible should be loaded (for airliners, 
freight income is generally related to the weight 
loaded, as opposed to volume, for example). Secondly, 
the resulting center of'gravity of the aircraft should 
be as far aft as possible (in order to minimize fuel 
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consumption), but not behind a limit imposed by 
stability requirements. Structural constraints include 
compartment-volume and compartment-weight 
capacities, and total aircraft maximal weight once 
loaded. The allowable total weight depends on the 
weight of the empty aircraft plus passengers, fuel, and 
bulk freight. Various constraints of practical relevance 
can easily be integrated within our mathematical 
formulation. For instance, a given subset of the 
container list can be specified to be loaded (containers 
that cannot be left on the ground because they contain 
e.g. perishable goods). Furthermore, some given 
containers can be constrained to be placed in some 
specified compartments (for instance near a door in 
order to he landed at a stopover, or for toxic materi;d 
containers to be away from foodstuff containers, etc..) 
Other constraints that can easily be modeled include 
requiring some given containers, already loaded by 
the ground crew, not to be displaced, in order to 
expedite the plane’s departure (as in the Federal 
Express application [IO] where time is a critical 
factor). 

an integer linear programming formulation of the 
aircraft container loading problem in the next section. 
Section III specifically details how the volume 
capacity constraints can be expressed so as to fit 
within the integer linear programming formulation. 
The formulation of these constraints are exemplified 
on a specific aircraft, namely the A340-300, one 
of Airbus’ long-range commercial carriers. The 
overall optimization formulation is summarized in 
Section IV. In order to illustrate our method, we 
report computational experiments with typical data 
in Section V. We conclude in Section VI. 

The paper is organized as follows. We introduce 

11. MODEL FORMULATION 

We are concemed here with positioning the center 
of gravity only along the longitudinal (fore and aft) 
axis of the aircraft, as the problem of balancing the 
load from side to side is commonly considered of 
marginal importance. The holds of the aircraft are 
divided into compartments (see e.g. Table 11). In 
accordance with international regulations, when it 
comes to computing the location of the center of 
gravity, we proceed as if every container of a given 
compartment were positioned at the geometric center 
of that compartment. We aim at allocating each given 
container to one compartment (or to the ground, when 
not loaded). We next set the notation. 

A. Given Data (Input) 

N,,, 
Ncomp number of compartments, 
Nhold number of holds, 

number of containers on the ground, 

(C {1,2,,..,Nc,,mp}) are the compartments in 
hold k (k = 1.2,. . . ,Nhold), 
mass of the aircraft (before loading), 
mass of container i (i = 1,2,. . ., NCO,,), 
maximal mass of freight that can be loaded, 
maximal mass of freight that can be loaded in 
bold k (k = 1.2,. . . ,Nhold), 
(longitudinal) position of the center of gravity 
of the aircraft before loading, 
(longitudinal) position of the geometric center 
of compartment j (j = 1,2,. . .,NcOmp), 
ideal (longitudinal) position of the center of 
gravity of the aircraft after loading, 
maximal (longitudinal) position of the center 
of gravity of the aircraft after loading in order 
to satisfy stability requirements, 

’ 

where X,,,, and Xsmb (which depends on the aircraft 
performance and safety requirements, respectively) are 
given by a load-and-balance software provided by the 
aircraft manufacturer. Further data given as input 
include the following: 

1) the dimensions and weight of each of the NCO”, 
given containers; 

2) all the possible locations of the containers in 
the cargo holds (see for example Table 11); 

3) a given subset Z of the container list that the 
user wishes to be loaded (containers that cannot be 
left on the ground because they contain e.g. perishable 
goods) will determine the freight constraints (7) in 
what follows: 

4) a list of couples (i, k )  for any given container i 
that the user wants to be in a specific compartment k 
(for instance near a door to be landed at a stopover, or 
for toxic material containers to be away from the 
foodstuff container hold, etc.). Moreover, this allows 
for the possibility of requiring some given containers, 
already loaded by the ground crew, not to be 
displaced, in order to expedite the plane’s departure 
(will determine the freight constraints (8)). 

