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RNA-Seq is a widely used technology that allows an efficient genome-wide quantification

of gene expressions for, for example, differential expression (DE) analysis. After a brief

review of the main issues, methods and tools related to the DE analysis of RNA-Seq data,

this article focuses on the impact of both the replicate number and library size in such

analyses. While the main drawback of previous relevant studies is the lack of generality,

we conducted both an analysis of a two-condition experiment (with eight biological

replicates per condition) to compare the results with previous benchmark studies, and

a meta-analysis of 17 experiments with up to 18 biological conditions, eight biological

replicates and 100 million (M) reads per sample. As a global trend, we concluded that

the replicate number has a larger impact than the library size on the power of the DE

analysis, except for low-expressed genes, for which both parameters seem to have the

same impact. Our study also provides new insights for practitioners aiming to enhance

their experimental designs. For instance, by analyzing both the sensitivity and specificity

of the DE analysis, we showed that the optimal threshold to control the false discovery

rate (FDR) is approximately 2−r, where r is the replicate number. Furthermore, we showed

that the false positive rate (FPR) is rather well controlled by all three studied R packages:

DESeq, DESeq2, and edgeR. We also analyzed the impact of both the replicate number

and library size on gene ontology (GO) enrichment analysis. Interestingly, we concluded

that increases in the replicate number and library size tend to enhance the sensitivity

and specificity, respectively, of the GO analysis. Finally, we recommend to RNA-Seq

practitioners the production of a pilot data set to strictly analyze the power of their

experimental design, or the use of a public data set, which should be similar to the

data set they will obtain. For individuals working on tomato research, on the basis of the

meta-analysis, we recommend at least four biological replicates per condition and 20M

reads per sample to be almost sure of obtaining about 1000 DE genes if they exist.

Keywords: transcriptomics, RNA-Seq, biological replicates, library size, differential gene expression analysis,

power, false discovery rate, gene ontology enrichment analysis
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INTRODUCTION

Since its first results were published, RNA-Seq technology has
been widely perceived as a revolutionary tool for transcriptomics
(Wang Z. et al., 2009). It has become a prevalent technology,
allowing an efficient genome-wide relative quantification of gene
expression and, in particular, it is the method of choice to find
differentially expressed genes between two or more biological
conditions of interest. From the beginning, the main issues
related to such DE analysis have been pointed out, and many
methods and tools have been proposed in the relevant literature.
As for any other statistical analysis, one main issue has been
finding the probabilisticmodel that best fits the data, as well as the
optimal parameter estimates of this model. Another important
issue was the need for normalization of the data to correctly
compare two different biological conditions by assessing and
erasing all eventual technical and/or biological biases. Last but
not least, the practical need to find the optimal number of
biological replicates per condition and the optimal library size
have also been highlighted in many studies. Here, we introduce
these issues and review some widely used methods and tools for
DE analysis. This review will help us to choose the most relevant
methods and tools to perform DE analyses in the present work.

The Probabilistic Model
The problem of finding the best model to fit RNA-Seq data has
been tackled recently by Gierlinski et al. (2015). The authors
recommend the use of tools based on the negative binomial
distribution. These tools include edgeR, DESeq, DESeq2, Cuffdiff,
Cuffdiff 2, and baySeq (Anders and Huber, 2010; Hardcastle and
Kelly, 2010; Robinson et al., 2010; Trapnell et al., 2012, 2013; Love
et al., 2014). There are also some non-parametric methods that
can be used as alternatives when the data do not seem to fit the
negative binomial law, but these methods are less often used and
usually require a higher replicate number to perform equally well
(Spies and Ciaudo, 2015).

The Normalization Method
When the RNA-Seq technology was first introduced, Wang H.
et al. (2009) and other pioneers thought that it could be used
without sophisticated normalization methods. On the contrary,
Bullard et al. (2010) have demonstrated the high impact of
the normalization procedure on the DE analysis. Many of the
normalization methods proposed in the literature are based on
the correction of biases or artifacts directly related to the RNA-
Seq technology, such as transcript lengths and sequencing depths,
non-uniformity of read distributions along transcripts and
strong sample-specific GC-content effect (Mortazavi et al., 2008;
Oshlack and Wakefield, 2009; Zenoni et al., 2010; Risso et al.,
2011; Roberts et al., 2011; Tarazona et al., 2011; Hansen et al.,
2012). The relative size of transcriptomes in the studied biological
conditions is another crucial, not technical, bias affecting DE
analysis. Such a bias has been addressed by Robinson and
Oshlack (2010) and Anders and Huber (2010), who proposed,
respectively, the trimmed mean of M-values (TMM) and the
relative log expression (RLE) normalization methods (Anders
et al., 2013). Moreover, it has been shown that both the TMM and

RLE methods give similar results and outperform other existing
normalization methods in DE analysis (Dillies et al., 2013; Maza
et al., 2013). Nevertheless, Chen et al. (2016) have shown that
spike-in controls are compulsory for the normalization of some
particular RNA-Seq experiments, but these situations are not
predominant in practice, and fall outside the scope of our article.

Benchmark Articles on Replicates and
Depth
To our knowledge, only a few recent articles have aimed to
exclusively and deeply analyze the impact of the replicate number
and library size (or depth) on a DE analysis. Three studies
conclude that increasing the number of biological replicates is
globally a more efficient strategy than increasing the library sizes,
in order to enhance the power and the false discovery rate (FDR)
of a DE analysis (Ching et al., 2014; Liu et al., 2014; Schurch
et al., 2016). Nevertheless, these three studies also give specific
results concerning their analyzed data sets. Liu et al. (2014) and
Ching et al. (2014) conclude that, with their analyzed data sets,
a library size of respectively 10 and 20M reads per sample is the
minimum threshold for an effective DE analysis. Schurch et al.
(2016) give more general recommendations based on their single
data set study; they recommend at least six biological replicates
per condition in general, and at least 12 replicates to identify the
majority of DE genes. In addition, some authors provide tools to
estimate an optimal number of biological replicates per condition
based on a pilot data set of the given experimental design or
on the specification of desired coefficients of variation (CV) or
dispersions of the future results (Busby et al., 2013; Hart et al.,
2013; Li et al., 2013; Ching et al., 2014; Wu et al., 2015).

