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Abstract

Computer Numerical Control (CNC) face milling is commonly used tomanufacture products from high-strength grade-H steel in

both the automotive and the construction industry. The various milling operations for these components have key performance

indicators: accuracy, surface roughness (Ra), and machining time for removal of a unit volume min/cm3 (Tm). The specified

surface roughness values for machining each component is achieved based on the prototype specifications. However, poor

adherence to specifications can result in the rejection of the machined parts, implying extra production costs and raw material

wastage. An algorithm using an artificial neural network (ANN) with the Edgeworth-Pareto method is presented in this paper to

optimize the cutting parameter in CNC face-milling operations. The set of parameters are adjusted to improve surface roughness

and minimal unit-volume material removal rates, thereby reducing production costs and improving accuracy. An ANN algorithm

is designed in Matlab, based on a 3–10-1 Multi-Layer Perceptron (MLP), which predicts the Ra of the workpiece surface to an

accuracy of ± 5.78% within the range of the experimental angular spindle speed, feed rate, and cutting depth. An unprecedented

Pareto frontier for Ra and Tm was obtained for the finished grade-H steel workpiece using an ANN algorithm that was then used

to determine optimized cutting conditions. Depending on the production objective, one or the other of two sets of optimum

machining conditions can be used: the first one sets a minimum cutting power, while the other sets a maximum Tm with a slight

increase (under 5%) in milling costs.

Keywords Artificial neural network (ANN) . CNC . Optimization of cutting parameters . Face milling . Surface roughness .

High-strength grade-H steel . Datamining

1 Introduction

Nowadays, face milling is widely used in many industries

such as machine and machine tool building, the automobile

industry, etc. [1]. One of the major control parameters in face

milling is surface roughness [2–7]. Grade-H steel materials

have various uses and many industrial applications, such as

cold-formed components in the automobile industry, among
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others, on account of their high tensile strength. It is specifi-

cally used in safety-related vehicle components, because its

high strength means cost-efficient weight reduction of prod-

ucts, without affecting the integrity of the designed compo-

nents. Increased rigidity of mechanical components can be

achieved by using high-strength grade-H steel with no need

for further reinforcements. Seat chassis, bumper reinforce-

ment, and door impact beams are typical examples of its use

in the automobile industry. Industrial and construction appli-

cations of high-strength grade-H steel include tubes for struc-

tural applications and hydraulic cylinders and heat- and wear-

resistant sheet plates [8]. Some examples of precision face

milling of high-pressure products from grade-H steel are

breech rings and breech blocks for the manufacturing of basic

parts of heavy cannons. The limited resources of the modern

world mean that maximum efficiency in their use is an over-

arching objective. The development of resource-saving tech-

nologies including those for face milling is therefore becom-

ing crucial. Optimal employment of resources is an important

task whenmachining costly essential components from grade-

H steel, as well as surface quality. The minimum machining

time per unit volume and the minimum surface roughness, Ra,

are both simultaneously essential. With the fast advance in

technological and computational fields, analyzing large bod-

ies of data using AI becomes increasingly relevant.

Research work studying regression models and changes of

surface roughness in face milling has been reported in the

literature [9–14]. Bruni et al. [9] studied the effect of

lubrication-cooling condition and various cutting speeds on

surface roughness in the face milling of AISI 420 B. Lela

et al. [10] investigated the changes in surface roughness in

face milling, corresponding to the changes in cutting speed,

feed rate, and depth of cut of St 52-3 steel. They applied three

different modeling methodologies to experimental data:

Bayesian neural network, regression analysis, and support

vector machines. Kovac et al. [11] performed the same study

as Lela et al. on AISI 1060 steel. The paper demonstrated the

advantage of empirical models using the fuzzy logic modeling

technique over traditional regression analysis. Simunovic

et al. [12] presented research on machined surface roughness

in the face milling of aluminum alloys at various machining

parameters. Pimenov [13] presented a geometric model of

micro-roughness height in face milling on a machined flat

surface, taking into consideration the wear of the cutting tool.

Werda et al. [14] performed a similar study on X100CrMoV5

to investigate tool life and surface roughness under different

cutting conditions: dry machining; minimum quantity lubrica-

tion, through inner channels oriented towards the insert rake

face; and minimum quality lubrication through inner channels

oriented towards the insert flank face.

Other research work studied roughness prediction models

for face-milling applications [15–24]. Baek et al. [15] devel-

oped a newly developed model for surface roughness

prediction in the face milling of AISI 1045 steel, taking into

account both static and dynamic components of the cutting

process. Benardos and Vosniakos [16] presented a neural net-

work modeling approach for predicting surface roughness

(Ra) in the CNC face milling of a series 2 aluminum alloy.

