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Falling is a common and signi	cant cause of injury in elderly adults (>65 yrs old), o
en leading to disability and death. In the
USA, one in three of the elderly su�ers from fall injuries annually. �is study’s purpose is to develop, optimize, and assess the
e�cacy of a falls detection algorithm based upon a wireless, wearable sensor system (WSS) comprised of a 3-axis accelerometer
and gyroscope. For this study, the WSS is placed at the chest center to collect real-time motion data of various simulated daily
activities (i.e., walking, running, stepping, and falling). Tests were conducted on 36 human subjects with a total of 702 di�erent
movements collected in a laboratory setting. Half of the dataset was used for development of the fall detection algorithm including
investigations of critical sensor thresholds and the remaining dataset was used for assessment of algorithm sensitivity and speci	city.
Experimental results show that the algorithm detects falls compared to other daily movements with a sensitivity and speci	city of
96.3% and 96.2%, respectively.�e addition of gyroscope information enhances sensitivity dramatically from results in the literature
as angular velocity changes provide further delineation of a fall event fromother activities thatmay also experience high acceleration
peaks.

1. Introduction

Fall events are the most signi	cant cause of injury in the
elderly. Falls result in many disabling fractures that could
eventually lead to death due to complications such as infec-
tion or pneumonia. In the United States, more than one-
third of elderly people over 65 years old fall at least once per
year [1]. In 2008, hospital emergency rooms treated over 2.1
million nonfatal fall injuries among older adults of which 25%
were hospitalized. Unfortunately, with age, chances of falling
increases and injuries are exacerbated. Injuries due to falls for
those over 85 years old were four times greater than in adults
aged 65 to 74. Further, once a person falls, they are likely to
fall again.

While falls in the elderly have a direct health e�ect,
another key e�ect is related to 	nancial costs associated with
the incident. In 2000, costs associated with falls in the elderly
were estimated by the CDC to be approximately $20 billion

and to increase to $54.9 billion by 2020 [2]. Half of elderly
fallers are not able to get up by themselves [3]. On average,
elderly fallers lie helplessly for more than 10 minutes with 3%
waiting for more than one hour before receiving assistance
[4]. �ese long lies o
en result in hospitalizations, institu-
tionalization, and high morbidity-mortality rates. Research
by Bertera et al. [5] has shown that the elderly are interested
in new technologies that support their health, independence,
and safety, especially as it supports their desire to age-in-place
[6].

Personal Emergency Response Systems (PERS) have been
developed to facilitate calling for help a
er a fall event.
However, in severe cases of an emergency, the individual may
not be able to activate the PERS alarm. Recent reports show
that 80% of elderly persons who were unable to get up a
er a
fall did not use their PERSdevice to call for help [7, 8]. For this
reason, automatic fall detection is an active area of research.
Many falls research strategies using accelerometers primarily
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utilize changes in acceleration magnitude to determine falls.
When the acceleration exceeds a critical threshold, the fall is
detected [9, 10]. �ese systems successfully detect falls with
sensitivities greater than 85% and speci	cities between 88
and 94%. However, focusing only on large acceleration can
result inmany false positives as other activities such as sitting,
running, and jumping may also result in large peak accel-
erations. For example, Huynh et al. [11] have shown that
average peak acceleration during running (2.3–2.8 g) overlaps
with the range observed during falls (2.4–5.4 g). �is overlap
reduces the speci	city (i.e., detection of false positives) of
purely accelerometer-based algorithms.

Other fall detection algorithms rely on detection of body
orientation (i.e., prone) a
er a fall. However, these strategies
may be a�ected by activities with similar postures (i.e., sleep-
ing, reclining) and are less e�ective when a person’s fall pos-
ture is not horizontal. Furthermore, additional studies have
used complex algorithms such as support vector machine
(SVM) [12] and Markov models [13] to detect falls. �e
robustness of these systems has not been demonstrated.�ey
are also limited by excessive use of computational resources
and cannot respond in real-time. While computational com-
plexities can potentially be o�oaded to cloud-based services,
real-time and continuous access to the cloud may be unreli-
able especially in rural communities.