Some Methods and Tools Performing DE
Analysis
With the rise of the RNA-Seq technology, many methods and
tools have appeared for DE analysis (Table 1 gives an almost
comprehensive list of 29 R packages or tools dedicated to DE
analysis, and summarizes information above concerning the used
probabilistic model and normalization method). Consequently,
many comparison studies have been carried out, but there is
not yet a gold standard method. Moreover, many comparison
studies highlight that no single method outperforms others
in all circumstances (Rapaport et al., 2013; Soneson and
Delorenzi, 2013; Zhang et al., 2014; Seyednasrollah et al.,
2015). Nevertheless, it seems that some tools are particularly
appropriate. Soneson and Delorenzi (2013) concluded that, for
large sample sizes, the limma methods perform well, as does
the non-parametric SAMseq tool. Seyednasrollah et al. (2015)
concluded that limma and DESeq methods are the safest choices
with a small number of replicates, that edgeR gives very variable
results, and that SAMseq suffers from a lack of power. Also,
with many replicates, the choice of the method and/or tool is
less critical (unless for NOISeq and Cuffdiff 2). Rapaport et al.
(2013) concluded that DESeq, edgeR, and baySeq have superior
specificity and sensitivity, and seem to outperform the limma
and PoissonSeqmethods. The worst method seems to be Cuffdiff.
Burden et al. (2014) concluded that the QuasiSeq tool achieves a
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low FDR providing the number of replicates in each condition
is at least 4. The next best performing packages are edgeR and
DESeq2. In other studies, both edgeR and DESeq seem to give
similar and correct or better results (Kvam et al., 2012; Robles
et al., 2012; Zhang et al., 2014; Conesa et al., 2016; Lin et al., 2016).

Table 1 also provides the number of citations of articles
introducing above cited tools. We notice that edgeR appears first
with 22% of citations, followed by Cufflinks (21%, but we do not
know the number of citations that are exclusively due toCuffdiff ),
DESeq (20%), DESeq2 (9%), and then, all other tools below 6%.

Finally, the choice of the methods we used in this article
for DE analyses was done by looking at considerations above
and comparison studies, but also considering that our in
silico approaches were extremely time consuming and that no
comprehensive study was able. We then decided to compare the
following four widely used methods: DESeq, DESeq2, edgeR with
the exact test and edgeR with the GLM. Moreover, considering
again comparison studies above, these four methods seem to give
similar results, and we then arbitrarily chose only one for the
most time consuming analyses.

In the present article, we aim to study the impact of the
replicate number and library size on the DE analysis of an
RNA-Seq experiment involving the tomato fruit model (Solanum
lycopersicum). Our study rely on two data sources. On the one
hand, we analyzed a two-condition data set with eight biological
replications per condition and 20M reads per sample from
the Tomato Ovary Gene Expression (TOGE) project. On the
other hand, in order to give more general recommendations,
we performed a meta-analysis with all the RNA-Seq experiments
available on the TomExpress platform, i.e., 16 projects, 124
biological conditions, and 348 biological samples (Zouine et al.,
2017).

MATERIALS AND METHODS

Plant Materials and Experimental Design of
the TOGE Project
Tomato plants (Solanum lycopersicum L. cv. Micro-Tom) were
grown in a culture chamber set as follows: a 14 h/10 h day/night
cycle, a 25◦C/20◦C day/night temperature dynamic, 80% relative
humidity, and 250 µmol·m−2

·s−1 light intensity.
The ovaries (including style and stigma) and the developing

young fruits were collected as samples. Ovaries were picked on
the first day of flower opening (anthesis stage) and set as 0 days
post-anthesis (DPA). Developing young fruits were picked 4 days
after this natural pollination stage and set as 4 DPA. Sampling
procedures were mainly as described in Wang H. et al. (2009).
Eight biological replicates were performed for each studied
condition (0 DPA and 4 DPA). For each biological replicate, more
than 50 ovaries were pooled from 25 plants.

Total RNA was isolated from 200 and 500mg, respectively,
of ovary and young fruit powders (TRIzol Reagent, Life
Technologies). After DNase treatment (DNA-free Kit, Life
Technologies), the total RNA quantity and quality were assayed
using an Agilent 2100 Bioanalyzer (Agilent Technologies). Only
RNA with an RNA integrity number (RIN) above 8.0 was used
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for sequencing. The RNA libraries were constructed as described
in the Illumina TruSeq Stranded mRNA Guide. mRNA was
sequenced in a HiSeq 2500 sequencing system with 2 × 125 bp
paired-end sequences (Illumina HiSeq SBS Kit v4).

RNA-Seq Data Mapping and Quantification
of the TOGE Data
A quality check of the raw sequences was made with FastQC1.
Trimming was performed with PRINSEQ (version 0.20.3)
with the option –trim right. Reads were aligned with a
spliced alignment tool to the genome of Solanum lycopersicum
(SL2.40.22 and ITAG.2.3 GFF3 annotation file) with TopHat 2
(version 2.0.14) (Kim et al., 2013). On average, between 80 and
90% of the reads were aligned to the reference genome.

We randomly down-sampled the reads to generate data sets
of 2.5, 5, 7.5, 10, 15, and 20M reads using the python script
get_subset.py before alignment on the reference genome2. We
used SAMtools view option –s for down-sampling the reads after
the alignment on the reference genome (Li et al., 2009).

