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Abstract—Although many efficient high-level algorithms
have been proposed for the realization of Multiple Constant
Multiplications (MCM) using the fewest number of addition
and subtraction operations, they do not consider the low-level
implementation issues that directly affect the area, delay, and
power dissipation of the MCM design. In this paper, we initially
present area efficient addition and subtraction architectures
used in the design of the MCM operation. Then, we propose
an algorithm that searches an MCM design with the smallest
area taking into account the cost of each operation at gate-
level. To address the area and delay tradeoff in MCM design,
the proposed algorithm is improved to find the smallest area
solution under a delay constraint. The experimental results
show that the proposed algorithms yield low-complexity and
high-speed MCM designs with respect to those obtained by
the prominent algorithms designed for the optimization of the
number of operations and the optimization of area at gate-level.

Keywords-Multiple constant multiplications; addition and
subtraction architectures; gate-level area optimization; delay
aware area optimization; graph-based algorithms.

I. INTRODUCTION

The multiplication of a set of constants by a variable, i.e.,
the Multiple Constant Multiplications (MCM) operation, is
a ubiquitous and crucial operation that has significant impact
on the design of many Digital Signal Processing (DSP)
systems including Finite Impulse Response (FIR) filters, Fast
Fourier Transforms (FFT), and Discrete Cosine Transforms
(DCT). In hardware, the MCM operation is generally re-
alized in a shift-adds architecture [1] where each constant
multiplication is implemented using addition/subtraction and
shift operations rather than using a general multiplier due
to the following two reasons. First, since the constants to
be multiplied by a variable are determined beforehand by
the DSP algorithms, the full-flexibility of a multiplier is not
required. Second, the multiplication operation in hardware
is expensive in terms of area, delay, and power dissipation1.

The realization of the MCM operation in a shift-adds
architecture also allows for possible reductions in the num-
ber of addition/subtraction operations, consequently in area
and power dissipation of the design, when the common
partial products are shared among the constant multiplica-
tions. Since shifts can be implemented using only wires

1Although the relative cost of an adder and a multiplier depends on the
adder and multiplier architectures, a k×k array multiplier has approximately
k times the area and twice the latency of the slowest ripple carry adder.
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Figure 1. Solutions of the algorithms for the shift-adds implementation
of constant multiplications 29x and 43x: (a) the digit-based recoding
technique [3]; (b) the CSE method [4]; (c) the graph-based algorithm [5].

in hardware without representing any area cost, the MCM
problem is defined as finding the minimum number of
addition/subtraction operations that implement the constant
multiplications. The MCM problem has been proven to be
an NP-complete problem in [2].

A straightforward way for the multiplierless realization
of constant multiplications, generally known as the digit-
based recoding method [3], is to define the constants in
multiplications in binary representation and for each 1 in the
binary representation of the constant, is to shift the variable
and add up the shifted variables. As a simple example,
consider the constant multiplications 29x = (11101)binx and
43x = (101011)binx. As shown in Figure 1(a), the constant
multiplications can be realized using 6 operations. However,
the algorithms that maximize the partial product sharing find
the most promising solutions to the MCM problem. They are
generally categorized in two classes as the Common Subex-
pression Elimination (CSE) algorithms [4], [6], [7] and the
graph-based (GB) methods [5], [8], [9]. The CSE algorithms,
that are also referred to as the pattern search methods,
initially define the constants under a particular number
representation, e.g., binary, Canonical Signed Digit (CSD),
or Minimal Signed Digit (MSD), and then recursively find
the “best” subexpression, generally the most common. For
our example, suppose that the constants in multiplications
are defined in binary. The exact CSE algorithm [4] identifies
the most common partial products 3x = (11)binx and 5x =
(101)binx in both multiplications and obtains a solution with
4 operations as illustrated in Figure 1(b). On the other hand,
the GB algorithms are not limited to any particular number
representation and consider a larger number of alternative
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implementations of a constant multiplication, yielding better
solutions than the CSE algorithms, as shown in [5], [9].
Returning to our example, the exact GB algorithm [5] finds a
solution with 3 operations, 7x = x� 3−x, 29x = 7x� 2+x,
and 43x = 7x� 1+29x, as given in Figure 1(c).

