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Abstract. Biodiesel manufacturing from renewable feedstocks has received a lot of attention as a viable alternative to fossil fuels. The Box-Behnken 
design, analysis of variance (ANOVA), and the Grey Wolf Optimizer (GWO) algorithm were used in this work to optimise biodiesel production from 
Nahar oil. The goal was to determine the best operating parameters for maximising biodiesel yield. The Box-Behnken design is used, with four 
essential parameters taken into account: molar ratio, reaction duration and temperature, and catalyst weight percentage. The response surface is 
studied in this design, and the key factors influencing biodiesel yield are discovered. The gathered data is given to ANOVA analysis to determine the 
statistical significance. ANOVA analysis is performed on the acquired data to determine the statistical significance of the components and their 
interactions. The GWO algorithm is used to better optimise the biodiesel production process. Based on the data provided, the GWO algorithm obtains 
an optimised yield of 91.6484% by running the reaction for 200 minutes, using a molar ratio of 7, and a catalyst weight percentage of 1.2. As indicated 
by the lower boundaries, the reaction temperature ranges from 50 °C. The results show that the Box-Behnken design, ANOVA, and GWO algorithm 
were successfully integrated for optimising biodiesel production from Nahar oil. This method offers useful insights into process optimisation and 
indicates the possibilities for increasing the efficiency and sustainability of biodiesel production. Further study can broaden the use of these strategies 
to various biodiesel production processes and feedstocks, advancing sustainable energy technology. 
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1. Introduction 

Despite their widespread usage in a variety of fields, such as 
manufacturing, transportation, and construction, diesel engines 
do have an adverse effect on the environment (Hoang, 2021a; 
Mohapatra et al., 2022). Pollutants released by diesel engines 
include sulphur dioxide (SO2), particulate matter (PM), and 
nitrogen oxides (NOx) (Barik and Vijayaraghavan, 2020; Lamas 
et al., 2015; Yang et al., 2019). Smog may have negative impacts 
on the air quality and people's health since NOx and PM help to 
create it (Nagarajan et al., 2022; Stelmasiak et al., 2017). These 
emissions are linked to respiratory disorders, heart problems, 
and higher death rates (Bakır et al., 2022; Serbin et al., 2021). 
Diesel engine SO2 emissions can damage ecosystems and 
contribute to acid rain. Carbon dioxide (CO2) emissions from 
diesel engines are an important source of greenhouse gas 
emissions that contribute to climate change (Geng et al., 2017; 
Nguyen et al., 2021). In 2019, direct emissions from the 
transportation sector were around 8.9 GtCO2eq/yr., accounting 
for roughly 23% of overall energy-related CO2 emissions. The 
CO2 emissions from the motorised transport sector accounted 
for roughly 69% of overall emissions from transportation (Skea 
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et al., 2022). Burning diesel fuel produces CO2 emissions that 
contribute to global warming and its side effects, such as 
temperature increase, sea level rise, and extreme weather 
(Domachowski, 2021). Black carbon, sometimes referred to as 
soot, is a small particulate substance released by diesel engines 
that absorbs sunlight and causes global warming. Black carbon 
particles may also settle on snow and ice, speeding up melting 
and causing glaciers and polar ice caps to melt (Malla et al., 
2022). 

