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Abstract: We study comprehensively using numerical simulations a new 
class of resonators, based on a circular photonic crystal reflector. The 
dependence of the resonator characteristics on the reflector design and 
parameters is studied in detail. The numerical results are compared to 
analytic results based on coupled mode theory. High quality factors and 
small modal volumes are found for a wide variety of design parameters. 
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1. Introduction 

Circular optical resonators are becoming key components in modern optical communication 
systems and devices. Numerous applications for optical communications have been 
demonstrated such as filters [1], add/drop multiplexers [2, 3], delay lines [4-6] and modulators 
[7] as well as for sensing [8], spectroscopy and basic research in quantum electrodynamics 
(QED), nonlinear optics and similar fields [9, 10].   

For many of these applications, it is desirable for the resonators to exhibit both compact 
dimensions and high quality factor (Q), which is a measure of the power dissipation rate from 
the cavity. These requirements are mutually contradictory for conventional resonators 
utilizing the total internal reflection (TIR) mechanism to confine the light. While for cavity 
radii much larger than the wavelength, high Q can be achieved, as the radius is reduced, the 
effectiveness of the TIR mechanism decreases, introducing loss which consequently reduces 
the Q of the cavity. This loss mechanism is often addressed as “bending losses”. 

This link between the bending losses and the cavity dimensions can be broken in 
resonators employing distributed Bragg reflection instead of TIR. Such resonators, e.g., 
Photonic Crystal (PC) defect cavities [11-16] and Circular Bragg resonators [17-21] have 
been suggested and studied before, demonstrating ultra-small modal volume and high Q 
although not as high as demonstrated in other types of cavities.  Consequently, significant 
efforts were devoted to improving the Q of PC cavities. Generally speaking, the cavity Q can 
be separated into two contributions – the in-plane or horizontal Q (Q||) and the out-of-plane or 
vertical Q (Q┴) associated with the power radiating from resonator in the slab plane and 
perpendicular to the slab plane respectively. While the in-plane losses (determining Q||) can 
be, in principle, arbitrarily reduced by increasing the length of the reflector (the number of 
Bragg layers), the out-of-plane losses are more complicated to minimize. It has been shown, 
that the out-of-plane Q can be improved by rearranging the positions and dimensions of the 
holes of the PC reflector to reduce the intensity of the field components lying within the light 
cone [22, 23]. The idea underlying the optimization process is to “soften” the edge of the 
cavity in order to construct a more “smooth” field profile [15]. Nevertheless, such 
optimization requires a tedious procedure of tailoring the position and size of each hole in the 
PC reflector. 

Recently, it was suggested to employ radial Bragg layers instead of PC to confine light in 
small cavities [24]. The radial structure offers significant advantages for optimal cavity 
design, primarily because it enables analytic design of the layer structure and optimal tailoring 
of the cavity size and the reflector periodicity. Unfortunately, the radial Bragg structure is 
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difficult to realize using the suspended membrane concept which was successfully used for 
PC cavities. In addition, the upper surface of such structure is not continuous which makes it 
less suitable for electrical pumping and for realizing electrically pumped micro-lasers. To 
facilitate that, a new type of circular resonator based on PC reflectors was proposed [17, 18] 
(see Fig. 1). The generic structure consists of a solid disk surrounded by a perforated area of 
holes which serves as a distributed feedback reflector (DBR). Such structure can be realized 
using the suspended membrane concept and to be electrically pumped while retaining the 
advantages of the circular geometry.  
 

 
     (1a)        (1b)      (1c) 

Fig. 1. Circular PC reflector structure. (a) rectangular lattice (b) triangular lattice (c) sunflower 
lattice 

 
In this paper, we use three-dimensional Finite Difference Time Domain (FDTD) 

simulations to comprehensively study circular PC resonator structures. The generic structure 
is shown in Fig. 1. The arrangement of the holes defines the type of the reflector. Specifically, 
we focus on three different types of structures: the rectangular lattice (Fig. 1a), the triangular 
lattice (1b) and the “sunflower” lattice (1c). The rectangular lattice structure is a cylindrical 
counterpart of the rectangular PC in Cartesian coordinates. Each “necklace” consists of 
identical number of holes and the angular length of the holes increases for larger radii. The 
holes in the triangular lattice structure are arranged in a similar way but with a half period 
shift in the azimuthal direction. The sunflower lattice structure comprises holes of the same 
angular size where the number of holes in each concentric ring is proportional to the 
circumference of the ring. 