Raw counts were generated on each gene by using HTSeq-
count (version 0.6.1p1) with the option –stranded=reverse
(Anders et al., 2015). Moreover, since reads can overlap one or
more features, we used the mode intersection-non-empty, which
guarantees the highest number of assignments.

DE Analysis of the TOGE Data
All DE analyses of the Number of DE genes (section Number of
DE Genes of the TOGEData) and Power (section Power Analysis
of the TOGE Data) were performed with R software (version
3.2.0) and the dedicated edgeR package (version 3.6.8) (Robinson
et al., 2010; R Core Team, 2015). No filtering was applied. The
TMM normalization method was performed to normalize the
counts among the different samples (Robinson and Oshlack,
2010; Maza et al., 2013; Maza, 2016). The dispersion parameter
was estimated in two different ways, depending on the number of
replicates, to enable a more robust estimation: if the number of
replicates was less than or equal to 4, we estimated the dispersion
by the CommonDisp function; otherwise, the dispersion was
estimated using the TagwiseDisp function (Robinson et al., 2010).
In order to detect significantly DE genes, we used the exactTest
function. A gene was declared as significantly DE if its adjusted
p-value (controlling the FDR) was less than 0.05 (Benjamini and
Hochberg, 1995).

To analyze the impact of the number of replicates and the
library size on the DE analysis, we built 45 data sets for each
number of replicates among two, three, four, five, six, and seven
replicates, and each library size among 2.5, 5, 7.5, 10, 15, and 20M
reads. Each replicate was randomly chosen without replacement
among the eight samples for each condition. We then analyzed
36 combinations of replicate number and library size, from the
smallest with two replicates and 2.5M reads to the largest with
seven replicates and 20M reads. Then, for each combination, we
had 45 DE gene lists, and we computed the median of the two
studied indicators: the number of DE genes and the estimated

1https://www.bioinformatics.babraham.ac.uk/projects/fastqc
2https://github.com/happykhan/nfutil/blob/master/get_subset.py

power. Obviously, for eight replicates and each library size, we
only had one data set and then one indicator. For the calculation
of the power, we needed a reference list of DE genes. For this
purpose, we chose the DE genes that were found with all available
information (i.e., with eight replicates and 20M reads) and with
a very stringent adjusted p-value = 0.0001. Then, for a given DE
gene list, the power was calculated by the ratio of the number of
true DE genes (i.e., genes that are considered to be DE and that
belong to the reference list above) to the total number of genes
in the previous reference list (see also the section “Sensitivity and
Specificity” below).

Moreover, to calculate the stability of each indicator, we
retained, for each combination of replicate number and library
size, the DE genes that were common to all 45 data sets. We then
calculated both indicators for this new list of DE genes.

Finally, to analyze the impact of the gene expression level on
the studied indicators, the gene set was divided into three parts:
genes with low counts, genes with medium counts and genes
with high counts, i.e., those with a logCPM (counts per million
reads) less than the first quartile, between the first and the third
quartile, and higher than the third quartile, respectively. Both
indicators were then calculated and presented for both low and
high expression levels.

Gene Ontology (GO) Analysis of the TOGE
Data
We performed an enrichment analysis with the goseq R package
(version 1.20.0) (Young et al., 2010). As tomato is not referenced
in goseq, we manually built the list of GO biological process
(BP) identifiers and lengths of genes. The tomato GO terms
were downloaded from the UniProtKB database3. The goseq
tool is suitable for RNA-Seq enrichment analysis, since it allows
an adjustment for gene selection thanks to differences in gene
lengths, which are known to affect the variance of gene expression
estimates. BP categories with p-values less than 0.05 were
considered to be significantly enriched. For each combination of
depth and replicate number, lists of the common BP categories
obtained for the 45 essays were extracted and analyzed (in the
same way as described above for the stability of the number of
DE genes and the power).

Sensitivity and Specificity of the TOGE
Data
For a given DE analysis method, the sensitivity (or true positive
rate, TPR) and the specificity (or true negative rate, TNR) are
defined as follows. The TPR is the number of significantly DE
genes that are true DE genes, divided by the total number of true
DE genes. The TNR is the number of non-significant DE genes
that are true non-DE genes, divided by the total number of true
non-DE genes. Moreover, we have that specificity = TNR = 1 –
FPR (false positive rate). The FPR is then equal to the number of
significantly DE genes that are true non-DE genes, divided by the
total number of true non-DE genes.

The four DE analysis methods studied here were carried out
using the R software environment (version 3.1.3) (R Core Team,

3http://www.uniprot.org
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2015) and the corresponding packages DESeq (version 1.18.0),
DESeq2 (version 1.6.3), and edgeR (version 3.8.6) with both GLM
method and the exact test method. All four methods have been
applied with the corresponding default normalization methods
and parameterizations. All these packages can be uploaded from
the Bioconductor website (Gentleman et al., 2004).

As described above, the calculation of TPR, TNR, and FPR
values requires the knowledge of the list of all true DE genes
between our two biological conditions, which is obviously not
the case in practice. In order to estimate these true DE genes, we
performed a prior DE analysis for each method with the whole
data set, i.e., eight replicates per condition and all available reads.
Moreover, for this prior analysis, we chose a stringent threshold
equal to 0.001 to control the FDR (Benjamini and Hochberg,
1995). We then obtained four lists of genes that estimated the
unknown list of truly DE genes for the four DE analysis methods.
Using a specific estimated list of truly DE genes for each method
enables a relatively objective measure of the performance of each
method (Schurch et al., 2016).

DE Meta-Analysis of TomExpress and
TOGE Data
A DE meta-analysis was performed for all the biological
conditions of the TomExpress and TOGE data sets. For each pair
of biological conditions, a DE analysis was done with the DESeq2
R package with default settings and a threshold of 0.05 to control
the FDR.