Yazdi and Chavoshi [17] studied the influence of cutting pa-

rameters and machining force on material removal rate and

surface roughness on AL6061 in CNC face-milling opera-

tions. The study used two different modeling techniques and

showed that the MLP neural network was more powerful than

regression analysis, and they simultaneously performed the

estimation of Ra and MRR. Rosales et al. [18] offered a meth-

od for estimating surface roughness depending on spindle

speed, feed, cutting depth, tool geometry, and run-out, starting

from the register of cutting forces in the process. Bajić et al.
[19] investigated the effect of various cutting conditions on

surface roughness, tool wear, and cutting forces in facemilling

for the implementation of off-line process control. Two

modelingmethodologies, namely regression analysis and neu-

ral networks, were used in the study. Chavoshi [20] suggested

a model for predicting surface roughness depending on vari-

ous cutting speeds, feed rates, and cutting depth options in the

CNC face milling of Stellite 6 alloy and various soft-

computing techniques including multi-layer perceptron

(MLP), generalized feed forward (GFF), modular neural net-

work (MNN), and a co-active neuro-fuzzy inference system

(CANFIS). Saric et al. [21] modeled surface roughness in the

face milling of structural steel S235JRG2. Samtas [22]

established surface roughness values in relation to cutting pa-

rameters in the face milling of an AISI 1040 steel and alumi-

num alloy 5083 using optical tools. A program was developed

from the study to predict optical surface roughness values

using a MATLAB m-file and GUI programming. Sheth and

George [23] proposed a model for predicting surface rough-

ness and flatness at different spindle speeds, feed rates, and

cutting depths in the face milling of grade B Wrought Cast

Steel (WCB). Simunovic et al. [24] offered an analysis on

surface roughness in the face milling of Al6060 aluminum

alloy based on digital imaging technology of the surfaces that

were machined with various spindle speeds, feeds, and cutting

depths. Other studies [15–24] proposed models for predicting

surface roughness, with no successful optimizations of cutting

conditions for better surface roughness.

The following studies may be found on the optimal sur-

face roughness parameters in turning operations [25–30].

Bajić et al. [25] studied the influence of various cutting

parameters on surface roughness in the face milling of St

52-3 carbon steel. The surface roughness prediction

models were obtained using two different modeling ap-

proaches: regression analysis and neural networks. The

optimal cutting parameters were established using the sim-

plex optimization algorithm. Aykut et al. [26] proposed a

hybrid NN with genetic algorithm (GONNS) for the
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optimization of cutting conditions in the face milling of

workpieces from Stellite 6 with 44 Rockwell C hardness,

based on experimental data with minimal operator involve-

ment. End surface roughness and cutting force were mea-

sured for different cutting speeds, feed rates, and cutting

depths without using coolant. Sukumar et al. [27] used the

Taguchi method to identify the optimal combination of

influential factors in the milling of an AL 6061 alloy. The

input parameters taken into account included speed, feed

rate, and depth of cut, and the output parameter was surface

roughness. Simunovic et al. [28] investigated the influence

of optimal machining parameters on the surface roughness

of face-milled structural steel. Moghaddam [29] conducted

an experimental and numerical study of the face milling of

AISI1045 workpieces. He studied the influence of cutting

speed, feed rate, and cutting depths on surface quality. In

the last section of his research, a mathematical model was

developed for surface roughness prediction using particle

swarm optimization (PSO) on the basis of experimental

results. Rodríguez et al. [30] used artificial intelligence to

optimize choosing the right cutting tools in the design of

face-milling operations, where end surface roughness is a

key criterion. However, the solutions presented in studies

[25–30] for establishing the optimum cutting conditions

only took account of final surface quality, ignoring its re-

lation to machining performance and machining time per

unit volume, which is unacceptable when machining such

expensive materials as grade-H steel.

Considering the above, let us now look at the studies

that establish the optimal parameters of face milling using

multi-objective optimization [31–33]. Fratila and Caizar

[31] outlined the Taguchi optimization methodology,

which is applied to optimize the cutting parameters in face

milling when machining AlMg3 with a high-speed steel

(HSS) tool, in order to obtain the best surface roughness

with minimum power consumption. Yang et al. [32] solved

the problem of multi-objective optimization of multi-pass

face-milling parameters using Pareto optimal solutions.

The optimization consists in simultaneously minimizing

production time and cost and maximizing profit rate, con-

ditional upon satisfying the constraints on machine power,

cutting force, machining speed, feed rate, and surface

roughness. Abbas et al. [33] investigated the effect of

changing cutting parameters using a full-factorial tech-

nique; the studied parameters were the speed (n), depth

of cut (ap), and feed (vf), and the measured parameters were

the surface roughness parameters (Ra and Rt). Multi-

objective optimization was used for minimizing Ra and

for maximizing the metal removal rate, Q, and then the

results were presented. There are therefore few papers

discussing multi-objective optimization of face milling that

have stated that the most prominent method to solve this

kind of problems is considered to be the Pareto method.

However, in studies [31–33], no multi-objective optimiza-

tion of grade-H steel machining is featured. This kind of

material is widely used when materials have to be of high

operational strength. Considering the high cost of this ma-

terial, the required surface roughness has to be precisely set

and the unit-volume machining time has to be minimized.

The objective of this paper is therefore to establish the face-

milling conditions of grade H steel that provide for either

minimum cutting power or maximummachining time per unit

volume, Tm, while maintaining the design Ra, and taking into

account the cost of machining based on an ANN model for

predicting surface roughness.

2 Materials and method

2.1 Experimental conditions

Grade-H high-strength steel is used for testing specimens.

Table 1 shows its chemical composition following the

DEFSTAN 10-13/2005 standard. The heat treatment consisted

of heating samples to 870 °C for 4 h followed by oil

quenching. Subsequently, heat was applied in a tempering

process for 1.5 h at 650 °C and was maintained over a 10-h

period, followed by air cooling. Table 2 shows the mechanical

properties.

