
Optimization of Continuous Queries with Shared
Expensive Filters ∗

Kamesh Munagala
Duke University

kamesh@cs.duke.edu

Utkarsh Srivastava
Yahoo! Research

utkarsh@yahoo-inc.com

Jennifer Widom
Stanford University

widom@cs.stanford.edu

ABSTRACT
We consider the problem of optimizing and executing multiple con-
tinuous queries, where each query is a conjunction of filters and
each filter may occur in multiple queries. When filters are expen-
sive, significant performance gains are achieved by sharing filter
evaluations across queries. A shared execution strategy in our sce-
nario can either be fixed, in which filters are evaluated in the same
predetermined order for all input, or adaptive, in which the next
filter to be evaluated is chosen at runtime based on the results of
the filters evaluated so far. We show that as filter costs increase,
the best adaptive strategy is superior to any fixed strategy, despite
the overhead of adaptivity. We show that it is NP-hard to find
the optimal adaptive strategy, even if we are willing to approxi-
mate within any factor smaller than ln m where m is the number of
queries. We then present a greedy adaptive execution strategy and
show that it approximates the best adaptive strategy to within a fac-
tor O(log2 m log n) where n is the number of distinct filters. We
also give a precomputation technique that can reduce the execution
overhead of adaptive strategies.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query Processing

General Terms
Algorithms, Performance

Keywords
query optimization, shared execution, expensive predicates

1. INTRODUCTION
We consider the problem of optimizing a collection of continu-

ous queries [3], where each query is a conjunction of filters on the
incoming data stream. We focus on scenarios that exhibit sharing,
∗This work was supported by the National Science Foundation un-
der grant IIS-0324431, by a Stanford Graduate Fellowship from
Sequoia Capital, and by a fellowship from Microsoft Corporation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’07, June 11–13, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-685-1/07/0006 ...$5.00.

meaning the same filter may occur in multiple queries. The goal of
our optimization is to minimize the overall cost of evaluating the fil-
ters by sharing filter evaluations across multiple queries. Note that
our problem is different from that addressed in publish-subscribe
systems [21, 23], which generally focus on special techniques for
indexing a large number of queries (or subscriptions) to quickly
identify which subscriptions match the incoming data. The differ-
ences are discussed in more detail in Section 1.1.

As an example of our scenario, suppose several information an-
alysts are all monitoring an incoming stream S of images. Each
analyst identifies the images of interest to him by specifying a col-
lection of filters F1, . . . , Fk that the image must satisfy. Thus, each
analyst poses a continuous query of the form:

SELECT * FROM S WHERE F1 ∧ . . . ∧ Fk

In this scenario, filters will most likely be shared, as more than one
analyst may be looking for certain characteristics. For example,
one analyst might be interested in outdoor images (filter F1) with
at least five people in it (filter F2), while another analyst might
be interested in outdoor images (filter F1 again) with at least one
person clad in black (filter F3).

Filters that detect patterns within an image are often expensive
to evaluate, thereby motivating the need to share filter processing
across queries to increase throughput. (For example, the filter in the
OpenCV library [19] to detect number of faces, when running on a
1.8 GHz machine, takes an average of 0.5 seconds on an 800×600
image.) Numerous other applications such as network monitor-
ing, video surveillance, monitoring of voice calls, and intrusion
detection, also exhibit shared expensive predicates and have high
throughput requirements (e.g., a video feed needs to be processed
in real time).

A naı̈ve execution strategy for such scenarios is to evaluate each
query independently on the incoming stream. However, since fil-
ters are shared, this approach can perform a significant amount of
redundant work. A better alternative is to choose a shared execu-
tion strategy for a given collection of queries. In a shared strategy,
filters are evaluated on each data item in some order dictated by the
strategy, until all of the queries are resolved. (Since each query is
a conjunction of filters, a query is resolved as soon as one of the
query filters evaluates to false, or when all of the query filters eval-
uate to true.) In this way, filter evaluations are shared across all
queries. In this paper, we address the problem of finding the op-
timal shared execution strategy for any given collection of queries
that share expensive filters.

Finding the optimal shared execution strategy poses the follow-
ing major challenges:

1. Filter placement. The decision whether a filter should be
evaluated earlier or later in a shared strategy should be made

215

by taking all of the following factors into account:

• Cost: Filters with low cost should preferably be eval-
uated early, since they might resolve queries at lower
cost.

• Selectivity: The average fraction of incoming data items
that satisfy a filter is referred to as the selectivity of that
filter. Filters with lower selectivity should preferably
be evaluated early, since they are more likely to resolve
queries by evaluating to false.

• Participation: The number of queries that contain a
given filter is referred to as the participation of that fil-
ter. Filters with higher participation should preferably
be evaluated early, since they can decide the results of
a larger number of queries.

For a given filter, these three factors may give contradictory
suggestions for its placement, so we must devise a placement
method that takes all the factors into account.

2. Execution Overhead. Executing a shared strategy incurs
some amount of overhead, e.g., keeping track of which filters
have been evaluated, and which queries have been resolved.
This overhead is in addition to the cost of the filters evaluated
by the strategy. Thus the overall choice of the optimal strat-
egy must take into account the expected total cost of filters
evaluated by a strategy as well as its execution overhead.

To address the above challenges, we first consider the space of
possible shared execution strategies and outline two broad cate-
gories of strategies: fixed and adaptive. In a fixed strategy, the order
in which filters are evaluated is predetermined and is the same for
each data item on the stream. In an adaptive strategy, at any stage
the next filter to be evaluated is chosen based on the results of the
filters evaluated so far. Adaptive strategies (sometimes also called
conditional plans [10]) have a higher execution overhead since at
each step they incur the cost of choosing the next filter to evaluate.
However, in terms of the expected total cost of filters evaluated,
the best adaptive strategy is often superior to any fixed strategy.
Specifically, we show problem instances where any fixed strategy
has a cost Ω(µ) times the cost of the best adaptive strategy, where
µ is the maximum number of queries in which a filter is present
(measuring the extent of sharing of filters across queries). Thus, as
the extent of sharing and filter costs increase, the higher execution
overhead of adaptive strategies is compensated for by the savings
obtained in filter evaluation cost, thus motivating the need to design
and analyze adaptive strategies.

We then consider the optimization problem of finding the least-
cost adaptive strategy, where the cost of a strategy is the expected
total cost of filters evaluated by it. A key idea behind our results is
to model this optimization problem as a probabilistic version of the
well-known set cover problem [12]. Based on the similarity to set
cover, we first show a lower bound: it is NP-hard to find an adap-
tive strategy whose cost approximates the optimal cost to within
any factor smaller than ln m, where m is the number of queries.
We then give a greedy adaptive strategy, and we show that its cost
approximates the optimal cost to within a factor O(log2 m log n),
where m is the number of queries as before, and n is the number of
filters. We have performed experiments (results provided in the ex-
tended technical report [18]) which indicate that the greedy strategy
performs very well in practice.

Finally, we consider the problem of reducing the execution over-
head for adaptive strategies. One method is to precompute and store
which filter is to be evaluated next for each possible combination

of outcomes of the filters evaluated so far. (Essentially, we would
be materializing the “decision tree” corresponding to the adaptive
strategy.) However, in general, this approach requires space expo-
nential in the number of filters. We give an algorithm that takes into
account the amount of space available to store the decision tree and
decides which parts of the decision tree should be precomputed so
that the execution overhead of the strategy is minimized.