In section 2, we briefly discuss the design of our structures, in section 3 we present the 
studied structure and the results obtained from the FDTD simulations, and in section 4 we 
discuss the results and summarize. 

2. Structural design  

We consider a resonator structure of the type shown in Fig. 1. These structures consist of two 
regions: 1) A solid dielectric disk and 2) A perforated area which serves as a distributed 
feedback reflector. Because of the cylindrical geometry, the TM modal field solution in the 
central disk is a superposition of the Hankel functions of the first and second kind [25]: 

( ) ( ) ( )xHBxHAxH mmz
)2()1( ⋅+⋅=      (1) 

where Hz is the z component of the magnetic field, Hm
(1,2) are respectively the mth order 

Hankel functions of the first and second kind, x = k0neffρ is the normalized radius, k0 is the 
wavenumber in vacuum, ρ is the radial coordinate, and neff is the effective index of the slab in 
the vertical dimension (this parameter is used in order to reduce the 3D problem to an 
effective 2D one). In the spirit of coupled mode theory (CMT), the field profile in the 
perturbed region can be represented in a similar fashion where the amplitudes A and B vary 
slowly in x:  

( ) ( ) ( ) ( ) ( )xHxBxHxAxH mmz
)2()1( ⋅+⋅=     (2) 

(C) 2005 OSA 14 November 2005 / Vol. 13,  No. 23 / OPTICS EXPRESS  9274
#8911 - $15.00 USD Received 27 September 2005; revised 31 October 2005; accepted 31 October 2005



Following conventional derivation of CMT, it can be shown that the required dielectric 
profile for efficiently coupling between the outgoing (H(1)) and incoming (H(2)) waves is given 
by [19]: 
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where x0 indicates the (normalized) radius of the inner disk, -1<αr<1, –1<αθ<1, l is the 
angular (spatial) frequency of the perturbation, ϕ indicates the phase function and n0 and np 
are respectively the material and “holes” indices of refraction. The parameters αr and 
αθ represent threshold levels that determine the angular and radial size of the holes in the 
reflector region where larger α’s indicate smaller holes and, correspondingly, weaker 
perturbation.  

The index structure (3) generates a circular cavity with a rectangular photonic crystal 
reflector (Fig. 1(a)). The triangular and sunflower reflectors shown, respectively, in Figs. 1(b) 
and 1(c) can be constructed in a similar way by slightly modifying (3).  In the triangular 
lattice, every second “necklace” of holes is rotated by a half of a cycle compared to the 
rectangular lattice and in the sunflower lattice, the number of holes in each “necklace” is 
increased linearly with the radius in order to retain the angular size of the holes. Other lattice 
configurations can be envisioned as well, e.g. lattices with random rotation of each “necklace” 
of holes, lattices with circular holes, etc. but the study of such configurations is beyond the 
scope of this paper. Nonetheless, it is important to note that from the CMT point of view, the 
angular dependence of the perturbation is of less significance and that it is the radial part of 
the perturbation which determines the modal field profile [18]. 

For the index profile (3), the radial mode profile consists of a Bessel function in the 
central disk and an exponentially decaying Bessel function in the reflector region [18]. The 
decay constant depends on the strength of the perturbation which is affected by the threshold 
levels αr and αθ: 
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where k is the coupling coefficient between the radially incoming and outgoing waves, given 
by 2

00 nk πεΔ=  and Δε0 is the DC component of the Fourier expansion of the reflector index 

profile. For the “rectangular” lattice (3), this component is given by: 

( ) ( ) ( ) 21122
00 cos]cos[sin2 πααε θ

−− ⋅−⋅−=Δ rpnn    (5) 

Equation (5) illustrates the impact of the various parameters on the coupling coefficient 
and, correspondingly, on the radial mode profile (4). As can be expected, decreasing αr and 
αθ results in a stronger coupling coefficient and a more confined mode profile. Although (3a) 
represents the index profile of the “rectangular” reflector, it can be straightforwardly shown 
that the coupling coefficients of the “triangular” and “sunflower” reflectors are identical (for 
the same values of αr and αθ − see [19] for more details). 

