
American Journal of Intelligent Systems 2015, 5(2): 43-57
DOI: 10.5923/j.ajis.20150502.01

Optimization of Cable Cycles: A Trade-off between
Reliability and Cost

Hasan Fleyeh*, Barsam Payvar

Computer Engineering Department, School of Technology and Business Studies, Falun, Sweden

Abstract This paper elaborates the routing of cable cycle through available routes in a building in order to link a set of
devices, in a most reasonable way. Despite of the similarities to other NP-hard routing problems, the only goal is not only to
minimize the cost (length of the cycle) but also to increase the reliability of the path (in case of a cable cut) which is assessed
by a risk factor. Since there is often a trade-off between the risk and length factors, a criterion for ranking candidates and
deciding the most reasonable solution is defined. A set of techniques is proposed to perform an efficient and exact search
among candidates. A novel graph is introduced to reduce the search-space, and navigate the search toward feasible and
desirable solutions. Moreover, admissible heuristic length estimation helps to early detection of partial cycles which lead to
unreasonable solutions. The results show that the method provides solutions which are both technically and financially
reasonable. Furthermore, it is proved that the proposed techniques are very efficient in reducing the computational time of the
search to a reasonable amount.

Keywords Combinatorial Optimization, Cable Cycle Routing Problem, Reliability of Path, Conditional Directed Graph,
Admissible Heuristic Estimation

1. Introduction
Cable routing problem, which this paper addresses, is a

problem that arises when an organization installs a set of
devices (called objects) in a building as well as ladders
(called routes) to support the cables. The problem is how to
direct a cable through the routes to link a subset of objects,
such that the path forms a cycle (i.e., starting and ending at
the same object) provided that it should be financially and
technically feasible. The financial concern is the length of
the cable path, while the technical concern is relevant to the
reliability of the path in case of link failures. Since the
organization has not clearly defined a measure for the
reliability, the authors have elucidated an efficient measure
in this work.

Among the objects linked together by the same cable,
there is a cabinet called the primary object. The other objects,
called ordinary objects, operate in a cycle as long as they are
linked with the primary object. Since a cycle provides two
ways of accessibility from a primary object to every ordinary
object in the cycle, a single link failure will not make any
object to break down. However, in case of two link failures, a
cycle will be divided into two parts. One part will link a
primary object and possibly a number of the ordinary

* Corresponding author:
hfl@du.se (Hasan Fleyeh)
Published online at http://journal.sapub.org/ajis
Copyright © 2015 Scientific & Academic Publishing. All Rights Reserved

objects, while the second part will link the rest of the
ordinary objects. Since the primary object will not be able to
access those objects linked by the second part, they will be
lost and create troubles. The more the number of objects
connected by the second part, more is the trouble one has to
face in such situation. This situation is illustrated in Figure 1.

The probability of having two or more links disconnected
at the same time is related to the path of a cable cycle. Since a
cable has to be routed through the fixed routes, therefore, the
access to an object and routing a cable is restricted. That
might cause a cable to be routed through certain routes (or
part of them) twice, in some cases. This means that some
parts of the cable are placed next to each other. Since a cut is
often due to external factors such as sharp objects or fire, two
parts of a cable with the same path are more likely to be cut at
the same time. Thus, a path shared between two parts of a
cable is risky, and the longer the length of the path, the
higher is the risk of facing a trouble.

Based on this, it is obvious that the reliability of a path is
related to the length of the risky parts as well as the number
of objects which are lost in case of a cut in those parts.
Therefore, the measure for reliability which is called risk of
failure is formulated based on these factors, i.e. length of the
risky parts and the number of objects. The risky path of a
cable cycle is either inevitable or intentional. The former is
valid when the configuration of objects and routes does not
allow to avoid some risky paths even in return for a longer
path due to objects on dead-ends or parallel objects, as
depicted in Figure 2. The latter takes place when risky paths

44 Hasan Fleyeh et al.: Optimization of Cable Cycles: A Trade-off between Reliability and Cost

are taken for the sake of a path shortening, see Figure 3.
However, since risky paths reduce the reliability of systems,
it should be decided whether it is worth considering them in
return for a shorter path. Note that higher reliability does not
always contribute to extended lengths but in most cases does.
Therefore, it is often required to strike a compromise
between the length and reliability to obtain a reasonable
solution.

The problem addressed in this work is considered to be
NP-hard as there are similar intractable problems, such as the
problem of order-batching in a warehouse [1], which are
reducible to the current problem and have been proven to be
NP-hard. As a consequence a naïve brute-force search for
identifying potential candidates is impractical in solving this

problem [2].
An approximate search algorithm such as Simulated

Annealing [3] [4] cannot solve the problem due to two main
reasons. The first reason is that the problem is not
transformable as a TSP case, because some of the paths
between pairs of objects which are not the shortest ones will
be missed during a transformation. Those paths might be
useful in forming a cycle which will be desirable as a
solution. The second reason is that reproducing sequences of
nodes representing a valid cycle will not be deterministic in a
random manner due to the graph which is not fully connected
and includes optional nodes. Therefore, a random search
based on such a reproduction will be uncontrollable and so to
say, it becomes a blind search.

(a) A normal condition, (b) One cut in the cycle, (c) Two cuts in the cycle

Figure 1. A cycle connects a primary object with a number of ordinary objects

Figure 2. Inevitable risky path: (a) An object located on a dead-end, (b) Two parallel objects make it impossible to have a perfect cycle solution

Figure 3. Intentional risky path: (a) A Cycle with risky path, (b) A Cycle without risky path

 American Journal of Intelligent Systems 2015, 5(2): 43-57 45

The main contribution of this work is to propose a
two-stage search mechanism to solve the cable routing
problem. In the first stage, the shortest path is found between
every pair of required nodes using the Dijkstra’s shortest
path algorithm [5]. This will form a graph in which every
node is required and the edges represent the shortest path and
distance between them. The graph is then fed into a
Simulated Annealing algorithm to find a near shortest
solution. The properties (length and risk) of that solution are
invoked to set bounds during an exact search in the second
stage. In order to have that search efficient and practical, four
novel techniques are proposed and tested in the second stage.
One of the most effective techniques is using a new kind of
directed graph to perform a guided search. This special graph
is produced by analyzing the preliminary graph and labeling
its nodes. Those labels help to prevent invalid and
unreasonable solutions in a search. Another technique which
is effective in speeding up the search is heuristic length
estimation of future solutions which are derived from a
current partial solution. The other two techniques are two
different validation tests. The first is to reject any partial
cycle with loops which do not include any required nodes
and the second one is to reject any unreasonable solution.