B. Optimization Variables (Unknowns) 

The decision variables are binary: xij  E {O, 1) is 1 
if container i is to be placed in compartment j ,  and 0 
otherwise (i = 1,2,. . . , NCO,,: j = 1,2,. . . .NcOmp). 

c. output 

The purpose of the method is producing a list of 
containers to be loaded in each compartment, plus a 
list of containers that are to be left on the ground. 

D. Further Notation 

Two critical quantities, which both depend upon 
the vector x of decision variables xii  defined above, 
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are: F. Objective of the Optimization Problem 

Remember that we are faced with two 
1) Total mass loaded 

N,,t Nc-v 

i=l  j = ,  

contradictory objectives: maximizing M ( x ) ,  and 

behind the limit imposed by stability requirements, 
M(x)  := y.xij  (1) having CC(x)  as far aft as possible (hut not 

2) Center of gravity of the aircraft after loading: 

Nm.tNmw 

Max, i MiX,xi, 
i=, j=1 

CC(x)  := (2) Ma + M(x)  

E. . Constraints 

1) Aircraji Constraints: 
Stability requirements: 

CG(x) 5 X,,,. (3) 

Stresdmass capacity constraints (overall and for 
each hold): 

M(x)  5 M,, (4) 

Volume capacity constraints: A priori 
combinatorial and nonlinear in nature, we defer 
their mathematical formulation to Section 111. We 
demonstrate there, on a specific instance, how to 
model volume capacity constiaints in the framework 
of an integer linear programming formulation, 
through the addition of a small number of decision 
variables. 

2)  Mathematical Constraints: Each container 
must be loaded at most once. By the binary definition 
of the xi,s, this can equivalently simply be written 
as 

3 )  Freight Constraints: As specified in the input 

If a subset Z of the container list is required to be 
list of Section IIA: 

loaded: 
N,,, 

]=I 
C x L j = l ,  forall i t l .  (7) 

(Constraint (3))). One way to proceed, with an 
optimization approach, would be to consider the 
(longitudinal) position of the center of gravity of the 
aircraft as the objective function to be maximized, 
subject to the constraint of loading at least some 
prespecified mass of freight. The problem with this 
approach is twofold. Firstly, the total freight mass 
loaded is not optimized. Secondly, the objective 
function CC(x)  is a nonlinear function of the 
optimization variables x,s. The difficulty of solving 
an integer nonlinear programming problem is 
incomparably higher than that of solving an integer 
linear programming problem. One cannot reasonably 
expect to be able to obtain the' optimal solution of 
an integer nonlinear programming problem. Indeed, 
viable methods for solving general integer nonlinear 
programming problems include stochastic methods 
(such as simulated annealing, genetic algorithms, 
and tabu search), which provide no guarantee of 
getting close to optimality, and deterministic methods 
(such as arborescent methods-branch and bound, 
for instance). To give an idea of the extra difficulty 
involved in presence of nonlinearities, let us consider 
the most widely used deterministic method for solving 
integer programming problems: branch and hound. 
In order to be efficient, branch-and-bound procedures 
must find, as subproblems, globally optimal solutions 
of continuous relaxations of the problem. In the case 
of an integer linear programming formulation, this 
subproblem is a simple linear programming problem, 
whereas it is an extremely difficult problem in the 
case of an integer nonlinear programming formulation. 
However, in the case where one assumes that the 
complete given list of containers must be loaded, 
the numerator of ( 2 )  is then a constant, and CG(x) 
is therefore linear. This is a rather strong assumption 
for practical problems. This indeed means that one 
chooses a priori which containers are to he loaded, 
and assumes that the containers chosen do fit in the 
aircraft. This way of operating is clearly likely to 
yield solutions which are not optimal with respect 
to both the centering and the mass criteria. Such 
practical considerations motivate our method, which 
does not rely on the knowledge of which of the 
containers are to he loaded. We propose maximizing 
the mass loaded, given by (l), subject to the the 
constraints (3)-(8), plus the following additional 

For any given container i required to be in a mnctraint --.. "-I... 

specific compartment k: 
C. Centering Constraint 

x,k = 1 (8) 
1) Keeping the center of gravity within a 

(and therefore, by (6), xZI = 0, for all j # k ) .  
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Xmgei E 5 C W )  5 Xmget + E, (9) 

where E is some positive allowable displacement of 
the center of gravity of the aircraft from its ideal 
position. The value of E is set by the airliner in such 
a way as to account for uncertainties in the geometric 
and weight data. This constraint can equivalently be 
written as 

I [Ma + M(x)l[X,,, + €1 
(10) 

i.e., it can be expressed as two linear (inequality) 
constrainis. 