The machining of the test specimens was performed on

a vertical mill as shown in Fig. 1. The surface area of the

sample had the following dimensions b = 40 mm, l =

100 mm, and h = 60 mm. The width of cut for all the runs

was 40 mm. The cutting tools with carbide inserts were

used in a face mill with a Sandvik R245-063Q22-12M tool

holder and Sandvik carbide-coated inserts R245-12 T3M-

PM4240. The cutter diameter was d = 63 mm with z = 5

edges. This tool is known for providing high-quality sur-

face finishes with efficient material removal rates. It is

commonly used for all types of materials from stainless

steel to titanium alloys. The investigation was divided into

25 groups of five runs. Clusters of five groups were subject

to one common spindle speed n starting from 400 rpm with

a 100 increment till 800 rpm. Depth of cut ap varied (0.50,

0.75, 1.00, 1.25, 1.50 mm). Feed rate, vf, varied (50, 75,

100, 125, 150 mm/min). A TESA Rugosurf 90-G model

was used for surface roughness measurement.

Table 1 Chemical composition for H-steel material according to
DEFSTAN 10-13/2005

C Cr Mn Mo Ni P S Si V

0.30
0.36

0.76
0.94

0.46
0.53

0.47
0.58

2.86
3.10

0.006
0.011

0.002
0.01

0.17
0.32

0.01
0.03
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2.2 Strategy for determining the optimal conditions

ANN milling model based on experimental data [34–36]

was built to achieve our objective of solving the optimi-

zation problem in a multi-objective setting using both

Edgeworth and the Pareto frontiers [31–33, 37–39].

The strategy for determining the optimum conditions was

as follows:

Step 1. Define both the limitations and the boundary condi-

tions to set the optimization criteria. Define the

working domain.

Step 2. Perform an approximation of three variable functions

using Data Mining technique [40–43], based on ex-

perimental data and NN.

Step 3. Identify the Pareto curve: optimal decisions and

estimates.

Step 4. Determine Pareto non-dominated estimates.

Step 5. Establish a set of Pareto points that may contain an

optimum decision.

As shown in the diagram in Fig. 2, the experimental

machining parameter settings were agreed upon between

the researchers and the experts. The experts then went on

to develop the set of optimal decisions, and the decision-

maker selected the most appropriate one. The symbols in

use were the same ones used in [44]: DM—decision;

FZ—valid estimates; f = (f1, f2, …, fm)—objective

function; Y = f(X)—the set of estimates; Ndom X—set of

non-dominated estimates; Ndom Y—set of non-dominated

estimates; Pf (X)—the set of Pareto optimal frontiers; P

(set of Pareto optimal vectors-Pareto optimal estimates).

3 Results and discussion

The first three steps followed in the research are described

below.

3.1 Optimization problem statement (the first step
of the strategy)

Based on the objective, the optimization criteria in the

milling of the cubic workpiece were established as f1
surface roughness (Ra, μm) and f2 machining time per

unit volume (Tm, min/cm3), i.e., m = 2. Consequently, a

set of possible Y estimates in the two-dimensional space,

R2, formed the vectors f = (f1, f2). A search was then

performed for a set of estimates that would have the

minimum f vector lengths. The criteria were normalized

and placed in a dimensionless form.

Table 3, 4, 5, 6, and 7 shows the results of experiments and

also includes the parameters and limitations to the optimiza-

tion problem: х1 = [400 ÷ 800]—spindle speed, n, rpm;

х2 = [0.5 ÷ 1.5]—depth of cut, ap, mm; х3 = [50 ÷ 150]—feed

rate, vf, mm/min.

Fig. 1 Machined workpiece setup

Table 2 Mechanical properties
for H-steel according to
DEFSTAN 10-13/2005

Mechanical
properties

Ultimate tensile
strength

0.2% Proof
Strength

Elongation
%

Reduction
of area

Charpy
at

( –

400C)

Hardness

Value > 1200 n/mm2 850–1000
n/mm2

≥ 10% > 27% ≥ 24.4 J 32–38
HRC
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Surface roughness (Ra, μm) was measured, and the ma-

chining time was calculated as follows:

Tm ¼ 1000= vc � ap � v f
� �

ð1Þ

The dimensionless surface roughness value, f1 (Ra
*), and

the machining time per unit volume, f2 (Tm
*), were calculated

on the basis of the following formulas:

Table 3 Results of experiment
and optimization parameter
values for variable workpiece
milling at ap = 0.5 mm

Variables Optimization parameters

Results of experiment Dimensionless parameters

x1
spindle
speed,
n,
(rpm)

x2
depth
of cut,
ap,
(mm)

x3 feed
rate,
vf,
(mm/
min)

Surface
roughness,
Ra (μm)

Unit-
volume
machining
time, Tm
(min/cm3)

