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Abstract

In the present study, artificial neural network (ANN) along with heuristic algorithms, namely particle swarm optimization 

(PSO) and simulated annealing (SA), has been employed to carry out the modeling and optimization procedure of electrical 

discharge machining (EDM) process on AISI2312 hot worked steel parts. Surface roughness (SR), tool wear rate (TWR) 

and material removal rate (MRR) are the process quality measures considered as process output characteristics. Determina-

tion of a process variables (pulse on and off time, current, voltage and duty factor) combination to minimize TWR and SR 

and maximize MRR independently (as single objective) and also simultaneously (as multi-criteria) optimization is the main 

objective of this study. The experimental data are gathered using Taguchi L36 orthogonal array based on design of experi-

ments approach. Next, the output measures are used to develop the ANN model. Furthermore, the architecture of the ANN 

has been modified using PSO algorithm. At the last step, in order to determine the best set of process output variables values 

for a desired set of process quality measures, the developed ANN model is embedded into proposed heuristic algorithms 

(SA and PSO) with which their derived results have been compared. It is evident that the proposed optimization procedure is 

quite efficient in modeling (with less than 1% error) and optimization (less than 4 and 7 percent error for single- and multi-

objective optimizations, respectively) of EDM process variables.

Keywords Electrical discharge machining · Taguchi technique · Design of experiments · Artificial neural network · 

Simulated annealing algorithm · Particle swarm optimization algorithm

1 Introduction

Electrical discharge machining (EDM) is the most exten-

sively and successfully applied process for machining of 

difficult-to-cut alloys (such as hot worked and super alloys) 

among the several non-conventional ones. In EDM process, 

electrical energy in the form of a series of discrete elec-

trical discharges occurring between the tool electrode and 

workpiece electrode (both submerged in a dielectric fluid) 

through which a channel of plasma (Fig. 1) is generated. Due 

to the electrical energy discharges, a considerable amount of 

heat melts and evaporates the material at the surface of the 

workpiece electrode. This exclusive feature of using thermal 

energy to machine electrically conductive parts is considered 

as the main merits of EDM in the machining of molds, dies, 

aerospace and surgical components [1].

Like other manufacturing processes, in EDM process, 

the proper process variable settings are a crucial feature to 

reduce production cost and improve product quality. There 

are several process input variables in EDM process, out of 

which discharge voltage (V), peak current (I), pulse on time 

(Ton), pulse off time (Toff) and duty factor (η) are the most 

influential ones. Material removal rate (MRR), tool wear rate 

(TWR) and surface roughness (SR) are their correspond-

ing quality measures considered as the process responses. 

Due to the complex nature of the process where several 

different and sometimes contradictory objectives must be 

simultaneously considered, optimizing any of these meas-

ures alone has a limited value in real practice. As a result, 
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multi-criteria process optimization has received more atten-

tion by researchers in this field of study [2]. The successful 

implementations of optimization methods depend on the 

proper establishment of relationships between process input 

variables and the corresponding performance characteristics. 

Nonetheless, establishing such relationships is difficult due 

to the stochastic nature of EDM process which has got the 

attention of scholars [3, 4].

Effect of wire-cut electric discharge machining (WEDM) 

process variables (pulse off time, pulse on time and servo 

voltage) on the most important process responses (MRR 

and SR) on Inconel 625 alloy has been investigated using 

Taguchi method by Subrahmanyam and Nancharaiah [5]. 

To gather the required data, orthogonal array Taguchi 

method has been used. Furthermore, for optimizing pur-

pose, ANOVA has been used so that maximum MRR and 

minimum SR were obtained. To achieve optimum MRR, 

reduced SR and TWR for LM6-alumina stir casted metal 

matrix composites (MMC) and gray relation analysis (GRA) 

have been applied to design and optimize the EDM multiple 

performance characteristics by Palanisamy et al. [6]. The 

process input variables such as discharge current, pulse on 

time and off time have been considered to be optimized. The 

study revealed that discharge current was the most influential 

variable that affects the SR and MRR.

GRA has been used to deal with the multi-objective 

optimization of EDM process of Al7075 alloy consider-

ing MRR and SR by Tharian et al. [7]. Moreover, single-

objective optimization has been performed using Taguchi 

technique. For performing multi-objective optimization pur-

pose, the problem has been solved by GRA. Experimental 

design matrix required for conducting tests has been made 

according to the L9 orthogonal array Taguchi method. To 

find out the significant process variables affecting the single-

objective and multi-objective problems, ANOVA has been 

performed. To establish the relationships between process 

input variables and output responses, mathematical mod-

eling has also been performed. The effect of EDM process 

input variables (workpiece electrical conductivity, gap volt-

age, gap current, pulse on time and off time) on the process 

responses (MRR and TWR) has been investigated. Experi-

ments have been designed and performed as per the orthogo-

nal array Taguchi method (L18 (61  ×  34)). For optimizing 

the conflicting responses, Taguchi’s approach along with 

utility concept have been employed. Based on the obtained 

results, the overall utility was significantly affected by gap 

voltage, gap current, pulse off and on time. Therefore, the 

optimal values of MRR and TWR were 9.157 mm3/min and 

0.128 mm3/min, respectively [8].

