Purdue University
Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1978

Optimization of Data Access in Distributed Systems
Alan R. Hevner
S. Bing Yao

Report Number:
78-281

Hevner, Alan R. and Yao, S. Bing, "Optimization of Data Access in Distributed Systems" (1978).
Department of Computer Science Technical Reports. Paper 212.
https://docs.lib.purdue.edu/cstech/212

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Abstract

(DRAFT: July 1978)

OPTIMIZATION OF DATA ACCESS IN DISTRIBUTED SYSTEMS

Alan R. Hevwner and S. Bing Yao*
Computer Science Department
Purdue University
West LaFayette, Indlana 47907

TR-281

r

The application of computer network technology'tqfaatabase systems
has produced much interest in distributed database systems. Query
processing on a distributed system is seen to be quite a different
problem from query processing on a centralized system. A query tequiring
data from two or more distinct nodes in the network must be solved by a
distribution strategy that consists of a schedule of local data pro-
cessing and data transmissions. Two cost méasure;, tota} time and response
time, are used to judge the quality of a given distribution strategy.
Methods that £ind efficient distribution atrategies for quefies are
proposed and analyzed., Algorithms that embody simple distribution tactics
are shown to be optimal in the sense of minimizing response time and totall
time for a special class of queries. A method i's proposed to extend_ihe
optimal algorithms to derive efficient distribution strategies for génetal

query processing in distributed database systems.

Key Words and Phrases: Query Processing, Distributed Database Systems,
Computer Network, Relational Data Model.

CR Categories: 3.50, 3.70, 3.74, 4.33.

* Prosent Address: MNew York University, 600 Tisch Hall, 40 W. 4th Screet,

New York, New York 10003.

+ This research is supported by the National Science Foundation under Grant

Humbexr MCS76-16604.

1. Introduction

ﬁistributed database systems are emerging as a natural application of

the rapidly advancing field of computer network technology to data processing
systems. Distributed systems offer seveLal attractive performance adven-
tages over conventlonal centralized systems, These advantages include
increased system reliability, faster, easier access to distributed data,
and the potential for modular implementation and ﬁpgrading of the system
by adding new network stations [10].

. From the viewpoint of efficient data management, o;ghﬁizations are
finding distributed systems attractive. As organizations grow in size
and compluxity{ the geographic locations of the origin and use of data
have become increasingly dispersed. Distributed end users have become
more sophisticated.in their information needs, Distributing organizational
data and the data management capabilities to the dispersed end user
locations answers an organization's important daté availability needs.
Rapid and reliable datg availability is critical to an organization's '
decision making responsibilities [4].

The relative inexpense of mini- and micro- computers to serve as

network noedes has made the idea of a distributed database system a
. practical consideration Lo many organizations [3]. S$till, however, many
problems reﬁain to be soived before distributed database systems recéive
widespread use. "Several recent papers have surveyed the current and
future-research effort in distributed data management [10],[7]. Some of
the problem areas for research include efficient distributed data access,
consistent data ﬁpdate synchronlzation, network failufe resiliency, and
effective decentralized control of distributed database functions.

This paper conceutrates on the problem of efficiently accessing data

in a distriputed gystem through the use of non-procedural queries.
Accessing data that is stored at separate nodes in a distributed system
differs in two important ways from accessing data on a centralized system:
1. Required data transmission via commuﬁication lines between nodes
introduces substantial time delays in the systém; and 2. An advantage bf
a diétributed system is the potentia} for parallel data processing and data
transmissions. An efficient strategy for accessing data must take into
account these differences. We will see in Appendix A that data access
strategies for centralized systems way perform poprlf in a distributed
system because of these differences.

In order to process a non-prOcedurallquery on a distributed database,
a wide range of feasible data access strétegies exists. The time costs of
these feasiblé strategies vary greatly. The objective of finding the most
effieient, or least costly, data access strategy can be viewed as an
optimization problem over an extremely large search space of feasible
solqtions. Previous researéh in this area has utilized classical optimi-
zation search techniques to find efficient data access strategies. Wong
[12] has proposed an algorithm that is currently being implemented in the
SDD-1 system [6]. An initial feasible strategy is selected. Then a
standard 'hill-climbing’ optimization technique recursively finds lower
cost strategies untll no more cost improvements can be discovered. Tﬁe
resultant data access strategy is a local minimum cost solution in the
search space.