Unlike other prior works, this project proposes using a
combination of accelerometer and gyroscope sensors for
robust fall detection. While the accelerometer provides valu-
able information regarding body inertial changes due to
impact, the gyroscope provides unique information regard-
ing the body’s rotational velocity during a fall event. A fall
event produces both high acceleration and angular velocity,
the combination of which is not observed during normal
daily activities. �e thrust of this work is to develop and
optimize an algorithm for robust fall detection while simul-
taneously optimizing sensitivity and speci	city.

2. Methodology

In prior studies [11], our team has developed a wireless sensor
system and an algorithm to identify fall events from other
daily activities such aswalking, running, sitting, and climbing
stairs. �e system includes a wireless sensor system (WSS)
comprised of a 3-axis accelerometer and gyroscope. Figure 1
shows the overall schematic of system. �e WSS transmits
and receives real-time accelerometer and gyro data during
the fall. �e detection algorithm is based on a simple thresh-
old detection method using accelerometer thresholds found
in the literature. Gyroscope threshold was determined exper-
imentally using preliminary data collected.

2.1.Wireless Sensor System (WSS). �ewireless sensor system
(Figure 2) contains a sensor module (Figure 2(a)), Micro
Control Unit (MCU), andWi-Fimodule to sense body orien-
tation and activity data, control data �ow, and transmit/
receive data, respectively. �e WSS is placed at the center of
chest (Figure 2(c)).

6-DOF sensor 
accelerometer
and gyroscope

ARM cortex
M3

WiFly 

RN131

I2C
UART

Figure 1: �e schematic of wireless sensors system.

2.1.1. Sensor Module. Since our system uses both acceleration
and angular velocity to detect falls, we choose to use the
6-DOF module with small size and power requirements. It
includes a triaxial accelerometer ADXL345 and a triaxial
gyroscope ITG3200 (Figure 2(a)). Accelerationmeasurement
range of ADXL345, with 13-bit resolution and 4mg/LSB, is up
to ±16 g. Additionally, the ITG-3200 gyroscope can capture
the angular velocity between ±2000∘/sec. Both sensors are
connected with the MCU via I2C digital interface port.

2.1.2. Micro Control Unit (MCU) Module. �e MCU for the
control system is an LPC 1786 (NXP semiconductors), an
ARM Cortex-M3 32-bit based microcontroller speci	cally
designed for embedded applications requiring a high level of
integration and low power dissipation. �e chip can operate
up to 100MHz CPU frequency. In addition, the UART inter-
face provides the sampling frequency up to 4Mb/s.

2.1.3. Wireless Module. �e Wi�y RN131 module is a stand-
alone Wi-Fi module operating at a fully integrated 2.4GHz
and providing an IP stack with IEEE 802.11 b/g standard. �e
RN131 can operate with communication speed up to 11Mbps.
Due to its small form factor and extremely low power con-
sumption, it is perfect for mobile wireless applications with
portable battery operated devices. Additionally, its UART
hardware interfaces for connecting withMCU can operate up
to 1Mbps data rate.

2.1.4. Collection Program. �e data collection program is
written in Matlab (Mathworks, Inc., Natick, MA) to receive,
display, and analyze real-time acceleration and angular veloc-
ity data from the WSS [11]. �e program also stores data for
later analyses.

2.2. Fall Detection Algorithm. �e parameters used in analy-
ses are similar to those proposed in previous studies [10, 14].
�e total sum acceleration vector, Acc, containing both static
and dynamic acceleration components, is calculated from
sampled data using

Acc = √(��)2 + (��)2 + (��)2, (1)
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Figure 2: Fall detection system: (a) sensor module (6 DOF), (b) wireless sensor system (WSS), (c) system attached on center chest.

where ��, ��, and �� are the accelerations (g) in the �, �,
and � directions. Similarly, angular velocity is calculated from
sampled data as indicated in the following:

� = √(	�)2 + (	�)2 + (	�)2, (2)

where 	�, 	�, and 	� are angular velocities in �, �, and �
directions.