For optimization of multiple responses of EDM process, 

fuzzy method coupled with Taguchi has been used by Naga-

raju et al. [9]. AISI 304 stainless steel has been considered 

as the specimen material. The effect of process variables 

(discharge current and voltage, pulse on time, and inter elec-

trode gap) on the most important responses (MRR, TWR 

and Ra) has been investigated. To design the experimen-

tal matrix,  L9 orthogonal array has been used. Fuzzy logic 

known as multi-performance characteristic index (MPCI) 

has been used to convert the multiple responses into a sin-

gle characteristic index. Finally, Taguchi has been used to 

optimize the MPCIs. Multi-objective optimization of EDM 

on Mg–RE–Zn–Zr alloy has been carried out using the novel 

meta-heuristic algorithm (passing vehicle search (PVS)) by 

Parsana et al. [10]. Pulse on and off time and peak current 

have been considered as the process input variables. To 

formulate a mathematical model for MRR, TWR and SR, 

response surface method (RSM) has been used. Multi-objec-

tive PVS calculated optimal solutions for different weights to 

generate 2D and surface Pareto fronts have been performed 

using the weighted sum method. These Pareto fronts were 

evaluated for performance determination of PVS using novel 

and established metrics such as spacing, spreading, hyper 

volume and pure diversity.

In recent years, artificial neural networks (ANNs) have 

demonstrated sufficient potential in modeling of complicated 

nonlinear systems such as the EDM process. There are many 

types of ANNs which vary in architecture, implementation 

of transfer functions and learning strategy. In view of their 

universal approximation property, backpropagation neural 

network (BPNN) has received considerable attention. The 

architectural factors of BPNN to be determined in advance 

for the modeling of the process under consideration are the 

feature subsets, the number of hidden layers and processing 

elements number in hidden layers [7].

Along this line, Naveen et al. [11] have employed orthog-

onal array Taguchi method to get the optimized MRR and 

SR of WEDM on Inconel 750 considering process input 

Fig. 1  Graphic illustration of electrical discharge machining process 

[2]
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variables (pulse on, pulse off, voltage and current). To model 

the MRR and SR, an ANN model has been developed. 

Finally, the model was optimized using PSO algorithm. NN 

models have been established to predict cutting speed, SR 

and wire consumption for effective modeling of WEDM by 

Sen et al. [12]. Fuzzy logic has been incorporated to con-

vert the multi-objective problem into a single-objective one. 

Teaching learning-based optimization and genetic algorithm 

(GA) technique have been used for optimizations. Valida-

tion tests verified that teaching learning-based optimization 

is the more appropriate method. To reach maximum MRR, 

better SR and minimum dimensional error during WEDM 

of Al7075-TiB2 in situ composite, prediction and compari-

son of machining performances have been focused. Pulse on 

and off time, current and bed speed have been considered as 

the process input variables. Orthogonal array Taguchi tech-

nique has been used for designing the experimental matrix 

required. An ANN model has been developed in order to 

predict the process responses. Based on the results predicted, 

machining responses are in good agreement with experimen-

tal values [13].

To estimate SR, accuracy, volumetric MRR and TWR 

based on the WEDM variables including pulse on off time, 

current and bed speed, ANN has been employed. Orthogo-

nal array Taguchi method has been used to determine the 

experimental matrix required. To establish the relations 

between process input and output characteristics, ANN 

has been used. Based on the results, the proposed model 

is quite efficient in predicting the process responses [14]. 

The application of assisted electrical discharge machin-

ing (AAEDM) of D3 steel has been investigated by Singh 

et al. [15]. A mathematical model was actuated to realize 

the SR by utilizing dimensional analysis hypothesis. The 

experimental and foreseen assessments of SR during the 

procedure, acquired by Buckingham pi theorem, ANN and 

ANFIS, were observed to be as per one another. Be that 

as it may, the ANFIS strategy demonstrated to be all the 

more fitting to the EDM output when contrasted with the 

ANN and the semi-empirical model. An ANN model for 

predicting the SR has been proposed by Khan et al. [16]. 

DOE approach has been used for determining the experi-

mental matrix required for training and testing. The result 

showed that the proposed ANN model can predict the SR 

effectively. Low discharge energy level ended in smaller 

craters and micro-cracks producing a suitable structure of 

the surface. This approach helps in economic EDM machin-

ing. A review has been carried out by Venkata and Kaly-

ankar [17], in which various modern machining processes 

(including electric discharge machining, ultrasonic machin-

ing, abrasive jet machining, electro chemical machining, 

micro-machining and laser beam machining) have been 

optimized using different approaches.

There is a great deal of papers in which modeling and 

optimization of EDM process have been considered. In 

this paper, ANN has been used to model the EDM pro-

cess responses (MRR, SR and TWR). Moreover, a heuristic 

algorithm (PSO) has been used for determination of ANN 

architecture (including number of neurons/nodes and hid-

den layers) and optimization purposes. In different papers, 

the architecture of the ANNs has been determined based 

on trial and error method. In the proposed manuscript, 

PSO algorithm has been used twice (for ANN architecture 

determination and single- and multi-objective optimization 

purposes). Furthermore, the performance of PSO algorithm 

has been checked using SA algorithm. Thus, this study rec-

ommends a hybrid method composed of BPNN and heu-

ristic algorithms (SA and PSO) to undertake the single-

objective and multi-objective modeling and optimization 

in EDM process. The purpose of this study is to present 

an efficient and integrated approach for the determination 

of appropriate variables setting yielding the objective of 

maximum MRR and minimum SR and TWR independently 

and also simultaneously. Then, the results derived from the 

heuristic algorithms have been compared with. To validate 

the results, some confirmation tests have been conducted. 