Although the minimum number of operations solution in
an MCM instance leads to a low-complexity MCM design,
it may not yield an MCM design with the minimum area as
shown in [10]. The reason is that the algorithms designed
for the MCM problem do not take into account the actual
area cost of each addition/subtraction operation at gate-
level while finding the fewest number of operations solution.
Although there exist a large number of algorithms designed
for the MCM problem, there are only a few algorithms [10],
[11] that target directly on the reduction of area in the MCM
design at gate-level. However, the exact CSE algorithm
of [10] considers a restricted number of possible implemen-
tations of the constant multiplications with respect to a GB
algorithm and the GB algorithm of [11] is not equipped with
the recently proposed efficient heuristics such as [5], [9].

In this paper, we start by introducing area efficient addi-
tion and subtraction architectures used in the MCM design,
since the architectures proposed in [10] and [11] do not cover
all possible addition and subtraction operations in MCM
and do not consider additional simplifications respectively.
Then, we propose a GB algorithm, called MINAS (MINimum
Area Search algorithm), that considers more possible im-
plementations of the constant multiplications than the exact
CSE algorithm [10] and uses a better heuristic than the
GB algorithm [11]. Also, based on the MINAS algorithm,
we introduce the MINAS-DC algorithm that searches for a
solution with the smallest area of the MCM design under
a delay constraint that is defined as the maximal number
of operations in series, generally known as the number of
adder-steps. The experimental results show that MINAS finds
MCM designs with significantly smaller area with respect
to those obtained by the prominent GB algorithms [5], [8],
[9] designed for the MCM problem and better solutions
than those of the exact CSE algorithm [10] designed for
the gate-level area optimization problem. Also, MINAS-DC

obtains low-complexity and high-speed MCM designs with
respect to solutions found by an efficient GB algorithm [12]
designed for the MCM problem under a delay constraint.

The rest of the paper is organized as follows. Section II
gives the background concepts. The addition and subtraction
architectures are presented in Section III and the minimum
area search algorithms are introduced in Section IV. Sec-
tion V presents the experimental results and finally, the
conclusions are given in Section VI.

II. BACKGROUND

In this section, first, basic concepts on MCM and prob-
lem definitions are introduced. Then, an overview on the
previously proposed algorithms is presented.

Since the common input is multiplied by multiple con-
stants in MCM, the implementation of constant multiplica-
tions is equal to the implementation of constants. For the
sake of clarity, this notation will be used in description of
the main concepts and algorithms given in this section.

A. Definitions

In MCM, the main operation, called A-operation in [9], is
an operation with two integer inputs and one integer output
that performs a single addition or a subtraction, and an
arbitrary number of shifts. It is defined as follows:

w = A(u,v) = |2l1u+(−1)s2l2 v|2−r (1)

where l1, l2 ≥ 0 are integers denoting left shifts of the
operands, r ≥ 0 is an integer indicating a right shift of the
result, and s ∈ {0,1} is the sign, which determines if an
addition or a subtraction operation is to be performed.

In the MCM problem, the complexity of an adder and
a subtracter in hardware is assumed to be equal. It is also
assumed that the sign of the constant can be adjusted at
some part of the design and the shifting operation has no
cost. Thus, in the MCM problem, only positive and odd
constants are considered. Observe from Eqn. (1) that in
the implementation of an odd constant with any two odd
constants at the inputs, one of the left shifts, l1 or l2, is
zero and r is zero, or both l1 and l2 are zero and r is
greater than zero. Hence, only one of the shifts, l1, l2, or
r, is greater than zero. Thus, any A-operation that realizes
an addition can be in the form of u + 2l2 v or (u + v)2−r,
where in the former, only one of the left shifts and the right
shift are zero and in the latter, both of the left shifts are
zero. Also, the subtraction operations in the form of 2l1 u−v,
u− 2l2 v, and (u− v)2−r cover all the cases where the A-
operation performs a subtraction. Note that while finding
an A-operation for the implementation of a constant, it is
necessary to constrain the left shifts, l1 and l2, otherwise
there exist infinite ways of implementing a constant. In the
GB algorithms of [5], [9], the number of shifts is allowed to
be at most bw + 1, where bw is the maximum bit-width of
the constants to be implemented under binary representation.
Thus, the MCM problem [9] can be defined as follows:

Definition 1: THE MCM PROBLEM. Given the target set,
T = {t1, . . . , tn} ⊂ N, composed of the positive and odd
unrepeated target constants to be implemented, find the
smallest ready set R = {r0,r1, . . . ,rm}, with T ⊂ R, such that
r0 = 1 and for all rk with 1 ≤ k ≤ m, there exist ri,r j with
0≤ i, j < k and an A-operation rk = A(ri,r j).