1.1 Related Work
There has been work pertaining to shared query execution in both

the data streams context [3] as well as the classical DBMS context.
For data streams, most of the work on shared query execution is for
publish-subscribe systems, e.g., [7, 21, 23]. In publish-subscribe
systems, the problem setting is essentially the same as ours: Each
user specifies (or subscribes to) the data of interest by specifying
conditions on the incoming data stream, and the goal is to dispatch
each incoming data item to all matching subscriptions. Publish-
subscribe systems generally focus on scenarios where the number
of subscriptions is very large (of the order of millions), and they
use special disk-based indexing mechanisms to efficiently locate
the matching subscriptions for a given data item. Unlike our work,
their focus is not on deciding the order of filter evaluation, since
filters are considered cheap. Another important distinction is that
publish-subscribe systems often exploit the internal structure of fil-
ters to achieve sharing [13]. Such techniques to exploit sharing do
not extend to the “black-box” user-defined filters we consider, or to
other general filters such as those implemented by a table lookup
or a semijoin. In the continuous query context, exploiting sharing
for continuous sliding-window aggregates, but not for expensive
filters, is considered in [1]. Expensive filters are considered in [4],
but only for a single query.

In conventional relational DBMSs, shared query execution has
been considered under multi-query optimization [8]. This work fo-
cusses mostly on exploiting common join subexpressions in queries,
and does not consider expensive filters. The techniques developed
in this paper can also be applied in the classical relational setting for
optimizing multiple queries with expensive filters. Optimization
of a single query with expensive filters has been considered in [6,
15]. In the context of active databases, the Ariel system [14] has
been designed for efficiently evaluating a collection of rules or trig-
gers using discrimination networks. However, just as in publish-
subscribe systems, sharing is achieved by exploiting the internal
structure of the trigger conditions. Furthermore, optimization in
Ariel is mainly through randomization and hill-climbing with no
provable guarantees of optimality.

Note that our notion of an adaptive execution strategy is not re-
lated to adaptive plans in Eddies [2], or even Eddies with content-
based routing [5]. In Eddies, different plans may be chosen for
different tuples in order to adapt to changes in operator costs and
selectivities over time. In our case, we assume that operator costs
and selectivities do not change over time. Rather, different plans
may be chosen for different tuples since the next operator (filter) to
be evaluated is based on the results of the filters evaluated so far.
There has been work on sharing in the Eddies context [16], but this
work does not provide provable performance guarantees.

We note that our problem is similar in spirit to [11], where adap-
tive querying of information sources is considered, each of which
answers a subset of queries with some probability, time delay and
cost. The significant difference with our work is that they assume
each information source (predicate in our case) satisfies each query
with some probability which is independent of its satisfying another
query; in our setting, the filter satisfies all queries it belongs to with
the same probability in a perfectly correlated fashion. This makes

216

our problem harder to approximate and we need different solution
strategies and analysis techniques.

As far as we are aware, we are the first to consider the shared
queries problem presented in this paper.

1.2 Summary of Contributions

• We formally define the problem of optimizing a collection of
queries with conjunctions of shared filters (Section 2).

• We explore the space of shared execution strategies and show
that when filters are expensive, the optimal strategy is adap-
tive (Section 3).

• We show the hardness of finding (even approximating) the
optimal adaptive strategy, and we give a greedy adaptive strat-
egy that approximates the optimal strategy to within a factor
O(log2 m log n), where m is the number of queries and n is
the number of filters (Section 4).

• We show how the execution overhead of an adaptive strategy
can be reduced by appropriate precomputation (Section 5).

• In the extended technical report [18], we give a thorough ex-
perimental evaluation showing that our techniques lead to
a significant improvement in performance over more naı̈ve
techniques.

2. PRELIMINARIES
Consider an incoming stream S of data items. Let there be a set

of m queries Q = {Q1, . . . , Qm} posed on stream S. Each query
Qi is a conjunction of filters on the items of S:

Qi : SELECT * FROM S WHERE F 1
i ∧ . . . ∧ F k

i (1)

For the rest of the paper, we denote the query Qi as the set of filters
{F 1

i , . . . , F k
i }, omitting the implicit conjunction. Thus, F ∈ Q

denotes that filter F occurs in query Q. Filters may be shared
among queries. For example, F a

i = F b
j denotes that the ath fil-

ter in query Qi is the same as the bth filter in query Qj . Let there
be n distinct filters over all the queries in Q, denoted by the set
F = {F1, . . . , Fn}. For a given collection of queries and filters,
we also define the following variables:

µ maximum number of queries a filter is present in
κ maximum number of filters present in a query
λ number of (Fi, Qj) pairs where Fi is present in Qj

Table 1: Variables in a Given Problem Instance

Note that µ measures the extent of sharing of filters between
queries. Also note that λ ≤ min(mκ, nµ).

A shared execution strategy P for the queries in Q gives an order
in which the filters in F should be evaluated on the items of stream
S. Formally, a shared execution strategy in its most general form is
defined as follows:

DEFINITION 2.1. (SHARED EXECUTION STRATEGY). A sha-
red execution strategy P for the set of queries Q is a function that
takes as input the set of filters evaluated so far and their results,
and decides the next filter to be evaluated.

Strategy P in its general form is said to be adaptive. In the spe-
cial case when P always evaluates filters in the same order for each
data item, regardless of the results of the filters evaluated so far, P
is said to be fixed. This classification is elaborated upon in Sec-
tion 3.

Algorithm ExecuteStrategy(P)
P: Shared execution strategy for the set of queries Q
1. for each data item s on stream S
2. for each query Q ∈ Q /* Initialization */
3. status(Q) ← unresolved, numFiltersLeft(Q) ← |Q|
4. while (status(Q) = unresolved for some Q)
5. choose next filter F to be evaluated according to P
6. evaluate F on s
7. if (F evaluates to false)
8. for each Q where F ∈ Q status(Q) ← false
9. else
10. for each Q where F ∈ Q numFiltersLeft(Q)- -
11. if (numFiltersLeft(Q) = 0) then status(Q) ← true

Figure 1: Execution Algorithm for a Shared Execution Strategy

The execution algorithm for a shared strategy P is as follows
(see Figure 1). For each incoming item s on stream S, we first
initialize the status of every query in Q to unresolved (Lines 2-3).
At any stage, the next filter F to be evaluated is chosen according to
strategy P , and F is evaluated on item s (Lines 5-6). If F evaluates
to false, then all queries that contain F are resolved to false (Line
8). Otherwise, if F evaluates to true, F is removed from all the
queries it is part of. Any query Q that now becomes empty (i.e., F
was the only remaining filter in Q), is resolved to true (Lines 10-
11). This process is continued until all queries in Q are resolved.
We assume the set of queries Q is indexed on filters, so that for any
filter F , the queries that contain F can be determined efficiently
(so that Lines 8 and 11 can be executed efficiently).

Next we describe our cost model for shared execution strategies
(Section 2.1), then formally define the problem of optimization of
queries with shared expensive filters (Section 2.2).

2.1 Cost Model
In order to compare different shared execution strategies and to

choose the best one among them, we need to associate a cost ex-
pression with every strategy. The execution cost of a shared strat-
egy consists of two major components:

1. Cost of filters evaluated. This is the total cost incurred in
Line 6 of Algorithm ExecuteStrategy in Figure 1.

2. Execution overhead. This is the cost incurred in the rest
of the algorithm in Figure 1, i.e., excluding Line 6. Execu-
tion overhead consists of two parts—bookkeeping cost (such
as keeping track of the number of filters remaining in each
query), and the cost of adaptivity, i.e., the cost incurred by
P in deciding the next filter to be evaluated (Line 5). The
cost of adaptivity depends on the specific plan P , but the
bookkeeping cost is independent of P and (for any tuple) is
at most O(1) per filter present in a query, making it O(λ)
overall.

