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Using machine learning, we optimized an ultrasmall 

photonic crystal nanocavity to attain a high Q. Training 

data was collected via finite-difference time-domain 

simulation for models with randomly shifted holes, and a 

fully connected neural network (NN) was trained, 

resulting in a coefficient of determination between 

predicted and calculated values of 0.977. By repeating NN 

training and optimization of the Q value on the trained NN, 

the Q was roughly improved by a factor of 10–20 for 

various situations. Assuming a 180-nm-thick 

semiconductor slab at a wavelength approximately 1550 

nm, we obtained Q = 1,011,400 in air; 283,200 in a 

solution, which was suitable for biosensing; 44,600 with a 

nanoslot for high sensitivity. Important hole positions 

were also identified using the linear Lasso regression 

algorithm. © 2019 Optical Society of America 

http://dx.doi.org/10.1364/OL.99.099999 

Photonic crystal (PC) nanocavities comprising a periodic array of 

holes with small irregularities in a high index slab have been studied 

for some decades because of their unique physics and ability to be 

employed as tools in other physics experiments and for 

demonstrating miniature photonic devices. In particular, an H0 

nanocavity formed only by shifting some holes and without missing 

any holes achieves an extremely small modal volume as a dielectric 

cavity indicating particularly dense light localization while 

maintaining a high Q factor [1]. Therefore, it has been utilized for 

laser operation [2, 3], biosensing [4], nonlinear switching [5], and 

cavity quantum electrodynamics [6, 7]. 

Enhancement of the Q factor in PC cavities has been extensively 

investigated as one of their crucial performance parameters [8]. In 

general, the Q value depends on cavity size (or modal volume) and 

situations targeted in each study. For example, Q depends on slab 

thickness tslab, resonance wavelength λ, and environmental index 

nenv. The Q factor is higher for a larger tslab/λ and a smaller nenv. So far, 

Q of the H0 nanocavity has been calculated by using finite-difference 

time-domain (FDTD) method assuming nenv = 1.0 in air, and 

different values have been reported such as Q = 112,000 with tslab/λ 

= 0.190 [1], 760,000 with tslab/λ = 0.139 [7], and 130,000 with tslab/λ 

= 0.090 [2]. In biosensing applications, a device is often operated in 

a solution (let us assume that the nenv of the solution is the same as 

that of water, 1.321). Moreover, tslab is set to be small and a nanoslot 

is often introduced to improve the sensitivity. These conditions 

considerably reduce Q. If the target is a nanolaser biosensor similar 

to the one we have developed, Q > 10,000 will be sufficient for laser 

operation with a standard active semiconductor. However, a much 

higher Q is preferable for robust operation in actual devices with 

some disordering induced during fabrication. The studies 

mentioned above optimized the position of some holes around the 

cavity to enhance Q. Therefore, Q could be further enhanced by 

applying similar optimization to many holes. However, optimizing 

many parameters by repeating the time-consuming FDTD 

calculation is not straightforward. 

 

Fig. 1. Schematic of the H0 PC nanocavity. (a) Overview. (b) Magnified 

view of the hole arrangement around the nanocavity. The solid lines 

show the hole positions modified by machine learning, while the dotted 

lines show the original positions. 

 

The inverse design concept is helpful in optimizing complicated 

photonics devices [9, 10], and some studies have recently employed 

machine learning [11-17]. Asano, et al., applied it to the optimization 

of a large PC cavity and calculated Q of the order 109 [18]. In this 

study, we applied it to the H0 nanocavity focusing on its application 
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to lasing and biosensing. Therefore, we assumed air or a solution as 

the environment and searched for a high Q at a small tslab/λ with and 

without a nanoslot. In general, machine learning is categorized into 

linear and nonlinear models. Nonlinear models such as neural 

network (NN) and random forest regression produce more precise 

models than linear models, while linear models such as Ridge and 

Lasso regression clarify the contribution of explanatory variables to 

the target variable. In this study, we tested all these models and 

finally used a fully connected NN model to find an optimized 

structure. We also analyzed the correlation between Q and hole 

positions using the Lasso regression model; the Lasso model 

expresses the Q value as a linear combination of the parameters 

whose coefficients represent to the partial regression. 

 

Fig. 2. The training process of NN using collected data of the Q factor. (a) 

Distribution of collected data. (b) Transition of error between calculated 

and predicted values. (c) Relation between Q calculated by FDTD and 

predicted by NNW. 

 

The basic structure of the H0 nanocavity comprised a triangular 

lattice PC slab with an index nslab = 3.4, normalized thickness tslab/λ 

= 0.106–0.115, lattice constant a = 500 nm, a hole diameter 2r = 260 

nm, and the shift of the two holes from the center to the outside by 

80 nm, which referred to the GaInAsP PC nanolaser operating at λ ≈ 

1550 nm, was included [2]. First, 38–62 holes around the cavity 

center, which overlapped the major modal electric field, were 

randomly shifted in the x and y directions within a maximum range 

of ±5 nm, and the Q values were collected as training data using 

Lumerical FDTD Solutions. Figure 2(a) shows the logarithmic 

distribution of 300 data collected, which exhibits a Gaussian-like 

distribution. The data is split into training data for model training, 

validation data for hyperparameter tuning, and test data for 

evaluating the performance of the NN model. The NN employed in 

Fig. 2 consists of an input layer corresponding to the shift amounts 

of all the holes, two hidden layers each having 300 neurons, and an 

output layer to give logarithmic Q. We used a stochastic gradient 

descent method with a learning rate of 0.01 to train the NN model. 