Other data access methods extend cenéralized query tactics to a
distributed environment in order to find feasible data access strategles
on the network [8], [11]. Once an initial data access strategy is found,

no further optimization 1s done.

In contrast to using search techniques, we develop algorithms that_
directly produce provably optimal data access strategies for a class of
queries., These optimal algorithms cén bT extended to find efficient data
access strategles for general queries. In general algorithms the

" straightforward tactics found optimal for certain queries can be used in

place of the sometimes costly 'hill-climbing’' optimization technique.

2. Distributed Systems

We consider a network of inter-connected computers. Each computer,
known as a node in the network, has a processing chpability and a data
storage capacity. Each node can transmit data to othexr nodes by means of

"communication links. We assume that the data transfer rates between nodes
are significantly slower than the data transfer rates between each computer
and its data storage.

A distributed system exists on a computer network when the data
storaed at multiple nodes are interrelated or 1f a tranéaction at onc node
requires aceess to data stored at ancther node [2]. We assume that each
node contains a distributed database management system (DDBM3S) and a
possibly redundant portion of the database, The unit of data distribution
is & relation - a two dimensional table in which' each row 1s a record, or
tuple, of the same type [5]. Each column of the table consists of a set
of values that is called a domain of an attribute of ghe relation. We
assume that the physical distribution of relations among nodes is given.
The DDBIMSE will mnlnLnln system directorics so ﬁhat each éransacrion will
receive a non-redundant, consistent mapping of its required data. The
problems of maintaining consistent copies of redundant data and up-to-date

system directories are discussed in [1] and [9].

The distributed sys
following parameters.

N — Number of nodes

M — Number of uniqu

For each relation R

tem described above can be characterized by the

In the system.
e relations in the database.

1=1, ..., M:

i’
n, - Number of records.
ai - Number of domains.

For each domain di

3

s 1 =1, .vo, a, of Telation Ri:

sible values the attribute of_fhe domain ¢an have,

vij ~ Numher of pos

uij — Number of valunes the domain currently. holds.

pij — Selectivity. pij = uij/vij , Where 0':pij$ 1,

wij - 8ize of each data item. a

For each relation R., the size 13 defined as s, = n, * ﬁt W,,-

1 S S

A relational query performs the operations RESTRICTION, PROJECTION,

and JOIN in order to retrieve data [5]. An update (i.e. a deletion,

insertion or modificaticn of data)} may be viewed as a data retrieval

followed by the writing
we will use a graphic no

following example,

of the update to the database. For simplicity,

tation to represent a query. Consider the

Example 1: Given the relations

PRODUCT (PROD#, PNAME, QOH)

ORDER (ORDﬂ, DATE, TOTCOST)

PROD-ORD (PRODff, ORD#, UNITS)

Consider the query represented by Figure 1.

This query retrieves all product number and order number pairs, where

the product has less than 1000 units on hand and the order was submitted

before 1 September 1978.

An equivalent QUEL expression [1l6] for this query

is:

RESTRICTION ————9 QOH < 1000
PRODUCT
JOIN —————- > |PROD{#=PROD# PROD-ORD
- P
IROJECTION > (PROD{,ORD{)

DATE < 780901

ORDER

ORD#=0RD#

Figure 1 Graphic Representation of a Query

...,...

RANGE OF P 1S PRODUCT

RANGE OF O IS ORDER

RANGE OF X IS PROD-ORD

RETRIEVE INTO RESULT (X.PROD#, X.ORD#)

WHERE (0.DATE < 780901) AND (0.ORD# = X.ORD#)

AND (P.QOH < 1000} AND (P.PROD# = X.PROD#) -

The operations in a query may be performed in mqqi orders. The objective
of a query processing algorithm is to find the most beneficial order in
which to perform the query operatioms [14], [15]. A quéry on a distributed system
may require the access of data that is located at separate ngdes in the
network (1.e. if ecach of the relations in Example 1 were located at separate
nodes). To process such a distributed query, the folleing informatdon
must be gathefed by the DDBMS during query analysis.
1. The locations of the relations 5ccessed by the
query.
2. The-required domains of these relations (designated as joining

domains, restricting domains, and output domains). In Example 1,

P.QOH and 0.DATE are restricting domains, O.ORDff: and P.PROD# are joining

domains, and X.ORD{# and X.PROD# are joining and cutput demains. The

presence of a join between two relations at separate nodes indicates

that data transmission is required in order to derive the query response.
3. A result node for the query is determined. A constraint of all

feasible data access strategies 1s that the query response must end up at

the result node.