We are focussing on applications with expensive filters (e.g., de-
tecting patterns in images, and others mentioned in the introduc-
tion), and thus the first component of execution cost typically dom-
inates the second. In this paper, we primarily focus on filter evalua-
tion cost and we address the problem of designing execution strate-
gies that minimize the expected total cost of filters evaluated. In
practice, it is also important to keep the execution overhead low,
and we give techniques for doing so in Section 5.

To arrive at an expression for the expected total cost of filters
evaluated by a strategy, as in much of previous work [4, 6, 15], we

217

assume that for each filter Fi ∈ F , the following two quantities are
known:

• Cost: The average per-item processing time (or intuitively,
the cost) of filter Fi is denoted by ci.

• Selectivity: The average fraction of data items that satisfy
filter Fi is referred to as the selectivity of filter Fi, and is
denoted by si. The selectivity si can also be interpreted as
the probability Pr[Fi = true], where the probability is taken
over the distribution of input data items.

For simplicity of presentation and analysis, we assume indepen-
dent filters in the remaining discussion, i.e., the selectivity of a filter
does not depend on the filters already evaluated. Note that our al-
gorithms are more general, and work even for correlated filters (as
demonstrated by our experiments in [18]); we mention the simple
modifications needed wherever appropriate.

Consider a shared execution strategy P . Let ei be the probability
that P will evaluate filter Fi on an incoming item s. In general,
ei may be less than 1 because all the queries might get resolved
before Fi is evaluated. Then the expected cost of filters evaluated
by strategy P is given by:

cost(P) =
n∑

i=1

ei · ci (2)

The exact expression for ei depends on the specific type of strategy
P and is given in Section 3. ei can be written in terms of selectivi-
ties of filters as shown by the following example.

EXAMPLE 2.2. Let there be two queries Q1 = {F1, F2} and
Q2 = {F2, F3}. Let P be a fixed execution strategy that always
evaluates the filters in the order F1, F3, F2. According to strategy
P , filters F1 and F3 will always need to be evaluated. Thus e1 =
e3 = 1. However, filter F2 will need to be evaluated only if at least
one of F1 or F3 evaluates to true. Since filters are independent,
the probability that F2 will need to be evaluated (i.e., Pr[F1 =
true ∨ F3 = true] is e2 = s1 + s3 − s1s3. Thus the cost of
strategy P according to (2) is:

cost(P) = c1 +c3 +(s1 +s3−s1s3)c2

2.2 Problem Statement
The problem of optimizing queries with shared expensive filters

can be defined as follows:

DEFINITION 2.3. (OPTIMIZATION OF QUERIES WITH SHARED
EXPENSIVE FILTERS). Given a set of queries Q of the form (1),
find a shared execution strategy P (Definition 2.1) such that cost(P)
given by (2) is minimized.

The problem of finding the best adaptive strategy is NP-hard
(Theorem 4.2). We therefore focus on designing approximation
algorithms. We give the standard definition of approximation ratio
that is used to measure the quality of an approximation algorithm.

DEFINITION 2.4 (APPROXIMATION RATIO). An algorithm A
has an approximation ratio k (or is a k-approximation) if for all
possible instances of the problem, A is guaranteed to result in a
solution whose cost is at most k times the cost of the optimal solu-
tion.

3. SHARED EXECUTION STRATEGIES
Recall Definition 2.1 of a shared execution strategy. In general,

a strategy P decides the next filter to be evaluated based on the

results of the filters evaluated so far. Such a strategy is referred to
as an adaptive strategy. However, a simple special case is when
P evaluates filters in a fixed order, independent of the results of
the filters evaluated so far. In this case, P is referred to as a fixed
strategy. We study these two types of strategies in the following
subsections.

3.1 Fixed Strategies

DEFINITION 3.1. (FIXED STRATEGY). A fixed strategy is a
shared execution strategy that evaluates the filters in F on any data
item in a fixed order (say F1, . . . , Fn without loss of generality).
No redundant work is done: if the evaluation of F1, . . . , Fi−1 re-
solves all queries that contain Fi, the evaluation of Fi is skipped.

We first show how to calculate the cost of a fixed strategy P . For
this, we need to find the probability ei that P evaluates Fi (recall
(2)). Fi will be evaluated only if the evaluation of F1, . . . , Fi−1 is
not sufficient to resolve all queries that Fi is part of. Unfortunately,
there is no simple closed form for the probability ei. However, ei

is simple to calculate as follows. Consider each possible result v
of the evaluation of F1, . . . , Fi−1 (there are 2i−1 possible values
for v). Calculate the probability p(v) of v by using independence
of filters and that Pr[Fk = true] = sk for any k. Let b(v) be
the indicator variable denoting whether any query containing Fi

remains unresolved if the result of evaluating F1, . . . , Fi−1 is v.
Then ei is given by

ei =
∑

v

p(v) · b(v) (3)

EXAMPLE 3.2. We redo Example 2.2 using (3). Recall the fixed
strategy P = F1, F3, F2. Since F1 is the first filter in P , e1 = 1.
Next, since F3 needs to be evaluated regardless of the result of
evaluating F1, we have e3 = 1. To calculate e2, we consider all
possible results of evaluating F1, F3.

v p(v) b(v)
F1 = false, F3 = false (1 − s1)(1 − s3) 0
F1 = false, F3 = true (1 − s1)s3 1
F1 = true, F3 = false s1(1 − s3) 1
F1 = true, F3 = true s1s3 1

The last 3 rows in the table above have b(v) = 1 since at least one
of Q1 and Q2 (both of which contain F2) remain unresolved. Thus
e2 = (1 − s1)s3 + s1(1 − s3) + s1s3 = s1 + s3 − s1s3 as in
Example 2.2.

Fixed strategies are of interest because it is known from previ-
ous work that for the special case of a single query (i.e., m = 1),
the optimal strategy is a fixed one, and is given by the following
theorem1.

THEOREM 3.3. [15] For a single query that is a conjunction of
filters F1, . . . , Fn, it is optimal to evaluate the filters in increasing
order of rank, where rank(Fi) = ci/(1 − si).

Now consider the strategy FixedGreedy that is a naı̈ve extension
of the above theorem to multiple queries. FixedGreedy processes
the queries sequentially in arbitrary order. For each query, the fil-
ters are evaluated in the order given by the single-query greedy
algorithm (Theorem 3.3). We now show a performance bound for
FixedGreedy.
1The problem is NP-hard when filter selectivities are correlated;
however, the same greedy ordering modified to use conditional se-
lectivities yields an approximation ratio of 4.

218

Figure 2: Decision Tree for Example 3.5

THEOREM 3.4. FixedGreedy is a µ-approximation (recall def-
inition of µ from Table 1).

PROOF. Suppose the optimal strategy interleaves evaluation of
filters from different queries. However, for any single query, the
expected cost of the filters evaluated by the optimal strategy for re-
solving that query is at least the cost spent by FixedGreedy (since
FixedGreedy is optimal for any single query). Since each filter ap-
pears in at most µ queries, the cost of FixedGreedy can be at most
µ times that of the optimal strategy.