The environmental effect of diesel engines has been 
attempted to solve these environmental issues. This entails 
enacting stronger pollution regulations, creating cleaner diesel 
fuels, and introducing emission control technology like diesel 
particulate filters (DPFs) and the environmental effect of diesel 
engines has been attempted to solve these environmental issues 
(Wang et al., 2023). Stricter emission regulations, the creation of 
cleaner diesel fuels, and the advent of pollution-controlling 
technology like DPFs and selective catalytic reduction (SCR) 
systems are some examples of this. In order to lessen the 
environmental effect of diesel engines and develop sustainable 
transportation systems, the switch to alternative fuels like 
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biodiesel or electrification is also being studied. Biodiesel has the 
potential to play an important role in reaching net zero ambitions 
and transitioning to a low-carbon economy (Jin and Wei, 2023). 
When biodiesel is generated from sustainable feedstocks and 
utilised as a substitute for fossil fuel, it can help reduce CO2 and 
other GHG emissions (Silviana et al., 2022; Zhang et al., 2022). 
This emission decrease contributes to initiatives to mitigate 
climate change and attain net zero emissions. Biodiesel is a 
renewable energy source obtained from renewable resources 
such as vegetable oils, animal fats, algae and recycled cooking 
oil (Hoang et al., 2022; Kalyani et al., 2023; Ruiz et al., 2021). We 
may lessen our dependency on fossil fuels and the pollution 
connected with them by adopting biodiesel. Biodiesel may be 
generated in a sustainable manner by using organic waste 
products or specialised feedstock (da Silva Neto et al., 2020; 
Tuan Hoang et al., 2021; Yaashikaa et al., 2022). Biodiesel may 
be utilised in current diesel engines and infrastructure without 
requiring substantial changes (Ahmad and Saini, 2022; Dey et al., 
2020; Hoang et al., 2021). This enables for a more gradual shift 
to a lower-carbon fuel source without needing significant 
adjustments to automobiles or refuelling facilities. The option to 
mix biodiesel and fossil fuel in various ratios adds flexibility 
throughout the changeover (Babadi et al., 2022; Gul et al., 2019; 
Sharma and Sharma, 2022; Silviana et al., 2022). 

Integration with other renewable energy systems: Biodiesel 
may be used in conjunction with other renewable energy 
systems such as wind and solar power (Silviana et al., 
2022)(Soulayman and Dayoub, 2019). It can be created during 
times of surplus renewable energy output using methods such as 
power-to-liquid, in which renewable electricity is used to 
generate hydrogen, which is then mixed with CO2 to form 
renewable diesel or synthetic biodiesel (Abdullah et al., 2019; 
Mayer et al., 2020; Zullaikah et al., 2021). This integration 
contributes to the balancing of intermittent renewable energy 
generation and the decarbonization of many industries. Biodiesel 
production can help to support sustainable rural development by 
generating new economic possibilities in agriculture, waste 
management, and biofuel production (Hoang, 2021b; Sharma 
and Sharma, 2021). It has the potential to diversify farmers' 
revenue streams, boost local employment, and lessen reliance 
on imported fossil fuels. Biodiesel helps to larger sustainable 
development goals by assisting rural communities and 
sustainable land use practises (Molino et al., 2018). However, it 
is critical to guarantee that biodiesel production is sustainable 
and does not have negative consequences such as deforestation, 
biodiversity loss, or competition with food production. 
Responsible feedstock procurement, adherence to 
environmental regulations, and the implementation of 
sustainable land use practises are critical for maximising 
biodiesel's beneficial benefits on net zero aims and overall 
sustainability (Kolakoti et al., 2022). Because of numerous major 
features, biodiesel from nonedible sources is seen to be a better 
alternative than vegetable oil biodiesel. To begin with, non-
edible plant seeds like jatropha, Nahar, Karanja, and algae have 
a far greater oil content than typical vegetable oil crops such as 
soybeans or rapeseed. This means that a greater amount of 
biodiesel may be derived from the same amount of non-edible 
plant seed. Another benefit is that these non-edible plants may 
be grown in a variety of conditions, including non-arable land 
and waste lands, which reduces competition for agricultural land. 
Furthermore, as compared to typical crops, these sources use 
substantially less water (Patel et al., 2019). 

The literature reveals that biodiesel manufacturing process is 
non-linear and complex. The biodiesel yields from the 
transesterification process depends on several control factors 
like catalyst used, reaction temperature, duration of reaction and 
many more. It necessitates the optimization to find the best 

control settings for maximum output. Also, optimisation is 
required for biodiesel manufacturing processes to meet a variety 
of essential goals. To begin, optimisation increases the overall 
efficiency of the production process by maximising feedstock 
conversion and minimising waste. This efficiency boosts 
productivity while simultaneously lowering manufacturing costs, 
making biodiesel increasingly financially viable. Second, 
optimisation guarantees that the biodiesel produced is of 
uniform quality. By carefully optimising process parameters such 
as reaction conditions and catalyst usage, the qualities of the 
biodiesel may be regulated within desirable ranges, satisfying 
specified performance and infrastructure compatibility criteria 
(Pimentel et al., 2009). Furthermore, optimisation is required 
while transitioning from laboratory-scale to commercial-scale 
operations. It contributes to addressing scalability, process 
stability, and cost-effectiveness issues, ensuring a seamless 
transition and successful commercialization of biodiesel 
production. Overall, biodiesel production optimisation is critical 
for attaining efficient, cost-effective, and sustainable processes, 
as well as assuring high-quality biodiesel that fulfils regulatory 
criteria and can be effectively commercialised (Gasparatos et al., 
2022; Rulli et al., 2016). 