Query processing involving data at a single node is termed local
processing. The effect of local processing ié to reduce the amount of data
that needs further processing. PROJECT eliminates unneeded domains
from relations. RESTRICT selects rows of a relation that satisfy specified
data conditions. JOTN combines relations and in the process eliminates
rows whosce domain values de not match between relations. This operation

~1is also known as a JOIN RESTRICTION since, in essence, each relation is
being restricted by the other., Assume a query

has a selectivity of q on domain d After the local restrictiom i1s

k&’

performed the parameters of relation Rk are changed as follows.
1y n o« 0 *oa,

ii) S “« Sk * q,

115) Py o« Prp* 4

A join between domains d and dij produces a pair of joln restrictions.

ki

These restrictions result in the same parameter changes on both relations
where the selectivity parameter q becomes pij fﬁr the restriction on
relation R.k and PLg for the restriction on Ri'
For distfibu;ed queries data transmission must be used to bring
dispersed data together at single nodes in order.to allow local processing.
The distributed quéry problem then, is one of transforming a distributed

query into a series of data transmissions and local data processing. This

process is called distribution [12].

In any distribution strategy all possible initial local processing
should be done {irst. This step processes all restrictions and iIntra-
nodal joln restrictions inm the query. The inter-nodal joilning domains

and the output domains f{or cach relation are projected. ' After this

initial local processing the state of the system is defined by the following
parameters:
m - Number of relations in the remaining query

o,- Number of domains in relation R, , 1 = I, caay M,

i)
Bi_ Number of inter-nodal joining domains in relation Ri'
a
The reduced silze of each relation R. is g, = n % Ei w s Where
i i i =1 iq

the projected domains can be renumbered to be the first a, domains,
Between the initial local processing and the final local processing at the

result node, the intermedlate sequence of data transmissions and local

processing is optimized by minimizing an appropriate cost function.

3. Criteria for Optimization
We define our cost measure in units of time. The data transmission
cost between any two nodes is defined as a linear function C(X) = s + clx,

where X is the amount of data transmitted. The constant ¢, represents an

0

initlal start-up cost for each separate transmission., An important property

of C(X) is thét if X <Y, then C(X) 5_C(Y).

In light of this cost assumption, it is clear that minimizing the
cost of a data transmission 1s equivalent to minimizing the amount of data
transmitted. This assumption not onlj simplifies analysis but also can
be justified bylrecognizing that advances in communication technology
arc rapidly elimlnating distance and even physical connection as
essential cost considerations (e.g. satellite communications).

A detalled analysis of the cost of a distribution strategy would
include consideration .of data transmission costs and loeal processing

costs. However, on almost all networks data transmissions between nodes

-10-

are significantly slower than the data movements and prgcessing within
local nodes. Therefore, cur second cost assumption is that the data trans-
mission costs so dominate the cost of a distribution strategy that local
processing costs are considered to be insignificant.

In a distribution strategy each required relation has associated with
it a scliedule. A schedule is defined as the pattern of sequential and
parallel data transmissions made in order to reduce the size of the
relation before its data is transmitted to the result node. The complete
strategy consists of m parallel schedules. In otder to visualize clearly
the structure and interaction of the schedules in a strategy we adopt a
graphic notation in which each data transmission is represented by a

horizontal line connecting local processiong steps (e.g. !' c{x) !).

The length of the linc corresponds to the transmission time, C(X).
This graphic notation allows us to recognize synchronization between
different schedules.