For a given condition, simulated replicates were carried
out by a convex linear combination of existing replicates
with uniform random coefficients. For this purpose, we used
conditions that had two or more replicates. Then, for each
simulated replicate, raw counts were randomly carried out with
a multinomial distribution with probabilities given by the true
observed probabilities of genes, and with library sizes of 5, 10, 15,
20, and 25M reads. These calculations aim at simulating pseudo-
replicates that have almost the same characteristics (means and
variances) as the true ones.

RESULTS

Number of DE Genes of the TOGE Data
The number of significantly DE genes obtained between
conditions 0 DPA (flower before pollination) and 4 DPA
(flower after pollination) is shown in Figure 1. More precisely,
Figures 1A,B show the evolution of the number of DE genes
depending on the library size and the replicate number,
respectively. In the same way, Figures 1C,D focus on the stability
of the number of DE genes, depending also on the library size
and the replicate number. Note that the number of DE genes is
hereafter defined as the median number of DE genes obtained for
45 DE analyses, and, in the same way, the stability of the number
of DE genes is defined as the number of common DE genes
obtained for the 45 DE analyses (see Materials and Methods).

All the observed curves in Figures 1A,B show a more or less
increasing dynamic, which clearly reflects that both the depth
and the replicate number are important in the detection of DE
genes. Nevertheless, by comparing dynamics of genes with low

and high expressions, it seems that the former are more impacted
than the latter by the increase in depth, as curves representing
low-expressed genes increase faster than curves representing
high-expressed genes (Figure 1A). The increase of the replicate
number seems to have the same impact on both expression
levels (Figure 1B). Moreover, for all genes, the rate of increase
seems to diminish after 10M reads (Figure 1A) or five replicates
(Figure 1B). Nevertheless, this phenomenon seems to be less
intense for low-expressed genes (Figure 1B).

To determine whether the library size or the replicate number
has a relatively higher impact on the number of DE genes, we
needed to compare combinations of these two parameters that
shared the same total amount of reads. This comparison is shown
in Figure 1A, where symbols with a black border represent a
combination with a total amount of about 40M reads. Moreover,
the three curves in Figure 1A, depicted by black border circles,
triangles and squares, can be interpreted as follows: a constant
curve implies an equal effect of the depth and replicate number
parameters, a decreasing curve implies a higher impact of the
replicate number, and an increasing curve implies a higher
impact of the library size. We can then clearly see in Figure 1A

that, for all genes, the number of replicates has a higher impact
on the number of DE genes than the library size. By looking solely
at high-expressed genes, we can see that the replicate number is
again more important than the library size. On the contrary, low-
expressed genes seem to be equally impacted by the library size
and the replicate number.

The stability of the number of DE genes represented in
Figures 1C,D is an indicator quantifying the dispersion of
the number of DE genes: a higher stability reflects a lower
variability of the declared DE genes (see Materials and Methods).
Biologically speaking, the stability is perhaps a more important
indicator than the number of DE genes, in that it reflects the
variability of the DE analysis method. Globally, we can see
from Figures 1C,D that the stability has lower values than the
number of DE genes described above. For instance, for three
replicates and 15M reads, we have about 14,000 DE genes
and a stability of 10,000 DE genes, which means that about
30% of the declared DE genes are specific to the biological
replicates. Moreover, for all genes, it appears that the increase
rate of the stability curves depending on the replicate number
(Figure 1D) is higher than that of the curves of the number
of DE genes (Figure 1B), while it remains almost equal for
the curves depending on the library sizes (Figures 1A,C). This
indicates that the gain of robust DE genes, i.e., DE genes that
do not depend on the biological variability, is higher when
adding replicates than when increasing the library size. For high-
expressed genes, this dynamic is more intense than for low-
expressed genes, which can still gain robustness by increasing the
library size.

Comparing the effects of library size and replicate number on
stability (by looking as above at symbols with a black border in
Figure 1C representing a constant total number of reads), we can
see that the effect of the replicate number on stability is greater
than that on the number of DE genes (curves decrease faster than
in Figure 1A). Moreover, even low-expressed genes seem to have
a slightly decreasing curve.
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FIGURE 1 | Number of DE genes depending on the depth (A) and on the replicate number (B). Stability of the number of DE genes depending on the depth (C) and

on the replicate number (D). Symbol colors correspond to the replicate numbers for (A,C) and to the library sizes for (B,D). Colored circles, triangles, and squares

represent, respectively the values obtained with all genes, high expressed genes, and low expressed genes. Colored circles, triangles, and squares that are

surrounded with a black line correspond to combinations of library sizes and replicate numbers with a total amount of 40M reads approximately.

Power Analysis of the TOGE Data
Figure 2 shows the power of the DE analyses performed
between conditions 0 DPA and 4 DPA. More precisely, in the
same way as in Figure 1, Figures 2A,B show the evolution
of the power depending on the library size and the replicate
number, respectively. Figures 2C,D show the stability of the
power depending on the library size and the replicate number,

respectively. Note that the power is hereafter defined as the
median percentage of true DE genes obtained for the 45 DE
analyses, and, in the sameway, the stability of the power is defined
as the power corresponding to the common true DE genes
obtained for the 45 DE analyses (see Materials and Methods).

Clearly, in the same way as for the number of DE genes
discussed in the previous section, both the power and its stability
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FIGURE 2 | Power of the DE analyses depending on the depth (A) and on the replicate number (B). Stability of the power depending on the depth (C) and on the

replicate number (D). Symbol colors correspond to the replicate numbers for (A,C) and to the library sizes for (B,D). Colored circles, triangles, and squares represent

respectively the values obtained with all genes, high expressed genes, and low expressed genes. Colored circles, triangles, and squares that are surrounded with a

black line correspond to combinations of library sizes and replicate numbers with a total amount of 40M reads approximately.

increased with both the library size and the replicate number.
Moreover, for all genes, the increase rate diminishes after 10M
reads for all curves of Figure 2A, and after five replicates
for all curves of Figure 2B, except for the curve with 5M
reads. For high-expressed genes, the power curves are globally
higher than for all genes but have the same trend. On the
contrary, for low-expressed genes, the power curves are lower

than for all genes, but their rate of increase decreases more
slowly.