Hence, the number of operations required to be imple-
mented for the MCM problem is |R|−1 as given in [9].

In the MCM operation, the delay is generally defined as
the maximum number of operations in series that generate
the constant multiplications [13], although it depends on
several implementation issues, such as circuit technology,
placement, and routing. For a single constant t, its minimum
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number of adder-steps implementation has log2S(t) adder-
steps, where S(t) denotes the number of nonzero digits of
the constant t under the CSD representation2. Hence, in
the implementation of the target set T = {t1, . . . , tn}, the
minimum number of adder-steps [13] is computed as:

min delay = max
ti
{�log2S(ti)�}, 1≤ i≤ n (2)

Thus, the MCM problem under a delay constraint can be
defined as follows:

Definition 2: THE MCM PROBLEM UNDER A DELAY

CONSTRAINT. Given the target set, T = {t1, . . . , tn} ⊂ N,
composed of the positive and odd unrepeated target constants
to be implemented and a delay constraint, dc with dc ≥
min delay, find the smallest ready set R = {r0,r1, . . . ,rm}
such that under the satisfied constraints on the ready
set given in the MCM problem definition, the set of A-
operations yields an MCM design without exceeding dc.

Although the cost of each addition and subtraction op-
eration in hardware is assumed to be equal in the MCM
problem, a constant can be implemented with a number of
different operations each having a different cost at gate-level.
The area of an operation [10], [11] depends on:

• the type of the operation, addition or subtraction,
• the bit-widths of the operation inputs,
• the number of shifts at the input or at the output of an

operation, l1, l2, or r,
• the shifted input in a subtraction.

The gate-level area optimization problem is defined as:
Definition 3: THE GATE-LEVEL AREA OPTIMIZATION

PROBLEM. Given the target set, T = {t1, . . . , tn} ⊂ N, com-
posed of the positive and odd unrepeated target constants to
be implemented, find the ready set R = {r0,r1, . . . ,rm} such
that under the satisfied constraints on the ready set given in
the MCM problem definition, the set of A-operations yields
an MCM design with the smallest area at gate-level.

B. Related Work

For the MCM problem, the GB algorithm called RAG-n
that includes two parts, optimal and heuristic, was introduced
in [8]. In the optimal part, each target constant that can
be implemented with available constants using a single
operation are synthesized. If there exist unimplemented
elements left in the target set, in its iterative heuristic part,
RAG-n chooses a single unimplemented target constant with
the smallest single coefficient cost and synthesizes it with a
single operation including one(two) intermediate constant(s)
that has(have) the smallest value among the possible con-
stants. However, the intermediate constants chosen for the
implementation of a single target constant in a previous
iteration may not be shared for the implementation of not-yet
synthesized target constants in later iterations, thus yielding

2The CSD representation of a constant includes the minimum number of
nonzero digits [14].

a local minimum solution. Hence, the GB algorithm called
Hcub [9], that has the same optimal part as RAG-n, in each
iteration of its heuristic part, chooses a target constant to be
implemented and synthesizes it by selecting an intermediate
constant that has the best cumulative benefit over the not-yet
synthesized target constants. On the other hand, the exact GB
algorithms that search the minimum solution in breadth-first
and depth-first manners were introduced in [5].

For the MCM problem under a delay constraint, the GB
heuristic [13] realizes one constant at a time controlling
the delay of design. The GB heuristic [15] initially finds
a solution including more number of operations but, with a
small number of adder-steps, and then reduces the number of
operations without increasing the delay in an iterative loop.

For the gate-level area optimization problem, the exact
CSE algorithm [10] formulates the problem as a 0-1 Integer
Linear Programming (ILP) problem and finds the minimum
area solution of the MCM operation when the possible
implementations of constants are extracted from their par-
ticular number representations. The GB algorithm [11], that
is based on RAG-n [8], initially takes an unimplemented
constant that requires the smallest number of full adders
(FAs), and then synthesizes it using a single operation
including one or two intermediate constants that lead to the
smallest number of FAs overhead.

III. ADDITION AND SUBTRACTION ARCHITECTURES

This section presents architectures for all possible addition
and subtraction operations encountered in the MCM design
and gives the cost of each operation in terms of the number
of FAs, half adders (HAs), and additional logic gates. The
ripple carry adder architecture is assumed for the realization
of operations due to its area efficiency.