This rest of this paper is organized as follows. In Section 2,
the literature review is presented. Section 3 presents the
length-risk model. In Section 4, the proposed techniques are
presented and tested. Results and discussions are elaborated
in Section 5 and in Section 6 conclude the paper.

2. Related Work
From literature survey and to the best of the knowledge of

authors, the problem addressed in this paper is seemingly not
taken up by researchers thus far. This section presents some
of the works which are loosely related to the current work.

Wasem [6] proposed a two-stage algorithm for solving a
particular ring network design problem. The author also
discussed dissimilarities of that problem with the TSP. Since
these dissimilarities are also true for the current problem,
they are mentioned briefly below:
• The classical TSP deals with a complete graph, while in

most variation of ring routing problem the graph is
sparse.

• A cycle or tour in the TSP includes all the nodes of
graph, whereas in most ring routing problems, some of
the nodes are only required (the rest are optional).

• In the TSP, the objective is to find a tour with a
minimum cost (e.g., length), but that type of solution
may not be technically appealing in a ring routing
problem.

Fink et al. [7] studied the similarities in different ring
network design problems and produced a general problem
formulation. They also presented the application of
meta-heuristics to some ring network design problems. They
claimed that the General Ring Network Design Problem

(GRNDP) covers a great variety of combinatorial
optimization problems with a ring-like structure. However,
there are many other ring network design problems which
were not considered in their work.

Laporte et al. [8] proposed a method to solve the Selective
Travelling Salesman Problem. The problem is maximization
of total profit with cost (i.e., length) lower than a preset value.
Every inclusion of nodes in the cycle solution increases the
total profit, but it can also increase the cost. The approach for
solving the problem consists of finding lower and upper
bounds by approximate algorithms and exploiting them in an
exact algorithm using a branch-and-bound.

Cornuéjols et al. [9] considered a variant of the classical
TSP calling “the Steiner Travelling Salesman Problem”. The
goal in Steiner TSP, same as the classical TSP, is to
minimize the tour length, but visiting some of the nodes is
not mandatory. Moreover, unlike the classical TSP, nodes
and links could be included in a tour more than once. There
are also problems which are classified as a Steiner TSP, such
as the problem of order-picking in a warehouse [10] [11] [12]
and the Steiner Ring Network Design Problem [13].

As cited in [9] [14] [15], an instance of the Steiner TSP
could be transformed into an instance of the standard TSP by
calculating the shortest path between every pair of required
nodes. Other than the disadvantages of the transformation [9],
it is not applicable for some variants of the Steiner TSP such
as the current problem.

3. The Length-Risk Model
Prior to description of the problem and the solution

proposed, the definition of different types of cycles and
nodes used are given in the following.
• Shortest cycle: It is a cycle which connects all of the

objects in the shortest possible way with any value of
risk. A shortest cycle is optimal from the financial point
of view.

• Most reliable cycle: It is a cycle which connects all of
the objects with the minimum risk of failure. Note that
the risk of the most reliable cycle is not necessarily zero
(i.e., 100% reliable), but sometimes it is. The length of
the most reliable cycle can either be equal to or more
than the shortest cycle and it is optimal from the
technical point of view.

• Ideal cycle: It is the shortest cycle with a risk equivalent
to that of the most reliable cycle. In many cases, this
cycle may not exist.

• Most reasonable cycle: It is a cycle which connects all
of the objects with properties as close as possible to an
ideal cycle. There is also a parameter, called Acceptable
Extra Length (AEL, determined by the company),
which does not allow the length of the most reasonable
cycle to be more than a certain amount longer than the
shortest cycle’s length. Obviously, the risk of a most
reasonable cycle cannot be more than the shortest
cycle’s risk.

46 Hasan Fleyeh et al.: Optimization of Cable Cycles: A Trade-off between Reliability and Cost

In addition to the cycles, there are two types of nodes are
present in the graph:
• Required nodes representing the objects (one of the

required nodes is a primary node which represents the
primary object).

• Optional nodes representing the intersections or the end
points of the routes.

Since a required node represents an object, it must be
included in a cycle solution in any condition; while an
optional node could be missed in a cycle when the inclusion

of the node only increases the cost (i.e., length or risk).
An edge of the graph is a route segment between two

nodes of any type. That is, a route can be segmented into
weighted edges based on the number of objects and the
intersections it contains. The weight of an edge is the
geometrical distance between two nodes which are linked by
that edge. Figure 4 illustrates a simple case transformation in
which Figure 4a shows a two-route structure including one
object and Figure 4b is the corresponding transformed graph.

Edge 4

Route 1

Route 2

Edge 1

Edge 2

Edge 3

Edge 5

(a) (b)

Object:
Route:

Required Node:
Optional Node:
Edge:

Figure 4. Illustration of (a) routes and object as well as (b) the corresponding graph

le

Length

Risk

lsh

rshrmrl

Shortest Cycle:
Most Reliable Cycle:
Ideal Cycle (If any):

Length of Shortest Cycle: lsh

Risk of Shortest Cycle: rsh

Risk of Most Reliable Cycle: rmrl

Acceptable Extra Length: le

Figure 5. A length-risk plot for showing the area which is searched for a solution

 American Journal of Intelligent Systems 2015, 5(2): 43-57 47

The length-risk plot depicted in Figure 5 represents the
milestone of the length-risk model. The properties of the
candidates considered in the search fall in a specific area in
the length-risk plot. This area is specified by the risk of the
most reliable cycle (rmrl), the risk of the shortest cycle (rsh),
the length of the shortest cycle (lsh), and the value of AEL (le).
This area is trapezoidal in shape as in Figure 5, and this
represents the search area. A line drawn from (rsh ,lsh) which
intersects the upper limit of the length will specify the search
area. The slope of the line indicates the importance of the risk
to the length. This means the amount of compromise
between the risk and length is equal by all the solutions
which are located on this line. A slope of -1 means that the
length and the risk are equally important while a slope [0,-1}
gives more importance to the risk while a slope less than -1
gives more importance to the length.