The large impact of both library size and replicate number on
the power for low-expressed genes can be confirmed by looking
at black border symbols in Figure 2A, which correspond to a
constant number of reads. Indeed, for all genes and for high-
expressed genes, the replicate number has a higher impact on
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power than the library size, whereas low-expressed genes seem
to be equally impacted by both parameters.

In Figures 2C,D, it can be clearly seen that the power stability
is much lower than the power. For instance, for three replicates
and 15M reads, the power is around 88% (Figure 2A) and the
power stability is around 68% (Figure 2C), underlining that
approximately 20% of the founded true DE genes depend on
the biological variability. This effect is much more intense for
low-expressed genes.

Finally, even more than for the number of DE genes discussed
above in Figure 1, the impact of the replicate number on
the power stability is higher than the impact of the library
size. Indeed, by looking at black border symbols in Figure 2C

corresponding to a constant number of reads, it is clear that the
decrease rates of all gene curves, and of both low- and high-
expressed gene curves, are much more intense than those of the
corresponding curves in Figure 2A.

Sensitivity and Specificity of the TOGE
Data
Here, we analyze the sensitivity and the specificity of four classical
and widely used DE analysis methods: the first one developed in
theDESeqR package, the second from theDESeq2R package, and
two others from the edgeR R package, namely the GLM and the
exact test methods (see Materials and Methods).

Calculations of sensitivity (TPR) and 1−specificity (FPR)
depend on the knowledge of the true list of DE genes for the
biological conditions in question. This list is obviously not known
in practice, and we therefore need to estimate it. In a study of the
optimal replicate number, this kind of estimation is classically
done by considering that true DE genes can be found with
all data information, i.e., all replicates, and a very stringent
threshold to control the FDR (see Materials and Methods). We
then obtain the following estimated numbers of so-called true
DE genes: 15110 with DESeq, 17010 with DESeq2, 17115 with
edgeR GLM, and 16943 with edgeR exact test. The number of
commonly declared true DE genes in the four methods is equal
to 15046, which corresponds to approximately 86% of genes that
have been declared true DE with at least one method. Only the
DESeq method seems to be more stringent, since the other three
methods all declare 94% of these same genes as true DE. The
Venn diagram of these results is shown in Figure S1. Globally, the
estimated true DE genes are almost the same in all four methods.
We used these estimated true DE genes to estimate TPR and FPR
values (see Materials and Methods).

Figure 3A represents, for each of the four studied methods,
the percentage of significant DE genes (%DE) and the estimated
TPR and FPR values depending on the number of replicates
(from 2 to 7) with a fixed threshold of 0.01 to control the FDR.
Moreover, each value estimation randomly repeated 30 times for
each method and each number of replicates, a boxplot of these
values is shown in the figure. We can clearly see in this figure
that the %DE globally increases for all methods.DESeq2 seems to
catch more DE genes for any number of replicates; edgeR GLM
and edgeR exact test seem to have the same behavior. It is also
clear that the TPR increases for all four methods, with decreasing

variability: 90% of all DE genes are found with four replicates,
increasing to almost 100% with seven replicates, although the
gain is minimal with five and more replicates; edgeR GLM and
edgeR exact test have slightly higher TPR values for a reduced
replicate number (two or three replicates), but these values are
more dispersed. A less obvious result is that FPR values also
increase with the number of replicates, from about 1% with
two replicates to about 6% with seven replicates. We then have
a negative impact of the increasing number of replicates on
FPR. This trend was also seen for both low- and high-expressed
genes, depending on both replicate number and library size (see
Figure S2).

An alternative way to estimate the FPR for a given DE analysis
method consists of performing theDE analysis between replicates
of the same biological condition (Schurch et al., 2016). Clearly, in
that case, all DE genes are false discoveries. Figure 3B represents,
for each of the four studied methods, the estimation of the
FPR depending on the number of replicates with, as before, a
fixed threshold of 0.01 to control the FDR. We again randomly
repeated themeasure 30 times for eachmethod and each replicate
number. We can easily see that, in this case, all methods control
the FDR very well. Indeed, all methods have only three values
that are higher than 1% (for two and three replicates). Moreover,
with five or more replicates, all FPR estimations are equal to 0
(see Figure S3 for a zoomed version of Figure 3B). This result is
contradictory with Schurch et al. (2016), for which DESeq2 gives
higher FPR values than DESeq, edgeR GLM and edgeR exact test.

Estimation of the Optimal Threshold
Controlling the FDR from Receiver
Operating Characteristic (ROC) Curves
Depending on Replicate Number
In the above section, TPR and FPR were calculated for a fixed
value of the threshold controlling the FDR (0.01). We now
investigate the impact of this threshold on both TPR and FPR
values by calculating them with different threshold values in the
interval [0,1]. Figure 4 shows the ROC curves obtained for each
replicate number from 2 to 7 with the DESeq2 method. Recall
here that a ROC curve is preferred to another one when its
values are higher; we can then see clearly that increasing the
replicate number gives better ROC curves, with an optimal curve
corresponding to the curve with seven replicates (blue curve).