In Theorem 3.7, we will show that this approximation ratio of
O(µ) is the best possible for any fixed strategy. Theorem 3.4 shows
that the performance of FixedGreedy deteriorates as the extent of
sharing, µ increases. Intuitively, FixedGreedy performs badly in
the case of multiple queries because the placement of filters in the
strategy does not take into account the participation of each filter,
i.e., the number of queries in which the filter participates. In fact,
our main adaptive strategy presented in Section 4 can be viewed as
an extension of Theorem 3.3 to take participation into account.

Fixed strategies have a low execution overhead: they only incur
the usual bookkeeping cost of O(λ) for each data item (recall Sec-
tion 2.1). To avoid redundant work, when a filter F is chosen to
be evaluated, we iterate through all the queries in which F partici-
pates. If all these queries are resolved, evaluation of F is skipped.
The cost of these iterations is also of the same order as the book-
keeping cost (at most O(λ) for each data item). Apart from this,
the decision step in Line 5 of Figure 1 is very cheap, since filters
are evaluated in a fixed order. However, in terms of the expected
total filter evaluation cost (given by (2)), fixed strategies are often
inferior to the more general adaptive strategies, as shown next.

3.2 Adaptive Strategies
Recall Definition 2.1 that defines general adaptive strategies. An

adaptive strategy can be represented conveniently as a decision tree
in which each node corresponds to a filter and has two children
referred to as the Yes child and the No child respectively.

To build the decision tree for a given adaptive strategy P , note
that the first filter to be evaluated by P must be a fixed filter F
(since there are no previous filters on which F can depend). Make
F the root of the decision tree. Add as the Yes child of F the
filter that P evaluates next if F evaluates to true. If the evaluation
of F to true resolves all queries and there are no more filters to be
evaluated, the Yes child of F is a special leaf node marked ⊥. The
No child of F is constructed similarly based on what happens if
F evaluates to false. The subtrees of the Yes and No children are
then built recursively. Note that multiple nodes of the decision tree
may correspond to the same filter.

EXAMPLE 3.5. We continue with our running example (Exam-
ple 2.2). Recall the queries Q1 = {F1, F2} and Q2 = {F2, F3}.
Consider the adaptive strategy P that first evaluates F1. If F1

evaluates to true, P evaluates F2, otherwise it evaluates F3. The

third remaining filter is then evaluated if needed. The decision
tree corresponding to P is shown in Figure 2, with nodes named
N1, . . . , N7.

The execution of P for each data item can be viewed as starting
at the root of the corresponding decision tree and traversing to one
of the leaves based on filter results. We assume that no two nodes
on the path from the root to a leaf can correspond to the same filter
(since that would constitute redundant filter evaluation). Let Pr[N]
denote the probability that a node N is visited during execution of
P . Let Nyes and Nno denote the children of N . If the filter at N
is Fi, we have (by using Pr[Fi = true] = si and independence of
filters):

Pr[Nyes] = Pr[N] · si

Pr[Nno] = Pr[N] · (1 − si)
(4)

Thus, given that Pr[root]=1 (since the root is always visited), Pr[N]
can be calculated for each node N . For Example 3.5, Pr[N] for
each node N is annotated in Figure 2.

As in the case of fixed strategies, to calculate the cost of an adap-
tive strategy P , we must calculate the probability ei that P evalu-
ates filter Fi (recall (2)). If filter Fi occurs at nodes N1

i , . . . , Nk
i

of the decision tree, then ei is given by

ei =
k∑

j=1

Pr[N j
i] (5)

EXAMPLE 3.6. We continue with our running example (Exam-
ple 2.2) and the adaptive strategy P shown in Figure 2. Since
F1 occurs at the root, e1 = 1. F2 occurs at nodes N2 and N5.
From (5), e2 = Pr[N2] + Pr[N5] = s1 + (1 − s1)s3. Similarly,
e3 = 1 − s1 + s1s2. From (2):

cost(P) = c1 +
(
s1 + (1− s1)s3

)
· c2 +

(
1− s1 + s1s2

)
· c3

We now motivate the need for designing adaptive strategies by
showing that they are vastly superior in performance to any fixed
strategy when the sharing parameter µ is large.

THEOREM 3.7. There exist problem instances where the cost
of any fixed strategy is Ω(µ) times the cost of the optimal adaptive
strategy.

PROOF. We construct a problem instance as follows. Let n =√
m. We have n filters F1, F2, . . . , Fn with cost c = 0 and se-

lectivity s = 1/n. There are another n filters H1, . . . , Hn of cost
c = 1 and selectivity s = 0. There are m queries Q1, Q2, . . . , Qm

which are divided into n disjoint groups G1, G2, . . . , Gn. Filters
Fi and Hi are present in all queries in group Gi. In addition, we
add each filter Hi to one query from each of the remaining groups.
This addition is done such that any query in group Gj has at most
one filter Hi (i *= j) mapped to it. Note that each query in group
Gi has at most 3 filters—Fi, Hi and one Hj for some j *= i. Thus,
κ = 3. Also, µ = Θ(n). The construction is illustrated in Figure 3
for the case m = 9, and n = 3.

Without loss of generality, any strategy first evaluates all the fil-
ters F1, . . . , Fn since these filters have zero cost. Since the selec-
tivity of these filters is 1/n, in expectation one group of queries
remains unresolved at the end of this evaluation. The best adaptive
strategy then evaluates the filters Hi corresponding to the unre-
solved groups Gi, spending unit cost for each unresolved group.
Since the expected number of unresolved groups is 1, the expected
cost of the best adaptive strategy is O(1).

Now consider any fixed strategy. It has to choose an ordering of
H1, . . . , Hn in advance, and at best can choose a random ordering

219

F1 F2 F3

H1 H2 H3

Q1 Q2 Q3 Q5Q4 Q7Q6 Q8 Q9

Cost c = 0
Selectivity = 1/3

Queries

Cost = 1
Selectivity = 0

Figure 3: Construction for Theorem 3.7 when m = 9 and n = 3

since the instance is symmetric on the indices of the filters. Fix the
event that exactly one group of queries Gj∗ is unresolved after eval-
uating F1, . . . , Fn. This event happens with probability 1/e. The
filter Hj∗ appears at location n/2 in the ordering of H1, . . . , Hn

in expectation. All filters Hi before Hj∗ in the ordering need to
be evaluated since they are present in some query in the unresolved
group Gj∗ . Therefore, the expected cost of any fixed strategy is
Ω(n) = Ω(µ).

Adaptive strategies have higher execution overhead than fixed
strategies since they incur the cost of deciding the next filter to be
evaluated at each step. One way to avoid this cost is to store the
entire decision tree corresponding to the strategy in memory. How-
ever, storing the entire decision tree is infeasible in general since its
size can be exponential in the number of filters. In the next section,
we focus only on filter evaluation cost and consider the problem of
finding the adaptive strategy that minimizes the expected total cost
of filters evaluated for a given set of queries. Then in Section 5,
we show how the execution overhead of an adaptive strategy can
be reduced by appropriate precomputation.

4. FINDING THE OPTIMAL STRATEGY
In this section, we consider the problem of finding the optimal

strategy for a given set of queries (Definition 2.3). We first show
the similarity of our problem to the well-known set cover problem
(Section 4.1). Based on this similarity, we show the hardness of
finding (or even approximating) the optimal strategy in the general
case. We then identify special cases where this hardness does not
hold (Section 4.2). We then give a lower bound on the cost of
the optimal strategy (Section 4.3), followed by our general greedy
adaptive strategy in Section 4.4.