All of the above constraints, (3)-(8), (lo), and 
the objective function (l), are linear. Moreover, 
in Section 111, we also model linearly the volume 
capacity constraints. Thus, the resulting mathematical 
formulation will be an integer linear programming 
problem. We shall see that the number of integer 
variables involved will be small enough so that the 
problem will be easy to solve with off-the-shelf 
software. The purpose of the next section is therefore 
to demonstrate how the volume capacity constraints 
can be modeled so as to fit within the integer linear 
programming formulation. 

111. MODELING VOLUME CAPACITY CONSTRAINTS 

The way we model the volume capacity constraints 
is specific to each type of aircraft and to the different 
types of containers one has to load (note that the 
given list of containers will typically include several 
different types of containers). In order to simplify 
the presentation, and for illustrative purposes, we 
consider here a special instance: the Airbus A340-300 
together with five different types of containers, 
described in Table I. Indeed, as we see, modeling 
voIume capacity constraints involve nonconvex 
piecewise-linear functions. Such constraints cannot 
be dealt with directly by off-the-shelf optimization 
software. We propose a way to transform such 
constraints into simple linear constraints, with the 
introduction of a small number of extra integer 
variables (for choosing .between subdomains over 
which the function is convex). The methodology we 
are about to present can nevertheless straightforwardly 
be applied to any other commercial carrier in an 
analogous manner. Note that in practice, these volume 
capacity constraints are to be generated a priori once 
and for all, for each type of aircraft owned by the 
airliner. 

Table II displays the different homogeneous 
arrangements of each of the possible types of 
container in the forward (compartments 1 and 2) 
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TABLE I 
Different Types of Containers Considered 

Space Required Type Description 

Half size 

60.4 x 61.5 inches 
Max IATA contour E, G 

Half size 
2 NAS 3610-2KIC. 2K2C 

60.4 x 61.5 inches 
Max IATA contou C, H 

Full size 

60.4 x 125 inches 
Max IATA contour F 

1 NAS 3610-2KlC, 2K2C 1 small place 

2 small places 

3 NAS 3610-2LlC, 2L2C 
2 small places 

Full size 
4 NAS 3610-2A2C. 2A6C 

88 x 125 inches 
Max UTA contour F 1 large place 

Full size 
5 NAS 3610-2MlC. 2M3C 

96 x 125 inches 
Max IATA contour F 

1 -large place 

and aft (compartments 3 and 4) cargo holds of the 
Airbus A340-300 aircraft. We partition the five types 
of containers into three categories, according to the 
space one container occupies in a hold. We note that 
containers of types 2 and 3 require twice as much 
space in the hold as one container of type 1. We state 
that the space occupied by a container of type 1 is 
a small place. A container of type 2 or 3 therefore 
requires two small places each. Analogously, we note 
that containers of types 4 and 5 bo$ occupy the same 
space, which we call a large place (it is not an integer 
multiple of a small place). This is summ@zed in 
Table I. 

There are many ways of combining small and 
large places within a given compartment. It is 
convenient to define, for each compartment j ( j  = 
1,2 ,..., NC,,,,,J: s, is the number of small places 
occupied in compartment j ,  and 1, is the number of 
large places occupied in compartment j .  Since for 
each container i (i = 1,2,. ..,Ncont), we are given its 
type as input: 

T, (E {1,2,3,4,5}) type of container i, 

we have, in terms of the optimization variables xz,s: 

I ,  := xij  + X j j  (12) 
i :q=4  i : q = 5  
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TABLE I1 
Amgemenu of Containers in A340-300 Holds 

-~ . .  
(remember that a container of category 2 or.3 requires 
two small places in the holds). Note that the,s.s 
and l j s  are linear combinations of the optimization 
variables. 