In the beginning of the search, the blue line and the black
dashed line lie upon each other. As the search proceeds, the
blue line moves toward a possible ideal cycle (i.e., the green
dot), with the same slope, and the double hatched trapezoid
becomes smaller gradually. In case that an ideal cycle does
not exist, the line stops somewhere in the middle of the
bigger hatched trapezoid (which means there will not be
better solutions after that point). The blue line at that moment
will be an indicator for the properties of most reasonable
solution(s). Obviously, in case an ideal cycle exists, the blue
line reaches the green dot which means the ideal cycle will
be the solution.

Given a graph G which consists of a set of edges E and a
set of nodes N, the nodes in this graph should consists of one
primary node, a number of required nodes, and a number of
optional nodes. A valid cycle VC is a path that starts from the
primary node, visits each of the required nodes at least once
and returns to the primary node at the end without visiting
any edge more than twice. Such a cycle may contain none or
any number of the optional nodes, once or more. Therefore, a
shortest cycle in a graph can be defined as a valid cycle
which minimizes the length. The length function for VC is

given in Eq. 1,
length(𝑉𝑉𝑉𝑉) = ∑ 𝑙𝑙𝑒𝑒𝑒𝑒∈𝑉𝑉𝑉𝑉 (1)

where the length of an edge e is denoted by le.
In this case, VCi will be the shortest cycle if:

length(𝑉𝑉𝑉𝑉𝑖𝑖) ≤ length�𝑉𝑉𝑉𝑉𝑗𝑗 �, for ∀𝑗𝑗: 𝑗𝑗 ≠ 𝑖𝑖 (2)

Now to formulate the risk, first, a risky edge in VC is
defined by:

if 𝑒𝑒 ∈ 𝑉𝑉𝑉𝑉 with occurrence(e) = 2, e would be a risky edge.
Also, a loss function for VC is defined such that

loss(𝑒𝑒𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟) returns the number of required nodes (i.e., the
objects) which will be lost if erisky is disconnected. In order to
decide the reliability of VC, the length and the loss function
are invoked to compute the risk function which is defined as
follows:

risk(𝑉𝑉𝑉𝑉) = ∑ loss�𝑒𝑒𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 � length𝑒𝑒𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 ∈𝑅𝑅𝑅𝑅 (𝑒𝑒𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟) (3)

where RE is the set of all risky edges in VC such that
𝑅𝑅𝑅𝑅 ⊂ 𝑉𝑉𝑉𝑉.

The unit of a measured risk is mO, where m is the length in
meters and O is the object.

In order to illustrate this concept, the risk of the valid cycle
depicted in Figure 6 is calculated. The cycle links a primary
node and four required nodes, containing three risky edges.
First, the number of lost required nodes is decided
independently for every risky edge (while assuming the edge
is cut), as follows:

𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 1 = loss�𝑒𝑒𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 1� = 1

𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 2 = loss�𝑒𝑒𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 2� = 2

𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 3 = loss�𝑒𝑒𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 3� = 1
By using Eq. 3, the risk of the example in Figure 6 is

calculated as follows:

risk(𝑉𝑉𝑉𝑉) = 1 × length�𝑒𝑒𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 1� + 2 × length�𝑒𝑒𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 2�
+ 1 × length(𝑒𝑒𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 3)

Figure 6. Example of a valid cycle with three risky edges

48 Hasan Fleyeh et al.: Optimization of Cable Cycles: A Trade-off between Reliability and Cost

In order to minimize the cost, the main constraint to deal
with is the extra length of cable above the actual length
required for the shortest cycle. For every instance of the
problem, the amount of extra length is determined by the
AEL parameter (lextra). This extra length specifies the upper
bound of the length of the cable. While the lower bound of
the length (llb) is specified by the length of the shortest cycle,
the upper bound (lub) is determined by adding the extra
length to that of the lower bound. In addition, the risk of a
shortest cycle will be specified by the upper bound of the risk
(rub), because any cycle with a risk greater than a shortest
cycle’s risk cannot be a reasonable solution since it will be
longer than the shortest cycle. The lower bound length, the
upper bound length, and the upper bound risk are given by
Eq. 4-6:

llb = length(SHC) (4)
lup = llb + lextra (5)

rub = risk(SHC) (6)
where SHC is a shortest valid cycle.

Since it is required to have evaluation criteria for deciding
whether a valid cycle is reasonable, ratios (based on the risk

and length factors) are defined to indicate deviation of a
candidate cycle from a shortest cycle (which is an
economical solution) and be used for ranking candidates. So,
a length ratio lrvc, a risk ratio rrvc and an overall ratio orvc for
a valid cycle VC are defined in Eq. 7-9:

lrvc = lvc −llb
llb

 (7)

where llb ≤ lvc ≤ lub → 0 ≤ lrvc ≤
lub −llb

llb

rrvc = rvc −rub
rub

 (8)

where 0 ≤ rvc ≤ rub → −1 ≤ rrvc ≤ 0

orvc = lrvc + rrvc (9)

where −1 ≤ orvc ≤
lub −llb

llb

Based on Eq. 9 a valid cycle VCi will be the most
reasonable if the inequality given by Eq.10 is satisfied:

𝑙𝑙𝑟𝑟𝑣𝑣𝑣𝑣(𝑖𝑖) ≤ 𝑙𝑙𝑟𝑟𝑣𝑣𝑣𝑣(𝑗𝑗), for ∀j: j ≠ i (10)

That is, the most reasonable cycle is the valid cycle with
the minimum overall ratio.