4.1 Hardness and Set Cover

DEFINITION 4.1 (SET COVER PROBLEM [12]). Given a col-
lection S of k sets S1, . . . , Sk, choose a minimum collection C of
sets from S that covers the universal set, i.e.,

⋃
Si∈C Si =

⋃k
i=1 Si.

For our problem, let the universal set be the set of all queries Q,
and let each filter Fi be a set Si = {Q ∈ Q|Fi ∈ Q}. Thus, a filter
covers all the queries that it can potentially resolve, and the aim
is to pick the least-cost collection of filters that resolve (or cover)
all the queries; hence the similarity to set cover. However, our
problem departs from classical set cover in that the notion of a filter
resolving (or covering) a query is probabilistic. Thus, when a filter
Fi is picked, it resolves the set of queries Si only with probability
1 − si, i.e., when it evaluates to false. Otherwise, with probability

si, i.e., when it evaluates to true, it resolves only those queries in Si

in which it was the solitary filter. Thus our problem can be viewed
as a new probabilistic version of set cover that, to the best of our
knowledge, has not been considered before.

We now show the hardness of finding the optimal adaptive strat-
egy, and then identify certain special cases where this hardness does
not hold. The following hardness result for our optimization prob-
lem follows easily from a reduction from set cover (recall that m is
the number of queries), and the proof is omitted.

THEOREM 4.2. No polynomial-time algorithm for finding an
adaptive strategy can have an approximation ratio o(ln m), unless
P=NP.

4.2 Limited Phase Adaptivity
Before considering full-blown adaptive strategies, we show in

this section that when κ (the maximum number of filters in a query)
is small, there exist strategies that make only a small number of
adaptive decisions, and yet have a good approximation ratio. Such
strategies that make a small number of adaptive decisions are in-
teresting since they are closer to fixed strategies in having a low
execution overhead.

An adaptive strategy that makes k adaptive decisions evaluates
its filters in k + 1 phases, where the filters in each phase are fixed
according to the results of filter evaluations in the previous phases.
The next theorem (whose proof is omitted) follows by observing
the similarity of the problem to Vertex Cover for κ = 2 and to
κ-Hypergraph Vertex Cover for general κ.

THEOREM 4.3. 1. When κ = 2, there exists a polynomial-
time algorithm to find a strategy that is a 2-approximation,
and that makes no adaptive decisions, i.e., is fixed.

2. For general κ, there exists a polynomial-time algorithm to
find a strategy that is an O(κ2)-approximation, and that makes
κ− 2 adaptive decisions.

The above theorem adequately demonstrates the power of adap-
tivity for our problem: For κ = 3, using Theorem 3.7, any fixed
strategy is an Ω(µ)-approximation. However, by Theorem 4.3, for
κ = 3, we can find an adaptive strategy that is a 9-approximation
and makes only one adaptive decision. Thus, allowing for adaptive
strategies with just one intermediate decision can yield a dramatic
performance benefit of Θ(µ) for such instances.

We now build towards designing a general adaptive strategy. We
start by presenting an efficiently computable lower bound on the
cost of the optimal adaptive strategy.

4.3 Lower Bound on Cost
In this section, we prove a lower bound on the cost of the opti-

mal strategy. This lower bound is used to bound the approximation
ratio of our algorithm. It is also used in our experiments [18] as a
benchmark to compare our algorithm against.

For every query Qi ∈ Q, let ri denote the probability that Qi

resolves to false. Then,

ri = 1 −
∏

j|Fj∈Qi

sj (6)

Consider the following linear program with variables e1, . . . , en.

Minimize
n∑

j=1

cj · ej subject to: (7)

∀ queries Qi ∈ Q
∑

j | Fj∈Qi
(1 − sj)ej ≥ ri

∀ filters Fj ∈ F ej ∈ [0, 1]

220

Algorithm Greedy
1. if (∃ unresolved query Q with exactly 1 unevaluated filter)
2. pick the single filter in Q to be evaluated next
3. else
4. pi ← number of unresolved queries Fi is part of
5. pRank(Fi) ← ci

pi(1−si)

6. pick unevaluated filter with min pRank to be evaluated next

Figure 4: Greedy Adaptive Strategy

THEOREM 4.4. The cost of the optimal strategy is lower bounded
by the optimum value of the linear program in (7).

PROOF. Consider any adaptive strategy P . Let ej denote the
probability that P evaluates filter Fj . By the union bound in prob-
ability theory, Pr[Qi resolves to false] = ri ≤

∑
j | Fj∈Qi

Pr[Fj

is evaluated ∧ Fj = false]. Since Fj evaluating to false is inde-
pendent of Fj being evaluated, we have:

ri ≤
∑

j | Fj∈Qi

(1 − sj)ej

From (2), the cost of P is
∑n

j=1 cj · ej . Thus, the optimum value
of the linear program in (7) is a lower bound on the cost of any
adaptive strategy.

The above linear program essentially approximates the probabil-
ity of filter evaluations for any decision tree by using linear con-
straints that are derived by applying union bounds. This makes
the lower bound efficiently computable. However, we have not en-
coded the constraint that the values of ej must be obtainable from
some decision tree by (5), which seems hard to do through a linear
program. Thus, the above lower bound may be loose. However, for
our problem, it turns out to be good enough for designing approxi-
mation schemes. (In our experiments [18], we found that this lower
bound was only about a factor of 2 lower than the actual optimal
cost).

This general technique of lower bounding the value of an adap-
tive strategy using linear constraints is also used in the context of
stochastic scheduling [9, 20] to develop non-adaptive strategies that
are constant factor approximations to the best adaptive strategy. For
our problem however, we use the linear program to design approx-
imate adaptive strategies.

4.4 Greedy Adaptive Strategy
In this section, we describe our general greedy adaptive execu-

tion strategy and provide theoretical guarantees regarding its cost.
Recall the similarity of our problem to set cover (Section 4.1). The
following greedy algorithm is the best known polynomial-time al-
gorithm for set cover: Start by picking the set that covers the max-
imum number of elements. Then at each stage pick the set that
covers the maximum number of uncovered elements, and continue
until all elements are covered.

Let us try using this algorithm to find an adaptive strategy for our
problem, which is a probabilistic version of set cover. Our aim is to
resolve all queries. Thus, at any stage, we should pick the filter that
is expected to resolve the maximum number of unresolved queries
per unit cost. This algorithm, Greedy, is shown in Figure 4 (writ-
ten assuming it will be invoked repeatedly by Line 5 of algorithm
ExecuteStrategy in Figure 1).

If there exists an unresolved query Q that has only a single un-
evaluated filter F , then evaluation of F is necessary to resolve Q.

Hence we first evaluate any such filter F (Lines 1-2 of Figure 4).
Suppose filter Fi occurs in pi unresolved queries. Then with prob-
ability 1 − si, Fi resolves pi queries (when it evaluates to false),
otherwise with probability si it does not resolve any queries (when
it evaluates to true, since there are no queries with a single filter
remaining). Thus the expected number of queries resolved by Fi

is pi(1 − si). Analogous to Theorem 3.3, we define the pRank of
Fi as the ratio of ci to pi(1 − si), and then pick the filter with the
minimum pRank (Lines 4-6 of Figure 4). Thus, Greedy can also
be seen as an extension of the technique in Theorem 3.3 to take
participation of a filter into account, i.e., the number of queries in
which a filter occurs.