Meta heuristic optimization is an attractive option in such 
conditions. Because of its distinct features, Grey Wolf 
Optimisation (GWO) is an excellent choice for optimising the 
biodiesel manufacturing process. One significant benefit is 
GWO's superior global search capacity, which allows it to 
investigate a large range of alternative solutions and identify the 
best configuration. This is especially useful in biodiesel 
manufacturing, where several interconnected process 
parameters must be optimised at the same time. GWO's 
simplicity and ease of deployment make it a viable alternative 
for field researchers and practitioners. Its ease of integration into 
current manufacturing processes or optimisation frameworks 
increases its use (Thirunavukkarasu et al., 2023). Furthermore, 
GWO has a fast convergence rate, quickly convergent to near-
optimal solutions and minimising computational time. This 
enables more effective decision-making and rapid modifications 
in biodiesel manufacturing processes. GWO's capacity to 
manage numerous targets, addressing the complicated trade-
offs inherent in biodiesel production optimisation, is another 
major benefit. GWO supports the balance of objectives such as 
conversion efficiency, cost minimization, and environmental 
impact reduction by assigning suitable fitness metrics. 
Furthermore, GWO exhibits durability and flexibility, allowing it 
to handle dynamic situations and changing restrictions while 
maintaining constant optimisation performance even in the 
midst of uncertainty. Its adaptability is demonstrated by 
successful implementations in a variety of optimisation settings, 
emphasising its potential for resolving the complexities and 
constraints inherent in biodiesel production (Makhadmeh et al., 
2022; Veza et al., 2022). Hence, in the present study, an attempt 
is made to optimize the biodiesel production process from Nahar 
(Ceylon ironwood) feedstock. The Box-Behnken design will be 
used for design of experiment, analysis of variance will be used 
for model development. The developed model will be used as 
cost function for Grey Wolf Optimizer.  Finally, GWO will be 
employed for optimizing the control factors (reaction 
temperature, reaction duration, molar ratio, and catalyst wt.%) 
to provide the maximum yield of biodiesel with minimum 
resources. 

2. Materials and methods 

2.1 Biodiesel preparation 

Nahar seeds were procured from a supplier in Delhi, India. 
To minimise moisture content, the seeds were sun-dried for two 



V.N.Nguyen et al  Int. J. Renew. Energy Dev 2023, 12(4), 711-719 

| 713 

 

ISSN: 2252-4940/© 2023. The Author(s). Published by CBIORE 

days in the month of May 2023. The dried seed kernels were 
mechanically extracted to in Assam, India, giving raw oil 
corresponding to 64% of the total weight. The raw oil was 
purified and used in the research. The analytical grade chemicals 
used in the study were procured locally from Chawri Bazar, 
Delhi, India. The physicochemical characteristics and fatty acid 
content of Nahar oil were evaluated throughout the 
characterisation process. As a first step the FFA analysis was 
conducted. It revealed the FFA on higher side (Leung et al., 2010; 
Murugapoopathi and Vasudevan, 2021). It was decided to 
attempt standardized and well documented two-step acid-base 
(H2SO4 + KOH) transesterification technique to overcome this. 
CaO (heterogenous catalyst) sourced from waste chicken eggs 
was employed as catalyst.  The main physio-chemical properties 
of Nahar biodiesel are shown in Table 1. The objective of the 
paper was to optimize the control factor during this entire 
process to have best biodiesel yield with least possible resources.  
The following control factors were employed in the study (Table 
2). The design of experiments (DoE) technique response surface 
methodology (RSM) was employed for planning the sets of 
experimental runs.  The Box-Behnken design was used for this 
purpose. 
 