Figure 7. Block diagram of the proposed method

 American Journal of Intelligent Systems 2015, 5(2): 43-57 49

(a) (b)

A BC

107

13d e h

gf

A

B

C
3 2 5 5

8

2

10

10

Required Node (Object):
Optional Node (Intersection or Dead-end):
Edge:

Figure 8. Transformation of (a) an original graph of the problem to (b) a Hamiltonian graph, based on the shortest path between the required nodes

4. The Proposed Method
The proposed method as depicted in Figure 7, starts by

transforming the raw data represented by the 3D coordinates
of the objects and routes positions into an initial graph (G).
The initial graph consists of the nodes and edges without any
directions. It is transformed into a Hamiltonian graph (HG)
which is used in the initial search. The transformation from
the G graph into the HG graph, Figure 8, is achieved by
finding the shortest path between every pair of the required
nodes by applying Dijkstra’s algorithm. The length of every
shortest path, which is called the shortest distance, is simply
determined by adding up the length of all edges the path
consists of. This forms a graph in which the nodes are
considered as required nodes and the graph edges represent
the shortest distance between them. The resulting HG is
employed in a search to find the shortest cycle which is
needed to decide the bounds (Eq. 4-6). Since finding the
shortest cycle itself is NP-hard, a simulated annealing
algorithm (SA) is used as an approximate search. This
approximate search is invoked to find a near the shortest
cycle because such a search is impractical to solve the whole
problem. The transformation from the graph G into the HG
was essential because it was invoked by the SA to find near
the shortest cycle. As soon as the near the shortest cycle is
specified, its length and risk are calculated in order to decide
the aforementioned bounds which are passed as one of the
inputs parameters of the final exact search.

The graph G is transformed into a novel type of graphs
called a conditional directed graph (CDG). CDG is one of the
techniques employed to reduce the search time which is
referred to as Technique 1. By a CDG, a number of improper
returns are excluded from the path of a cycle and the search
which leads to unreasonable solutions is prevented. The

difference between a CDG and a typical directed graph
(digraph) is that the directions between the nodes are flexible
in a CDG, while they are certain in a digraph. Conditional
directions in the CDG are defined such that moving from one
node to another requires checking the previously traversed
node. Such a definition depends on the nodes’ type,
geometrical position, and topology.

A return in a path is defined as a transition from a current
node to a previously traversed node. There are three types of
returns which leads a cycle to be an unreasonable solution
and conditional directions help to avoid them:

1. Any return at an optional node
2. Particular returns at required nodes on a branch which

is defined as a path between two branchy nodes
(Branchy node is a node with degree more than two or
deg(𝑛𝑛) > 2) without any other branchy node in
between.

3. Particular returns at required nodes on a dead-end path
(Dead-end node (leaf) is a node with degree 1 or
deg(𝑛𝑛) = 1) which is a path between a branchy node
and a dead-end node without any other branchy node in
between.

The first type of returns (return type 1), which is a simple
return at an optional node, will only increase the length of a
cycle without linking any new required node. Removing
such a return from a cycle will result in a new cycle. The new
cycle will have a shorter length and the same risk compared
to the cycle including the return.

The second type of returns (return type 2) takes place
under certain circumstances at required nodes on a branch
which contains at least two required nodes. The number of
the required nodes is counted in the whole branch. It includes
the two nodes at the two ends if any of them is a required
node, Figure 9a. For a certain edge ec between two required

50 Hasan Fleyeh et al.: Optimization of Cable Cycles: A Trade-off between Reliability and Cost

nodes in such a branch, a common path is the common part
(not out of the branch) of the path of the valid cycles which
do not include ec. The common length 𝑣𝑣𝑙𝑙𝑒𝑒𝑣𝑣 and the common
risk 𝑣𝑣𝑟𝑟𝑒𝑒𝑣𝑣 which are length and risk of that path for ec are
given by Eq. 11 and 12, respectively, where B is the set of all
edges of the branch under consideration:

clec = 2 × ∑ lee∈B−ec (11)

crec = ∑ loss(e) lengthe∈B−ec (e) (12)

The common cost 𝑣𝑣𝑣𝑣𝑒𝑒𝑣𝑣 for the edge ec is given by Eq.13:

𝑣𝑣𝑣𝑣𝑒𝑒𝑣𝑣 = clec + crec (13)

The best gap in a branch with more than one required node
is an edge which has minimum cc in the branch, Figure 9a.

The unwanted returns will be specified by the two nodes
of the best gap as well as the first and the last required nodes
of a branch. The returns which are suppressed are:

1. All nodes of a branch before the first node of the best
gap

2. All nodes between the first node of the best gap and the
last required node of a branch

The final conditional directions defined on the branch are
shown in Figure 9b. Every sign in the figure consists of a

dotted line and arrow(s). In any node in the branch, the dots
represent the direction from where the exploration takes
place, while the arrows represent the possible direction of
continuations. A return at a last required node (based on the
direction of movement) should not be suppressed, because a
branch might be the only way for traversing from one of the
two end nodes of the branch to another.

The last type of returns (return type 3) happens in two
different situations in a dead-end path. The first situation is
when early returns happen at a required node before
connecting the rest of required node(s) in a dead end, as in
Figure 10a. The other situation happens when a dead-end
path is explored toward the exit node and a return takes place
at any of the required nodes closer to that exit node. This
situation is illustrated in Figure 10b when the exploration
goes from node 2 to 1 and then instead of continuing to the
exit node it returns back to node 2. Thus, any of such returns
is not allowed when conditional directions are defined for a
graph.

All the three types of the returns are prevented in the final
search by defining similar signs to those illustrated in Figure
9b for all nodes in the graph G. The resulting graph, which is
a CDG, is explored in the second stage search for the most
reasonable and most reliable solutions.

Figure 9. Illustration of a branch: (a) Different types of nodes, (b) Conditional directions and suppression of type 2 returns

 American Journal of Intelligent Systems 2015, 5(2): 43-57 51

The exploration starts from the primary node and partial
cycles are generated and expanded by including new nodes
in a depth-first order. For every node included in any partial
cycle, different validations and evaluations are performed in

order to decide whether the corresponding node is accepted
or rejected. In case of the acceptance, the search goes one
stage deeper, while in case of rejection it backtracks to a
previous state.

Figure 10. Returns in a dead-end path leading to invalid cycles

The first validation test is based on the definition of valid cycle. Every inclusion of a node which leads to a partial cycle to
go through an edge more than twice is rejected.

Theory 1:
For any cycle passes through an edge twice in the same direction there is a cycle with shorter length and at least an equal risk.