In what follows, for each compartment, we initially 
model the volume capacity constraints with logical 
constraints (alternativdconditional sets of constraints), 
and we afterwards express these constraints so they 
fit in our integer linear programming formulation, 
following modeling techniques described, for example, 
in [14, sect. 9.21. 

J : 

A. Compartment 1 

Inspection of Table I1 reveals that one can load 
in compartment 1 any combination of containers 
requiring up to a total of 6 small places and 0 large 
place. One can alternatively fit containers requiring 
up to a total of 2 small places and 1 large place in 
compartment 1 .  A third alternative is: 0 small place 
and 2 large places. The squares displayed in Fig. 1 
summarize all the possible combinations. These 
possible arrangements cannot be modeled through 
a single set of inequalities involving linearly the 
integer optimization variables x Y s .  We could consider 
here, separately, the three alternatives 1, = O,, 1, or 2. 

6 

Fig. I .  Possible arrangements in compamnent 1 

However, we try as much as possible to model the 
relationship between the number of small places 
and large places in each of the compartments, with 
the fewest possible alternatives. The best we can 
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do here is to consider separately two possibilities. 
There is indeed no way to find one system of linear 
inequalities (which would thus define a convex 
set) which would include all the feasible points 
(represented by squares) but not the undesirable 
(because infeasible) point: ( I ,  = l,s, = 3). We choose 
to consider separately the following two alternatives: 
1, 5 1 and 1, = 2 (remember that by the binary 
definition of the xijs, the I j s  and the s j s  are bounded 
to be nonnegative and integer valued+f. (11) 
and (12)). The above enumeration of combinations 
of small and large places for loading compartment 1 
can equivalently then simply be represented by 

s, +41, 5 6, if 1 ,  5 1 (13) 

sI = 0, if I ,  = 2 (14) 

(together with the binary definition of the decision 
variables: x i j  E {O, 1)). We next show bow the two 
alternatives (13) and (14) can be expressed so as to 
fit within an integer linear programming formulation. 

be rewritten as the two alternatives (disjunctive 
constraints): 

(sI + 41, 5 6, and 1, 5 I )  (sl 5 0, and 1, = 2). 

Let us now introduce an extra binary variable y , , ,  
having value zero when the first altemative holds and 
value one corresponding to the second altemative. 
Hence, (13) and (14) can be written as 

Constraints (13) and (14) can equivalently 

or 

SI + 4 4  -BI,IYI,I 5 6  
11 - ~ 1 , 2 Y 1 , ,  5 1 

$1 -B,,3(1 -Y,,,) 5 0 (15) 
-1, -4.J - Y I J  s 4 1 1, -4.d -Y1.1) 5 2 

where we introduced five “big enough’’ constants 

the corresponding inequality is always satisfied for 
any feasible solution to our problem as soon as the 
coefficient of BI i  is one. This can easily be done. 
Consider, for instance, the first inequality. Since 
s, + 41, can clearly never be above 14, it suffices to 
set E,,, := 8. Hence, when y , , ,  = 1, the first constraint 
is not restrictive (since always satisfied), only the last 
three constraints are relevant. Similarly, it suffices 
for instance to set E,,, := I ,  

Each constant is to be set in such a way that 

:= 6, E,,., := 2, and 
:= 4. 

Naturally, all the variables sis and lis can be 
replaced by appropriate x i j s  using (1 I)  and (12). We 
thus obtain a set of linear constraints-linear in the 
binary variables xij, yl,,-after adding the extra binary 
variable y , , , .  