Note that the number of bits at the output of an operation
implementing the constant multiplication tx is �log2t�+ N,
where N is the bit-width of the variable x. Hence, the area
cost of an operation also depends on the bit-width of the
input that the constants are multiplied with and the type
of numbers considered, i.e., unsigned or signed, since these
lead to different implementations due to the sign extension.
The parameters that are used to compute the gate-level area
cost of an addition/subtraction operation which realizes a
constant multiplication by a variable are given as follows:

l1, l2, or r : the number of shifts,
nu : the bit-width of input u,
nv : the bit-width of input v,
nm : min(nu + l1,nv + l2),
nM : max(nu + l1,nv + l2).

The costs of addition and subtraction operations are given
in Table I and are explained in the following two sections.
In this table, HA′ denotes a different type of HA block. It
is the special implementation of an FA block when one of
the inputs is 1, as opposed to an HA block, that is another
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Table I
IMPLEMENTATION COST OF ADDITION AND SUBTRACTION OPERATIONS.

Operation u+2l2 v (u+ v)2−r 2l1 u− v u−2l2 v (u− v)2−r

Number Unsigned Signed Unsigned Signed Unsigned Signed Unsigned Signed Unsigned Signed
#FA nm−l2−1 nM−l2−1 nm−r nM−r max(l1,nv)−l1 nu nv−1 nu−l2−1 nv−r−1 nu−r−1
#HA nM−nm+1 1 nM−nm 0 min(l1,nv)−1 l1−1 0 0 0 0
#HA′ 0 0 0 0 nu+min(l1−nv,0) 0 nu−nv−l2+1 1 nu−nv+1 1
#inv 0 0 0 0 max(l1,nv) nv nv nv nv−r nv−r

special implementation of FA when one of the inputs is 0.
In an FA block, if the input vi is 1, the addition (sum) and
carry output (cout) are the functions of the input ui and the
carry input (cin) given as sum = cin⊕ui and cout = cin+ui.

A. Addition Operations

Addition operation u+2l2 v: Observe from examples on the
unsigned input model given in Figure 2(a)-(b) that larger
number of shifts at the input achieves smaller area, since
shifts are implemented with only wires. Note that the cost
values given in Table I for the unsigned input model are
valid, if the number of shifts of the operand v is less than
the number of bits of the operand u, i.e., l2 < nu. Otherwise,
no hardware is needed for this operation as illustrated in
Figure 2(b). In the signed input case, this situation never
occurs, due to the sign extension of the operand u.

Addition operation (u+v)2−r: The result of a constant
multiplication to be computed by this operation is obtained
after the output is shifted right by r times. Hence, there is
no need to compute the first r digits of the output. However,
observe from the example on the unsigned input model
presented in Figure 2(c) that to determine the carry bit for
the first FA, an OR gate whose inputs are the rth digits of
operands u and v is required, although it is not listed in
Table I.

B. Subtraction Operations

The subtraction operation is implemented using 2’s com-
plement, i.e., u+ v+1. So, the costs of inverter (inv) gates
are included into the costs of the subtraction operations.

Subtraction operation 2l1 u−v: Observe from the example
on unsigned input model given in Figure 2(d) that while the
first bit of the result is simply the first bit of the operand
v, the inputs of the first HA block are the inverted first and
second bits of the operand v. Note that the values given in
Table I also consider the case where the digits of operand u
and v do not overlap, l1 ≥ nv, that is not considered in [10].

Subtraction operation u−2l2 v: Observe from the example
on unsigned input model presented in Figure 2(e) that the
shifts can be fully utilized by starting the addition with the
first digit of the inverted operand v resulting in a smaller
area. Also, note that its cost is computed without HA blocks
as opposed to the subtraction operation 2l1 u− v.

Subtraction operation (u−v)2−r: Observe from the exam-
ple on unsigned input model given in Figure 2(f) that the
operation output can be obtained by starting the addition
from the (r + 1)th digit of the operands u and v, since the
operation output is shifted right by r times.
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Figure 2. Examples on addition and subtraction operations under unsigned
input: a-b) u+2l2 v; c) (u+v)2−r; d) 2l1 u−v; e) u−2l2 v; f) (u−v)2−r .

IV. THE GRAPH-BASED ALGORITHMS

In this section, initially we present the MINAS algorithm
designed for the gate-level area optimization problem, and
then show how it can be extended to find a solution with
the smallest area under a delay constraint.