Dimensionless
surface
roughness, f1
(Ra*), unit

Dimensionless
unit-volume
machining
time, f2 (Tm*),
unit

Unit
vector
length, f,
estimates

400 0.5 50 0.164 1 0.672 1.000 1.204

400 0.5 75 0.175 0.667 0.717 0.667 0.979

400 0.5 100 0.188 0.5 0.770 0.500 0.918

400 0.5 125 0.214 0.4 0.877 0.400 0.964

400 0.5 150 0.218 0.333 0.893 0.333 0.953

500 0.5 50 0.147 1 0.602 1.000 1.167

500 0.5 75 0.155 0.667 0.635 0.667 0.921

500 0.5 100 0.169 0.5 0.693 0.500 0.854

500 0.5 125 0.192 0.4 0.787 0.400 0.882

500 0.5 150 0.196 0.333 0.803 0.333 0.869

600 0.5 50 0.076 1 0.311 1.000 1.047

600 0.5 75 0.085 0.667 0.348 0.667 0.752

600 0.5 100 0.098 0.5 0.402 0.500 0.641

600 0.5 125 0.108 0.4 0.443 0.400 0.596

600 0.5 150 0.115 0.333 0.471 0.333 0.577

700 0.5 50 0.073 1 0.299 1.000 1.043

700 0.5 75 0.08 0.667 0.328 0.667 0.743

700 0.5 100 0.1 0.5 0.410 0.500 0.646

700 0.5 125 0.14 0.4 0.574 0.400 0.699

700 0.5 150 0.122 0.333 0.500 0.333 0.600

800 0.5 50 0.07 1 0.287 1.000 1.040

800 0.5 75 0.076 0.667 0.311 0.667 0.736

800 0.5 100 0.11 0.5 0.451 0.500 0.673

800 0.5 125 0.117 0.4 0.480 0.400 0.624

800 0.5 150 0.135 0.333 0.553 0.333 0.645

Fig. 2 Flow chart for the multi-
objective optimization problem
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Table 4 Results of experiment
and optimization parameter
values for variable workpiece
milling at ap = 0.75 mm

Variables Optimization parameters

Results of experiment Dimensionless parameters

x1
spindle
speed,
n,
(rpm)

x2
depth
of cut,
ap,
(mm)

x3 feed
rate,
vf,
(mm/
min)

Surface
roughness,
Ra (μm)

Unit-
volume
machining
time, Tm
(min/cm3)

Dimensionless
surface
roughness, f1
(Ra*), unit

Dimensionless
unit-volume
machining
time, f2 (Tm*),
unit

Unit
vector
length, f,
estimates

400 0.75 50 0.119 0.667 0.488 0.667 0.826

400 0.75 75 0.187 0.444 0.766 0.444 0.886

400 0.75 100 0.193 0.333 0.791 0.333 0.858

400 0.75 125 0.199 0.267 0.816 0.267 0.858

400 0.75 150 0.202 0.222 0.828 0.222 0.857

500 0.75 50 0.107 0.667 0.439 0.667 0.798

500 0.75 75 0.168 0.444 0.689 0.444 0.819

500 0.75 100 0.173 0.333 0.709 0.333 0.783

500 0.75 125 0.179 0.267 0.734 0.267 0.781

500 0.75 150 0.188 0.222 0.770 0.222 0.802

600 0.75 50 0.063 0.667 0.258 0.667 0.715

600 0.75 75 0.075 0.444 0.307 0.444 0.540

600 0.75 100 0.097 0.333 0.398 0.333 0.519

600 0.75 125 0.105 0.267 0.430 0.267 0.506

600 0.75 150 0.124 0.222 0.508 0.222 0.555

700 0.75 50 0.085 0.667 0.348 0.667 0.752

700 0.75 75 0.098 0.444 0.402 0.444 0.599

700 0.75 100 0.121 0.333 0.496 0.333 0.597

700 0.75 125 0.134 0.267 0.549 0.267 0.611

700 0.75 150 0.147 0.222 0.602 0.222 0.642

800 0.75 50 0.114 0.667 0.467 0.667 0.814

800 0.75 75 0.12 0.444 0.492 0.444 0.663

800 0.75 100 0.132 0.333 0.541 0.333 0.635

800 0.75 125 0.166 0.267 0.680 0.267 0.731

800 0.75 150 0.172 0.222 0.705 0.222 0.739

Table 5 Results of experiment
and optimization parameter
values for variable workpiece
milling at ap = 1.0 mm

Variables Optimization parameters

Results of experiment Dimensionless parameters

x1
spindle
speed,
n,
(rpm)

x2
depth
of cut,
ap,
(mm)

x3 feed
rate,
vf,
(mm/
min)

Surface
roughness,
Ra (μm)

Unit-
volume
machining
time, Tm
(min/cm3)

Dimensionless
surface
roughness, f1
(Ra*), unit

Dimensionless
unit-volume
machining
time, f2 (Tm*),
unit

Unit
vector
length, f,
estimates

400 1 50 0.103 0.5 0.422 0.500 0.654

400 1 75 0.14 0.333 0.574 0.333 0.663

400 1 100 0.155 0.25 0.635 0.250 0.683

400 1 125 0.168 0.2 0.689 0.200 0.717

400 1 150 0.172 0.167 0.705 0.167 0.724

500 1 50 0.092 0.5 0.377 0.500 0.626

500 1 75 0.126 0.333 0.516 0.333 0.614

500 1 100 0.139 0.25 0.570 0.250 0.622

500 1 125 0.151 0.2 0.619 0.200 0.650

500 1 150 0.158 0.167 0.648 0.167 0.669

600 1 50 0.075 0.5 0.307 0.500 0.587

600 1 75 0.082 0.333 0.336 0.333 0.473

600 1 100 0.115 0.25 0.471 0.250 0.534

600 1 125 0.123 0.2 0.504 0.200 0.542

600 1 150 0.148 0.167 0.607 0.167 0.629

700 1 50 0.116 0.5 0.475 0.500 0.690

700 1 75 0.122 0.333 0.500 0.333 0.601

700 1 100 0.145 0.25 0.594 0.250 0.645

700 1 125 0.158 0.2 0.648 0.200 0.678

700 1 150 0.184 0.167 0.754 0.167 0.772

800 1 50 0.129 0.5 0.529 0.500 0.728

800 1 75 0.14 0.333 0.574 0.333 0.663

800 1 100 0.181 0.25 0.742 0.250 0.783

800 1 125 0.196 0.2 0.803 0.200 0.828

800 1 150 0.22 0.167 0.902 0.167 0.917
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Ra* ¼ Rai=Ramax ð2Þ

Tm
* ¼ Tmi=Tm max; ð3Þ

where, Ra i—surface roughness for current n , ap ;

Ramax—maximal value of surface roughness, Ra, in the exper-

iment; Tmi—machining time per unit volume for current n, ap,

and vf, parameter combinations; Tm max—maximal value of

machining time per unit volume.