3. Simulation results 

In our simulations, we consider a 0.3 μm thick dielectric slab with refractive index of 3.4 
suspended in air.  For the TM (Hz) polarization, this configuration yields a vertical effective 
index of 2.86 at the design wavelength of 1.55μm.  The radius of the inner disk is 1 μm and 
the reflector covers the rest of the horizontal computation area. We designed the dimensions 
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of our structure for the 8th angular mode (m=8). The computation volume is 10.6 μm x 10.6 
μm x 2.1 μm. The spatial and temporal resolutions of our simulations are respectively 26.5 
nm and 0.08 fs. The simulation time interval is approximately 60 ps. The structure is excited 
with a short, broad-band, pulse (~2ps), and second order Mur absorbing boundary conditions 
[26] are employed to reduce the influence of reflections from the computation boundaries  

We are primarily interested in four different aspects of the resonator structure and how 
they affect the Q, the resonance wavelength and the modal volume. The quality factor is 
evaluated according to Q = ω0τ0 where ω0 is the resonant frequency and τ0 is the cavity ring-
down time constant. Both quantities (ω0 and τ0) are directly extracted from the FDTD 
simulation. Among the three lattice types presented above, we focus on the sunflower 
reflector because both 2D and 3D simulations predict superior Q for this type of lattice [19]. 

 
 

             
 
 
 
 
 
 
 

                     (a)                                                                                                     (b) 

Fig. 2. Field Profile of (a) high Q and (b) low Q for a “sunflower” resonator with l=70, αr=0 
and αθ=0.1 

 
Figure 2 depicts a cross-section of the z component of the magnetic field (Hz) at the center 

of the slab at t = 60ps. It illustrates the difference between a field profile with high Q and one 
with low Q for a “sunflower” structure with l=70, αr=0 and αθ=0.1.  In Fig. 2a, the high Q 
field is symmetric and well confined to the center of the disk.  The low Q field shown in Fig. 
2b exhibits distortion due to beating between two close resonance frequencies, but more 
importantly, the field is not well confined and therefore exhibits more loss.  

 
 
 
 
 
 
 
 
 
 
 
 

 

         Fig. 3. Comparison between theoretical (red) and numerical (green) radial field profile 

In Fig. 3, we compare the numerically calculated radial mode profile (green) with the 
analytical solution (red).  The analytical solution is given by (4).  While the analytic 
oscillation (quasi) periodicity seems to agree reasonably well with the calculated one, the 
decay rates differ significantly. We attribute this difference to the fact that the profile (4) is 
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accurate only for small perturbations [19] while the index perturbations of the simulated 
structure are rather strong. 
 
 
 
 
 
 

 
 
 
 
 
 

           Fig. 4. Quality factor and resonance (angular) frequency vs. Angular Perturbation 
 

Figure 4 depicts the dependence of the resonance frequency (green) and the Q (blue) on 
the angular perturbation frequency. αθ and αr are maintained fixed at 0 and 0 respectively.  
The x-axis indicates the number of holes in the first “necklace” (fig. 1c).  While the resonance 
frequency is relatively insensitive to the angular perturbation frequency, the Q of the 
resonator varies significantly when this frequency is changed.  The Q reaches a peak value of 
about Q = 25,000 around l = 70 and decreases significantly for both smaller and larger l.  
Two-dimensional simulations [19] showed that the Q is expected to increase with l.  We 
attribute this trend to the fact that smaller holes generate a more homogeneous angular 
perturbation which is closer to the ideal case of concentric rings.  Therefore, we believe that 
the decrease in the Q observed for l > 70, is a numerical artifact stemming from the limited 
resolution of the numerical scheme.  The modal volumes of the structures with l = 65, 70 and 
75 are respectively 3.8, 4.6 and 3.8 cubic wavelengths.  It can therefore be seen that while the 
Q is significantly affected by l, its impact on the modal volume is rather small.   
 