A. Optimization for Area

As done in algorithms designed for the MCM problem,
in MINAS, we find the fewest number of intermediate con-
stants such that all the target and intermediate constants
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are synthesized using a single operation. However, while
selecting an intermediate constant for the implementation
of the not-yet synthesized target constants in each iteration,
we favor the one among the possible intermediate constants
that can be synthesized using the least hardware and enables
to implement the not-yet synthesized target constants in a
smaller area with the available constants. After the set of
target and intermediate constants that realizes the MCM
operation is found, each constant is synthesized using an A-
operation that yields the minimum area in the MCM design.

In the preprocessing phase of the algorithm, the target
constants to be implemented are made positive and odd, are
added to the target set, T , without repetition, and the max-
imum bit-width of the target constants, bw, is determined.
The main part of the algorithm is given in Algorithm 1.

In MINAS, the ready set, R = {1}, is formed initially and
then the target constants that can be implemented with the
elements of the ready set using a single operation are found
and moved to the ready set iteratively using the Synthesize
function. If there exist unimplemented constant(s) in the
target set, then in each iteration of its heuristic part (line 3),
an intermediate constant is added to the ready set until there
is no element left in the target set. The MINAS algorithm
considers the positive and odd constants that are not included
in the current ready and target sets (lines 4-5) and that can
be implemented with the elements of the current ready set
using a single operation (lines 6-7) as possible intermediate
constants. On line 6, the ComputeCost function searches all
A-operations that compute the constant with the elements of
the current ready set. If the implementations of the constant
are found, then it determines the cost of each operation as
described in Section III and returns its minimum implemen-
tation cost among possible operations. Otherwise, it returns
0 value indicating that the constant cannot be synthesized
using an operation with the elements of the current ready
set. After the possible intermediate constant is found, it is
included into the working ready set, A, and its implications
on the current target set are found by the ComputeTCost
function. In this function, similar to the ComputeCost, the
minimum implementation costs of the target constants that
can be synthesized with the elements of the working ready
set A are determined. For each target constant, tk, that cannot
be implemented with the elements of A, its cost value is de-
termined as its maximum implementation cost, maxcost(tk),
computed as if all its digits are implemented using FAs.
Then, the cost of the intermediate constant is determined as
its minimum implementation cost plus the implementation
costs of the not-yet synthesized target constants. After the
cost value of each possible intermediate constant is found,
the intermediate constant with the minimum cost is added
to the current ready set and its implications on the current
target set are found using the Synthesize function. Also,
we note that while searching for the “best” intermediate
constant in each iteration, MINAS favors the one that has

Algorithm 1 The MINAS algorithm.

MINAS(T)
1: R←{1}
2: (R, T ) = Synthesize(R, T )
3: while T �= /0 do
4: for j = 1 to 2bw+1−1 step 2 do
5: if j /∈ R and j /∈ T then
6: impcost j = ComputeCost({ j}, R)
7: if impcost j �= 0 then
8: A← R∪{ j}
9: impcostT = ComputeTCost(T , A)

10: iccost j = impcost j + impcostT
11: Find the intermediate constant, ic, with the minimum iccost j

cost among all possible constants, j
12: R← R∪{ic}
13: (R, T ) = Synthesize(R, T )
14: D = SynthesizeMinArea(R)
15: return D

Synthesize(R, T)
1: repeat
2: isadded = 0
3: for each tk ∈ T do
4: if tk can be implemented using a single A-operation

whose inputs are the elements of R then
5: isadded = 1, R← R∪{tk}, T ← T \{tk}
6: until isadded = 0
7: return (R, T )

ComputeCost({c}, C)
1: costc = 0
2: for all operations c = |2l1 u+(−1)s2l2 v|2−r, where u,v∈C do
3: Determine the cost of each operation, compute the minimum

implementation cost of constant c, assign it to costc
4: return costc

ComputeTCost(B, C)
1: costB = 0
2: repeat
3: isadded = 0
4: for each bk ∈ B do
5: costbk

= ComputeCost({bk}, C)
6: if costbk

�= 0 then
7: isadded = 1, C←C∪{bk}, B← B\{bk}
8: costB = costB + costbk

9: until isadded = 0
10: for each bk ∈ B do
11: costB = costB +maxcost(bk)
12: return costB
SynthesizeMinArea(R)

1: Find all possible implementations of target and intermediate
constants using the GenerateImp(R) function

2: Formalize the problem as a 0-1 ILP problem
3: Find D as a set of A-operations that yields minimum area
4: return D

GenerateImp(R)
1: A←{1}, R← R\{1}
2: repeat
3: for each rk ∈ R do
4: (B, C) = Synthesize(A, {rk})
5: if C = /0 then
6: Find all operations, rk = |2l1 u+(−1)s2l2 v|2−r, where

u,v ∈ A and determine their implementation costs
7: A← A∪{rk}, R← R\{rk}
8: until R = /0

7



the smallest cost and synthesizes all the not-yet synthesized
target constants with the available constants among the ones
that may have the minimum cost but cannot synthesize all
the not-yet synthesized target constants.