Tables 3, 4, 5, 6, and 7 reflect the pattern of the optimiza-

tion criteria changes depending on the machining conditions.

These values are also going to be used as a training set for the

neural network.

The SKIF Aurora-SUSU supercomputer cluster was

used to approximate the surface roughness function,

Ra* = f(x1, x2, x3).

3.2 Creating an ANN-based surface roughness
prediction model (the second step of the strategy)

A licensed version of Matlab R2010b served as a tool for

building the neural network employed in this paper. The

Levenberg–Marquardt algorithm was employed to train

the NN. Two layers were used to structure the NN: a

layer of sigmoid neurons and a linear layer of output

neurons. A normalization process was used for all

values. It ensured that all inputs complied with the

{0,1} domain to enhance the NN training process. The

overfitting was dealt with by enhancing the generaliza-

tion process of the network. A training set was used to

update the weighted values of the neurons and a valida-

tion set for stopping the training in case of errors. The

least mean squared error was used to establish the num-

ber of neurons in the hidden layer.

Table 6 Results of experiment
and optimization parameter
values for variable workpiece
milling at ap = 1.25 mm

Variables Optimization parameters

Results of experiment Dimensionless parameters

x1
spindle
speed,
n,
(rpm)

x2
depth
of cut,
ap,
(mm)

x3 feed
rate,
vf,
(mm/
min)

Surface
roughness,
Ra (μm)

Unit-
volume
machining
time, Tm
(min/cm3)

Dimensionless
surface
roughness, f1
(Ra*), unit

Dimensionless
unit-volume
machining
time, f2 (Tm*),
unit

Unit
vector
length, f,
estimates

400 1.25 50 0.144 0.4 0.590 0.400 0.713

400 1.25 75 0.157 0.267 0.643 0.267 0.697

400 1.25 100 0.164 0.2 0.672 0.200 0.701

400 1.25 125 0.185 0.16 0.758 0.160 0.775

400 1.25 150 0.198 0.133 0.811 0.133 0.822

500 1.25 50 0.129 0.4 0.529 0.400 0.663

500 1.25 75 0.141 0.267 0.578 0.267 0.637

500 1.25 100 0.147 0.2 0.602 0.200 0.635

500 1.25 125 0.166 0.16 0.680 0.160 0.699

500 1.25 150 0.178 0.133 0.730 0.133 0.742

600 1.25 50 0.126 0.4 0.516 0.400 0.653

600 1.25 75 0.132 0.267 0.541 0.267 0.603

600 1.25 100 0.137 0.2 0.561 0.200 0.596

600 1.25 125 0.14 0.16 0.574 0.160 0.596

600 1.25 150 0.145 0.133 0.594 0.133 0.609

700 1.25 50 0.129 0.4 0.529 0.400 0.663

700 1.25 75 0.139 0.267 0.570 0.267 0.629

700 1.25 100 0.157 0.2 0.643 0.200 0.674

700 1.25 125 0.179 0.16 0.734 0.160 0.751

700 1.25 150 0.187 0.133 0.766 0.133 0.778

800 1.25 50 0.134 0.4 0.549 0.400 0.679

800 1.25 75 0.145 0.267 0.594 0.267 0.651

800 1.25 100 0.188 0.2 0.770 0.200 0.796

800 1.25 125 0.203 0.16 0.832 0.160 0.847

800 1.25 150 0.228 0.133 0.934 0.133 0.944
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First of all, the multi-layer perceptrons were trained with

9–11 neurons in the hidden layer, with 15% of the records

used to validate the model. The lowest error values are

presented in Fig. 3.

An analysis of the graphical functions in Fig. 3a–c led

to the conclusion that the lowest error of 0.23% in the

validation set was provided by MLP 3-10-1. The determi-

nation coefficient of the model was 0.942, which reflects

Table 7 Results of experiment
and optimization parameter
values for variable workpiece
milling at ap = 1.5 mm

Variables Optimization parameters

Results of experiment Dimensionless parameters

x1
spindle
speed,
n,
(rpm)

x2
depth
of cut,
ap,
(mm)

x3 feed
rate,
vf,
(mm/
min)

Surface
roughness,
Ra (μm)

Unit-
volume
machining
time, Tm
(min/cm3)