To illustrate the graphic notation let us considér the cost graph of
a distribution strategy shown in Figure 2, Consider the schedule for the

relation R, in the cost graph. Data is transmitted in parallel from R

2 1

and R3 to Rﬁ' Relation RA 1s reduced in size and then data from it is

transmlitted to R Reelation R, 13 reduced in sfze and transmitted to the

2" 2
result node.

In a distribution strategy it 1s possible to combine two schedules
into one schedule. This occurs when the entire data of one relation is
transmittca to another relation on a joining path. When the relations
are joined, the second relation acquires all of the required data of the
first. Thus the first relation need not be transmitted to the result node

and its schedule can be eliminated from the distribution strategy. For

-11-

Fach relation is originally at a separate node.

R3 is at the result node.

: Cc
1 G a 12_ K
} i r
R R R
C
2 it €21 4 Ca3 5 La4 %
J i v
R
Y
. i
.3
3 B
R
4
4 H l_ Clll %
t L
Figure 2. Example Cost Graph of a Distribution Strategy

=12~

example, in Figure 2, relation RS 1s transmitted completely to relation

Rl' After a join, relation R1 contains the required data of relation R5

and is transmitted to the result node. Relation R5 need not be transmitted

to the result node and its separatc schedule is eliminated from the cost

graph.

We define the schedule response time ri for relation Ri as the time

from the start of the scheadule until relation Ri is received at the result

node. For the R2 schedule, r

included because it occurs in parallel with time c¢

= 221 + c23 =+ c24' The time c22 1s not

We define schedule

2

21°

total time ti for relation Ri as the sum of all times In the schedule,

Thus, for relation R t, = ¢ + c + c + c

2 "2 21 22 23

schedules may exist for a relation R

24 Many feasible

We deline the minimal response

i

A
time of a schedule for relation Ri as r, = min(ri), where the minimization

ranges over all possible schedules.

In this paper we analyze the optimization of di;tribution strategies
under two different cost objectives: the minimization of response time,
and the minimization of total time,

1) Response time r. The cost objective is to minimize the time from
the start of data transmission after initiél processing until all required -
data is recelved at the result node in order to do final processing. The
Tesponse time of a distribution strategy is given by the maximum length
schedule, Therefore, ¢ = max(;i), ; =1l,..., miu The minimum resppnsé time

T can be defined as r = max(ri), i=1, ..., m.

~13-

11} Total time t. The cost objective i3 to minimize the sum of all
schedule total times. The total time of a distribution strategy is

m
t =I t, and the minimum total time T is T = min{t) over all feasible

=1 1 |

distribution strategies.

For the cost graph of Figure 2, response time = r = I, = ¢y + Coq + Cos

= = = -+ -+ .

and total time t tl + t2 + t4 €11 + €y + c21 + €hg Coq + Coy €1

The choice of cost objective depends upon the distributed system.
In a lightly loaded system with few queueing delays, reéponse time minimiza-
tion would be preferable. In a more heavily loaded system queuing delays
may make total time minimization the better objective, Optimization of

distribution strategiles for both cost objectives is analyzed in the next

gection.

4. Optimization of Distributed Query Processing

A distribution algorithm is an algorithm that derives a distribution strategy

for-a given query. To design effective distribution algorithms for 'multi-variable’
queries (queries involving multiple relatiocns) 6n a distributed database,

it seems natural to try to apply query processing strategies used om
centralized databases. Wong and Youseffi [13] describe a general decomposi-
tion algorithm that processes multi-variable queries. The two basic

tactics of the algorithm are: 1. Reduction -~ breaking off components of

the query which are “Joined" with other components by a single variable;

and 2. Tuple Substitution - substituting for one of the ﬁariables a tuple
(record) at a time. The authors demeonstrate that these tactics can

produce an efficient query processing strategy when good chaices of
reduction and substitution-variables are made. The application of the

tactics of reduction and tuple substitution to a distributed query, however,

~14-

will often lead to obviously inefficient distribution strategies. An example
to illustrate the deficiencies of these tactics in & distributed system 1s given
in Appendix A.
If tuple substitution and reduction are not appropriate -for distributed
query processing, what then are the basic tactics that can be used to find
an cfficlent distribution strategy? We will show three simple tactics that
take into consideration the unique aspects of a distributed system. It
will be shown that these tactics provide a foundation for efficient

distribution strategies.