If the filter selectivities are correlated, we need a simple mod-
ification to the definition of pRank. Let si denote the conditional
selectivity of Fi given the results of all filters evaluated so far. Then
pRank(Fi) ← ci

pi(1−si)
, where pi denotes the number of unre-

solved queries Fi participates in.
The algorithm Greedy turns out to be hard to analyze since the

number of adaptive decisions made is large. Instead, we have ana-
lyzed a natural variant of Greedy (called GreedyVariant) that makes
use of the bound in Section 4.3 more directly and hence is easier to
analyze. GreedyVariant evaluates chunks of filters non-adaptively
before making the next adaptive decision (in contrast to Greedy
that evaluates one filter before making the next adaptive decision).
GreedyVariant is given in Appendix A (Figure 6). We have ob-
tained the following performance bound for GreedyVariant (the
proof is provided in the extended technical report [18]).

THEOREM 4.5. Algorithm GreedyVariant (Figure 6) has an ap-
proximation ratio of O(log2 m log n).

Note that although the above theorem assumes independent fil-
ters, we have performed experiments [18] for both independent and
correlated filters. In our experiments, GreedyVariant always per-
forms worse than Greedy (although only slightly so), which gives
strong evidence that Greedy itself has similar theoretical guaran-
tees. In practice, Greedy performs very well and produces the op-
timal solution on most instances. We now consider the execution
overhead of Greedy at each invocation.

THEOREM 4.6. The per-tuple execution overhead of algorithm
Greedy is O(λ log n) for independent filters and (λ + n2t) log n)
for correlated filters, where t is the time for computing a condi-
tional selectivity value. Recall that λ is the total number of (Fi, Qj)
pairs where Fi is present in Qj .

PROOF. We maintain a priority queue of filters sorted by pRank.
Each time a filter is evaluated, consider the queries that this fil-
ter participates in. If these queries are resolved, they are deleted.
The total work involved in deleting resolved queries is O(λ). The
pRanks of all filters that participate in these queries needs to be
updated. For a given query, this operation happens once when the
query is satisfied. Therefore, the total number of times the pRank
of filters is updated is O(λ). Each of these updates involves manip-
ulating the heap, which takes O(log n) time.

If filter selectivities are correlated, each time a filter is evaluated,
the pRanks of all other filters needs to be updated since their con-
ditional selectivity changes. The number of such updates is O(n2).
The total amount of work is now O((λ + n2t) log n). We assume
that computing the new selectivity takes t time; in practice, for
simple types of correlation, this computation can be implemented
in O(1) time using table lookup.

Note that the execution overhead of Greedy is only O(log n)
times worse than the fixed bookkeeping overhead. This however

221

Algorithm Precompute(M,P)
M : number of decision-tree nodes that can be stored
P: Adaptive strategy P
1. candidates ← {root of decision tree corresponding to P}
2. while (number of stored nodes < M)
3. store node Ni ∈ candidates with maximum O[Ni] (from (8))
4. candidates ← candidates − {Ni} ∪ children of Ni

Figure 5: Algorithm for Precomputing an Adaptive strategy

can be significant, especially for cheap filters. We now show how
the execution overhead of Greedy (or any adaptive strategy in gen-
eral) can be reduced by precomputation.

5. REDUCING EXECUTION OVERHEAD
One way to reduce the execution overhead of an adaptive strat-

egy P , given arbitrary amounts of memory, is to precompute and
store the entire decision tree corresponding to P . Deciding the next
filter to be evaluated is then a simple lookup into the stored decision
tree. However, in general the size of the decision tree may be ex-
ponential in the number of filters, making it infeasible to store the
entire decision tree unless the total number of filters |F| is small. In
practice, we may have sufficient memory to precompute and store
only some M nodes of the decision tree, with the rest of the filter
selections occurring dynamically. Our goal is to decide which M
nodes from the decision tree to precompute and store, such that the
expected execution overhead incurred is minimized.

Consider the execution overhead incurred when P is executed
with M stored nodes. Recall from Section 3.2 that the execution
of an adaptive strategy for each data item can be viewed as starting
at the root of the decision tree and traversing down to some leaf
node. For any node Ni, let o[Ni] denote the overhead incurred
in computing node Ni, and let Pr[Ni] be the probability of visiting
node Ni (from (4)). If Ni is stored, its contribution to the execution
overhead is 0 since only a simple lookup is needed whenever Ni is
visited. If Ni is not stored, the expected contribution of Ni to the
overall execution overhead is given by:

O[Ni] = Pr[Ni] · o[Ni] (8)

Clearly, to minimize the expected overhead given space for storing
only M nodes, we must store those nodes that have the M highest
values for O[Ni].

For this paper (in our experiments), we assume o[Ni] = c for
every node Ni where c is some constant. However, our algorithm
only requires that o[Ni] decreases as we go down the decision tree,
i.e., if node Ni is an ancestor of node Nj , then o[Ni] ≥ o[Nj].
This assumption is reasonable because the overhead of deciding
the next filter often depends on the number of unevaluated filters
(as in Greedy) or the number of unresolved queries, both of which
decrease as we go down the decision tree. Note that the probability
of visiting nodes also decreases as we go down the tree (from (4)).

Algorithm Precompute (Figure 5) decides the best M nodes to
be stored without computing the whole decision tree. Since o[Ni]
and Pr[Ni] both decrease as we go down the decision tree, O[Ni]
also decreases on going down the decision tree. Hence any node
in the subtree of node Ni need not be considered for storing unless
Ni has already been stored. Thus, algorithm Precompute starts by
considering only the root for storing, and then every time a node Ni

is chosen for storing, its children are added to the set of nodes being
considered for storing. This process continue until M nodes have

been chosen, and requires only O(M) node computations. This
reasoning yields the following theorem.

THEOREM 5.1. Algorithm Precompute decides the M nodes to
store such that the execution overhead is minimized.

6. CONCLUSIONS
We considered the problem of optimizing a collection of queries

where each query is a conjunction of possibly expensive filters, and
filters may be shared across queries. We explored the space of
shared execution strategies and showed that for multiple queries,
a fixed execution strategy (of the type commonly used for a single
query) may be suboptimal in terms of the expected total cost of fil-
ters evaluated. Instead, the optimal strategy for multiple queries is
adaptive, i.e., the next filter to be evaluated is decided based on the
results of the filters evaluated so far. We proved the hardness of
approximating the optimal adaptive strategy to any factor smaller
than logarithmic in the number of queries. We gave a simple greedy
adaptive execution strategy that approximates the optimal strategy
to within a factor polylogarithmic in the number of queries and
filters. We also gave a simple method to reduce the execution over-
head of any adaptive strategy.

An interesting direction for future work is to consider the same
problem of optimizing multiple queries with shared expensive fil-
ters, but in a distributed rather a centralized setting. In a distributed
setting many more factors need to be taken into account, e.g., the
costs of filters at different nodes, the computational capacities of
nodes, and the communication costs between the nodes, thus lead-
ing to a challenging optimization problem.

Acknowledgements
We are grateful to Serge Plotkin for suggesting the problem, and to
Shivnath Babu, and Arvind Arasu for helpful initial discussions.

7. REFERENCES
[1] A. Arasu and J. Widom. Resource sharing in continuous

sliding-window aggregates. In Proc. of the 2004 Intl. Conf.
on Very Large Data Bases, pages 336–347, 2004.