Proof:

Let 𝑁𝑁 = {𝑛𝑛1,𝑛𝑛2, … ,𝑛𝑛𝑚𝑚 } be the set of all nodes of graph G and 𝑆𝑆 = (𝑟𝑟𝑛𝑛1, 𝑟𝑟𝑛𝑛2, … , 𝑟𝑟𝑛𝑛𝑖𝑖) be a partial solution including

two transitions through edge e, where every node sn in S corresponds to a node in N. Since there are two transitions through e

in the same direction, there must be nodes 𝑟𝑟𝑛𝑛𝑟𝑟 , 𝑟𝑟𝑛𝑛𝑟𝑟+1, 𝑟𝑟𝑛𝑛𝑟𝑟+𝑣𝑣 and 𝑟𝑟𝑛𝑛𝑟𝑟+𝑣𝑣+1in S, such that:

𝑒𝑒 = (𝑟𝑟𝑛𝑛𝑟𝑟 , 𝑟𝑟𝑛𝑛𝑟𝑟+1) = (𝑟𝑟𝑛𝑛𝑟𝑟+𝑣𝑣 , 𝑟𝑟𝑛𝑛𝑟𝑟+𝑣𝑣+1), where 1 < 𝑟𝑟, 1 < 𝑣𝑣, and 𝑟𝑟 + 𝑣𝑣 + 1 < 𝑖𝑖

So, S could be re-defined as:

𝑆𝑆 = (𝑟𝑟𝑛𝑛1, 𝑟𝑟𝑛𝑛2, … , 𝑟𝑟𝑛𝑛𝑟𝑟 , 𝑟𝑟𝑛𝑛𝑟𝑟+1, … , 𝑟𝑟𝑛𝑛𝑟𝑟+𝑣𝑣 , 𝑟𝑟𝑛𝑛𝑟𝑟+𝑣𝑣+1, … , 𝑟𝑟𝑛𝑛𝑖𝑖),

where 𝑟𝑟𝑛𝑛𝑟𝑟 = 𝑟𝑟𝑛𝑛𝑟𝑟+𝑣𝑣 and 𝑟𝑟𝑛𝑛𝑟𝑟+1 = 𝑟𝑟𝑛𝑛𝑟𝑟+𝑣𝑣+1

Consider a path 𝑃𝑃 in 𝑆𝑆 from node 𝑟𝑟𝑛𝑛𝑟𝑟 to node 𝑟𝑟𝑛𝑛𝑟𝑟+𝑣𝑣 , such that 𝑃𝑃 = (𝑟𝑟𝑛𝑛𝑟𝑟 , 𝑟𝑟𝑛𝑛𝑟𝑟+1, … , 𝑟𝑟𝑛𝑛𝑟𝑟+𝑣𝑣). Since 𝑟𝑟𝑛𝑛𝑟𝑟 = 𝑟𝑟𝑛𝑛𝑟𝑟+𝑣𝑣 , 𝑃𝑃

could be replaced with its reversion 𝑃𝑃′ = (𝑟𝑟𝑛𝑛𝑟𝑟+𝑣𝑣 , … , 𝑟𝑟𝑛𝑛𝑟𝑟+1, 𝑟𝑟𝑛𝑛𝑟𝑟) and produce solution 𝑆𝑆′ as below:

𝑆𝑆′ = (𝑟𝑟𝑛𝑛1, 𝑟𝑟𝑛𝑛2, … , 𝑟𝑟𝑛𝑛𝑟𝑟+𝑣𝑣 , … , 𝑟𝑟𝑛𝑛𝑟𝑟+1, 𝑟𝑟𝑛𝑛𝑟𝑟 , 𝑟𝑟𝑛𝑛𝑟𝑟+𝑣𝑣+1, 𝑟𝑟𝑛𝑛𝑟𝑟+𝑣𝑣+2, … , 𝑟𝑟𝑛𝑛𝑖𝑖)

However, as 𝑟𝑟𝑛𝑛𝑟𝑟+1 = 𝑟𝑟𝑛𝑛𝑟𝑟+𝑣𝑣+1, there will be an unnecessary return in 𝑆𝑆′ at 𝑟𝑟𝑛𝑛𝑟𝑟 (through e) without any inclusion of a new

node, because 𝑟𝑟𝑛𝑛𝑟𝑟 is already included in 𝑆𝑆′ (𝑟𝑟𝑛𝑛𝑟𝑟 = 𝑟𝑟𝑛𝑛𝑟𝑟+𝑣𝑣). Therefore, if e is removed from 𝑆𝑆′, the new solution 𝑆𝑆′′ will

have a shorter length and risk than 𝑆𝑆; because the path of 𝑆𝑆′′ will be a sub-path of 𝑆𝑆. So, 𝑆𝑆′′ will be a better solution than 𝑆𝑆

and consequently 𝑆𝑆 could not be the most reasonable.

The second validation test (Technique 2) is designed to reject partial cycles which go through an edge twice in the same

direction according to Theory 1, as illustrated in Figure 11. Those partial cycles lead to unreasonable complete cycles.
Therefore, rejecting those partial cycles makes the search faster. Hence, as soon as such a transition is detected in a partial
cycle, a backtracking could be done from that state. This helps to prevent any further exploration from that state and ensures
faster search.

52 Hasan Fleyeh et al.: Optimization of Cable Cycles: A Trade-off between Reliability and Cost

Figure 11. Two transitions through an edge in the same direction

Figure 12. A cycle with a loop not including any required node

The last validation test, which is called Technique 3, is for
rejecting partial cycles with loops which do not include any
required nodes (see, Figure 12). It reduces the search time by
employing an early detection mechanism of partial cycle
with loop(s), which does not contain at least one required
node, from the set of all partial cycles.

A loop in a path is recognized when at least one node is
visited twice during the exploration of that path. Figure 12
illustrates a situation where nodes 6 and 7 are visited twice
during this exploration.

A cycle with a loop not containing any required node
could not be reasonable because it will contain a cycle with
shorter length and the same risk. To prove this concept, let 𝑆𝑆
be a solution containing a loop with no required nodes which
occurs between two occurrences of node n. A solution 𝑆𝑆′
which is shorter than 𝑆𝑆 (because 𝑆𝑆′ ⊂ 𝑆𝑆) with the same risk
can be reached by removing all the nodes between the two
occurrences of n and merging them into one. Hence, 𝑆𝑆
could not be most reasonable because a partial cycle
containing such a loop is detected and an early backtracking
makes the search more efficient.