When stationary, the acceleration magnitude, Acc, from
triaxial accelerometer is constant (+1 g), and angular velocity
is 0∘/s. When the subject falls, the acceleration is rapidly
changing and the angular velocity produces a variety of sig-
nals along fall direction. Critical thresholds in the acceler-
ation and angular velocity are then used for determining a
fall event.�ese critical thresholds are de	ned and derived as
follows [15].

(i) Lower fall threshold (LFT): local minima for the Acc
resultant of each recorded activity are referred to
as the signal lower peak values (LPVs). �e LFTacc

for the acceleration signals is set at the level of the
smallest magnitude lower fall peak (LFP) recorded.

(ii) Upper fall threshold (UFT): local maxima for the Acc
resultant of each recorded activity are referred to as
the signal upper peak values (UPVs). �e UFT for
each of the acceleration (UFTacc) and the angular

velocity (UFTgyro) signals are set at the level of the
lowest upper fall peak (UFP) recorded for the Acc
and �, respectively. �e UFTacc is related to the peak
impact force experienced by the body segment during
the impact phase of the fall.

Fall detection algorithms using accelerometers are nor-
mally divided into two groups, one based on LFTacc compar-
ison and the other based on UFTacc comparison. Although
past research has achieved some signi	cant results, accuracy
of these strategies is still below desired levels. Bourke et al.
[15] used LFTacc and UFTacc and found the sensitivity and
speci	city of performance to be 83.33% and 67.08%, respec-
tively.

In this study, we use both LFTacc and UFTacc in com-
bination with the UFTgyro for fall detection. We determine
the LFT and UFT for both the acceleration and angular
velocity based on collected experimental data. Our proposed
algorithm is shown in Figure 3. First, the instantaneous
acceleration magnitude, Acc, is computed and compared to
the LFTacc. When Acc falls below the LFTacc threshold, data
from the next 0.5 s, period referred to as fall window, is
compared to the UFT for both the acceleration and angular
velocity vector.�e fall window periodwas obtained from the
literature [16, 17]. Within the fall window, if both magnitudes
of acceleration and angular velocity are above the UFTacc and
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Figure 3: Combined accelerometer and gyroscope detection
schema.

UFTgyro, respectively, then a fall is detected. If only one or
neither is observed, a fall is not indicated.

Robustness of the proposed algorithm is evaluated by
measuring sensitivity and speci	city typically de	ned as

Sensitivity = No.TP
No.TP +No.FN ,

Speci	city = No.TN
No.TN +No.FP ,

(3)

where the following happen.

(i) # True positive (No.TP): fall occurs; device detects it.

(ii) # False positive (No.FP): device detects fall; fall did
not occur.

(iii) # True negative (No.TN): normal movement (i.e., no
fall); device does not declare a fall.

(iv) # False negative (No.FN): fall occurs; device does not
detect it.

Di�culty lies in determining the optimal thresholds
for LFTacc, UFTacc, and UFTgyro. Improperly low threshold
selection may lead to increased occurrences of false positives
detected during daily activities, resulting in lower speci	city.
Alternatively, too stringent threshold selection may cause
failure of fall detection altogether leading to increased false
negatives and decreased system sensitivity.
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Figure 4: �e ROC curve. Optimal threshold shown as minimum
distance, 
, to point (0, 1) where sensitivity (��) and speci	city
(��) are 100% and 100%, respectively. False positive rate equals 1 −
speci	city as an algorithm that results in 100% false positive has 0%
speci	city and one that has 0% false positive rate results in 100%
speci	city.

Many algorithms determine the thresholds experimen-
tally [18]. Likewise, this study determines these thresholds
for optimal sensitivity and speci	city. To optimize thresholds,
sensitivity and speci	city are calculated for all possible
thresholds values from experimental data. �e sensitivity is
inversely related with speci	city in the sense that sensitivity
increases as speci	city decreases across various thresholds.
�e receiver operating characteristic (ROC; Figure 4) curve
displays the tradeo� between the sensitivity (�-axis) and
speci	city (�-axis). �e optimal threshold is the point that
can provide the minimum distance between the point (0, 1)
and itself [19].�e distance is de	ned in (4), where ��, �� are
the sensitivity and speci	city, respectively, as follows:


� = √(1 − ��)2 + ��2. (4)

2.3. Experimental and Procedure. To collect falls data for
development and optimization of the falls algorithm, exper-
iments were performed on 27 young healthy subjects (male
and female, age from 18 to 28 years, weight from 50 to 90 kg,
and height from 154.5 to 180.0 cm) and 9 middle-age subjects
(age from 38 to 56 years, weight from 55 to 87 kg, and height
from 160.0 to 185.0 cm) at�eCatholic University of America
(Washington, DC). �e research protocol was approved by
the Human Subjects/Institutional Review Board (IRB) Com-
mittee.�eWSSwas attached to the center of the chest of each
subject, determined as optimal location by our previous study
[20]. Each subject was asked to perform movements such as
standing, walking, sitting down/standing up, step, and run
and 4 di�erent falls tests, forward, backward, and right/le

sideway fall. Falls were conducted onto a 36-inch high jump
cushion to prevent injury.
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3. Results

Figure 5 shows a typical example of the acceleration and
angular velocity signals while performing di�erent daily
activities. Corresponding instances when the acceleration
and angular velocity values exceed LFTacc, UFTacc, and
UFTgyro during the various daily activities such as standing,
running, sitting up, lying down,walking, stepping, and falling
are also shown below the raw signals. During a fall event
(∼10 sec), the acceleration signal decreases from 1 g to cross
below LFTacc and, within 0.5 s, acceleration and angular
velocity increase to cross above UFTacc and UFTgyro, almost
simultaneously. With rigorous activities such as running,
the peak of accelerations can reach critical LFTacc and
UFTacc thresholds indicative of a fall event. However, the
con	rmatory UFTgyro threshold is never reached. For events
such as lying down or sitting up, the UFTgyro threshold is
triggered, but the acceleration conditions are not met. �us,
the combination accelerometer and gyroscope sensor system
complement one another for a more robust fall detection
algorithm.

From the experimental data collected, a subset of the
data (18 subjects) is analyzed to identify LFTacc and UFTacc

of acceleration and UFTgyro of angular velocity. A
er that,
the remaining data is used for validation to determine the
sensitivity and speci	city of the algorithm. �e mean and
standard deviation values of minimum and maximum of
acceleration andmaximumof angular velocity are statistically
for 90% and 99% con	dence levels. Table 1 shows the mean
and standard error for LFTacc, UFTacc, and UFTgyro as well as
values for 90% and 99% upper and lower con	dence levels.

To improve system accuracy, the upper con	dence limit
between 90% and 99% (0.27 g–0.33 g) for LFTacc and the

Table 1: Summary of critical threshold values for LFTacc, UFTacc,
and UFTgyro including mean ± standard error, threshold values at
upper and lower 90% con	dence limits and at 99% upper and lower
con	dence limit.

LFTacc (g) UFTacc (g) UFTgyro (
∘/s)

Mean ± standard error 0.18 ± 0.06 3.27 ± 0.38 382.1 ± 98.9
Lower 90% limit 0.10 2.77 254.52

Upper 90% limit 0.27 3.76 509.61

Lower 99% limit 0.03 2.37 151.69

Upper 99% limit 0.33 4.16 612.43

lower con	dence limit between 90% and 99% (2.37 g–2.77 g)
of UFTacc and UFTgyro (151.7–254.5∘/s) are used for the fall
detection algorithm. To optimize the thresholds used for
the 	nal algorithm, the proposed algorithm is run at dif-
ferent levels for the ranges speci	ed of LFTacc, UFTacc, and
UFTgyro and sensitivity and speci	city values are calculated
for the combined algorithm. Figure 6 shows a spatial map-
ping of sensitivity and speci	city of system in the range of
LFTacc (0.2 g–0.4 g) and UFTacc (2 g-3 g) of acceleration. As
expected, there is a tradeo�between sensitivity and speci	city
with sensitivity increasing while speci	city decreases, and
vice versa. �e optimized algorithm simultaneously maxi-
mizes both measures.