 
 
 
 
 
 
 
 
 
 
 

 

                         (a)                                                                                                    (b) 

                    Fig. 5. Dependence of the Q and resonant frequency on (a) αθ and (b) on αr 

 
As discussed in section II, the perturbation profile is determined by two parameters: αθ, 

which determines the duty-cycle of the angular dependence of the perturbation and αr, which, 
roughly speaking, determines the duty cycle of the radial dependence of the perturbation.  In 
particular, αθ and αr represent generalized threshold levels that determine the transition from 
high-index to low-index.  The values of αr and αθ determine the size of the holes where the 
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larger αθ and αr, the smaller the holes.  αθ and αr affect the overall size of the holes which 
have opposite impact on the vertical and horizontal losses.  Larger holes (smaller αr and αθ) 
reduce the in-plane radiation losses but also generate more Fourier components which are 
above the light-cone, and thus, increase the out-of-plane (vertical) scattering.  
Correspondingly, smaller holes (softer perturbation) reduce the vertical scattering but also the 
horizontal confinement resulting in larger in-plane losses for a fixed external radius of the 
reflector. Consequently, for a device with fixed external radius, there are optimal αθ and αr 
for which the total Q is maximal.  

Figure 5(a) shows the dependence of the Q and the resonance frequency on αθ while αr is 
fixed at 0.  A large Q is found for αθ = 0.1.  Figure 5(b) shows the dependence of the Q and 
resonance frequency on αr while αθ is fixed at 0.  Unlike the angular perturbation, which is 
periodic in 2π/l (see Eq. (3)), the radial perturbation is not exactly periodic because it is 
determined by the oscillations of the appropriate Hankel function. Similar to αθ, there is an 
optimal value for αr, in this case αr is around 0, which is determined by the tradeoff between 
the horizontal and the vertical Qs.  It should be emphasized that the optimal values for αθ and 
αr stem from the fixed external radius of the Bragg reflector.  Increasing the reflector radius 
would improve the horizontal Q and would allow for larger αθ (softer perturbation). 
 
 

 
 
 
 
 
 
 
 
 
 

 

 

                                  Fig. 6. Impact of neff on the Q and resonant frequency 
 

Finally, we examine the impact of the effective index (neff) on the Q and resonance 
frequency while fixing l=65, αr=0 and αθ=0.1.  neff is a design parameter which stems from 
the reduction of the 3D problem to an equivalent 2D problem.  To determine the holes 
position, the slab configuration is replaced by an equivalent 2-D structure with an effective 
index, neff, determined by the vertically guided mode of the slab.  It is, therefore, important to 
verify the validity of this approximation by varying the value of neff used in the design of the 
cavity.  Figure 6 shows the impact of changing neff in (3) on the Q and resonance frequency.  
The maximal Q is found for neff = 2.86, which is the effective index of the guided mode in the 
slab, thus indicating that the effective index approximation is valid and can be used for the 
design of such cavities.   

4. Conclusion 

We studied the impact of the various design parameters of circular PC cavities on their Q, 
modal volume and resonance frequency using 3D FDTD simulations. For a fixed size 
resonator, there is a clear tradeoff between the vertical and horizontal Qs manifested in 
optimal αr and αθ. We also found that increasing the angular (spatial) frequency of the 
perturbation generally increases the Q up to a limit which, most probably, stems from 
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numerical errors generated by the limited resolution of the calculation scheme. We attribute 
this trend to the fact that higher perturbation frequencies generate smaller holes which reduces 
the local perturbation and the scattering losses, without affecting the radial coupling 
coefficient which confines the light in the central cavity. We also studied the influence of the 
effective index approximation used for the design procedure and found that the best Q is 
attained when the actual slab effective is used for the design, thus validating the use of this 
approximation. Good agreement was found between the analytically and the numerically 
calculated radial field profile, even for relatively strong perturbation, indicating that the 
design and analysis method used here accurately describes the actual structure. The small 
number of design parameters and degrees of freedom (compared to PC defect cavities) allow 
for a thorough engineering of the cavity structure, yielding high Qs and small modal volumes. 
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