To illustrate that any partial cycle with such a loop does
not lead to a reasonable solution refer to Figure 12. The
nodes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 7, 6, and 11 in the

demonstration cycle are visited starting from primary node
and back to this node. It is clear that node 6 is visited twice.
Since all the nodes between the two occurrences of node 6
are optional nodes, this part of the cycle will generate a loop
consisting of nodes 7, 8, 9, and 10 which neither of them is a
required node. In this case, it is obvious that the cycle which
consists of nodes 1, 2, 3, 4, 5, 6, and 11 does not contain such
kind of loop and, therefore, it will be a better solution.

The evaluation process starts immediately after the
validation process and exploits an admissible heuristic
(Technique 4) to detect and reject partial cycles leading to
unreasonable earlier solutions. It is based on the current
length and risk of a partial cycle as well as the heuristic
which estimates the minimum possible length of
complementary paths which converts the partial cycle into a
complete one. A complementary path links together the
partial cycle’s head and tail points as well as any remaining
required nodes which are not connected with that partial
cycle.

For every partial cycle, a minimum possible length of all
complementary paths can be decided first by calculating two
Manhattan distances between the end points of any partial
cycle and every remaining required node (see, Figure 13).
The Manhattan distance is calculated using the 3D

 American Journal of Intelligent Systems 2015, 5(2): 43-57 53

coordinates of the corresponding nodes. These two
Manhattan distances are then summed up together, for every
remaining required node separately. A sum with the greatest
value among others will represent the lower bound for the
length of all complementary paths. Moreover, the outcome is
summed up with the current length of a partial cycle to result
in a lower bound for the total length of any complete cycle
derived from that partial cycle. For partial cycles which
already link all required nodes, the lower bound of the
complementary path will be the Manhattan distance between
the two end points of the partial cycles.
In the current state, a partial cycle under consideration is
rejected if either of the following two conditions is true:
• The current risk of the partial cycle > The risk upper

bound (rup)
• The current length of the partial cycle + The value of

estimation > The length upper bound (lup)
In the next state of the evaluation, the overall ratio of the

partial cycle (based on the current risk and the estimated
length) is calculated and compared with the overall ratio of a
current best found solution. A partial cycle which has greater
overall ratio than the best solution is rejected. Otherwise, it
will be kept for further expansion. Moreover, the best
solution will be replaced by any partial cycle which is not
rejected and becomes a complete valid cycle. This process is
repeated until all the CDG is explored.

5. Results and Discussions
The dataset employed in this work consists of 3D

positions of objects and routes in a ten-story power plant
building. Five sets of objects were selected to test the
proposed method. They consist of 5, 7, 8, 10 and 14 objects
which are independently connected by different cable cycles
routed through a set of 78 horizontal and vertical routes. By
setting different values for the AEL parameter, 11 different
instances were created as listed in Table 1. All sets of objects
except the one with 7 objects were tested with two different
values of the AEL. The set with 7 objects was tested with
three different AEL values. This variation in the AEL was
essential to study the effect of the extra length on the quality
of the solutions as well as the relative computation time.

Three different types of cycles, namely near the shortest
cycle, the most reliable cycle, and the most reasonable cycle
were computed for each instance. In addition to the fact that
obtaining the near the shortest cycle was essential to find the
other two types of cycles, it is invoked as a reference when
comparing the other two types of cycles. Table 1 depicts the
properties (length and risk) of the three aforementioned
cycles of the 11 instances. Table 1 also includes the number
of edges and nodes of each instance as well as the values of
the AEL parameter. The dashed lines in the table separate the
instances with different configuration of objects.

Figure 13. Measuring Manhattan distances for heuristic length estimation of final cycles derived from a partial solution

54 Hasan Fleyeh et al.: Optimization of Cable Cycles: A Trade-off between Reliability and Cost

According to Table 1, two or all of the three types of
cycles are identical for some of the instances either due to the
arrangement of required nodes, or because of the value of the
AEL. For instance, all the three types of cycles of instance 6
are the same because AEL does not allow a cycle to be 30m
longer than the near the shortest cycle. When this parameter
is increased to 50m for the same set of required nodes
(instance 7), the most reasonable and reliable cycles start to
differ from the near the shortest one. Since an increment of
the AEL from 50 to 70m does not provide any more changes
in the solutions for the 1st, 3rd, 4th and 5th sets of instances
(due to the arrangement of their required nodes), the result of
such increment for the 2nd group is only presented. Also
note that increasing the AEL from 30 to 50m in set 5 leads to
a longer but more reliable cycle.

Although by increasing the value of the AEL one allow a
cycle to be longer and the run-times increases, but
nevertheless, in return a lower risk is gained. Moreover, for

practical reasons, solutions which are very much longer than
the shortest one are eliminated even if the solution does not
give any risk. Thus, the search always starts with a small
value of AEL and then increase it to larger values if the
solution is not satisfactory.

Since a near the shortest cycle is considered as a good
solution from financial point of view, calculating the
deviation of the length and risk of the other two types of
cycles helps to evaluate a most reasonable solution. Table 2
illustrates those deviations which represent the trade-off
between length and risk. In this table, increasing the length of
most reasonable cycle of instance 1 by 12.26% will reduce
the risk by 54.96%, for instance.

In order to give a better picture to the amount of win in the
risk and loss in the length of the most reasonable and reliable
solutions compared to the near the shortest ones solutions,
the data in Table 2 is plotted in Figure 14 and 8, respectively.

Table 1. Cycle properties (length and risk) of the near the shortest cycle, the most reasonable cycle, and the most reliable cycle

Instance
No.

No. of
Edges

No. of
Nodes*

AEL**
(m)

Near the Shortest Cycle Most reasonable Cycle Most reliable Cycle

Length
 (m)

Risk
 (mO***)

Length
(m)

Risk
(mO)

Length
(m)

Risk
(mO)

1 109 5/93 30 209.92 53.68 235.66 24.18 235.66 24.18
2 109 5/93 50 209.92 53.68 235.66 24.18 235.66 24.18

3 111 7/95 30 43.56 103.23 43.56 89.23 43.56 89.23
4 111 7/95 50 43.56 103.23 43.56 89.23 43.56 89.23

5 111 7/95 70 43.56 103.23 43.56 89.23 108.90 0.00

6 110 8/94 30 67.50 99.92 67.50 99.92 67.50 99.92

7 110 8/94 50 67.50 99.92 108.90 0.00 108.90 0.00

8 114 10/98 30 217.20 296.63 219.40 65.55 219.40 65.55

9 114 10/98 50 217.20 296.63 219.40 65.55 265.80 43.75

10 117 14/101 30 170.69 166.85 188.80 39.95 188.80 39.95

11 117 14/101 50 170.69 166.85 188.80 39.95 214.30 17.40

* Number of required / total nodes

** Acceptable Extra Length
*** mO is the unit of risk, where m represents meter and O object.

Table 2. Amount of change in length and risk of the most reasonable and most reliable cycles compared to corresponding near the shortest cycles.
The + sign means increment in the length, while the - sign means decrement (improvement) in the risk

Instance
No.