B. Compartment 2 

Again, from inspection of Table 11, we obtain, in 
an analogous manner, Fig. 2, which displays all the 

Fig. 2. Possible arrangements in compartment 2. 

possible combinations of small places and large places 
in compartment 2. Hence, volume capacity constraints 
corresponding to compartment 2 are as follows. We 
have to consider a minimum of three altematives. We 
choose here: 

s, +41, 5 12, if 1, 5 1 (16) 

s2 = 0, if 1, = 4. (18) 

s, + 41, 5 14, if 2 5 I ,  5 3 (17) 

As we did for compartment 1, we next introduce 
extra binary variables y2,i E {O, l}, i = 1, 2,  3, which 
monitor which of the three altematives is relevant. 
Having yZJ = 0 means that the (in)equalities of 
the itb alternative must be satisfied. We can then 
replace (16), (17), and (18) with 

‘$2 + ~ ~ , - B Z , I Y Z , ~  5 12 

12 - B2.2Y2.1 5 1 
s2 + 44 - B,.~Y,., 5 14 

4 2  - B2.4Y2.2 5 -2 
12 -B,sY2,2 5 3 (1% 

s2 - B25Y23 5 0, 
-12 - B2.7Y2.3 5 -4 

12 - B2,8Y2,3 5 4 
Y2.l + Y2.2 + Y2.3 = 2 k 

where the B,,is are appropriately initialized “big 
enough” constants (set e.g. €I2,] := 16, B,,, := 3, 

:= 1 ,  B2,6 := 4, B2,, := 4, 
and El2,* := 0). The last equality ensures that one of 
the y ,  i s  is zero. Note that, in fact, only two extra 
b i n a j  variables yl,p suffice, as we can eliminate 
the last equality constraint in order to replace y2,3 
everywhere with 2 -yZ,, -Y,,~. We thus modeled the 

:= 14, E,,, := 2, 
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Fig. 3. Possible arrangements in compment  3 with overlap. 

i : E = 5  

s3 + 7-13 - B ~ . Z Y ~ J  i 6 

$3 + 413 ~ B3,3Y3,,  i 8 

volume capacity constraints for compartment 2 with a 
set of linear constraints after adding two more binary 
variables: y2,1 and 

C. Compartment 3 

Firstly, it is clear from Table I1 that our model 
must include the constraint forbidding more than 2 
containers of type 5 in compartment 3: 

4 3  5 2. 
i : z=5  

We next take into account the possible overlapping 
of a container of compartment 4 over compartment 3. 
Inspection of Table I1 indeed reveals that a second 
container of type 5 in compartment 4 overlaps 
slightly compartment 3 (cf. the dashed line on 
Table 11): it therefore does not leave more than 2 
large places in compartment 3, and not more than 
6 small places in compartment 3 if such an overlap 
occurs. We first consider separately whether there 
is an overlapping container or not, i.e., whether the 
number of containers of type 5 in compartment 4 is 
equal to two or not. 

1) If Ci:z=5xi4 = 2 (overlap), then all the ways of 
combining small and large places within compartment 
3 are represented (again by squares) in Fig. 3. It is 
possible here to model these possible arrangements 
with a single set of inequalities: 

s, + 21, 5 6 

s3 + 41, 5 8. 

(21) 

(22) 

2)  If Ci,r;,5xi4 i 1 (no overlap), we then obtain 
Fig. 4, and subsequently we must consider further two 

\ 
\ 
\ 

\.< 
0 1 2 3 

13 

Fig. 4. Possible arrangements in comparrment 3 without overlap. 

s3 + 213 - 4 . 5 ~ 3 , ~  5 8 
(25) 

'3 ~ '3.6Y3.2 5 

4 4  - ~ 3 , 7 ~ 3 , 3  5 1 
i : p = 5  

$3 + 213 - 4 . 8 ~ 3 . 3  i 6 

I3 - 4 . 9 Y 3 . 3  5 2 

-13 - 4 . 9 ~ 3 . 3  5 -2 

Y3.1 + Y3.2 + Y3.3 = 

after introducing three (two suffice) extra binary 
variables y 3 , { ,  and appropriate constants B,,i (set e.g. 
E,,, := 2, E,,* := 8 ,  B3,3 := 12, B3* := 1 ,  B3,5 := 6, 
B3,6 := 2, B3,, := 1, B3,* := 8 ,  B3,9 := 2, and B30 := 1) 
The frst three above constraints correspond to the 
system (21)-(22), the next three correspond to (23), 
and the last ones to (24). 
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D. Compartment 4 

The analysis for compartment 4 is identical to that 
for compartment 1: 

s4 c41, 5 6, if l4 I 1 

s4 = 0, if l4 = 2 

which yields the set of linear constraints 

$4 + 414 - B4,iy4,1 5 6 

'4 - '4.2y4.1 5 
'4 -'4,3(l -Y4,1) I (26) 

4 4  -B4,4(1 -y4,1) 5 -2 i 14pB4,5(1-Y4,1)12 
after adding the extra binary variable y4,1 (it suffices 
to set B4,1 := 8, B4,2 := 1,  B4,3 := 6, B4,4 := 2, and 
B4,5 : = 4). 