Dimensionless
surface
roughness, f1
(Ra*), unit

Dimensionless
unit-volume
machining
time, f2 (Tm*),
unit

Unit
vector
length, f,
estimates

400 1.5 50 0.104 0.333 0.426 0.333 0.541

400 1.5 75 0.192 0.222 0.787 0.222 0.818

400 1.5 100 0.202 0.167 0.828 0.167 0.845

400 1.5 125 0.208 0.133 0.852 0.133 0.863

400 1.5 150 0.215 0.111 0.881 0.111 0.888

500 1.5 50 0.093 0.333 0.381 0.333 0.506

500 1.5 75 0.172 0.222 0.705 0.222 0.739

500 1.5 100 0.181 0.167 0.742 0.167 0.760

500 1.5 125 0.187 0.133 0.766 0.133 0.778

500 1.5 150 0.195 0.111 0.799 0.111 0.807

600 1.5 50 0.088 0.333 0.361 0.333 0.491

600 1.5 75 0.11 0.222 0.451 0.222 0.503

600 1.5 100 0.119 0.167 0.488 0.167 0.516

600 1.5 125 0.123 0.133 0.504 0.133 0.521

600 1.5 150 0.126 0.111 0.516 0.111 0.528

700 1.5 50 0.126 0.333 0.516 0.333 0.614

700 1.5 75 0.141 0.222 0.578 0.222 0.619

700 1.5 100 0.167 0.167 0.684 0.167 0.705

700 1.5 125 0.185 0.133 0.758 0.133 0.770

700 1.5 150 0.196 0.111 0.803 0.111 0.811

800 1.5 50 0.142 0.333 0.582 0.333 0.671

800 1.5 75 0.155 0.222 0.635 0.222 0.673

800 1.5 100 0.197 0.167 0.807 0.167 0.824

800 1.5 125 0.215 0.133 0.881 0.133 0.891

800 1.5 150 0.244 0.111 1.000 0.111 1.006

Fig. 3 The lowest mean squared error for the validation set in the… configuration (calculated in Matlab). aMLP 3-9-1. bMLP 3-10-1. cMLP 3-11-1
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its highly accurate predictions of surface roughness (±

5.78%).

A similar performance appeared to be the best at gen-

eralization performance in the cases of allocating 10 and

20% in the validation set of tabular data (see Fig. 4). The

errors of both the first and the second training variants

were 0.41% (see Fig. 4b) and 0.61% (see Fig. 4c),

respectively.

The following tendency was revealed when using an MLP

3-10-1. Increases of 0.1 items in both n and vf increased the

Ra* values by 0.3028 (0.073 μm) and 0.291 items

(0.071 μm), respectively. An inverse effect of ар on surface

roughness was observed: an increase of 0.1 items in ар led to a

decrease in Ra* of 0.009 (0.002 μm). The weight ratio of the

effects of technological parameters on Ra* was ар: n: vf =

1:25:25.

3.3 3.3. Determining the Pareto curves (the third step
of the strategy).

Ra* values, calculated for the experimental values x1, x2, x3
(see Tables 3, 4, 5, 6, and 7) using the neural network, are used

to show the Pareto frontiers in Fig. 5.

Fig. 4 The lowest mean squared
error in generalizing the
experimental data in MLP 3-10-1
(a) with various validation sets: b
10% and c 20% (calculated in
Matlab)

Fig. 5 Pareto frontiers for
machining time of unit volume
Tm

* with surface roughness, Ra*,
at a fixed ap, and n, with varying
feed rates vf (at higher feed rates,
Ra* increases, and Tm

* decreases)
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InterceptsАВ, BC, andDE are plotted at the end points of the

curves closest to the reference points Ra* and Tm
* (Fig. 6).

Intercept AB corresponds to n= 600 rpm, vf= 50 mm/min, a-

p= 0.5…0.75mm. Intercept BC corresponds to n= 600 rpm, vf=

50 mm/min, ap= 0.75…1.0 mm. Intercept DЕ corresponds to

n= 600 rpm, vf= 50 mm/min, ap = 1.25…1.5 mm. The coordi-

nates of the intercept ends areА (1.000; 0.293),В (0.280; 0.666),

C (0.262; 0.500), D (0.340; 0.400), E (0.361; 0.325). Following

the trend of the target function f, 11 points on the Pareto frontwere

established with the following new numbers of the points: А→

number 1,В→ number 2, C→ number 3, G→ number 4, H→

number 5, E→ number 6, I→ number 7, J→ number 8, K→

number 9, L→ number 10, F→ number 11 (Fig. 7).

Ten sections were established from the Pareto frontier analy-

sis. Section I, between point 1 and point 2, relates to ap = 0.5…

0.75 mm, vf = 50 mm/min, and n = 600 rpm; section II between

point 2 and point 3, relates to ap = 0.75…1.0 mm, vf= 50 mm/

min, and n = 600 rpm; section III, between point 3 and point 4,

relates to ap= 1.0…1.12 mm, n = 600 rpm, and vf= 50 mm/min;

section IV, between point 4 and point 5, relates to ap= 1.12…

1.25 mm, n= 600 rpm, and vf= 50 mm/min; section V, between

point 5 and point 6, relates to ap = 1.25…1.5 mm, vf= 50 mm/

min, and n = 600 rpm; section VI, between point 6 and point 7,

relates to ap= 1.5 mm, n = 600 rpm, and vf= 50…100 mm/min;

section VII, between point 7 and point 8, relates to ap = 1.5…

0.75 mm, n = 600 rpm, vf= 100 mm/min; section VIII, between

point 8 and point 9, relates to ap= 0.75…1.25 mm, n= 600 rpm

and vf = 100…200 mm/min; section IX, between point 9 and

point 10, relates to ap = 1.25…1.0 mm, n = 600 rpm, and vf =
120…150 mm/min; section X, between point 10 and point 11,

relates to ap= 1.0…1.5 mm, n= 600 rpm, and vf= 150 mm/min.

Point 10, at a special point on the Pareto frontier, was at an

intersection of three curves for ap = 1.0 mm, n = 600 rpm, and

vf= 150 mm/min; ap = 1.25 mm, n= 600 rpm, and vf= 150 mm/

min; ap = 1.5 mm, n = 600 rpm, and vf= 150 mm/min.