Because this study’s goal is to develop a fall detection sys-
tem with targeted accuracy over 90% for both sensitivity and
speci	city, three thresholds were initially chosen of LFTacc,
UFTacc, and UFTgyro 0.26 g, 2.77 g, and 254.5

∘/s, respectively,
based upon individual analyses from experimental data. Each
threshold is then varied for the ranges above and sensitivity
and speci	city are calculated. From the ROC curves, the
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Table 2: Fall algorithm sensitivity and speci	city without and
with gyroscope while critical thresholds are set at 90% and 99%
con	dence levels.

Accelerometer
without gyro

Accelerometer with gyro

Con	dence
level

90% 99% 90% 99%

Sensitivity 83.56% 98.75% 81.37% 96.55%

Speci	city 96.12% 75.93% 99.38% 89.50%

optimal threshold is chosen which minimizes distance 
 in
Figure 4.

Figure 7 shows the sensitivity versus threshold values for
(a) UFTgyro, (b) LFTacc, and (c) UFTacc, respectively, and the
corresponding ROC curves ((d)–(f)). �e optimal threshold
for correctly identifying a fall or nonfall is determined by
minimizing distance 
 in the ROC curves. For angular veloc-
ity (Figures 7(a) and 7(d)), this minimized distance 
 is 0.063
and occurs when UFTgyro is 240

∘/s, corresponding to sensi-
tivity of 95.5% and speci	city of 97.1% (100% − speci	city =
2.9%). Similarly, Figures 7(b) and 7(e) represent the change
of the sensitivity and speci	city and ROC curves when LFTacc

is varied. �e minimized distance 
� is 0.062 corresponding
to an LFT range between 0.30 g and 0.35 g and results in 96%
sensitivity and 95% speci	city. Lastly, Figures 7(c) and 7(f)
show the optimal UFTacc threshold (
� = 0.059) of 2.4 g with
corresponding sensitivity and speci	city values of 94.9% and
97.5%, respectively.

Table 2 provides a summary of results for fall sensitivity
and speci	city without (i.e., accelerometer only) and with
inclusion of gyroscope information. In this table, critical
thresholds for LFT and UFT are set at two con	dence
levels, 90% and 99%. Since thresholds are set to desired
con	dence levels, no optimization strategy is implemented.
Results show increasing con	dence level from 90% to 99%
increases sensitivity from 83.56% to 98.75%, as expected,
while dramatically decreasing speci	city (from 96.12% to

Table 3: Fall algorithm sensitivity and speci	city without and with
gyroscope with ROC optimization strategy implemented.

Accelerometer without gyro Accelerometer with gyro

Sensitivity 97.36% 96.3%

Speci	city 82.72% 96.2%

75.93%) of accelerometer only algorithms. �ese results are
similar to 	ndings by others [9, 10]. Addition of gyroscope
information improves speci	city by the ability to di�erentiate
falls from other rigorous e�orts.�is is achieved with slightly
diminished sensitivity compared to accelerometer onlymeth-
ods.

When critical thresholds are established and optimized
using ROC analyses, one is able to achieve improved speci-
	city while simultaneously achieving high levels of sensitivity
for algorithms utilizing accelerometer only and with a com-
bined accelerometer and gyroscope strategy (Table 3). For
the combined accelerometer and gyroscope sensor plus opti-
mization strategy, sensitivity and speci	city for fall detection
were 96.3% and 96.2%, respectively.

4. Discussion

�is study investigates a wireless sensor system that combines
measures of acceleration and angular velocity of body to
detect and di�erentiate falls fromdaily activities. In this study,
36 subjects performed four di�erent types of falls as well
as daily activities for a total of 9 di�erent activities. Half
the experimental dataset was used to develop and train the
algorithm and to determine critical thresholds, while the
other half was used to validate and test the 	nal fall detection
algorithm.

Tolkiehn et al. [21] reported results of an accelerometer
only algorithm of 83.3% sensitivity and 79.1% speci	city to
detect falls. Chen et al. [22] reported achieving 94% speci	city
with their fall detection algorithm, but with low sensitivity
(76%). Bourke et al. [23] recently proposed an algorithmwith
high sensitivity (97%), but with a cost of lower speci	city
(83%). Others have shown similar tradeo� between achieving
high speci	city [88–94%] and decreased detection of falls
(sensitivity = 85%) [9, 10, 24].