TABLE III 
Six Test Problems 

IV OVERALL FORMULATION 

The volume capacity constraints of the previous 
section are relevant to the specific instance of the 
Airbus A340-300 aircraft together with the five 
different types of containers described in Table I. 
However, the procedure we demonstrated on a 
particular case can straightforwardly be applied to 
another commercial canier andor with other types of 
containers, following the same lines as in Section Ill. 
For the example we study in the current paper, the 
volume capacity constraints required the addition of 
six extra binary variables (the ys). 

To summarize, here is the overall integer linear 
programming formulation of the aircraft container 
loading problem: 

maximize M ( x ) ,  given by (1) 

subject to (3),(4),(5),(6).(7),(8),(10),(15), 
(19),(20),(25),(26) 

where the optimization variables are all binary (the 
X ~ , S ,  plus the six yk,s (which appear only in the 
constraints not in the objective function) introduced 
in the previous section for deciding amongst various 
alternatives), and the objective function and the 
constraints are linear in the components of x and y. 

V. NUMERICAL RESULTS 

In the previous sections, we achieved modeling 
the aircraft loading problem with an integer linear 
programming formulation. This allows the direct use 
of off-the-shelf software for solving the problem. We 
first build up 6 test problems (6 lists of containers of 
different types and various masses to be loaded in an 
Airbus A340-300 aircraft), as described in Table IIl. 

Total Number of Canrainas 

Problem (Kg) of Containers 1 2 & 3 4 5 

A 40,000 40 IO IO 10 10 
B 49,060 40 10 10 IO IO 
C 48,408 40 10 10 10 10 
D 36,610 22 1 4 0 6 2  
E 39,926 26 1 4 6 6 0  
F 29,890 21 1 4 1 6 0  

Test Total Mass Number of Type: 

The first test problem involves simply 40 containers 
of various types but with identical weight: 1,000 Kg. 
Test problem B has 40 containers of different masses 
which differ only slightly from one another. The 40 
containers of test problem C are of various masses. 
These first three test problems include a number of 
containers for which it is easy to see a priori that 
the whole list cannot be loaded. Test problems D, 
E, and F, which involve, respectively, 22, 26, and 21 
containers, are real-life problems. We chose to use 
directly NAG'S branch-and-bound based subroutine 
H02BBF for integer linear programming in order 
to solve the problem (one can equivalently consider 
using CPLEX for this purpose). The computing 
times reported here are from experimenting on 
a Pentium 100 MHz (RAM: 64 MO, disk of 1.2 
Go) under Windows NT 4.0. The first three test 
problems (Problems A, B, and C) served to tune the 
user-defined parameters of the NAG subroutine. These 
were accordingly set, for all the computational results 
we are presenting, to: itmax = 500, maxnod = 500, 
toliv = 
(longitudinal) position of the center of gravity in terms 
of percentage of the reference chord (RC). For the 
Airbus A340-300 aircraft, RC = 7.27 m: For our tests 
the ideal centering is 30% RC aft. We performed two 
series of tests. One, with a tolerated deviation from 
the ideal centering of c = 6% RC (which corresponds 
to 43.62 cm for the aircraft under study) in order to 
stay within operational limits, as is common practice 
for airliners. The second series is with a maximal 
allowed error o f t  = 1% RC (if one favors further 
fuel saving). Table IV summarizes our computational 
results. Note that these CPU times correspond to 
optimal solutions. (Remember that, except for test 
problem A, the containers are of various masses, it 
is therefore not surprising that for test problem D, we 
load fewer containers with an allowed error of t = 6% 
RC than with E = 1% RC. In the former case the mass 
of the containers loaded is greater than in the latter 
case.) 