To the best of our knowledge, there is no published work in 

which study of EDM process of AISI2312 hot worked steel 

parts through the proposed method has been considered. 

First, to gather the experimental data required, L36 orthogo-

nal array Taguchi (OA-Taguchi) design matrix based on 

which empirical tests have been carried out, has been used. 

Then, the process was modeled using a BPNN. Besides, the 

architecture of the PBNN has been determined and modi-

fied using PSO algorithm. Finally, the BPNN models have 

been embedded into SA and PSO optimization algorithms 

to determine the best set of process variables in order to 

achieve maximum MRR and minimum SR and TWR as 

single- and multi-criteria optimization. Finally, the per-

formance of the proposed integrated PSO-BPNN has been 

validated through experimental tests. Moreover, the article 

concludes with the confirmation of the computational and 

experimental results and a summary of the major findings.

2  Experimental setup and material used

AISI2312 hot worked steel specimens were used on which 

the experiments have been conducted. This alloy is widely 

used for such parts as plastic molds due to its high erosion 

and heat resistance. However, because of its controlled sul-

fur content, AISI2312 is one of the most difficult-to-cut steel 

alloys. This calls for more research on employing non-tra-

ditional machining. Specimens have been cut out of a plate 

with 10 mm thickness into 40 × 20 mm dimension.
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In EDM process, a wide variety of materials such as 

brass, copper and tungsten alloys as well as graphite may be 

used as tool electrode. The applications of brass and tungsten 

are limited to certain materials. Due to extreme high melting 

point, graphite rate of erosion is less in comparison with 

copper. On the contrary, very fine surfaces could be achieved 

using copper electrode. Furthermore, the machinability of 

copper is much better than that of graphite [4]. Therefore, 

based on these facts and the literature survey in this regard, 

copper electrodes, with 99% purity and 8.98 g/cm3 density, 

were opted as electrode tools in our experiments.

An Azarakhsh-304H die sinking machine, shown in 

Fig. 2, has been employed to carry out the experiments. In 

this machine, the X and Y axis are manually controlled and 

the Z-axis is servo controlled.

The technical specification of the EDM machine used to 

carry out the experiments is shown in Table 1. It should 

be noted that tests have been done in random to increase 

the accuracy of the results. Moreover, tool electrodes were 

replaced after each test run. The machining time for all test 

runs was set at 45 min. Besides, pure kerosene has been used 

as dielectric.

3  Design of experiments

Design of experiments (DOE) is extensively used for gaining 

knowledge of the existing processes and/or optimizing the pro-

cesses quality characteristics. In carrying out DOE, to observe 

changes in the output characteristics, changes are made to the 

input variables of the system. Modeling and optimization of 

the process could be used by the information gathered from 

correctly planned experiments. Full factorial (FF) designs are 

most popular strategies such as response surface methodology 

(RSM), center composite design (CCD) and orthogonal array 

(OA) Taguchi design of experiment. Detailed information 

about DOE approach and its various applications may readily 

be found in the related literatures [18, 19].

Taguchi procedure has been extensively used in various 

engineering requests among various DOE strategies due to 

its distinct advantages. With fewer number of experiments 

(and hence lesser cost), Taguchi can provide much useful 

information which, in turn, can be used for process modeling 

and analysis.

In this study, attempt to find optimum variables of EDM 

process on AISI2312 hot worked steel parts in order to 

minimize TWR and SR and maximize MRR using Taguchi 

matrix and BPNN integrated with heuristic algorithms (PSO 

and SA) has been made.

Firstly, to determine the stable domain of the input vari-

ables and also the feasible levels of them some preliminary 

tests were carried out [14]. Peak current (I), voltage (V), 

pulse off time (Toff), pulse on time (Ton), and duty factor (η), 

based on literature surveys, preliminary test results (based 

on the screening method using DOE) and working character-

istics of the EDM process were selected as the independent 

input variables. During these experiments, by altering the 

values of the input variables to different levels, stable states 

of the machining conditions have also been identified. Initial 

experiments were conducted for the wide range of pulse on 

time, discharge current and gap voltage. Reasonable range of 

peak current was attained for 6-30A. Below 6A, MRR was 

very low and beyond 18A, MRR was good but SR was very 

poor. Similar observations were made for range of pulse on 

and off time, gap voltage and duty factor. Thus, L36  (2
1 × 34) 

design of experiments matrix has been used to conduct the 

experiments required. A certain number of levels for some 

of the process variables may also be dictated such as limi-

tations of test equipment. The die sinking EDM machine 

used for experiments in this study had only two settings for 

pulse off time − Toff (10 and 75 μs). Out of five, one factor 

has 2 levels and the rest of the factors have 3 levels each 

(Table 2). Subsequently, this study has been carried out to 

investigate the effects of peak current (I), voltage (V), pulse 

off time (Toff), pulse on time (Ton), and duty factor (η) on 

MRR, TWR and SR.