More interestingly, we can also see that the optimal threshold
values of these ROC curves, i.e., the black-boxed values of
the zoomed graph of Figure 4, decrease when the replicate
number increases: 0.3 for two replicates, 0.11 for three replicates,
0.04 for four replicates, and so on, and eventually 0.0025
for seven replicates. Hence, for instance, an arbitrary choice
of 5% for a DE analysis with three replicates per condition
would not be optimal, in the sense that with a threshold of
about 10% we would have many more true positive genes
and only slightly more false positive ones (see red values
on the zoomed graph of Figure 4). We here recall that
the multiple testing correction procedure is based, among
others, on the number of performed tests, and that our
analysis does not modify this approach, but only highlights
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FIGURE 3 | (A) Represents the percentage of DE genes (%DE), the estimated True Positive Rate (TPR) and the estimated False Positive Rate (FPR) for each of the

four studied methods, depending on the replicate number. Each estimation has been randomly carried out 30 times and the boxplot of these repetitions has been

drawn. (B) Represents, in the same way, FPR values calculated between replicates of the same biological condition.

the relationship between the replicate number and the optimal
threshold controlling FDR (which can be chosen by the
user).

Furthermore, almost identical results can be obtained for the
other three methods: DESeq, edgeR GLM and edgeR exact test
(see Figures S4–S6). Moreover, for all four methods, the optimal
value of the threshold to control the FDR is approximately
equal to 2−r, where r is the number of replicates: 0.25 for two
replicates, 0.12 for three replicates, 0.06 for four replicates, and
so on, and finally 0.007 for seven replicates (see Figure S7 for the
estimation).

Figure 5 shows ROC curves for all four methods for 2–
7 replicates. It can be seen that, for each replicate number,
the DESeq method seems to give optimal results; indeed, the
corresponding continuous black line is almost always above all
other lines. Moreover, DESeq2 and edgeR exact test give similar
results, and edgeR GLM gives the worst ones. Nevertheless, for
a higher number of replicates (more than five), these differences
tend to be less intense.

GO Enrichment Analysis of the TOGE Data
To assess the impact of both the library size and the replicate
number on the detection of GO BP categories, we conducted
a GO enrichment analysis at each different combination of
depth and replicate number using the goseq R package. Figure 6
shows the evolution of the number of both true and false
positive categories depending on library size and replicate
number. The green bar for eight replicates corresponds to
the reference gene list obtained with all possible information
(i.e., all replicates and all reads). As shown in Figure 6,
for a given replicate number, the increase of the library
size from 2.5 to 20M reads does not significantly impact
the number of enriched BP categories, but seems to slightly
decrease the number of false positive ones. However, when
increasing the replicate number from 2 to 7, the number of
enriched BP categories was almost tripled. These results suggest
that the enrichment stability of the BP categories depends
more on the biological replicate number than on the library
size.
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FIGURE 4 | ROC curves for 2, 3, 4, 5, 6, and 7 replicates. Each curve is calculated by varying the padj parameter of the DESeq function (DESeq2 package) between

0 and 1. A zoom of the top left corner of the ROC curves is also provided with the detailed padj values.

DE Meta-Analysis of TomExpress and
TOGE Data
ADEmeta-analysis has been performed with all the TomExpress4

data plus the TOGE data described above. TomExpress is an
RNA-Seq platform that was developed to provide the tomato
community with a dedicated browser and tools for public RNA-
Seq data handling. Our analysis was performed on 17 projects,
each containing from two to 18 biological conditions with up to
eight biological replicates and 100M reads. Two kinds of analyses
were performed: a description of all DE analyses performed in
each project, and a simulation of all possible DE analyses of all
pairwise biological conditions of all projects for different replicate
numbers and library sizes. The results of these two analyses are
described hereafter.

For the first descriptive analysis and for each project,
we performed all possible DE analyses of all pairwise
biological conditions. We then obtained a total of 604 pairwise

4http://gbf.toulouse.inra.fr/tomexpress

comparisons. For each DE analysis, we extracted the following
characteristics: the number of DE genes, the rounded mean

number of biological replicates per biological condition, the

mean library size per biological replicate, the mean absolute
distance between two biological condition means, and the mean

of all gene variances in both biological conditions. Figure 7

summarizes the obtained values for each distance and variance
level using boxplots of the number of DE genes depending on

the replicate number. Figure 7 also shows, for each distance and

variance level, the median number of DE genes for low, medium

and high sequencing depth (corresponding, respectively, to the

blue, orange, and red dots and lines). We can clearly observe that

a higher distance or a lower variance tend to globally increase

the number of DE genes. Moreover, as expected, for given

distance and variance levels, an increasing number of replicates
or increasing sequencing depth also tend to increase the number

of DE genes. Nevertheless, the number of DE genes does not

only depend on these four parameters, even if it is deeply linked
to them. Obviously, the number of DE genes also depends on the
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FIGURE 5 | ROC curves for all four studied methods, DESeq, DESeq2, edgeR (GLM) and edgeR (exact), for 2, 3, 4, 5, 6, and 7 replicates. Each curve is calculated by

varying the parameter controlling the FDR with the corresponding method, between 0 and 1. A zoomed graph of the upper left corner of the ROC curves is also

shown.

biological conditions themselves, which contribute to the huge
variability of the number of DE genes in Figure 7.

In a second analysis, we performed DE analyses of all pairs of
biological conditions, no matter which project they came from.
Moreover, for each biological condition, we simulated between
two and 21 replicates with library sizes of 5, 10, 15, 20, and
25M reads (we repeated each simulation three times). The DE
analysis was then performed to extract the number of DE genes
with a threshold of 0.05 to control the FDR (see Materials and
Methods).We finally obtained 5565 pairs of biological conditions
× 20 different numbers of replicates× 5 different sizes of libraries
× 3 repetitions = 1,752,975 pairwise DE analyses. Boxplots of
the number of DE genes are shown in Figure 8, depending on
the sequencing depth and on the replicate number. By looking at
the minimal number of DE genes of each boxplot in Figure 8,
it can be seen that we need at least four replicates and 20M
reads to be almost sure of obtaining a significant number of DE
genes, i.e., about 1000 DE genes (minimum of the red boxplot).
Obviously, these 1000 DE genes roughly correspond to the
minimum of what could be found in silico, and, moreover, only
other experimental approaches (as qPCR analyses) will be able to
validate the differential expressed genes. Then, to obtain almost
the same number of DE genes, no matter which conditions are

studied, we would need about five or six replicates with 10 and
15M reads, respectively, and about seven replicates with only 5M
reads. We can also see from Figure 8 that, globally, the number
of new DE genes tends to be minimal after 10 replicates.