Figure 2(b) shows the transition of the squared error for the 

training data. The error was converged when the number of 

iterations exceeds 30,000. Figure 2(c) shows the relation between 

the values calculated by the FDTD and those predicted by the NN. 

The coefficient of determination R2 for the test data was as high as 

0.977 indicating that the NN model well represented the behavior 

of Q in the H0 nanocavity. We also applied the Lasso regression 

model to the similar dataset and confirmed a similarly high 

coefficient of determination of 0.960 when the coefficient of the L1 

norm was 10‒5.  

Based on this first trained NN or Lasso model, we searched for 

the promising structure being expected to show a higher Q value. In 

this process, we first changed only one parameter of the structure 

randomly and obtained a value of the parameter which maximized 

the Q value. Next, we fixed this parameter, and then changed 

another parameter and did the same. We repeated this procedure 

for all parameters and finally obtained a maximum Q. As this Q value 

depends on the order of changing parameters, we tried the same 

procedure by randomly changing the order and obtained some high 

Q candidates. Finally, we verified their values by the FDTD and 

determined the best structure and highest Q. As the next step, we 

collected additional data for similar random shifts, regarding the so-

obtained best structure as the next basic structure and repeated the 

same learning and searching. We repeated the steps several times 

with the data to 4,300 in total.   

Figure 3 shows example structures obtained by these models. 

Black and red lines show the hole positions of the basic and 

optimized structures, respectively. The shift directions of each hole 

are not necessarily the same between the two models’, but the shift 

amounts are small in both cases. The Q value was improved by 

shifting some holes around the cavity and slightly shifting the holes 

apart from the cavity in the diagonal directions along the mode 

penetration. The Q value was improved as the number of shifted 

holes was increased. Figure 3(c) shows the cavity mode profile of 

the optimized structure, which was almost unchanged from the 

basic structure. Figure 3(d) visualizes the normalized partial 

regression coefficients obtained by Lasso (in the color map). We 

defined √(Rx
2 + Ry

2) as the correlation value of each hole, where Rx 

and Ry are the partial regression coefficients for x and y, respectively. 

In Fig. 3(d), it is plotted after normalized by their maximum. In 

general, the holes with larger correlation values are considered as 

important holes for the Q value. We confirmed a particularly high 

regression coefficient at six holes around the cavity. The coefficient 

in the diagonal directions where the mode deeply penetrated was 

also high. It is seen in the comparison between Figs. 3(b) and (d) 

that the shifts of the six holes around the cavity center are very small, 

while their correlation values are large. This is because their 

positions of the basic structure were already close to their optima.  

The highest Q values obtained by using NN are summarized in 

Table 1 when different tslab and nenv are assumed. After the 

optimization, Q increased from its initial value by a factor of 11.7–

18.7. As a result of the optimization, Q reached a value of over one 

million in air, and even though the value of Q reduced in a solution, 

it was still as high as 283,200. The values obtained by the Lasso 

model were roughly 20% smaller than these values, but still 

indicated an improvement. 
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Fig. 3. The H0 nanocavity without nanoslot in a solution optimized by 

NN. (a), (b) The hole positions before (black) and after (red) 

optimization, respectively, which were obtained by using NN and Lasso 

regression models. (c) Mode profile after the NN optimization. (d) 

Visualized coefficient strength between Q and shift amount of each hole, 

which was estimated by the Lasso model. Four arrows indicate the 

directions of mode penetration. 

 

Table 1. The highest Q values of the H0 nanocavity without a 

nanoslot, which were calculated based on the NN model under 

different conditions. 

tslab/λ nenv Initial Q Optimized Q 

0.106 1.0 46,400 779,000 

0.115 1.0 54,200 1,011,400 

0.101 1.321 16,600 194,200 

0.110 1.321 19,600 283,200 

 

 

Fig. 4. H0 nanocavity with nanoslot in a solution, optimized by NN. (a) 

Hole positions before (black) and after (red) optimization. (b) Mode 

profile after the optimization. 

 

Finally, we optimized the H0 nanocavity with a nanoslot, which 

was effective for athermal operation and high sensitivity [3, 4, 19]. 

In general, introducing a nanoslot considerably reduces the Q value. 

Assuming tslab = 180 nm, nenv = 1.321, and a slot width of 50 nm, 

which is experimentally easy to fabricate, the calculated Q value is 

only 4,600. We applied the same strategy as mentioned before and 

collected more than 1,000 data. Figure 4 shows structures before 

and after the optimization as well as the mode profile. The Q value 

increased to 44,600 (9.7 times). This value is considerably lower 

than those in Table 1 without nanoslot, but sufficient to obtain the 

robust operation as a nanolaser. 

In summary, we optimized the structure of an ultrasmall H0 PC 

nanocavity using machine learning and improved the calculated Q 

factor in air and in a solution with and without nanoslot, and for a 

relatively thin slab. A Q value of over one million in air is the highest 

value ever reported for the H0 nanocavity. The Q value increased to 

roughly 10–20 times after the optimization for the different 

situations tested. We can now expect to obtain a more robust 

nanolaser suitable for biosensing. Compared with other inverse 

optimizations of photonic devices, machine learning works 

particularly well for the optimization of PC devices. Even though a 

PC has many holes as optimized parameters, defining them is 

considerably simpler than other photonic devices with smooth and 

complicated shapes. 
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