When there are no elements left in the target set, the
SynthesizeMinArea function is applied to find the set of A-
operations that yields a solution with the smallest area on the
final ready set. In this function, we formalize this problem
as a 0-1 ILP problem, similar to the 0-1 ILP formalization
described in [10]. In this case, the possible implementations
of the constants are found by the GenerateImp function.
Note that when no intermediate constant is required to
implement the target constants, the minimum area solution
can be simply obtained by choosing the operation with the
minimum area cost among possible operations to imple-
ment each target constant. However, for the final ready set
including intermediate constants, there can be more than
one possible implementation of a constant that are not
considered entirely while adding an intermediate constant to
the ready set in each iteration. Also, the final ready set may
include redundant intermediate constants, since the recently
added intermediate constant may make the previously added
intermediate constants redundant.

B. Optimization for Area under a Delay Constraint

The MINAS algorithm can be easily improved to deal with
the area and delay tradeoff so that an increment in area can
be compensated with a decrement in delay and vice versa. In
this modified algorithm, called MINAS-DC, the preprocessing
phase is the same as that of MINAS. Additionally, MINAS-DC

takes as an input the user-specified delay constraint dc, given
in terms of the number of adder-steps. It follows the similar
procedure described in Algorithm 1. However, in its Synthe-
size function, similar to the one given in Algorithm 1, while
finding a possible implementation of a constant using an A-
operation, it considers the operation whose implementation
does not exceed dc. Also, in finding the implementation cost
of a constant, it considers the possible implementations that
do not violate dc. After the set of target and intermediate
constants that can generate MCM using a single operation
is obtained, finding a solution with the smallest area is
again formalized as a 0-1 ILP problem, but in this case,
the possible implementations of a constant are determined
as operations that also respect dc.

V. EXPERIMENTAL RESULTS

In this section, we compare MINAS and MINAS-DC on FIR
filter and randomly generated instances with the previously
proposed algorithms designed for the MCM problem, the
MCM problem under a delay constraint, and the gate-level
area optimization problem. The low-level results of an MCM
operation are obtained in two phases. First, the solution of
an algorithm on an MCM instance (a set of A-operations
that generates MCM) is found. Second, the MCM operation
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Figure 3. Comparison of MINAS with the exact algorithms designed for
the MCM and gate-level area optimization problems.

is designed at gate-level using the Sequential Interactive
System (SIS) tool. In this tool, the addition and subtraction
operations that implement MCM are initially described in a
synthesizable format, and then the MCM design is mapped
with the logic gates given in a library. The UMC Logic
0.18μm Generic II library was used as the design library.

As the first experiment set, we used uniformly distributed
randomly generated instances where constants were defined
under 14 bit-width. The number of constants ranges between
10 and 100, and we generated 30 instances for each of them.
Figure 3 presents the average area improvements obtained
by the MINAS algorithm over the exact GB algorithm [5]
designed for the MCM problem and the exact CSE al-
gorithm [10] designed for the gate-level area optimization
problem. In the exact CSE algorithm [10], the constants were
defined under MSD representation. In this experiment, the
unsigned input model was used and the bit-width of the input
that the constants are multiplied with was taken as 16.

Observe from Figure 3 that the solutions of MINAS lead
to low-complexity MCM designs with respect to solutions
obtained by the algorithms of [5] and [10]. We note that
MINAS obtains the maximum average area improvement,
15.4%, over the exact GB algorithm [5] on instances includ-
ing 100 constants. However, observe that the average area
improvement values of MINAS over the exact GB algorithm
decrease as the number of constants decreases, since the
number of possible implementations of a constant considered
in MINAS also decreases. On the other hand, MINAS obtains
the maximum average area improvement, 10%, over the ex-
act CSE algorithm [10] on instances including 20 constants.
However, observe that the average area improvement values
of MINAS over the exact CSE algorithm decrease as the
number of constants increases. This is because the sharing of
intermediate constants increases as the number of constants
increases in the exact CSE algorithm.