Most Reasonable Cycle Most Reliable Cycle

Change in Length (%) Change in Risk (%) Change in Length (%) Change in Risk (%)

1 +12.26 -54.96 +12.26 -54.96
2 +12.26 -54.96 +12.26 -54.96

3 0.00 -13.56 0.00 -13.56
4 0.00 -13.56 0.00 -13.56
5 0.00 -13.56 +150.02 -100.00

6 0.00 0.00 0.00 0.00
7 +61.33 -100.00 +61.33 -100.00

8 +1.01 -77.90 +1.01 -77.90
9 +1.01 -77.90 +22.38 -85.25

10 +10.61 -76.05 +10.61 -76.05
11 +10.61 -76.05 +25.55 -89.57

 American Journal of Intelligent Systems 2015, 5(2): 43-57 55

Table 3. Execution Times of the searches for the solutions

Instance
No.

Execution Time of the
Near the Shortest Cycle
by Simulated Annealing

(sec.)

Execution Time
of the Exact
Search (ES)

(sec.)

Total
Execution

Time
(sec.)

1 3.39 4.29 7.67
2 3.44 9.47 12.92

3 3.80 0.34 4.14
4 2.95 0.72 3.67
5 3.11 1.47 4.58

6 3.11 0.44 3.55
7 3.04 0.49 3.53

8 3.06 23.49 26.55
9 3.48 43.27 46.76

10 2.99 95.75 98.74
11 3.18 240.85 244.03

Figure 14. Illustration of the changes in length and risk of most reasonable
cycles compared to the corresponding near the shortest cycles

Figure 15. Illustration of the changes in length and risk of most reliable
cycles compared to the corresponding near the shortest cycles

According to Figure 14, the most reasonable solutions can
be categorized into four groups. The first group comprises
solutions of instances 1, 2, 8, 9, 10 and 11. With the cost of a
little longer cable length compared to the near the shortest
solutions the risk is considerably reduced. The solution of
instance 7 falls in another group which removes the risk
completely, but the increment in length is not as low as the
previous group. While the compromise between length and

risk in the two aforementioned groups is not very far from
the expectation, the solutions in the two other groups might
look a little odd. The solutions of instance 3, 4, and 5, which
are in one group, decrease the risk by 13.56% without any
increment in length. To explain how it is possible to decrease
the risk without increasing the length, a reference to the
objects and routes is essential. For a set of objects and routes
there might be several shortest paths (with equal length)
between two objects. In the approximate search for a near the
shortest solution, only one of those paths is considered
(stochastically), while in the search for a most reasonable
solution all of them are taken into account. The last group
contains the solution of instance 6 which is not better than
the near the shortest one. The reason is that the arrangement
of the objects and the limit which is the preset of AEL do not
allow any improvement in risk.

Figure 15 depicts that the risks of the most reliable
solutions of instance 9 and 11 are improved more than the
corresponding most reasonable instances (~85-90%
compared to ~76-78%). However, as it is expected, the
amount of length they increase is not as low as what the most
reasonable ones do (~22-26% compared to ~1-11%). For the
problem instance 5, the amount of increment in length is
even much higher. By 100% improvement in risk the length
increases by 150.02%. Although the most reliable solutions
are not the financially desired ones, they are technically of
interest as they might remove the risk completely, which is
illustrated by the solution of instance 5.

In order to demonstrate the effectiveness of the proposed
solution, run-times of the different problem instances are
computed. The run-times were measured on a machine with
an Intel® Core™ 2 Duo 2.10 GHz processor, 3.00 GB RAM.
In this context, the run-times of the simulated annealing
process to obtain a near the shortest cycle, and the run-times
of the exact search (ES) to obtain both the most reasonable
and most reliable cycles were measured separately. Table 3
depicts these run-times.

The results show that the run-times are highly related to
the number of nodes, number of edges in each instance, as
well as the value of the AEL parameter. Different run-time
patterns could be observed for some of the instances. That is,
the run-time for some of the instances is more than some that
of other instances with higher number of nodes or edges. For
example, the run-time for the problem instance 1 (with 5
required nodes and 109 edges) is 4.2 seconds, while it is 0.44
seconds for problem instance 6 (with 8 required nodes and
110 edges). The reason for this difference is that the run-time
depends on not only the topology of a graph, but also the
geometry of the components of a graph. This means, the
run-time of an instance in which all required nodes are close
to each other could be shorter than another instance with the
same number of required nodes and edges but some or all of
its required nodes are far from each other. This could easily
be observed for problem instance 1 and 6 by looking at the
length of their near the shortest cycles in Table 1.

To test the integrity of the proposed techniques, their
effectiveness on the solution, and how much they speed up a

-150

-100

-50

0

50

100

1 2 3 4 5 6 7 8 9 1011

%
 C

ha
ng

e

Problem Instance No.

Risk

Length

-150
-100

-50
0

50
100
150
200

1 2 3 4 5 6 7 8 9 1011

%
 C

ha
ng

e

Problem Instance No.

Risk

Length

56 Hasan Fleyeh et al.: Optimization of Cable Cycles: A Trade-off between Reliability and Cost

brute-force search, new tests were performed in which every
time one of the proposed techniques was excluded and a
measurement was performed with the other techniques. A
total of 44 new tests were performed for the 11 instances
under consideration. Figure 16 illustrates the result of the
tests (run-times) along with the run-times when all the
techniques are engaged.