[2] R. Avnur and J. Hellerstein. Eddies: Continuously adaptive
query processing. In Proc. of the 2000 ACM SIGMOD Intl.
Conf. on Management of Data, pages 261–272, 2000.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In Proc. of the
2002 ACM Symp. on Principles of Database Systems, pages
1–16, 2002.

[4] S. Babu et al. Adaptive ordering of pipelined stream filters.
In Proc. of the 2004 ACM SIGMOD Intl. Conf. on
Management of Data, pages 407–418, 2004.

[5] P. Bizarro, S. Babu, D. DeWitt, and J. Widom. Content-based
routing: Different plans for different data. In Proc. of the
2005 Intl. Conf. on Very Large Data Bases, pages 757–768,
2005.

[6] S. Chaudhuri and K. Shim. Optimization of queries with
user-defined predicates. ACM Trans. on Database Systems,
24(2):177–228, 1999.

[7] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A
scalable continuous query system for internet databases. In
Proc. of the 2000 ACM SIGMOD Intl. Conf. on Management
of Data, pages 379–390, 2000.

[8] N. Dalvi, S. Sanghai, P. Roy, and S. Sudarshan. Pipelining in
multi-query optimization. In Proc. of the 2001 ACM Symp.
on Principles of Database Systems, 2001.

222

[9] B. Dean, M. Goemans, and J. Vondrák. Approximating the
stochastic knapsack problem: The benefit of adaptivity. In
Proc. of the 2004 Annual IEEE Symp. on Foundations of
Computer Science, 2004.

[10] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein,
and W. Hong. Model-driven data acquisition in sensor
networks. In Proc. of the 2004 Intl. Conf. on Very Large Data
Bases, 2004.

[11] O. Etzioni et al. Efficient information gathering on the
internet. In Proc. of the 1996 Annual IEEE Symp. on
Foundations of Computer Science, pages 234–243, 1996.

[12] M. Garey and D. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman &
Co., 1979.

[13] E. Hanson. The Interval Skip List: A data structure for
finding all intervals that overlap a point. In WADS, pages
153–164, 1991.

[14] E. Hanson. Rule condition testing and action execution in
Ariel. In Proc. of the 1992 ACM SIGMOD Intl. Conf. on
Management of Data, pages 49–58, 1992.

[15] J. Hellerstein and M. Stonebraker. Predicate migration:
Optimizing queries with expensive predicates. In Proc. of the
1993 ACM SIGMOD Intl. Conf. on Management of Data,
pages 267–276, 1993.

[16] S. Madden, M. Shah, J. Hellerstein, and V. Raman.
Continuously adaptive continuous queries over streams. In
Proc. of the 2002 ACM SIGMOD Intl. Conf. on Management
of Data, pages 49–60, 2002.

[17] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

[18] K. Munagala, U. Srivastava, and J. Widom. Optimization of
continuous queries with shared expensive filters. Technical
report, Stanford University, 2005. Available at
http://dbpubs.stanford.edu/pub/2005-36.

[19] Open source computer vision library.
http://sourceforge.net/projects/ opencvlibrary.

[20] M. Skutella and M. Uetz. Scheduling precedence-constrained
jobs with stochastic processing times on parallel machines.
In Proc. of the 2001 Annual ACM-SIAM Symp. on Discrete
Algorithms, pages 589–590, 2001.

[21] R. Strom et al. Gryphon: An information flow based
approach to message brokering. In Intl. Symp. on Software
Reliability Engineering, 1998.

[22] V. Vazirani. Approximation Algorithms. Springer, 2001.
[23] T. Yan and H. Garcia-Molina. The SIFT information

dissemination system. ACM Trans. on Database Systems,
24(4):529–565, 1999.

APPENDIX
A. GREEDY ALGORITHM VARIANT

In this section, we analyze a variant of Greedy (recall Section 4.4)
known as GreedyVariant shown in Figure 6 (written assuming it
will be invoked repeatedly by Line 5 of Algorithm ExecuteStrategy
in Figure 1). We refer to each invocation of GreedyVariant as a
phase. GreedyVariant differs from Greedy in that in every phase, it
returns a set of filters to be evaluated (Line 11) rather than a single
filter at a time as returned by Greedy.

Recall the definition of ri from (6), the probability that query
Qi resolves to false. At any general stage of execution when some
filters have already been evaluated, the current value of this proba-

Algorithm GreedyVariant(δ1, δ3)
1. Q̄ ← set of unresolved queries
2. Qf ← {Qi ∈ Q̄ | ri ≥ δ3}, Qt ← Q̄−Qf

3. Fl ← {F | F ∈ Q ∈ Qt and F unevaluated}, Fh ← φ
4. for each Qi ∈ Qf , r̄i ← ri

5. while (Qf not empty)
6. pRank(Fj) ← cj∑

i | Fj∈Qi∈Qf
min(r̄i,1−sj)

7. Fh ← Fh ∪ {unevaluated filter Fj∗ /∈ Fh with min pRank}
8. for each Qi ∈ Qf

9. if Fj∗ ∈ Qi then r̄i ← r̄i − (1 − sj∗)
10. if Qi is δ1-satisfied by Fh then Qf ← Qf − {Qi}
11. pick all filters in Fl ∪ Fh to be evaluated

Figure 6: Analyzed variant of Greedy

bility is given by:

ri = 1 −
∏

j | Fj∈Qi ∧ Fj unevaluated

sj (9)

We also define the following:

DEFINITION A.1 (α-SATISFACTION). A set F ′ of filters α-
satisfies a query Q if

∑
j | Fj∈Q∩F′(1 − sj) ≥ α.

DEFINITION A.2 (α-COVER). An α-cover of a collection of
queries Q′ is any set F ′ of filters such that F ′ α-satisfies Q for
every query Q ∈ Q′. The cost of the cover is

∑
j | Fj∈F′ cj .

Fix three constants 0 < δ1 < δ2 < δ3 < 1 such that δ3 − δ2 ≥
0.1 and δ2 − δ1 ≥ 0.1. For concreteness, take them to be 0.25,
0.35 and 0.5 respectively. δ2 is used only in the analysis and not in
the algorithm. First, we partition the set of unresolved queries Q̄
into the set of queries Qf that probably resolve to false (indicated
by a high value of ri ≥ δ3), and the remaining set of queries Qt

that probably resolve to true (Line 2). Most of the unevaluated
filters in the queries in Qt will need to be evaluated any way, so we
pick all these filters to be evaluated (Line 3). Lines 6-7 are similar
to greedily choosing the filter with the minimum pRank in Greedy
(recall Figure 4), i.e., the filter that has the minimum ratio of cost
to expected number of queries resolved. However, to calculate the
expected number of queries resolved by filter Fj , we cannot simply
say, as we did in Greedy, that filter Fj resolves every unresolved
query it is part of with probability 1 − sj : We are choosing a set
of filters to evaluate rather than a single filter, and the probability
that a query is unresolved may have been substantially reduced due
to filters already chosen in the current phase. Thus, we maintain
a current estimate r̄i of the probability that Qi is unresolved and
will eventually resolve to false. This estimate is updated whenever
a filter is added to the set of filters chosen to be evaluated. Then,
if Fj ∈ Qi, Fj resolves Qi only with probability min(r̄i, 1 − sj)
rather than with probability 1 − sj . Clearly, r̄i is initially ri (Line
4) and reduces by 1−sj∗ when Fj∗ ∈ Qi is chosen to be evaluated
(Line 9). We continue choosing filters with the minimum pRank in
this way until the probability that Qi is unresolved has decreased
sufficiently for every query Qi ∈ Qf (Line 10).