3.4 3.4. Determining the Pareto frontier (the fourth
step of the strategy).

Expert assessments were employed, so as to narrow the set of

Pareto points, in order to determine the higher weighing factor

of the machining time criteria, Tm
*, over the surface rough-

ness, Ra*. As we can see in Fig. 8a, blue line indicates the

Pareto non-dominated estimates. The end point of this vector

with the coordinates (0.358; 0.358). As seen in the figure,

point no. 12 can be considered as the non-dominated Pareto

point for an unconstrained optimization with equivalent

criteria f1 and f2. The global optima in this case corresponds

to the following values: Tm = 0.358 min/cm3, Ra = 0.087 μm,

n = 600 rpm, ap = 0.75 mm, and vf = 82 mm/min.

3.5 Determining the optimal cutting parameters (the
fifth step of the strategy)

In the final step of the algorithm, information gained in the DM

was used to set the maximum degradation in the surface rough-

ness value. It was equal to Ra = 0.142 μm corresponding to the

11th point of the Pareto frontier (0.582, 0.111)—Fig. 8b. In this

Fig. 6 Intercepts demonstrating the relation of Ra* and Tm*: АВ
corresponds to n = 600 rpm, vf = 50 mm/min, ap = 0.5…0.75 mm; BC
corresponds to n = 600 rpm, vf = 50 mm/min, ap = 0.75…1.0 mm; DЕ
corresponds to n = 600 rpm, vf = 50 mm/min, ap = 1.25…1.5 mm. Point
coordinates: А (1.000; 0.293), В (0.280; 0.666), C (0.262; 0.500), D
(0.340; 0.400), E (0.361; 0.325)

Fig. 7 The intersection coordinates of the plotted intercepts, the Ra* and
Tm

* curves closest to the reference points, and the coordinates of their
intersections with each other. It includes the lowest point of those
functions, crucial for building the Pareto frontier, with the following
values: G (0.283; 0.471), H (0.360; 0.352), I (0.400; 0.310), J (0.450;
0.252), K (0.500; 0.215), L (0.525; 0.197), and F (0.582; 0.111)
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case, the optimization criteria Tm
*was five times smaller thanRa

and for points 12 and 11, the valid preference was y11 ⊱ Y y12
and the induced preference was х11 ⊱ X х12. As a result, the

selected points are presented above, the green vector pointing

to values of (0.142, 0.111), of the optimum cutting parameters

(n = 600 rpm, ap = 1.5 mm, vf = 150 mm/min).

Figure 9a and b show the profile of the machined surface

corresponding to the global optimum condit ions

(Tm = 0.358 min/cm3, Ra = 0.087 μm, n = 600 rpm, ap =

0.75 mm, vf = 82 mm/min), and Fig. 9c, d shows the same

results for the local optimum (Tm = 0.111 min/cm3, Ra =

0.142 μm, n = 600 rpm, ap = 1.5 mm, vf = 150 mm/min).

The stylus of surface roughness tester moved in a parallel

direction to the cutting direction.

In summary, the accurate values of the Pareto curve and the

vector coordinates were automatically obtained in Matlab

using a customized NN algorithm. The vector of estimates, f,

was selected as the optimization criterion, with a boundary

Fig. 9 Optical microscopy results and surface profile for the optimized
machining conditions. a, b Global optimum (Tm = 0.358 min/cm3, Ra =
0.087 μm, n = 600 rpm, ap = 0.75 mm, vf = 82 mm/min). c, d Local

optimum (Tm = 0.111 min/cm3, Ra = 0.142 μm, n = 600 rpm, ap =
1.5 mm, vf = 150 mm/min)

Fig. 8 Global optima Pareto
frontier for the dimensionless
parameters: Tm = 0.358 min/cm3,
Ra = 0.087 μm, n = 600 rpm,
ap = 0.75 mm, vf = 82 mm/min,
with the corresponding real
parameters: Tm = 0.111 min/cm3,
Ra = 0.142 μm, n = 600 rpm,
ap = 1.5 mm, vf = 150 mm/min
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limit of Tm
*/Ra* = 1/5. The Newton method with quadratic

convergence was employed to solve the non-linear

constrained optimization problem. The algorithm implement-

ed in Matlab permitted rapid convergence towards the local

optimal cutting parameters in CNC robot-aided machining

depending on spindle speed and depth and their limitations.

The Edgeworth-Pareto method in the analyses gener-

ated the optimal surface treatment conditions for high-

strength grade-H steel as part of the experimental con-

ditions. In the analyses that were performed, as well as

the variable cutting depth values, the machine tool set-

tings were used as input parameters: n—spindle speed,

vf—feed table.

Experiments were performed using a 5-tooth cutter with a

diameter of 63mm. The results could not therefore be used for

other parameters of the tool and machine tool settings. Further

analysis was performed to apply the other analytical results

under other conditions (tool diameter, number of teeth) relat-

ing to high-strength grade-H steel processing.

The cutting speeds corresponding to the test condi-

tions were determined (Table 8).

The milling process was significantly influenced by feed

rate per tooth. The analyses were performed at the table feed,

vf.

Based on the known dependence, the feed rate per tooth

values were determined (Table 9) for the different machining

process conditions used in the tests (n and vf), as presented in

Table 9 and Fig. 10.

There was no reduction in surface roughness at low

feed rate values per tooth, fz. One reason was the min-

imal thickness of the uncut chip [45–49]. The influence

of the feed rate on surface condition was not observable

in the curves of the graphs (Figs. 5, 6, and 7).