 
2.2 Response surface methodology 

RSM (Response Surface Methodology) is a statistical 
approach that is commonly used in experimental design and 
optimisation. It entails the development and use of mathematical 
models in order to comprehend the link between the response 
variable significance and the controllable factors or variables. 
RSM provides a methodical way to optimising complicated 
processes and systems by exploring the design space effectively. 
RSM's capacity to model and forecast the response surface is one 
of its primary features, allowing researchers to discover the ideal 
settings for the input variables to obtain the intended output. 
RSM may efficiently predict the coefficients of the mathematical 
model by using a minimum number of experimental runs, saving 
time and resources as compared to a complete factorial design. 
RSM is generally comprised of three major steps: experimental 
design, model fitting, and response surface analysis. A well-
designed series of experiments is carried out during the 
experimental design stage by altering the input variables 
pursuant to a preset design matrix. For each input variable 
combination, the response variable is assessed (Sharma and 
Sahoo, 2022). 

Following that, the data acquired is utilised to create a 
mathematical model that reflects the connection between the 

response variable and the input variables. Models that are 
commonly employed include linear, quadratic, and higher-order 
polynomial models. The model is then verified to see how well it 
predicts the response variable. Following the validation of the 
model, response surface analysis is used to investigate the 
relationship between the response variable and the input 
variables. To visualise the response surface and identify regions 
of optimal response, contour plots, 3D surface plots, and other 
graphical representations are utilised. Engineering, chemistry, 
pharmacology, agriculture, and manufacturing have all found 
uses for RSM. It may be used to optimise processes, create new 
products, estimate parameters, and enhance quality. RSM 
enables researchers and engineers to make sound judgements 
based on mathematical models and statistical analysis, resulting 
in more efficient and cost-effective process optimisation. 
 
2.3 Box-Behnken design 

RSM analyses and models the connection between input 
factors and response variables using various experimental 
methods. Full Factorial Design, Central Composite Design, Box-
Behnken Design, and Fractional Factorial Design are examples 
of RSM designs. The Box-Behnken design stands out among 
these due to its efficiency and adaptability for fitting second-
order response surface models. It has numerous benefits: For 
starters, it takes fewer experimental runs than complete factorial 
design or Central Composite Design while still obtaining critical 
quadratic response surface information, saving time, resources, 
and money. Second, the design points are equidistant from the 
centre point, resulting in a rotatable design that provides 
constant variance of calculated model coefficients across the 
design space, improving model prediction precision (Elkelawy et 
al., 2022). Thirdly, the Box-Behnken design, unlike the Central 
Composite Design, does not require the addition of cube points 
to estimate cubic effects, simplifying the experimental setup and 
lowering the number of runs. Finally, the design points are 
dispersed uniformly over the design space, with a special 
emphasis on the area around the optimum, allowing for efficient 
optimisation by allowing for the identification of optimal factor 
values and improvement of the response variable. Overall, the 
Box-Behnken design provides a well-balanced way to modelling 
the response surface, with fewer experimental runs, higher 
accuracy, and efficient optimisation capabilities, making it a 
popular choice in response surface technique (Manojkumar et al., 
2022; Porwal, 2022). 

 
2.4 Grey-Wolf Optimizer 

The Grey Wolf Optimizer (GWO) is an optimisation 
algorithm inspired by nature that models the social hierarchy and 
hunting behaviour of grey wolves. It was created using the ideas 
of alpha, beta, delta, and omega wolves, which symbolise the 
most powerful and dominating members of a wolf pack. The 
population of wolves in the GWO algorithm symbolises various 
solutions to an optimisation issue. The position of each wolf 
correlates to a proposed solution, and their fitness affects their 
hunting capacity (Makhadmeh et al., 2022). The programme 
iteratively updates the locations of the wolves using a set of rules 
to find the best option. The Grey Wolf Optimizer algorithm's 
pseudo code is as follows (Abualigah et al., 2020; Makhadmeh et 
al., 2022): 

• Create a wolf population at random. 

• Using the objective function, assess each wolf's fitness. 

• Set the alpha, beta, and delta wolves as the three most fit 

individuals. 

• Set the bounds of the search space and the maximum 

number of iterations. 