Fig. 2  The Azarakhsh-304H EDM machine used for conducting 

experiments

Table 1  Detailed technical specifications of the die sinking machine 

used

Specification Size

Work table size 500 × 300 mm

Cross-travel Y 250 mm

Spindle Travel and head stock travel 180 + 200 mm

Maximum electrode weight 50 kg

Loading capacity of table 500 kg

Work table size 500 × 300 mm
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4  Evaluation of the process quality 
characteristics

In this survey, MRR, SR and TWR are used to evaluate 

EDM process of AISI2312 hot worked steel parts [20].

MRR is a measure of machining speed and is expressed as 

the specimen removal weight in a machining time in minute. In 

this regard, the specimens have been weighed twice, before the 

each test runs begin and after the test completed. The differ-

ence value between them has been considered as the material 

removed from the specimen during the process. The value of 

ratio of the material removed from the specimen to machining 

time has been considered as MRR. TWR, usually expressed 

as a percentage, is defined by the ratio of the tool wear weight 

to the specimen removal weight. Surface quality is usually 

measured in terms of surface roughness (SR). The average 

roughness (Ra) is the area between the roughness profile and 

its mean line. After machining process, the surface finish of 

each sample has been measured using an automatic digital 

surface roughness tester (Mitutoyo Model). Also, to measure 

the MRR and TWR, an A&D electronic balance (with 0.01gr 

accuracy) has been used (Fig. 3).

Table 3 shows the L36 experimental design matrix based 

on the Taguchi procedure and their corresponding measured 

results. The first five columns are the process input variables 

(including voltage, duty factor, current, pulse on and off time, 

respectively). The second three columns represent the process 

responses (material removal rate, tool wear rate and surface 

roughness).

5  Backpropagation neural network (BPNN)

For establishing relations between process input variables 

and output responses, different procedures have been pro-

posed among which ANNs are extensively used in this 

regard. ANNs are reminiscent of the creature’s nervous sys-

tem, which is a highly nonlinear, complex and processing 

system. Learning, generalization and parallel processing are 

significant merits of ANNs that make them appropriate for 

modeling different processes such as EDM process [21].

ANNs are built by connecting processing units, named 

neurons or nodes. Each of the input (Xi) is associated with 

some weight (Wi) which takes a share of the input to the neu-

ron for processing. The neuron combines the inputs (Xi × Wi) 

and produces net input which in turn is transformed into out-

put with the help of transfer function/activation function [21].

Many scholars have proposed that multi-layered networks 

are capable of computing a wider ranges of nonlinear func-

tions than the single-layered networks [15–17]. However, 

the computational effort required for modeling purpose 

increases substantially. The backpropagation neural net-

works (BPNNs) are found most suitable for dealing with 

such large learning problems. This type of neural network 

is known as a supervised network due to a desired process 

quality measures in order to learn. A BPNN consists of mul-

tiple layers of neuron in a directed scheme, with each layer 

connected to the next one. Except for the input nodes, each 

neuron is a processing element with a nonlinear activation 

function defined in Eq. (1) [22]:

where, for ith neuron in the jth layer, P (Wi,j−1, Oi,j−1) is 

given by:

where, n and m are number of hidden layers and neurons in 

each layer, respectively, and Wi,j−1 is the weight of the ith 

neuron in (j − 1)th layer.

In this research, for modeling of the EDM process, the 

total number of input nodes is five (pulse on and off time, 

current, voltage and duty factor). The best architecture for 

modeling (the number of hidden layers and the number of 

nodes in each hidden layer) has been chosen using PSO 

algorithm. Besides, the transfer function of each process-

ing element is identified and the next network is trained to 

interrelate the process variables to responses. The outputs 

of trained model are MRR, TWR and SR. As the number 

of responses for the trained model is three, linear transfer 

functions have dealt with outputs of nodes in the last hidden 

layer to calculate the network outcomes (yk
(net)) as Eq. (3):

(1)Fi,j =
1

[1 + exp (−P (Wi,j−1, Oi,j−1)]

(2)
P (Wi,j−1, Oi,j−1) =

m
∑

j=1

n
∑

i=1

(Wi,j−1 ⋅ Oi,j−1)

Table 2  EDM Machining variables and their viable intervals and lev-

els

variables Symbol Range Level 1 Level 2 Level 3

Peak current (A) I 6–30 6 18 30

Voltage (V) V 50–60 50 55 60

Pulse on time (μs) Ton 25–200 25 100 200

Pulse off time (μs) Toff 10–75 10 75 –

Duty factor (S) η 0.4–1.6 0.4 1.0 1.6

Fig. 3  The electronic balance and surface roughness tester used



 Journal of the Brazilian Society of Mechanical Sciences and Engineering           (2020) 42:73 

1 3

   73  Page 6 of 14

where cik and bik are constant real numbers (bik = biases).