DISCUSSION

In the present work, we have conducted a thorough analysis
of the impact of both replicate number and library size on
an RNA-Seq DE analysis. In this discussion, we will compare
our results to those obtained by Ching et al. (2014), Liu et al.
(2014) and Schurch et al. (2016), who are, to our knowledge, the
only authors that exclusively and deeply address these questions.
After reviewing these three benchmark articles, we can conclude
that their main drawback is the lack of generality. Indeed,
their analyses were performed on, respectively, one data set
with two conditions, six data sets (from mouse and human
tissues) with between six and 129 conditions, and one data
set with 48 conditions. Clearly, their conclusions cannot be
easily generalized. In regards to our study, on the one hand,
we performed a study on a single data set (the TOGE data
set), the results of which will be compared with those of the
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FIGURE 6 | Number of true and false positive BP categories from GO analyses (y-axis) depending on the replicate number (x-axis). The eighth bar corresponding to 8

replicates has been chosen as a reference.

three benchmark articles described above. On the other hand,
we performed a meta-analysis on 17 projects, 126 biological
conditions, and 364 biological samples of the tomato fruit model,
leading then to more general results.

As did the three benchmark articles, our study concludes that
an increase in the replicate number or the library size increases
the number of significantly DE genes and the power. However,
Liu et al. (2014) found that the increase in the replicate number
had a higher impact than the increase of the library size on both
the number of DE genes and the power for all gene expression
levels. On the contrary, and consistent with Ching et al. (2014),
we showed that this impact is slightly less important for low-
expressed genes; more precisely, these genes are equally impacted
by the increase in the replicate number and the increase in the
library size in terms of gain of number of DE genes and power.

All three reference studies and ours show that the curves
of number of DE genes and power depending on the library
size or on the replicate number reach a plateau after a given
value. Nevertheless, it appears that this value is different from
one study to another, from one data set to another, between
5 and 20M reads, and between three and 25 replicates. This
result shows, as is emphasized by Liu et al. (2014) in their
conclusion, the inability of a single study to give generalizable
results, and the need for cross-validation analyses comparing the
results of several studies. Surprisingly, Schurch et al. (2016) give
general recommendations based on their single data set study.
For instance, they recommend at least six biological replicates

per condition in general, and at least 12 replicates per condition
if identifying the majority of all DE genes is important. In our
opinion, these recommendations should be nuanced.

As a novelty, we have introduced the notion of stability of
the number of DE genes and power. These two indicators are
defined, respectively, as the number of DE genes and power
calculated with the common list of DE genes obtained with all
simulated samples with given parameters. The stability is then a
better biological indicator for the number of DE genes or power.
From our results, we can observe very little stability of the power
for low-expressed genes, which shows that the list of DE genes
is highly related to the used samples. For example, with three
replicates and 15M reads, we have a power of about 85% and
a stability of the power of about 25%. For stability indicators of
both the number of DE genes and the power, we showed that
the increase of the replicate number has a higher impact than
the increase of the library size for all gene expression levels. This
impact is much higher than for the number of DE genes and the
power.

We also estimated the FPR, i.e., the probability of falsely
declaring a gene as DE, depending on the replicate number,
with replicates of both conditions of the TOGE data (as for the
power estimation) and with only biological replicates of a given
condition (i.e., with, theoretically, no DE genes). All estimations
were carried out with a threshold equal to 0.01 to control the
FDR. For the former estimation, we pointed out the increase
in the FPR with the replicate number, from about 1% with two
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FIGURE 7 | Number of DE genes for each pair of conditions (y-axis) depending on replicate number per condition (x-axis) are represented (by mean of boxplots) for

given levels of distances between conditions and of variances of these conditions (low, medium, and high levels). Blue triangles, orange squares, and red circles

represent the median numbers of DE genes for respectively low, medium and high library sizes.

replicates to 6% with seven replicates. To our knowledge, this
drawback linked to the increase in the replicate number has not
been underlined before in the literature. On the other hand, the
results of the latter estimation show that the FPR is rather well
controlled by the four studied methods (DESeq, DESeq2, and the
twomethods from edgeR). These results are in contradiction with
those of Schurch et al. (2016), who found thatDESeq2 gave worse
results than the other methods.

Another striking result that has not been shown yet in the
literature, to our knowledge, is the impact of the threshold
controlling the FDR on both the TPR and FPR. Indeed, by
means of ROC curves depending on the threshold, we have
shown that the optimal value for this threshold is almost equal
to 2−r, where r is the replicate number. For instance, the optimal
threshold is almost equal to 0.25 for two replicates, 0.12 for
three replicates, 0.06 for four replicates, and so on. Obviously, as
discussed before, this result has only been shown for our TOGE
data, but the trend should still remain for other similar data sets.

This result was shown for all four DE analysis methods studied.
Moreover, we showed that for more than five replicates, the four
methods give almost the same results, but, for fewer than five
replicates, DESeq is slightly better than DESeq2 and edgeR with
the exact test, which are slightly better than edgeR with the GLM
test.