Table 1  
Physio-chemical characteristics of Nahar biodiesel  

S. No. Characteristics Value 

1. Lower calorific value 37.56 MJ/kg 
2. Cetane No. 52 
3. Fire point 178 °C 
4. Pour point 6.8 °C 
5. Flash point  139 °C 
6. Viscosity 5.85 cSt@40℃ 
7. Density 881 kg/m3 
8. Ash content  0.034 %, w/w 

 

Table 2 
Control factors and their test range 

S. No Characteristics Lower Medium High 

1. Reaction temperature, °C 50 54 58 
2. Reaction duration, Mins. 100 150 200 
3. Catalyst, wt.% 0.8 1.4 2 
4. Molar ratio 7 10 13 
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• Do the following when the termination condition is not 

met: 

o Each wolf's location should be updated using the 

following formulas: 

o Recalculate the alpha wolf's position: X_alpha = 

X_alpha + A * D_alpha, where A is a coefficient and 

D_alpha is the distance vector. 

o Adjust the beta wolf's position: X_beta = X_beta + A 

* D_beta. 

o Recalculate the delta wolf's position: X_delta = 

X_delta + A * D_delta. 

o Update the remainder of the wolves' positions: X_i = 

(X_alpha + X_beta + X_delta) / 3. 

o Apply boundary restrictions to guarantee that the 

new positions fall inside the scope of the search. 

o Examine the suitability of the newly revised positions. 

o Based on the changed fitness levels, update the alpha, 

beta, and delta wolves. 

• Return the alpha wolf's position as the best solution. 

The GWO algorithm effectively explores and exploits the 
search space by leveraging grey wolf hunting behaviour and 
social interactions. The method seeks to converge approaching 
the global optimum by repeatedly updating the locations of the 
wolves. It has been effectively used to a variety of optimisation 
situations, demonstrating its ability to identify optimum 
solutions. 

 

3. Results and discussion 

3.1 Data analysis 

The Box-Behnken design (BBD) was followed for conducting 
the biodiesel production experiments.  In the present study there 
were four control factors (independent parameters namely 
reaction temperature and time, wt.% of catalyst and molar ratio.  
The biodiesel yield was the response variable in the study. The 
BBD design helped in restricting the test runs to only 29. The 
design matrix was prepared and yield for east test run was 
recorded.  

The correlation matrix gives useful information about the 
correlations between factors in a dataset. The correlation 
coefficients show the degree and direction of these variables' 
associations. The following are the relationships between the 
variables: yield (%) shows a slight negative correlation (-0.0396) 
with reaction temperature (C), indicating a small unfavourable 
association. The yield tends to drop significantly as the reaction 
temperature rises. Yield (%) has a somewhat positive association 
(0.3356) with reaction time (Mins). This suggests that as the 
response time grows, so does the yield. Catalyst weight percent 
has a substantial negative connection (-0.8103) with yield. 
Catalyst weight percentage has a substantial negative 
connection (-0.8103) with yield (%). This is a substantial negative 
connection, implying that as the catalyst weight % grows, so 
does the yield. Yield (%) has a slight positive association (0.0728) 
with molar ratio (%). This means that when the molar ratio 
grows, so does the yield, but to a lesser amount. The correlations 
between yield (%) and all other variables are represented in the 
last row of the correlation matrix. It depicts the total influence of 
all factors on the yield. A substantial positive correlation 
coefficient (near to 1) suggests that the independent factors and 
the dependent variable have a considerable positive association. 
Understanding these relationships can assist researchers and 
practitioners in optimising process parameters. It may be 
feasible to generate improved yields in the process by modifying 

factors with significant correlations, such as reaction time and 
catalyst weight %. The data was used to create a correlation 
heatmap as depicted in Figure 1.  