An ebvious distribution tactle " is the transmission of all the reqﬁired
relations directly to the result node where the remaining local processing

can be completed. This is called the initial feasible solution. Links

which connect the nodes containing required relations with the result node

are called destination paths. Most distribution algorithms use the initial

feasible solution as a starting solution from which to find more efficient
distribution strategies.

An inter-nodal join between two joining domains in the query defines
e joining path in the network. 1In a distribution strategy the objective of trans-
mitt Ing data on Joining paths is to trapsmit the least amount of data to cause the
greatest processing advantage (l.e. size reducti;n) at the receiving node.
As we search for cost beneficial data transmiséions, the order in which
the potential transmissions are checked and added to the distribution strategy
is of eritical importance, The distribution tactic that first checks
data transmlssions from small relations to larger relations is called the
small ro large tactie.

The Lhird basie tactle is to make the most advantageous ugé of

pacallellsm on the network. When a distribution algorithm minimizes

- rm— = o —

~15-

Yesponse time as its cost objective the inclusion of cperations that
occur in parallel with existing operations adds no additional responge

time to the strategy. Parallelism igs emphasized when quary response

time 1s minimized.

-

The following example illustrates the use of thege three distribution tacties

to find a distribution strategy,

Example 2:
Assume a query requires data from N

three relations R R

17 Roo and R3, located at separate nodes. After initial

processing, the size and selectivity parameters are:
(81,Py) = (50,%), (s4sp,) = (25,%), and
(s3,p4) = (240,1).

Assume C(X) = 10 + 2 *X, and response time 1s to be minimized. Let the

result node be a separate node. The initial feasible solution cost graph is:
R

R_: 1 C(50)
1 I[i/
R: N €(25)
2" F_ ' ?
R
RB' I3 C(240) 7

Response time = C{240) = 490, .
Total time = C(25) + C(50) + C(240) = 60 + 110 + 490 = 660.

=16—

Using the 'small to large' tactic, we test the cost benefit of
transmitting the "small’ relations R, and R2 to the "large' relation R3.
We find that both transmlssions are éost beneficial and can be done in
parallel to reduce the response time of the strategy. The resulting
distribution'strategy can be seen to be optimal in terms of wminimizing

the query's response tinme.

1 c(50) Ry
{

c({30)

R
2 C(25)
'—_—i

Response time = C{50) + C(30) = 110 + 70 = 180.
Total time = C(253)} + C(50) + C(30) = 60 + 110 + 70 = 240.

The rest of this section deseribes nlgorithms that derive diatribution
strategies for distributed queries. The three basic tactics are used in

these distribution algorithms.

The optirization of distribution strategies is performed on a class of

distributed queries called simple queries. A simple query 1s defined such

that aflter knledal loeal processing each rclnti&n in the query contains
only one common joining dowain. Thus, ai==le= 1 for all Ri’ 1=],...,m.
A simple query introduces the following distribution considerations.
The initial local processiﬁg forms the required data at each node into
one relation. This is possible since all required relations have a
common joining domain. Each required relation will be transmitted as a : ;
unit in a distributlon strategy that will eventwally transmit ﬁil required

data to the resule node.

=-17-

4.1. Minimizing Response Time

To minimize the response time of distribution strategies for simple
queries let us consider a distribution algorithm (Algoritkm C)
which -1s briefly described as follows. For cost comparison puposes, the
starting distribution strategy is assumed to be the initial feasible

solution. The algorithm searches for cost beneficial data transfers

in the current system state. The state of the system 1s given by the

size, PP selectivity, Po» and schedule response time, r_ , of each

1

relation Ri' A cost beneficial transmission to reduce:fésponse time

is defined as any data tramsmission to relation Ri that reduces L in the

current system state. Algorithm C makes use of a relation ordering,
Rl""’Rm’ and the 'small to large' tactic to look for cost beneficial

data transmissioms. All relations R y» Where j < 1, are checked for

]

potential data transmission to R The data transmission that causes

i

is Integrated into the dlstribution strategy.

the greatest reduction in L

For the data transmission from relation R.j to Ri’

the selectivity of all relations Rk' k <] to Ri {(i.e. the accumulated

Algorithm C transmits

J
selectivity of Rj 1s Rgl Py

tactic in which all relations Rk can be transmitted to R

). Thia 1is an application of the 'parallel'
n in parallel with

Rj for little or no additional responsc time. The parallel data trangfer
from Rk to Ri is added to the distribution strategy if Rk does not already
appear in the schedule of Ri and if Py 1. ‘

Algorithm C 1s detailed in Appendix B. The following example provides
a numericﬁl illustration of its use.