As the second experiment set, we used the FIR filters
given in [5]. Table II presents the high-level results of
algorithms designed for the MCM problem and the gate-
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level area optimization problem. Again, the results of the
exact CSE algorithm [10] were obtained when filter coeffi-
cients were defined under MSD. In this table, adder denotes
the number of operations and step indicates the number of
adder-steps. Also, CPU stands for the required CPU time in
seconds for an algorithm to find its solution on a PC with
Intel Xeon at 2.33GHz and 4GB of memory under Linux.
For the exact CSE algorithm, CPU represents the CPU time
of the ILP-based pseudo-Boolean solver called glpPB.

Observe from Table II that while Hcub [9] obtains so-
lutions close to the minimum as given by the exact GB
algorithm of [5], RAG-n [8], whose heuristic is also used
in the GB algorithm of [11] designed for the optimization
of area at gate-level, finds results that are far away from
the minimum. On the other hand, MINAS finds competitive
results with Hcub and better results than RAG-n in terms
of the number of operations. The solutions of the exact
CSE algorithm [10] include larger number of operations
than those of the GB algorithms designed for the MCM
problem, since it considers less alternative implementations
of the constant multiplications and it is primarily designed
for the optimization of area at gate-level. However, its
solutions have smaller number of adder-steps compared
with those of the GB algorithms. Also, the solutions of
the exact CSE and MINAS algorithms are obtained using
higher computational effort than the GB heuristics designed
for the MCM problem. In the exact CSE algorithm, to
obtain the smallest area solution, a 0-1 ILP problem has
to be solved, that heavily depends on the MCM instance
and the performance of the 0-1 ILP solver. In MINAS, all
implementations of each target and possible intermediate
constant have to be considered to determine the smallest
area cost of the constant in each iteration, as opposed to the
algorithms designed for the MCM problem, where finding a
single operation for the synthesis of a constant is sufficient.

Table III presents the low-level results of the MCM
designs that are obtained using the solutions of algorithms
given in Table II. In this table, area (μm2) and delay (ns)
denote the area and maximum delay of the MCM design
respectively. Again, the unsigned input model was used and
the bit-width of the filter input was taken as 16.

Observe from Tables II and III that in the algorithms
designed for the MCM problem, the reduction of the number
of operations directly takes effect on the area of the MCM
design. This situation can be clearly observed when the
results of RAG-n are compared with those of Hcub and the
exact GB algorithm in Tables II and III on overall instances.
On the other hand, although the exact CSE algorithm [10]
obtains solutions including greater number of operations
than those of the algorithms designed for the MCM problem,
it finds better solutions in terms of area on Filters 3, 5, 7,
and 8 than all these algorithms. Also, observe that MINAS

obtains better area solutions than all algorithms given in
Table III on each instance. This experiment indicates that a

solution with the minimum number of operations may not
lead to an MCM design with the minimum area and in order
to reduce the area of design, the low-level implementation
issues should be taken into account.

However, observe from Table III that the solutions of
MINAS lead to slower MCM designs with respect to those
of the exact CSE algorithm [10], since it increases the
depth of the MCM design while finding a solution with
the smallest area as can be observed in Table II. Table IV
presents the high and low level results of the Hcub-DC [12]
and MINAS-DC algorithms that can find a solution under
a delay constraint. Note that Hcub-DC is the modified
version of Hcub that finds the fewest number of operations
solution under a delay constraint. In this experiment, the
delay constraint dc was set to 4 and 3 in order to compare
the solutions of these algorithms with those of the exact
CSE algorithm [10]. Note that the min delay value of each
instance is 3, as computed in Eqn. (2).

Observe from Tables III and IV that the delay of MCM
designs obtained by MINAS-DC is generally reduced as the
delay constraint is decreased with respect to the MCM
designs found by MINAS. It is also interesting to note that
MINAS-DC may obtain better solutions in terms of area
with respect to the solutions obtained by MINAS, e.g., Filter
5. Note that MINAS-DC obtains the best area and delay
values on Filters 2, 4, 6, and 8 than all algorithms given
in Table III, except MINAS. Also, under its solutions with
the minimum delay, it finds better area designs than the
exact CSE algorithm on all instances, except Filters 3 and
7. Observe that MINAS-DC obtains competitive delay results
with those of the exact CSE algorithm given in Table III and
yields low-complexity and high-speed MCM designs with
respect to designs obtained by Hcub-DC.