The cutting speed in the tests and the feed-rate values per

tooth can be adapted to incorporate the test results and analy-

ses from other steel processing conditions.

On the basis of the analysis of the optimal conditions for

the tool (Ra = 0.142 μm at a minimal unit-volume machining

time of Tm = 0.111 min/cm3) that has been presented, the fol-

lowing machining values were obtained: vc = 118.69 m/min

and fz = 0.05 mm/tooth at ap = 1.5 mm. These values can be

used for other cutters and machine tools in the milling of high-

strength grade-H steel.

3.6 Estimating the cost and power of milling
operations for the Pareto curve

The cost price of processing one part, Сi, is determined by the

formula:

Сi ¼ CMh � T ’
� �

þ CToolmin � T ’
� �

þ Cw; ð4Þ

where turning time is T/ = (L + l1)/(n × vf), where n = (1000 ×

vc)/(π × dt); (4) where CMh—cost of machining per hour (SR

400) (CMh = $140) ; CToo l h—cos t o f too l ho lde r

(CToolh = $100); LTToolh—tool holder life (LTToolh = 5 Year ×

365 Day × 24 h = 31,536,000 min); CIn—cost of insert

(CIn = $14); k/—insert setup (k/ = 4); z—number of cutting

teeth (edges) (z = 5); Cw—unit Cost of workpiece

(Cw = $23); T—tool life (T = 60 min); CToolmin—tool cost per

minu te (CToo lm i n = [ (C I n × z ) / (T × k / ) ] + (CTo o l h ×

LTToolh) = $0.33).

The tool manufacturer, Sandvik, offers a formula for the

calculation of cutting power (cutting power) (kW):

Pc ¼ ap � ae � v f � Kc

� �

= 60� 106ð Þ ð5Þ

where ae—work engagement (milling width) (ae = 40 mm in

our case); Kc—specific power (specific energy) N/mm2 (Kc =

3750 N/mm2 for high-strength steel grade-H).

If we calculate the cost of the milling operation and the

input cutting power along the Pareto curve from point 1 to

point 11 (see Fig. 8) in accordance with formulas (4) and

(5), then C appears to decrease from $27.08 to $24.36,

and Pc increases from 0.0625 kW to 0.5625 kW. The

values of these parameters for the optimums are global

optimum C = $25.48, Pc = 0.359 kW, local optimum

C = $24.36, Pc = 0.5625 kW. The milling conditions

change from the blue vector to the green one at the same

time as Tm increases 3.2 times and Pc 1.5 times, while the

manufacturing cost decreases by 5%.

Table 9 Values of feed per tooth, fz, for different relations of parameters
n and vf used in the experiment

Spindle speed, n, (rpm)

400 500 600 700 800

Feed rate, vf, (mm/min) 50 0.025 0.020 0.017 0.014 0.013

75 0.038 0.030 0.025 0.021 0.019

100 0.050 0.040 0.033 0.029 0.025

125 0.063 0.050 0.042 0.036 0.031

150 0.075 0.060 0.050 0.043 0.038

Table 8 Cutting speed for different spindle speed values (d = 63 mm)

Spindle speed, n, (rpm) 400 500 600 700 800

Cutting speed, vc, (m/min) 79.13 98.91 118.69 138.47 158.26
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4 Conclusion

The optimization of cutting conditions for CNC face-milling

operations on high-strength grade-H steel has been presented

in this article based on artificial neural networks and the

Edgeworth-Pareto method.

Surface roughness, Ra, has been predicted using an ANN

MLP 3-10-1 multi-layer perceptron after finishing the face-

milling process with the following ranges of parameters: cut-

ting speed from vc = 78 to 158 m/min, cutting depth ap = 0.5–

1.5 mm, and the feed per tooth fz = 0.013–0.075 mm/tooth

with a precision of ± 5.78%.

Using neural network models in the study of the milling of

grade-H steel: a positive effect of n and vf and a negative effect

of depth of cut, ap, on surface roughness have been

established. The emphasis of n and vf was 25 times higher

than that of ap.

The global optimum for the milling of a grade-H steel

workpiece has been established: a surface roughness of

Ra = 0.087 μm and a unit-volume machining time of Tm =

0.358 min/cm3 corresponded to the optimum conditions at a

face milling—cutting speed vc = 118.7 m/min, a depth of cut

ap = 0.75 mm, and feed per tooth fz = 0.027 mm. Under these

conditions, given a small (5%) increase in manufacturing cost,

Pc decreased 1.5 times as compared to the local optimum

machining conditions.

The local optimum for the milling of a grade-H steel work-

piece has been established: a surface roughness of Ra =

0.142 μm and a minimum unit-volume machining time of

Tm = 0.111 min/cm3 corresponded to the optimum conditions

at a face milling—cutting speed vc = 118.7 m/min and feed per

tooth fz = 0.05 mm/tooth at a depth of cut ap = 1.5 mm. Under

those conditions, the maximum decline in surface roughness,

Ra, to 0.142 μm yielded a 3.2-times increase in Tm as com-

pared to the global optimum.

The tests in the form of the global and local optima, obtain-

ed by analyzing the test results with the methodology based on

the use of an ANN together with Edgeworth-Pareto methods,

can be applied to other technological conditions for Grade-H

steel face-milling machining, by adjusting the cutting speed,

vc; the feed per tooth, fz; and the cutting inserts.
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