 

3.2 Analysis of variance 

The ANOVA (Analysis of Variance) table (as shown in Table 
3) contains statistical information on the importance of various 
factors and how they interact in the experimental results. 
Temperature (Temp.), Time (T), Catalyst wt.% (C), and Molar 
Ratio (MR) are the factors included in the provided ANOVA 
table. The first row provides the model's overall statistical 
analysis. The sum of squares (4786.13), degrees of freedom (df, 
9), mean square (531.792), F-value (47.6701), and p-value 
(0.0001) are all displayed. The model is determined to be 
statistically significant, suggesting that no less than one of the 
variables or interactions has a substantial influence on the 
response variable. The rows showing Temp., T, C, and MR in 
first column reflect the separate major impacts of each 
component. For each component, they offer the sum of squares, 
degrees of freedom, mean square, F-value, and p-value. Temp. 
(temperature), T (time), and C (catalyst wt.%) are considered to 
be significant variables in this scenario since their p-values are 
less than the significance level (0.05). MR (molar ratio), on the 
other hand, has no significant effect (p-value = 0.1400). Then, 
Temp. * C, Temp. * MR, T * MR, T * T, C * C rows depict the 
interactions of the components. For each interaction term, they 
offer the sum of squares, degrees of freedom, mean square, F-
value, and p-value. Some of the interactions, such as Temp. * C, 
Temp.*MR, and Temp.*T, are shown to be significant (p-values).  
Some interactions, such as temperature * C, temperature * MR, 
and temperature * T, are shown to be significant (p-values 0.05), 
showing that the combined impacts of these factors have a 
substantial impact on the response variable. The residual sum of 
squares, degrees of freedom, and mean square are all 
represented in this row. It indicates the model's unexplained 
variance or random error. Lack of Fit row as subcategory 
evaluates the lack of fit between the model and the data. The 
sum of squares, degrees of freedom, mean square, F-value 
(7721.331635), and p-value (0.0001) are all provided. A 
considerable lack of fit is discovered, suggesting that the model 
does not match the data well. The pure Error row in residual 
subcategory represents the error sum of squares, degrees of 
freedom, and mean square. It captures the random variation that 
exists within the experimental error.  

In conclusion, the ANOVA table aids in determining the 
importance of various variables and interactions in explaining 

 
Fig 1. Heatmap of correlation among data columns 
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the variability in the response variable. Temperature, Time, 
Catalyst wt.%, and several of their combinations have substantial 
influence on the response variable, according to Table 3. 
According to the Lack of suit study, more model refinement or 
tweaks may be necessary to better suit the data. 

 
The ANOVA analysis could help in development of yield model 
for biodiesel yield as shown in Eq. (1): 

𝑌𝑖𝑒𝑙𝑑 =  1236.22 −  38.51 ∗ 𝑥(1) −  0.346 ∗  𝑥(2)   + 117.73 ∗
 𝑥(3) −  32.4 ∗  𝑥(4)–  0.00125 ∗  𝑥(1) ∗  𝑥(2) −  2.02 ∗  𝑥(1) ∗  𝑥(3) +
 0.47 𝑥(1) ∗  𝑥(4)–  0.00167 ∗  𝑥(2) ∗  𝑥(3) +  0.051 ∗  𝑥(2) ∗  𝑥(4) +
 0.33 ∗  𝑥(1) ∗  𝑥(1) −  13.67 ∗  𝑥(3) ∗  𝑥(3)–  0.0023 ∗  𝑥(4) ∗

 𝑥(3)                                                                                                 Eq. (1)                      

Herein: x(1) = temperature; x(2) = time; x(3) = catalyst; x(4) = 

molar ratio. 
The developed model shown in Eq. (1) was employed to 

make prediction on all design point and the results are shown in 
Table 4. The Eq. (1) would be used as cost function for Grey-wolf 
optimization. The ANOVA analysis was used to develop the 
surface diagrams for showing the effects of control factors on the 
biodiesel yield. 

 
3.3 Surface diagrams 

 RSM-based surface diagrams are excellent tools for 
visualising the detailed link between input factors and a response 
variable. These diagrams illustrate researchers in graphical form 
how modifications to the input factors affect the related 
response. Depending on the characteristics of the reaction or 

Table 3 
ANOVA outcomes of data 

Source Sum of squares df Mean square F value p-value (prob > F)  

Model 4786.13 9 531.792 47.6701 < 0.0001 significant 
Temp. 7.84083 1 7.84083 0.70286 0.4122  