In this study, following an optimization schema using
ROC curves and iterative analyses of sensitivity and speci-
	city, wewere able to determine critical thresholds for LFTacc,
UFTacc, and UFTgyro that simultaneously result in high sensi-
tivity and speci	city of fall detection.�ese optimized values
were 0.30 g–0.35 g, 2.4 g, and 240∘/s, respectively. Results
demonstrate the e�ectiveness of the combined accelerometer
with gyroscope algorithm that is optimized for sensitivity
and speci	city compared to traditional accelerometer only
strategies of fall detection. �e optimized, combined sensor
schema achieves both high sensitivity (96.3%) and high
speci	city (96.3%), simultaneously, much higher than prior
results reported in the literature. �e increased sensitivity
is achieved by inclusion of gyroscope information which
provides valuable additional information on body rotation
in order to di�erentiate a fall event from other high impact
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Figure 7: Representative curves of sensitivity versus threshold values (1st row) for (a) UFTgyro, (b) LFTacc, and (c) UFTacc and corresponding
ROC curves (2nd row; (d)–(f)). Minimum distance point, 
, is shown in each ROC curve with sensitivity (∼95%).

activities such as running and jumping. �e optimization
strategy results in dramatic increases in speci	city while only
slightly sacri	cing fall detection sensitivity.

�e addition of gyroscope information reduces the occur-
rence of false positives resulting from rigorous activities such
as running and jumping. While these activities produce high
acceleration peaks similar to a fall, rotational angular veloc-
ities are much lower than seen in fall events and therefore
are not triggered by the proposed algorithm. �e inclusion
of a check for body angular velocity threshold dramatically
improves speci	city from 82.72%without gyroscope to 96.2%
with gyroscope. As there is a tradeo� between sensitivity and
speci	city, optimization of key thresholds via ROC analyses
provides a systematic strategy formaximizing both sensitivity
and speci	city simultaneously.

5. Conclusion and Future Work

Fall detection is an important focus area in elderly care
and greatly a�ects health, wellness, and disability. In this
study, an optimized fall detection algorithm was developed
using acceleration and angular velocity data collected from
a wireless sensor system located in the center chest. Using
an optimization approach, critical thresholds are determined
through this work that results in robust fall detection. �e
optimized algorithm was able to detect falls with high
sensitivity (96.3%) and speci	city (96.2%) compared to prior
strategies by other researchers who were able to achieve

either high sensitivity or high speci	city, but not both. �e
methodological approach followed in this e�ort also provides
a systematic approach to selection of critical thresholds for
fall detection that simultaneously optimizes both sensitivity
and speci	city. �e proposed method is a simple threshold
method and, therefore, is easy to port to wearable, electronic
devices or inclusion in other mobile health platforms.

One limitation of this study is that the thresholds and
algorithms were developed using data obtained from young
healthy subjects and, for safety reasons, in a laboratory setting
falling onto a cushioned mat. We expect that actual data
from elderly individuals falling onto normal hard �oors
would experience higher peak accelerations and potentially
higher angular velocities as these falls would be unexpected.
�erefore, we expect the LFTacc, UFTacc, and UFTgyro thresh-
old values from this work would still apply for real-world
scenarios. While the system may be e�ective in detection of
falls, it may be less e�ective in detection of near falls another
clinically important area of falls research.

�e system proposed herein is for a dedicated, wearable
fall detection sensor system. Integration and deployment of
the algorithm onto a smartphone, smartwatch device, or
other mobile communication systems would be bene	cial
not only in detection of a fall, but also in alerting caregivers
and other providers to the fall event. In these instances, the
critical thresholds for the detection algorithm require further
study. We and others have shown peak acceleration measures
during a fall event vary considerably with position on the
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body [16, 20]. Regardless, the proposed strategy of combining
accelerometer and gyroscope measures is still expected to
result in a robust fall detection algorithm.
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