VI. CONCLUSIONS

In this paper, we introduced a new GB algorithm (MINAS)
that searches the smallest area solution in the MCM design
with the guide of implementation costs of the addition
and subtraction operations formulated in terms of gate-level
metrics. Also, to deal with the area and delay tradeoff, we
proposed an algorithm (MINAS-DC) that can handle the user-
specified delay constraint. The experimental results clearly
indicate that MINAS achieves significant area improvements
over the efficient GB algorithms designed for the MCM
problem and the exact CSE algorithm designed for the gate-
level area optimization problem. Also, MINAS-DC finds low-
complexity and high-speed MCM designs with respect to
those obtained by the prominent GB algorithm proposed for
the MCM problem under a delay constraint.
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Table II
SUMMARY OF HIGH-LEVEL RESULTS OF ALGORITHMS ON FIR FILTER INSTANCES.

Objective Optimization of the Number of Operations Optimization of Area at Gate-Level
Filter RAG-n [8] Hcub [9] Exact GB [5] Exact CSE [10] MINAS

adder step CPU adder step CPU adder step CPU adder step CPU adder step CPU

1 24 10 5.2 23 7 0.1 22 10 21.1 28 4 314.5 23 8 57.7
2 27 6 5.7 24 6 0.1 23 7 1630.7 31 3 277.4 23 5 125.8
3 24 9 5.6 19 7 0.1 17 11 1761.0 23 3 50.0 18 8 99.4
4 23 5 5.4 18 7 0.1 17 8 67.4 22 4 38.5 18 7 92.3
5 44 9 5.5 42 8 0.1 41 10 36.7 56 4 1686.0 41 11 396.8
6 36 10 5.5 32 10 0.1 31 11 2169.7 42 4 427.6 33 8 491.3
7 28 7 5.9 24 7 0.1 23 10 499.4 30 4 40.0 25 6 367.5
8 40 5 4.8 38 5 0.1 37 6 2.2 45 4 156.3 37 9 18.3

Total 246 61 43.5 220 57 0.8 211 73 6188.1 277 30 2990.2 218 62 1649.1

Table III
SUMMARY OF LOW-LEVEL RESULTS OF ALGORITHMS ON FIR FILTER INSTANCES.

Objective Optimization of the Number of Operations Optimization of Area at Gate-Level
Filter RAG-n [8] Hcub [9] Exact GB [5] Exact CSE [10] MINAS

area delay area delay area delay area delay area delay

1 29644 63.6 29774 59.0 29392 60.2 30420 44.8 28142 57.4
2 34734 57.6 31500 58.6 31246 63.0 32520 44.3 29538 57.8
3 26574 60.3 23252 59.9 23316 61.2 23224 43.0 22110 60.7
4 26870 39.8 23058 54.9 22542 60.8 22626 43.8 21626 52.8
5 62464 65.9 59426 68.3 59028 74.8 57172 51.7 55360 73.8
6 46416 64.4 43350 63.5 43214 66.5 43822 54.9 40186 63.0
7 33390 53.9 31908 61.5 32096 65.9 30668 46.3 29898 50.7
8 45668 60.2 45386 56.7 45796 58.3 45104 49.6 42900 56.7

Total 305760 465.6 287654 482.4 286630 510.7 285556 378.4 269760 472.7

Table IV
SUMMARY OF HIGH AND LOW LEVEL RESULTS OF HCUB-DC AND

MINAS-DC ALGORITHMS WHEN dc WAS SET TO 4 AND 3.

Hcub-DC [12] MINAS-DC

Filter step adder area delay adder area delay

1 4 25 32058 58.0 24 29770 51.4
3 25 30256 49.5 26 28294 45.6

2 4 26 33780 54.1 25 29226 50.9
3 27 33668 54.8 28 30696 43.6

3 4 19 23932 57.2 19 21654 56.3
3 23 27706 53.2 22 23704 48.6

4 4 21 27286 54.4 20 21642 35.8
3 22 27828 51.8 22 22884 45.0

5 4 49 64720 59.9 48 54140 54.1
3 55 70682 56.4 51 53270 54.5

6 4 34 45994 57.6 35 39452 50.4
3 40 54032 55.8 38 41472 46.6

7 4 27 35728 52.3 26 30628 48.5
3 30 39148 54.9 30 31548 46.1

8 4 39 47064 57.3 39 43188 53.9
3 44 52564 57.4 43 43236 49.4
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