T 562.933 1 562.933 50.4616 < 0.0001  

C 3281.87 1 3281.87 294.188 < 0.0001  

MR 26.4627 1 26.4627 2.37213 0.1400  

Temp. * C 82.901 1 82.901 7.43129 0.0134  

Temp. * MR 137.007 1 137.007 12.2814 0.0024  

T*MR 242.892 1 242.892 21.773 0.0002  

T*T 218.636 1 218.636 19.5986 0.0003  

C*C 165.073 1 165.073 14.7972 0.0011  

Residual 211.958 19 11.1557    

Lack of Fit 211.951 15 14.13 7721.33 < 0.0001 significant 
Pure Error 0.00732 4 0.00183    

Cor Total 4998.09 28     

 
 
Table 4 
 Design matrix with predicted results 

Reaction 
temperature (°C) 

‘x(1)’ 

Reaction 
duration 
(Mins.) 
‘x(2)’ 

Catalyst, (wt.%) 
‘x(3)’ 

Molar ratio 
‘x(4)’ 

Measured yield 
(%) 

Predicted yield 
(%) 

Residuals 

50 100 1.4 10 71.9 71.742 0.158 
58 100 1.4 10 68 67.892 0.108 
50 200 1.4 10 88.1 88.025 0.075 
58 200 1.4 10 84.1 84.075 0.025 
54 150 0.8 7 83.4 83.375 0.025 
54 150 2 7 47.5 47.475 0.025 
54 150 0.8 13 87.8 87.642 0.158 
54 150 2 13 51.9 51.742 0.158 
50 150 1.4 7 83 83.325 -0.325 
58 150 1.4 7 68.2 68.075 0.125 
50 150 1.4 13 76.1 76.242 -0.142 
58 150 1.4 13 84 83.692 0.308 
54 100 0.8 10 77.2 77.442 -0.242 
54 200 0.8 10 94.2 93.775 0.425 
54 100 2 10 41.2 41.642 -0.442 
54 200 2 10 58 57.775 0.225 
50 150 0.8 10 88 87.983 0.017 
58 150 0.8 10 93.4 93.783 -0.383 
50 150 2 10 62 61.783 0.217 
58 150 2 10 48 48.183 -0.183 
54 100 1.4 7 70.3 69.933 0.367 
54 200 1.4 7 70.7 70.917 -0.217 
54 100 1.4 13 59 58.950 0.050 
54 200 1.4 13 89.9 90.433 -0.533 
54 150 1.4 10 72.5 72.500 0.000 
54 150 1.4 10 72.4 72.500 -0.100 
54 150 1.4 10 72.4 72.500 -0.100 
54 150 1.4 10 73.2 72.500 0.700 
54 150 1.4 10 72 72.500 -0.500 
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process under research, these diagrams can display a variety of 
patterns, such as downhill or upward slopes, spikes, or valleys, 
which indicate the system's complexity. 

RSM surface diagrams' key benefit is its capacity to discover 
optimal input settings and enhance understanding of interactions 
between variables. Researchers can identify the optimal mix of 

input factors that maximises the intended result by analysing the 
graphical depiction. This information is essential to decision-
making and optimising processes in a variety of disciplines of 
study. The surface diagram in Figure 2a of the research depicts 
the effects of temperature and catalyst weight % on biodiesel 
yield. According to the data, a low catalyst weight percentage 
paired with a higher reaction temperature produces the highest 
biodiesel production. Notably, the greatest biodiesel output is 
recorded between 56 and 58 °C and a catalyst weight percentage 
range of 0.8 to 1.1 wt.%. These studies shed light on the best 
conditions for operation for the production of biodiesel.  

Similarly, Figure 2b and Figure 2c show the impact of 
temperature and molar ratio, as well as time, on biodiesel 
production.  The molar ratio has somewhat negative influence 
on biodiesel yield as depicted in Figure 2b, showing that raising 
the molar ratio could result in a slight decrease in the production 
of biodiesel. When we observed the combined effect of both 
molar ratio and temperature, then it was found that maximum 
yield was in zone when temperature was 58 °C and molar ratio 
was 13. On the other hand, the maximum yield was observed 
when time taken for rection was 200 mins while the molar ratio 
was 13. The impact of time on biodiesel output, on the other 
hand, is determined to be the smallest among all of the tested 
factors. 

This work successfully examines and quantifies the effects of 
various input factors on biodiesel yield using RSM-based surface 
diagrams. The graphical portrayal of these interactions provides 
useful information for optimising biodiesel production 
operations as well as making educated renewable energy 
selections.  