Example 3:

Assume a given query requires data from four relatiomns at four separate

~]18~

noedes. After initial processing the size and selectivity values are:

size(si) , selectivity(pi)

1 ioo P
R 200 X
Ry 200 "
R 400 1 -

Assume R1 is at the result node and let transmission time be
"C(X) = 10 + X.

The cost graph of the initial feasible solution is:

Ry
Rl: %, Ty = 0.
R2: ?2 210 F r; = 210.
R
Ry |3—210—? r, = 210.
Rl.: I;i 410 Itg T, = 410,

Response time = r = 410,
Total time = t = B30.

Algorithm C finds f;, the minimum data transmission time for relation Ri’

in the relation order R2, R3, and R&' ’ .

32 response time reductilon:

Transmit Rl to R2: r2' = 110 + C(% * 200) = 110 4+ 60 = 170.
Sincell?o < 210 = Ty» the transmilssion from Rl to R2 is integrated inté
the strategy. Let 43 = 170.

R. responsc time reduction:

—T
o

Transmit R2 to Rs: r3'

Transmit Rl to R3: r3' 110 + C(% * 200) = 110 + 60 = 170.
Since 170 < 205 < 210 = ¢

U

170 + Cc(1/8 * 200) = 170 + 35 = .205.

37 the data transmission Rl to R3 is Integrated

-19-

into the strategy. Let'f} = 170,

R, response time reductilon:
L)

Transmit R3 to RA: ra' = 170 + C(1/16 * 400) = 170 + 35 = 205.

Transmit R2 to R4: ra' = 170 + C(1/8 * 400) = 170 + 60 = 230.

Transmit R1 to R&: r4' =110+ C(% * 400) = 110 + 110= 220.
Since 205 < 220 < 230 < 410 = ra, the data transmission R3 to R4 is -
Integrated into the strategy. The cost benefit of trangmitting R3 to R4
includes the size reductilon of R4 by the selectivity Py = 4. The parallel
transmission of relation R, to R, is thus added to thxétrategy;

The final cost graph is:

®2 60 N4 ' “
AN i 35 2 2 205.
4
1:‘1 110 %3 60 , E
[] }
Response time =
Total time = t

£ -
= 375. 'II
Algorithm C derives a distribution strategy for a simple query
cificiently. The heart of the‘n]gorithm contaihs a QOUble loop in which
for each relation Ri’ i=1 to m, all relations R ,, j=1 to {-1, are checked

h

for cost beneficial transmission. Thus, the algorithm requires

m -

i_E__Il(i—l) = EL%—ll cost calculations and comparisona, The complexity of
2

Algorithm C 1s of order 0O %) where m is the number of required relationg

in the query.

For any distributed query there may exist many distribution strategiles

that have an equivalent minimum response time, For example the following
cost graphs demonstrate different feasible strategies for a simple-query

fequiring data from three relations.

-20-

. R . . R

Rl. }1 C(Hl) ?i RZ' l1 C(bl) I2 C(pl*sz)

R,: T2 c(s)) R.: By c(s.)

27 - 2 % 37 3 |7
I ¥) 14
R

R,: 3 .c(s,))

3 3
t ¥

Response time = C(s3). Response time = C(s3). -

= = *
Total t%me C(sl) + C(sz) + C(sB).?otal t#mg C(sl) + C(p1 sz) + C(s3).

If 8(53),was the minimum response time, both strategies would have
min i response time for the given quory.
We will show that Algorithm C finds a distribution strategy that is

optimal in the sense of having a minimum response time. We make no claim

on the uniquencss of the optimal strategy. Consider first the following Lemma.