Choosing the best network architecture (number of hidden 

layers and the number of neurons in each layer) is one of the 

most significant tasks in ANN modeling. In ANN models, the 

number of neurons in the first layer and last layer correspond 

to the number of input variables and output characteristics, 

respectively. Thus, the ANN model for EDM process has 5 

neurons in the first layer (input) and 3 neurons (for the single 

objective) or 1 neuron (for the multi-criteria modeling) in the 

(3)
y
(net)

k
= cik × P

(

Wi,j−1, Oi,j−1

)

= bik

k = 1 − 3,

last (output) layer (Fig. 3). In the past, the adequacy of an 

ANN model would be checked by mean square error (MSE) 

between desired outputs (Yk) and predicted outputs (yk). The 

best network would then be selected based on MSE criterion. 

The general form of MSE function is expressed in Eq. (4):

Nowadays, however, a more comprehensive criterion 

called authority of the net (M(net)) has been proposed to 

account for both training and testing errors in evaluating 

a given ANN model [23]. The training of an ANN implies 

(4)MSE =
1

p

p
∑

k=1

(Yk − yk)
2

Table 3  The L36 orthogonal 

array experimental design 

matrix and results

No V (V) η (s) I (A) Ton (μs) Toff (μs) MRR (gr/min) TWR (%) SR (μm)

1 1 1 1 1 1 0.0078 11.4 3.9

2 2 2 2 2 1 0.0676 2.6 7.1

3 3 3 3 3 1 0.1487 0.6 13.5

4 1 1 1 1 1 0.0073 9.0 3.2

5 2 2 2 2 1 0.0462 3.3 6.9

6 3 3 3 3 1 0.1520 0.4 12.7

7 3 2 1 1 1 0.0100 6.7 3.8

8 1 3 2 2 1 0.1227 2.7 8.4

9 2 1 3 3 1 0.0629 0.7 12.5

10 2 3 1 1 1 0.0124 5.3 4.4

11 3 1 2 2 1 0.0347 3.8 7.6

12 1 2 3 3 1 0.2364 0.7 13.7

13 1 3 2 1 1 0.0378 35.9 4.8

14 2 1 3 2 1 0.0562 7.5 8.1

15 3 2 1 3 1 0.0196 1.1 6.2

16 2 3 2 1 1 0.0284 36.0 4.6

17 3 1 3 2 1 0.0498 6.6 10.0

18 1 2 1 3 1 0.0253 0.8 5.8

19 3 1 2 1 2 0.0127 35.1 4.9

20 1 2 3 2 2 0.0664 11.0 7.0

21 2 3 1 3 2 0.0189 1.2 6.5

22 3 2 2 1 2 0.0267 39.2 4.8

23 1 3 3 2 2 0.0984 7.9 8.7

24 2 1 1 3 2 0.0082 2.7 6.1

25 1 2 3 1 2 0.0444 46.5 5.5

26 2 3 1 2 2 0.0171 1.3 5.8

27 3 1 2 3 2 0.0387 0.6 11.1

28 2 2 3 1 2 0.0409 44.6 4.9

29 3 3 1 2 2 0.0149 1.5 4.6

30 1 1 2 3 2 0.0424 0.5 11.6

31 3 3 3 1 2 0.0349 42.0 4.9

32 1 1 1 2 2 0.0098 2.3 6.3

33 2 2 2 3 2 0.0947 0.7 8.8

34 2 1 3 1 2 0.0189 47.0 4.9

35 3 2 1 2 2 0.0142 1.6 5.5

36 1 3 2 3 2 0.1140 0.2 9.8
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finding desired net’s architecture and weights that minimize 

error between the desired process quality characteristics 

and the predicted ones. Forward phase is the first step in 

training, which occurs when an input vector X is presented 

and propagated through the network to compute an output 

characteristics. Therefore, an error between the desired out-

put (Yk) and predicted output (yk) of the neural network is 

calculated. So, the modeling authority of the net (M(net)) is 

given in Eq. (5) [23]:

The recent relation corresponds to fitness function for 

developing the BPNN construction, where α and β are the 

coefficients that determine the relative importance of learn-

ing and generalization capability of ANN. Also, p0 and q0 

are the numbers of training and testing data, respectively. 

Furthermore, Yr and yr are preventative variables for desired 

and predicted values used for training purpose. In the same 

token, variables, Ys and ys are desired and predicted test 

values.

The best network may then be selected based on M(net) 

criterion. Likewise, in this study, number of hidden layers 

(No = 2) and neuron in each layer (No = 5) have been deter-

mined using PSO algorithm and assessed base on the M(net) 

criterion (Fig. 4). 

6  Analysis of variance (ANOVA) interaction 
analysis

To determine how well a model fits the experimental values 

and represent the authentic process under study, analysis of 

variance (ANOVA) is performed [19].

(5)M(net) = � ⋅

1

p
0

p
0

∑

r=1

(Yr − yr)
2 + � ⋅

1

q
0

q
0

∑

s=1

(Ys − ys)
2

6.1  Interaction plot

An interactions plot is a powerful graphical tool which 

plots the mean response of two factors at all possible com-

binations of their settings. If the lines are parallel, this 

indicates that there is an interaction between the factors. 

Non-parallel lines are an indication of the presence of 

interaction between the factors. The interaction plots for 

the process variable are illustrated in Fig. 5.

It could be noticed that the current is the most impor-

tant variable affecting MRR. By the same token, the most 

important variable affecting SR and TWR is pulse on time. 

Furthermore, pulse off time is the least important param-

eter affecting MRR, TWR and SR.