We also performed a GO enrichment analysis depending on
both the replicate number and library size. Such an analysis
gives meaningful biological results in the sense that the measure
is directly linked with the underlying biological processes.
This analysis showed that the number of enriched categories
(both true and false positive categories) increases significantly
depending on the replicate number. On the contrary, the increase
of depth does not significantly increase the number of enriched
categories, but tends to decrease the rate of false positives. This
new result is in adequacy with the trade-off between replicate
number and library size discussed above for the number of DE
genes and power.

Frontiers in Plant Science | www.frontiersin.org 14 February 2018 | Volume 9 | Article 108

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Lamarre et al. Optimizing RNA-Seq DE Analysis

FIGURE 8 | Number of DE genes for each pair of conditions (y-axis) depending on the replicate number per condition (x-axis) for five library sizes (5, 10, 15, 20, and

25 million reads for, respectively, blue, cyan, green, orange, and red boxplots).

As described above, a meaningful result of the present
article comes from the meta-analysis that we made with all 17
projects on the tomato fruit extracted from the TomExpress
platform and the TOGE data set. A descriptive analysis of
the DE analyses performed within these projects clearly shows
the impact of the replicate number and the library size, but
also the distance between conditions and the variance of both
conditions. Ching et al. (2014) underline the need for a high
replicate number to accurately estimate the variance, and then
obtain higher TPR and lower FPR. In the same way, Auer and
Doerge (2010) also underline the need to properly estimate the
variability. Nevertheless, our descriptive analysis shows that a
huge variability still remains beyond the control of these known
parameters. Moreover, we performed a more global analysis
involving DE analyses between conditions of all 17 projects by
simulating different samples with various library sizes (leading
to 1,752,975 pairwise DE analyses). This meta-analysis showed
that at least four replicates and 20M reads are needed to be
almost sure of obtaining about 1000 DE genes, no matter which
biological conditions are studied. This meta-analysis also showed
that, globally, a plateau is reached after about 10 replicates for all
library sizes.

CONCLUSION

As illustrated by the results above, we cannot a priori determine
an optimal number of replicates for a given RNA-Seq experiment.

Indeed, the statistical test used to perform a DE analysis, and
then to declare a gene as significantly DE or not, depends not
only on the replicate number and library size, but also on the
distance between the biological conditions and on the variance
of the given replicates. For example, it would not be surprising
to find fewer DE genes between two close conditions of the
tomato ripening process, such as Breaker+1 and Breaker+3 days,
than between two distant conditions, such as Breaker+1 and
Breaker+10 days. In a survey of best practices for RNA-Seq
data analysis, Conesa et al. (2016) underline that, for a proper
statistical power analysis, estimates of expression levels and
dispersions of genes are required. That is why, in our opinion, the
recommendations for RNA-Seq experimental designs should be
moderated unless we take into account the percentage of wanted
DE genes, the distance between conditions, the variance of these
biological conditions, and so on.

Beyond the cost-effectiveness metric to guide the design of
large scale RNA-Seq DE studies proposed by Liu et al. (2014),
which also requires, a priori, all power values depending on
replicate numbers and library sizes, we would advise RNA-Seq
practitioners to use a pilot data set and dedicated tools to design
their RNA-Seq experiments. If obtaining a pilot data set is not
feasible, one can also use data sets that can be supposed to
give almost similar parameters because, for instance, the studied
biological conditions are similar. Nonetheless, some important
further work would be the comparison of such existing tools.
While we were writing our article, Poplawski and Binder (2017)

Frontiers in Plant Science | www.frontiersin.org 15 February 2018 | Volume 9 | Article 108

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Lamarre et al. Optimizing RNA-Seq DE Analysis

proposed such a review of six tools for which they obtained
widely different conclusions that seemed to be strongly affected
by fold changes.

The results and discussion above will help RNA-Seq
practitioners to better understand the impact of both replicate
number and library size on a DE analysis, and also the impact
of between-condition dispersion, which will help them to better
design their experiments. For instance, we learned that choosing
a threshold for FDR around 2−r (with r the replicate number)
should be optimal to enhance the sensitivity and specificity of
the DE analysis. Moreover, for the RNA-Seq practitioners of the
tomato community, the meta-analysis carried out in this study
shows that at least four replicates and 20M reads would be
required to be almost sure of obtaining about 1000 DE genes, no
matter which biological conditions they are interested in.

Ching et al. (2014) highlighted that no single software
consistently showed the highest power across all the data sets they
studied. We here recall that we have only performed our analyses
with DESeq, DESeq2, and edgeR, which share common concepts,
and that these R packages give, roughly speaking, similar results
in the literature and in our study.
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Figure S1 | Venn diagram of the number of genes declared as true DE with all four

methods: DESeq, DESeq2, edgeR GLM, and edgeR exact test. The number of

true DE genes that are common to all four methods is surrounded in blue. The

number of true DE genes that are common to only DESeq2 and both edgeR

methods is surrounded in red.

Figure S2 | First species risk curves depending on the depth (A) and on the

number of replicates (B). The DE analysis method used here is edgeR exact test

as for both the number of DE genes and power analyses (see Material and

methods).

Figure S3 | Estimations of FPR for the four studied DE analysis methods. A

zoomed version of Figure 3B.

Figure S4 | ROC curves for the DESeq method.

Figure S5 | ROC curves for the edgeR GLM method.

Figure S6 | ROC curves for the edgeR exact test method.

Figure S7 | Optimal values of the FDR parameter for the four studied methods,

DESeq, DESeq2, edgeR GLM, and edgeR exact test, for each replicate number r

from 2 to 7, are represented by black crosses. These values are extracted from

ROC curves of Figure 4 and Figures S4–S6. Red dots and line represent the

fitted curve f depending on the number of replicates r. The curve f has been fitted

by a linear regression of the log2 optimal values (dependent variable) depending

on the number of replicates (explanatory variable).

5https://www.ebi.ac.uk/ena
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