 
 

3.4 Optimization with GWO 

The framework for the model's construction using ANOVA 
on experimental data set provides the basis for optimisation 
employing the Grey Wolf Optimizer (GWO) algorithm. To 
estimate the productivity of Nahar oil biodiesel within the hybrid 
framework of Response Surface Methodology (RSM) and GWO, 
the optimisation phase was carried out in MATLAB 2021b, using 
the capabilities of GWO. The GWO optimisation model inputs 
have been meticulously constructed and includes critical 
elements such as reaction temperature, reaction duration, 
methanol/oil molar ratio, and catalyst amount in terms of weight 
%. As the intended reaction output, the goal was to maximise the 
production of Nahar oil biodiesel. The RSM model's boundary 
conditions were employed as variables of input and output for 
GWO to drive the optimisation process. These variables were 
employed to optimise the power equation indices in order to get 
the best production of Nahar oil biodiesel. Table 5 displays the 
optimised variables obtained by the GWO model, offering 
significant insights into the best settings for maximising biodiesel 
production. 

Figure 3 depicts the iterative process of GWO optimisation, 
which shows the gradual refining of the parameters to converge 
on the ideal value. Interestingly, the optimisation procedure was 
remarkably efficient, requiring only 0.01 seconds and 4 rounds 
to achieve the optimised value. Such swift and efficient 
optimisation demonstrates the GWO algorithm's potential for 
facilitating biodiesel manufacturing processes and obtaining 
improved yields. 

Overall, the use of RSM and GWO in this work allowed the 
construction of a robust model for optimising Nahar oil biodiesel 
output. The implementation of the GWO technique permitted 
efficient parameter estimation, lowering optimisation time while 
improving overall process efficacy. 

   

 
(a) 

 
(b) 

 
(c) 

Fig 2. Surface diagrams; (a) effects of temperature and catalyst wt. 
on biodiesel yield; (b) effects of temperature and molar ratio on 
biodiesel yield; (c) effects of molar ratio and time on biodiesel yield 
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4. Conclusion  

Given the growing interest in biodiesel synthesis from 
renewable feedstocks as an alternative to fossil fuels, the goal 
was to discover the ideal operating parameters to maximise 
biodiesel yield. In this work, the Box-Behnken design, analysis of 
variance (ANOVA), and the Grey Wolf Optimizer (GWO) 
algorithm were employed to optimise biodiesel production from 
Nahar oil. The Box-Behnken design enabled the study of the 
response surface as well as the discovery of significant factors 
influencing biodiesel yield, such as molar ratio, reaction duration 
and temperature, and catalyst weight percentage. The gathered 
data was subjected to an ANOVA analysis to determine the 
statistical significance of the components and their interactions, 
yielding important insights into the biodiesel production process. 
Furthermore, the GWO algorithm was used to further optimize 
the process. Based on the data provided, the GWO algorithm 
optimized the yield to 91.6484% by reducing the reaction time 
to 200 minutes, utilizing a molar ratio of 7, and a catalyst weight 
percentage of 1.2. The reaction temperature remained within the 
specified bottom limits of 50 °C.  . 

The findings of this study give convincing proof for the 
effectiveness of a combined approach in optimizing biodiesel 
production from Nahar oil. The results add to our understanding 
of process optimization methods and highlight the potential for 
improving the efficiency and sustainability of biodiesel 
production. Researchers and industry experts could get higher 
yields and improved process performance by using this 
integrated strategy, leading to a more affordable and sustainable 
biodiesel manufacturing process. Furthermore, the achievement 
of this study offers up possibilities for future research into 
optimizing various biodiesel manufacturing techniques and 
exploring with alternative feedstocks. The future scope of this 
research is to further optimise the manufacturing of biodiesel 

from different feedstocks. This may be accomplished by 
investigating the suitability of the integrated technique to other 
feedstocks and broadening the range of process variables 
evaluated. Additionally, using sophisticated technologies such as 
machine learning and artificial intelligence might improve the 
optimisation process. The objective is to continuously increase 
the efficiency and long-term viability of biodiesel production, 
resulting in greener and more environmentally friendly power 
options. 
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