7  Heuristic algorithms

There is a plenty of different heuristic algorithms (includ-

ing GA, SA, PSO, Ant and Bee colony, and etc.) among 

which SA and PSO based on their merits are employed 

extensively for optimization of different problems and pro-

cesses. Easy to program and converge fast are the significant 

advantages of using PSO algorithm. While, falling into local 

optimum traps in high-dimensional space could be consid-

ered as disadvantage of using this algorithm. GA is another 

widely used algorithm coding which is a time consuming 

process due to setting its large number of parameters. SA’s 

major merit over other algorithms (such as PSO) is its abil-

ity to avoid getting trapped in local minima. As with GA, a 

major advantage of SA is its flexibility and robustness as a 

global search method. SA algorithm does not use gradient 

information and makes relatively few assumptions about 

the problem being solved. It can deal with highly nonlinear 

problems and no differentiable functions as well as func-

tions with multiple local optima. SA is a very powerful and 

important tool in a variety of disciplines.

Based on the above-mentioned reasons, in this study, 

PSO and SA algorithms have been considered as the heu-

ristic algorithms to optimize the process responses. At the 

first step, PSO algorithm has been considered for deter-

mining BPNN architecture. Then, the process responses 

have been optimized using PSO algorithm. Next, the per-

formance of PSO has been checked using SA algorithm. At 

the last step, the optimization results have been confirmed 

using experimental tests. The details of these algorithms 

procedures are well documented in Ref. [24].

7.1  Simulated annealing algorithm

Simulated annealing (SA) algorithm, first proposed by 

Kirkpatrick in 1983, is originally inspired by the process 
Fig. 4  Architecture of proposed artificial neural network used for sin-

gle-objective modeling
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Fig. 5  Interaction plots for 

EDM process variables
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of physical annealing in metal work and widely used in 

optimization problems.

The first step in a standard SA algorithm approach, is gen-

erating an initial solution randomly. A small random change 

is made in the existing solution at initial stages. Then, the 

objective function value of new solution is calculated (Ei+1) 

and compared to that of the current solution (Ei). A move is 

made to the new solution if it has better value or if the prob-

ability function, implemented in SA algorithm, has a higher 

value than a randomly generated number between 0 and 1. 

The probability of accepting a new non-improving solution 

is given in Eq. (6): [25]. 

where Ti is the current temperature, along with the difference 

between current solution and the new solution (ΔE). For 

reduction of the temperature, Eq. (7) is used:

SA algorithm has varied applications in various engineer-

ing problems [26, 27]. In this study, SA algorithm has been 

used in the optimization of EDM process variables. In this 

stage, the proposed BPNN model is implanted into a SA 

procedure to find the optimal set of EDM process variables 

in order to maximize the MRR and minimize the TWR and 

SR simultaneously.

7.2  Particle swarm optimization algorithm

Particle swarm optimization (PSO) algorithm is a popula-

tion-based stochastic optimization procedure, inspired by 

social behavior of birds flocking or fish schooling, developed 

by Eberhart and Kennedy in 1995 [28]. The optimization 

process is initialized with a population of random solutions 

and searches for optima by updating generations. The poten-

tial solutions named particles fly through the problem space 

by following the current optimal particles. PSO algorithm 

is implemented easily and has few variables to adjust. The 

algorithm can be illustrated based on the following scenario: 

A group of birds are randomly searching food in an area. 

There is only one piece of food in the area being searched. 

All the birds do not know where the food is. But they know 

how far the food is in their search [29]. So, the best approach 

to achieve the food is to simply follow the bird, which is 

nearest to the food. In optimization problems, each bird in 

the search space is referred to as ‘particle.’ All the particles 

are evaluated by the fitness function to be optimized and 

have velocities for the particles. The particles fly through the 

problem space by following the current optimum particles. 

The problem is initialized with a group of random particles 

and then searches for optima by updating generations. In 

(6)P
i
= exp−(ΔE∕T

i
)

(7)T
i+1 = 𝛼 × T

i
i = 0, 1,… and 0.9 ≤ 𝛼 < 1

all the iterations, each particle is updated by following two 

‘best’ values. The best solution achieved so far among the 

particle is called as ‘particle best’ termed as  pbest, and the 

best solution obtained so far in the population is called as 

‘global best’ termed as  gbest. A particle takes the entire par-

ticle toward its  pbest and  gbest locations. After finding the two 

best values, the particles are updated with its velocity and 

positions using Eqs. (8) and (9) [28].

V[] is the particle velocity, present is the current parti-

cle, pbest and gbest are defined as stated before, rand() is the 

random number between 0 and 1, c1, c2 are learning factors 

usually varies from 1 to 4, and p[] is new particle position. 

Compared to other optimization techniques, the informa-

tion sharing mechanism in PSO is significantly different. 

Only gbest gives out information to others, which is a one-

way information sharing mechanism. The evolution looks 

only for the best solution, and hence, all the particles tend 

to converge to the best solution quickly in most cases. The 

advantages of using PSO are that it takes real numbers as 

particles and there are few variables to adjust [28].

The searching is a repeat process, and the stop criteria 

are that the maximum iteration is reached or the minimum 

error condition is satisfied. The various variables in PSO 

are number of particles, dimension of particles, and range 

of particles, learning factor, stop condition and global versus 

local version [28].