Figure 16. Illustration of the excecution times for obtaining solutions
(most reasonable and reliable) with/without exploiting all/each of the
proposed techniques

It is obvious that the search becomes slower for most of
the instances when one of the techniques was excluded.
However, it becomes a bit faster for some of the smaller
instances when technique 2 is excluded. This is obviously
due to the computational burden of the technique. The
growth in run-times is more obvious for the instances with a
greater number of nodes. It is important to know that
excluding all of the proposed techniques causes a vast
increment in the run-time of the searches which is not
equivalent to the sum of the increments when every
technique is separately excluded. Performing such kind of
tests for all instances is cumbersome and very
time-consuming. Such a test for a small instance with 41
edges, 26 optional nodes, 10 required nodes and setting 30m
for the AEL parameter requires a runtime of 2874.71 seconds
compared to 0.9 seconds when all the techniques were
exploited.

6. Conclusions
This work dealt with a cable cycle routing problem to

connect a set of objects through a given set of routes. Both
financial and technical concerns were required to be taken
into consideration when dealing with this problem. Hence,
length and risk factors were the two factors to evaluate the
effectiveness of any routing cycle.

Due to technical concerns, testing approximate algorithms
or finding cycles of subsets of objects and merging them
together did not lead to a good solution.

The exact search algorithm exploited an approximate one
such as Simulated Annealing to set bounds of the solutions.

A depth-first search strategy was taken with a sophisticated
backtracking approach. Moreover, a new kind of a graph was
developed due to the fact that many invalid and
non-reasonable solutions could be detected in the middle of a
search. The graph could be considered as one of the
prominent parts of the work. To prepare such a graph and do
a guided search, signs and conditional directions are added to
the nodes of an original undirected graph of the problem.
Using those directions and signs helps avoid further
expansions of undesired partial solutions and have lesser
computations in the validation process. A heuristic approach
was proposed to estimate the minimum possible length of
solutions which are derived from a partial solution. The
search tree could be pruned considerably by this heuristic
approach.

The method was tested for 11 instances. The result
depicted that the method could provide satisfactory solutions
to the problem within reasonable amount of time. It was also
clear that the proposed techniques could reduce the
search-space effectively and could make a brute-force search
possible for problems with similar scale.

Other problems with similar properties can be solved by
the proposed techniques due to the effectiveness in reducing
the search run-time. For example, the conditional directions
as well as the other techniques introduced in the work seem
to be also useful in solving larger instances of the
order-picking problem in a warehouse to optimum. Also, the
method of using an approximate algorithm in setting bounds
for an exact algorithm might be a good idea in solving larger
instances of problems like the TSP, to optimum. Moreover,
the introduced heuristic length estimation might be tested for
variety of routing problems.

REFERENCES
[1] N. Gademann and S. Velde, "Order Batching to Minimize

Total Travel Time in a Parallel-aisle Warehouse," IIE
Transactions, vol. 37, no. 1, pp. 63-75, 2005.

[2] G. J. Woeginger, "Exact Algorithms for NP-Hard Problems:
A Survey," in Combinatorial Optimization — Eureka, You
Shrink!, vol. 2570, Springer Berlin Heidelberg, 2003, pp.
185-207.

[3] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, "Optimization
by Simulated Annealing," Science, vol. 220, no. 4598, pp.
671-680, 13 May 1983.

[4] V. Černý, "Thermodynamical Approach to the Traveling
Salesman Problem: An Efficient Simulation Algorithm,"
Journal of Optimization Theory and Applications, vol. 45, no.
1, pp. 41-51, 01 01 1985.

[5] E. Dijkstra, "A Note on Two Problems in Connexion with
Graphs," Numerische Mathematik, vol. 1, no. 1, pp. 269-271,
01 12 1959.

[6] O. Wasem, "An Algorithm for Designing Rings for
Survivable Fiber Networks," Reliability, IEEE Transactions

0

500

1000

1500

2000

2500

3000

1 3 5 7 9 11

Ru
n

Ti
m

e
(S

ec
.)

Problem Instance No.

Without
Technique 4

Without
Technique 3

Without
Technique 2

Without
Technique 1

With All the
Techniques

 American Journal of Intelligent Systems 2015, 5(2): 43-57 57

on, vol. 40, no. 4, pp. 428-432, 1991.

[7] A. Fink, G. Schneidereit and S. Voß, "Solving General Ring
Network Design Problems by Meta-Heuristics," in
Computing Tools for Modeling, Optimization and Simulation,
Springer US, 2000, pp. 91-113.

[8] G. Laporte and S. Martello, "The Selective Travelling
Salesman Problem," Discrete Applied Mathematics, vol. 26,
no. 2-3, pp. 193 - 207, 1990.

[9] G. Cornuéjols, J. Fonlupt and D. Naddef, "The Traveling
Salesman Problem on a Graph and Some Related Integer
Polyhedra," Mathematical Programming, vol. 33, no. 1, pp.
1-27, 1985.

[10] H. D. Ratliff and A. S. Rosenthal, "Order-Picking in a
Rectangular Warehouse: A Solvable Case of the Traveling
Salesman Problem," Operations Research, vol. 31, no. 3, pp.
507-521, 1983.

[11] R. d. Koster, T. Le-Duc and K. J. Roodbergen, "Design and

Control of Warehouse Order Picking: A Literature Review,"
European Journal of Operational Research, vol. 182, no. 2, pp.
481-501, 2007.

[12] C. Theys, O. Bräysy, W. Dullaert and B. Raa, "Using a TSP
Heuristic for Routing Order Pickers in Warehouses,"
European Journal of Operational Research, vol. 200, no. 3, pp.
755-763, 2010.

[13] G. Laporte and Y. Nobert, "Finding the Shortest Cycle
through K Specified Nodes," Congressus Numerantium, vol.
48, p. 155–167, 1983.

[14] B. Fleischmann, "A Cutting Plane Procedure for the
Travelling Salesman Problem on Road Networks," European
Journal of Operational Research, vol. 21, no. 3, pp. 307-317,
1985.

[15] A. N. Letchford, S. D. Nasiri and D. O. Theis, "Compact
Formulations of the Steiner Traveling Salesman Problem and
Related Problems," European Journal of Operational
Research, vol. 228, no. 1, pp. 83-92, 2013.

	1. Introduction
	2. Related Work
	3. The Length-Risk Model
	4. The Proposed Method
	5. Results and Discussions
	6. Conclusions