is viable for practical use. Note that a partial 
branch-and-bound resolution could yield feasible 
loadings even more rapidly. Indeed, ground personnel 

tolfes = machine epsilon. We express the 

The CPU times reported show that our approach 
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TABLE IV 
Numencal Results 

Max Centenng 
Allowed Nb of- Mass Error 
Error c Test Contarners Loaded Obtamd CPU 
(% RC) Prob Loaded (Kd (% RC) fmd 

~~~~~~ ~ 

A 21/40 21,000 5.49 2.9 
B 21/40 ,25,510 5.88 ' 3.9 

6 C 16/40 22,910 5.98 6.3 
D 19/22 31,990 5.67 4.0 
E 21/26 30,090 3.64 ' 3.2 
F 21/21 29.890 5.93 4.0 

A 20140 20,000 ' 0.14 5.1 
B 20140 24,307 0.24 9.9 

1 C 16/40 19,890 0.97 6.6 
D 20R2 31,690 1.00 3.5 
E 22/26 29,836 0.97 6.0 
F 20R1 28.890 0.49 6.0 

naturally do not have to wait for the process to 
be over in order to implement some intermediate 
satisfying suboptimal solution generated by the 
program. Note that in practice, our method can 
recursively be invoked whenever the centering 
required (through the parameter e )  happens to be 
too tight (either the obtained loaded mass appears to 
be insufficient, or the current E yields an infeasible 
problem). Finally, note that in the above-reported 
numerical results, no freight constraints of type (7) 
and (8) were present. However, we did try our method 
with such constraints, and the CPU times obtained 
generally only improved (not surprisingly, as adding 
constraints further restricts the discrete search space). 

VI. CONCLUSIONS 

We considered, in this paper, the aircraft container 
loading problem, more specifically the problem of 
choosing which containers should be loaded on the 
aircraft, 'and how they should be distributed among 
the different compartments, in order to improve fuel 
consumption while optimizing freigh,t income, subject 
to structural and safety constraints. We restricted 
our study to the case of long-range aircrafts (Airbus 
A340-300), which allowed approximating the domain 
of possible positions of the center of gravity, in 
terms of the aircraft gross weight, by a box (upper- 
and lower-bounds constraints). We avoided thereby 
nonlinear constraints in our formulation. Future work 
could address the more general problem in which this 
domain, of possible positions of the center of gravity, 
is a polyhedron. 

capacity constraints, which involved nonconvex 
piecewise-linear'functions, with linear constraints by 
adding a small number of binq'variables. Moreover, 
the integer linear programming formulation we 
introduced straightforwardly enables the integration 

We described a way to model volume 

of various constraints of practical relevance. For 
the preliminary tests we presented, we used an 
off-the-shelf integer linear programming solver on a 
PC. The acceptable computer times required to obtain 
optimal solutions on some real-life test problems show 
that the approach is viable in practical situations. 

Possible extensions of our work, which could be 
interesting from the airliner point of view, include 
the following. Using different values for the centering 
tolerance (parameter e) .  one could attempt to balance 
the importance of the two conflicting objectives 
(freight loaded versus fuel consumption). The 
approach we introduced in this paper could indeed be 
used in order to generate different feasible solutions to 
the problem (a set of proposed positions of the center 
of gravity, and corresponding optimal mass loaded). 
Further, one could consider implementing a procedure 
which automatically chooses which solution is the 
best among the ones proposed in terms of operational 
cost, knowing the income expected per loaded ton of 
freight, the impact in terms of fuel saving for each 
centimeter of displacement of the center of gravity on 
a specific aircraft, and the current cost of fuel. Finally, 
note that airliners often do not pay much attention to 
the aircraft container loading problem because of the 
possibility of using fuel transfer systems to improve 
the position of the center of gravity. Further work 
could also consider exploiting such systems within 
our optimization approach in order to allow more 
flexibility, thereby improving results (the potential of 
the sole use of fuel transfer systems is indeed limited 
as the aircraft approaches its destination and less fuel 
is available to transfer). 

Combelles, Fabrice Gouazd, Samuel Grossiord, Karine 
Jagu, and Estelle Saez for their implementation work 
at Airbus France. 
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