7.3  Algorithm procedures

The PSO algorithm procedure is as the following sentences

Step 1: Initialization: The position and velocity of all 

particles are set at random within pre-specified or legal 

range.

Step 2: Calculate fitness function value for each particle. 

If the fitness function value is better than the best fitness 

function value (pbest) in history, set current value as the 

new pbest.

Step 3: Choose particle with the best fitness function 

value of all the particles considered so far as the gbest.

Step 4: Calculate particle velocity and position for each 

particle using Eqs. (7) and (8).

Step 5: Particle velocities on each dimension are closed to 

a maximum velocity vmax. If the sum of acceleration would 

cause the velocity on that dimension to exceed vmax (Speci-

fied by the user), the velocity on the dimension is limited 

to vmax.

(8)
V[] = (C1 × rand()) × (pbest[] − present[])

+ (C2 × rand()) × (gbest[] − present[])

(9)p[] = V[] + present[]
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Step 6: Dismiss if maximum number of iterations is 

reached.

Else, go to Step 2.

Step 7: End.

The SA algorithm procedure is as the following sentences

Step 1. Initialize the temperature parameter T0; cooling 

schedule; r (0 < r < 1) and the termination criterion (e.g., 

number of iterations k = 1…K); Generate and evaluate an 

initial candidate solution (perhaps at random); call this the 

current solution, c.

Step 2. Generate a new neighboring solution, m, by mak-

ing a small change in the current permutation of jobs and 

evaluate this new solution

Step 3. Consider this new solution as the current solution if 

the following sentences are satisfied:

(a) The objective value of new solution, E(m), is bet-

ter than of the current solution, E(c).

(b) The value of acceptance probability function given 

by  (exp(f(m)−f(c))/Tk) is greater than a uniformly gen-

erated random number “rand”; where 0 < rand < 1.

Step 4. Check the termination criterion and update the tem-

perature parameter (i.e., Tk = r × Tk−1) and return to Step 2.

7.3.1  Variables of the algorithms

Variables of SA and PSO algorithm used in the proposed 

model are given below, respectively.

SA variables:

Initial temperature: 700, Temperature reduction rate: 0.91, 

Processing time: 30 s

PSO variables:

Number of iteration performed: 30, Population: 50, Learn-

ing factor c1: 2, Learning factor c2: 2

7.3.2  Calculation of optimum machining variables

Peak current (I) is calculated randomly within the limits using 

Eq. (10) [3] 

Similarly, voltage (V) is also calculated randomly within 

the limits using Eq. (11).

Similarly, pulse on time (Ton), pulse off time (Toff) and 

duty factor (η) are also calculated randomly within the limits 

using Eqs. (12)–(14), respectively.

(10)I = I
min

+ (I
max

− I
min

) × rand()

(11)V = V
min

+ (V
max

− V
min

) × rand()

(12)T
on

= T
on(min) + (T

on(max) − T
on(min)) × rand()

The proposed integrated method and related algorithm 

are presented in Fig. 6.

The 36 data set gathered using Taguchi approach were 

organized in input/output pairs and has been divided into 

two subsets randomly. With 26 input/target pairs (experi-

mental sets), training has been done. Furthermore, 10 input/

target pairs for evading overfitting and attaining good gener-

alization by means of cross-validation. Some test runs (2, 4, 

7, 11, 14, 19, 22, 23, 27, 31 and 34) has been Collected for 

validating (testing) of developed model.

8  EDM process optimization results

8.1  Single-objective optimization

In this section, the developed BPNN model has been embed-

ded into SA and PSO algorithms to maximize MRR and 

minimize TWR and SR independently. The results of opti-

mization are shown in Table 4.

8.2  Multi-criteria optimization

As these objectives (MRR, TWR and SR) are conflicting, 

they have been converted into a single measure for multi-cri-

teria optimization. To maximize MRR and minimize TWR 

and SR, the process variables values should be found in such 

a way that minimize the following Equation.

where W1, W2 and W3 are the weights considered for TWR, 

SR and MRR, respectively.

The algorithms were run from different starting points 

and with various variables settings. The best results obtained 

from the optimization procedure are reported in Tables 5 

and 6.

In complementary section, in order to evaluate the accu-

racy of the predicted values, a set of experimental experi-

ment was carried out based on the optimized process varia-

bles. Moreover, the obtained experimental responses derived 

(13)T
off

= T
off(min) + (T

off(max) − T
off(min) × rand()

(14)� = �
min

+ (�
max

− �
min

) × rand()

(15)

Minimize f ( I, Ton, Toff, �, V ) = W1TWR + W2SR − W3MRR

Subjected to

6 ≤ I ≤ 30

25 ≤ Ton ≤ 200

10 ≤ Toff ≤ 75

0.4 ≤ � ≤ 1.6

50 ≤ V ≤ 60



Journal of the Brazilian Society of Mechanical Sciences and Engineering           (2020) 42:73  

1 3

Page 11 of 14    73 

from SA and PSO algorithms were compared. The results 

which are presented in Tables 5 and 6 for equal (0.333) and 

different (0.750) weighing of each process characteristics 

show that the hybrid model can improve quality character-

istics of the process.