A.1 Analysis
Let OPT denote the expected total cost of filters evaluated by

the optimal adaptive strategy. Intuitively, the proof rests on proving
the following two main points:

1. In every phase, the cost of filters chosen to be evaluated is at
most O(log2 m) times OPT.

223

2. After every phase, the number of unresolved queries decreases
by at least a constant factor, thus the number of phases is log-
arithmically bounded.

Combining the above two, we shall show that GreedyVariant is a
O(log2 m log n) approximation. Let a partial decision tree be a
decision tree where the leaf nodes may have unresolved queries.

LEMMA A.3. Let T be any partial decision tree. The optimal
expected cost of extending T to a complete decision tree (where all
queries are resolved at any leaf node) is ≤ OPT.

PROOF SKETCH. This lemma follows from the intuitive fact that
even if some filters have been evaluated and some queries resolved
(as given by the partial decision tree T), we can still follow the
optimal strategy to resolve all the queries, skipping the evaluation
of filters that had already been evaluated in T and reusing the re-
sults of evaluation from T . Clearly, the cost of doing so cannot be
greater than the original optimal cost OPT, since the evaluation of
some filters is skipped.

LEMMA A.4. The cost of the filters in Fl is at most 1
1−δ3

OPT.

PROOF. Any query Q in Qt resolves to true with probability
at least 1 − δ3. Thus the optimal strategy evaluates all filters in
the queries in Qt with probability at least 1 − δ3. Thus, OPT ≥
(1 − δ3)

∑
j | Fj∈Q∈Qt

cj = (1 − δ3)
∑

j | Fj∈Fl
cj .

LEMMA A.5. There exists a δ2-cover for Qf with cost is at
most OPT · O(log m).

PROOF. Consider the fractional ej obtained by solving the lin-
ear program in (7). As shown in Section 4.3, the optimal value
of this linear program is a lower bound on OPT. We first set
e′j ← min(1, 30ej log m). Clearly, the cost of the resulting so-
lution

∑n
j=1 cje

′
j ≤ 30 log m · OPT. Let FA be the set of filters

Fj for which e′j = 1, and FB be the set of remaining filters, i.e.,
FB = F − FA.

If for some query Qi ∈ Qf ,
∑

j | Fj∈FA∩Qi
(1 − sj) ≥ δ2,

then Qi is already δ2-satisfied by FA alone. Now consider the
remaining queries Qi ∈ Qf . For these queries, we have:

∑

j | Fj∈FA∩Qi

(1 − sj) < δ2 (10)

By the first constraint in the linear program in (7), and because
ri ≥ δ3, and for all j, ej ≤ 1, we have:

∑

j | Fj∈FA∩Qi

(1 − sj) +
∑

j | Fj∈FB∩Qi

(1 − sj)ej ≥ δ3

Combining the above with (10), and because δ3 − δ2 ≥ 0.1, we
get

∑
j | Fj∈FB∩Qi

(1 − sj)ej ≥ 0.1. Finally, since for filters
Fj ∈ FB e′j = 30ej log m, we get:

∑

j | Fj∈FB∩Qi

(1 − sj)e
′
j > 3 log m (11)

For filters in FB , we perform randomized rounding [22] of e′j ,
setting e′j to 1 with probability equal to e′j and to 0 otherwise.
The expected cost of the resulting solution

∑n
j=1 cje

′
j remains the

same, i.e., ≤ 30 log m · OPT. By Chernoff bound [17] and using
(11), for any Qi ∈ Qf that was not already δ2-satisfied by FA, the
probability that after rounding

∑
j | Fj∈FB∩Qi

(1 − sj)e
′
j < 1 is

O(1/m2). Let FC = FA ∪ {Fj ∈ FB | e′j was rounded to 1}.
Thus all queries in Qf are δ2-satisfied by FC with probability at
least 1 − 1/m. Since the cost of FC is at most OPT · O(log m),
it is the required δ2-cover.

LEMMA A.6. At the end of the first phase, the cost of the filters
in Fh is at most O(log m) times the cost of the optimal δ2-cover.

PROOF. Let C be the cost of the optimal δ2-cover. The sum
U =

∑
Qi∈Qf

r̄i is at most m initially. By the same argument as
the proof for greedy set cover [22], it can be shown that the greedy
step in Line 6 (Figure 6) ensures that every time filters of cost at
most C are added to Fh, U reduces by at least a factor half. When
U falls below δ3 − δ1, the loop in lines 5-10 terminates since Fh is
now a δ1-cover for the queries in Qf . This is because U ≤ δ3 − δ1
implies that for each query Qi ∈ Qf , r̄i ≤ δ3 − δ1, i.e., r̄i has
decreased by at least δ1 from its initial value, thereby implying that
Fh δ1-satisfies Qi. Thus, U needs to be reduced by a factor half at
most log(m

δ3−δ1
) times. Since each reduction adds filters of cost at

most C to Fh, the cost of Fh at the end is at most O(C log m).

LEMMA A.7. The cost of filters evaluated in the first phase is
at most OPT · O(log2 m).

PROOF. From Lemmas A.5 and A.6, the cost of filters in Fh is
at most OPT · O(log2 m). Combining with Lemma A.4, we get
the result.

LEMMA A.8. The expected number of unresolved queries at
the end of the first phase is at most e−δ1Q.

PROOF. All the queries in Qt are definitely resolved after the
first phase since all their unevaluated filters (Fl) are chosen to be
evaluated. Now consider the queries in Qf . Since Fh is a δ1-cover
for Qf , for every query Qi ∈ Qf , we have

∑
j | Fj∈Qi∩Fh

(1 −
sj) ≥ δ1. Thus the probability that Qi is left unresolved af-
ter evaluating all filters in Fh is at most

∏
j | Fj∈Qi∩Fh

sj ≤

e
−

∑
j | Fj∈Qi∩Fh

(1−sj) ≤ e−δ1 . Thus the number of unresolved
queries at the end of the first phase is at most e−δ1Q.

THEOREM A.9. GreedyVariant is a O(log2 m log n) approxi-
mation to the optimal adaptive solution.

PROOF. By Lemma A.8, the expected number of unresolved
queries reduces by at least a constant factor. Since this reduction is
independent of the queries unresolved at the beginning, Lemma A.8
can be applied to any phase. Suppose cmax and cmin are the max-
imum and minimum filter costs. After log(ncmax/cmin) phases,
the expected number of unresolved queries is at most O(cmin

ncmax
).

Then, even if we apply all filters non-adaptively, we could apply at
most n filters of cost at most cmax. The expected cost of this ap-
plication is therefore at most O(cmin), which can be ignored since
OPT is also at least cmin.

By Lemma A.3, the expected cost of the optimal solution given a
partial decision tree is at most OPT. Combining with Lemma A.7,
we obtain that for every phase, the expected cost is at most O(OPT·
log2 m). Therefore, GreedyVariant is a O(log2 m · log ncmax

cmin
) ap-

proximation to OPT. If cmax/cmin is polynomially bounded in n,
the approximation ratio is O(log2 m log n).

To get an approximation ratio independent of the costs of the fil-
ters in the general case, we group the filters based on cost into pow-
ers of n3 (assuming by scaling that cmin = 1). There are at most n
groups, since there are n filters. We then separately bound the con-
tribution of each cost group to the cost of GreedyVariant, thereby
obtaining a final approximation ratio of O(log2 m log n).

224