Figure  7 illustrates the convergence trends for the 

heuristic algorithms used for TWR (W1 = 0.750 and 

W2 = W3 = 0.125). By the same token, Figs. 8, 9 and 10 

show the convergences of the proposed algorithms for SR 

(W2 = 0.750 and W1 = W3 = 0.125), MRR (W3 = 0.750 and 

W1 = W2 = 0.125) and the corresponding equal weighing 

(W1 = W2 = W3 = 0.333). As shown, PSO converges quicker 

than SA. However, the optimized values are approximately 

the same. The termination factor has been considered time 

(30 s).

9  Conclusions

Selection of process variables levels significantly affects the 

quality of final product in electrical discharge machining 

(EDM) process. On the other hand, the interactions of these 

variables call for simultaneous selection of their optimal 

values. In this research, the problem of modeling and opti-

mization (both single and multi-criteria) of EDM process 

for AISI2312 hot worked steel alloy has been addressed. 

The process modeling has been carried out using experi-

mental data gathered as per  L36 orthogonal array Taguchi 

(OA-Taguchi) method. First, three important process char-

acteristics including material removal rate (MRR), surface 

roughness (SR) and tool wear rate (TWR) have been com-

bine into an equally weighed single measure called weighted 

normalized grade (WNG). Next, the backpropagation neural 

network (BPNN) was developed to establish accurate rela-

tionships between input process variables (current, volt-

age, pulse off and on time and duty factor) and multiple 

performance characteristics. Furthermore, in most of the 

studies, the ANN architecture (number of hidden layers and 

nudes/neurons) has been determined based on trial and error 

method. In this study, to tackle the problem of selection of 

ANN architecture, PSO algorithm has been used. In the next 

stage, the developed BPNN model has been implanted into 

heuristic algorithms (SA and PSO) to find the optimal set 

of EDM process variables in order to maximize MRR and 

minimize SR and TWR independently and simultaneously. 

Then, the algorithms performances have been compared. 

The derived results manifests that the performance for both 

algorithms in single-objective optimization are approxi-

mately the same. Furthermore, the results of the optimiza-

tion illustrate that the PSO algorithm converges quicker than 

the SA algorithm. The proposed modeling and optimization 

approach, with minor changes, can be applied to other manu-

facturing process.

Train the ANN models for gathered 

data using EDM process 

Computing the MSE of developed 

models to select the process model 

Determine PSO Initialization variables

(initial positions, global position, etc.)

Create new generation of particles and 

simulate the output fitness functions for 

particles 

Evaluate the fitness functions for 

particles and select particles 

Update particles positions, velocity, 

select new generation particles, etc.

Does the fitness 

functions of best 

particle in 

generation is 

better than the 

global position?

Iteration 

check

Result of optimization and conducting 

confirmation test runs for validating 

the results

Update the Global and local best 

particle (optimum solutions)

N
ex

t
Iteratio

n

Fig. 6  Flowchart illustration of proposed method used for EDM pro-

cess optimization
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Table 4  Result of single-

objective optimization using SA 

and PSO algorithms

Output Algorithm Process variables Predicted Experiment Error (%)

I (A) V (V) Ton (μs) Toff (μs) η (S)

MRR (gr/min) SA 27 50 200 12 1.6 0.270 0.260 3.7

MRR (gr/min) PSO 30 50 200 10 1.6 0.270 0.260 3.7

SR (μm) SA 8 60 25 71 0.4 2.820 2.710 3.9

SR (μm) PSO 6 60 25 75 0.4 2.800 2.750 1.7

TWR (%) SA 6 60 200 32 1.4 0.123 0.126 2.4

TWR (%) PSO 6 60 200 29 1.5 0.120 0.116 3.3

Table 5  Optimal EDM 

variables and corresponding 

process quality measures for 

equal weighing in multi-criteria 

optimization

Output Algorithm Process variables Predicted Experiment Error (%)

I (A) V (V) Ton (μs) Toff (μs) η (S)

MRR (gr/min) SA 19 53 118 33 1.2 0.243 0.236 2.90

SR (μm) SA 3.700 3.570 3.51

TWR (%) SA 0.190 0.200 5.26

MRR (gr/min) PSO 22 54 129 39 1.2 0.249 0.240 3.61

SR (μm) PSO 3.800 3.600 5.26

TWR (%) PSO 0.200 0.190 5.00

Table 6  Optimal EDM 

variables and corresponding 

process quality measures for 

75% weighing for each out put 

in multi-criteria optimization

Output Algorithm Process variables Predicted Experiment Error (%)

I (A) V (V) Ton (μs) Toff (μs) η (S)

MRR (gr/min) SA 22 50 200 43 1.30 0.256 0.242 5.46

MRR (gr/min) PSO 22 50 200 41 1.30 0.256 0.248 3.12

SR (μm) SA 9 58 95 53 0.70 2.900 2.800 3.44

SR (μm) PSO 8 57 95 56 0.70 2.900 2.800 3.44

TWR (%) SA 18 56 176 51 0.96 0.170 0.180 5.88

TWR (%) PSO 18 57 182 50 1.00 0.160 0.150 6.25

Fig. 7  Convergence of the heuristic algorithms for TWR (W1 = 0.75) Fig. 8  Convergence of the heuristic algorithms for SR (W2 = 0.75)
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