Lemma 1:
For a simple query if, after initial processing, the required

relations Rl""’Rm arc ordered so that s, € g, £ ...s'sm then

1 2=

Voo B .Y o~
r1 ; r2 £ ...5 rm.

Proof:

The proof is by induction on relation order i=1, to i=m.

For 1 = 1:

In the initial feasible solution rl = C(sl). Since relation Rl

has the smallest size, transmitting any other relation R, to R. would

1 1

necessarily increase v, since r, would equal C(s,) + C(p, * 51) > C(al).

1 1 3]

Thexefore, f} = C(sl). By the size ordering, for any relation R, we have

3

2 = C(SI) S C(s,). For a size reduction on R, some relation must be

1 3 3

transmitted at the beginning of the schedule for Rj' Since 5 LY sk for

all k = 1,..., w this initial transmission cost is at least C(sl) = ?2.

Thus we have T = @i for all j =1,..., m.
. o J

1

2]~

For an arbitrary 1i:
By the definition of a cost beneficial data transmission to minimize
response time, the integration of data transmissions into a distributed

strategy never increases r, for any j=l,...,m. Since initially r, , =

3

(L]
C(si_l) for any distribution strategy T C(si_l) < C(Si)

<
i-1-

Consider two cases for f;.

Case]1: Relation Ri-l is transmitted to Ri as part of the minimum
response time schedule of Ri' Thus P contributes to the value of f;.
Therefore jr\i-—li r < ?:I.' . .-'

Case 2: Relation Ri-l is not transmitted ro Ri as part of the
minimum response time schedule of Ri' Apply the minimum response'time
schedule of Ri to the reiation Ri—l' Since initially 51—15 siand the same

t

size reductions are perfofmed on both relations clearly sy

< 1
15 si vhere

Si—l and si are the reduced sizes. The time cost of the applied schedule
is the same for both relations and C(si;l) < C(si), therefore ri—ls f}.
T < ~ < fa . '
Since ri__1 < ;i—l’ we have ri_1 2 ri
From cases 1 and 2, L < ry for all 1. E

Theorem 1:
For a simple query, 1if, after initial processing, the required

relations Rl,...,Rm are ordered so that 51 X 52 = ...5,sm then Algorithm C

will derive a minimum response time distribution strategy.

Proof:

We first show that Algorithm C derives minimal schedule response time
for each relation, i.e. r, = fl for all i=1,...,m.

oo ’
T C(sl).

For i=1: From Lemma 1, 1

For an arbitrary 1i:

Assume that Algorithm C derives minimum response time schedules for

s 1=1,...,1-1.
Rj 3

-22-

From Lemma 1, since ?E X Qk for k = i+l,...,m, no data transmission

from relations R, , k =itl,...,m can be included in the minimum response

k’

time schedule of Ri' Thus only data transmissions from relations

Rj’ j=1,...,i-]1 need to be consdidered. The data transmission

time of any of the relations Rj’ J=1,...,1-1, to Ri’ is minimum if

r=7 -
i i

To derive a schedule that finds ri,a search must be performed for

the minimum r_ over all possible schedules that are composed of data
1 .

transmissions from relations Rj, J=1,...,1-1. Since from Lemma 1,

‘r‘ls ?zg ST

L ri—l’ by transmitting one of the relations Rj' i=1,...,i-1,

to Ri the selectivities of all relations Rk’ k=1,...,j, may be used to

reduce the size of Ri. This is because the relations Rk can be trans—

mitted In parallel wlith Rj and will add no additional response time.

Thus any arbitrary schedule of data transmissions to R, can be replaced

i
by the transmission of the largest relation in the schedule along with
the parallel transmission of all smaller relations Rk’ k=1,...,7-1. The

3

because of the parallel transmissions of relations R

response time of this tramsmission is ¥, and the accumulated selectivity

J
is T

k=1 Pk K’

The data transmission of Rj to Ri has the resulting schedule

' 3
response time for R = rj + C(si * kgl pk). This value 1is

1 Ty

calculated for every R,, j=1,...,i-1, transmission to relatien Ri'

3

The minimum of these values alonp with the original ri= C(si) is the

minimum response time, f}, for relation Ri.

Since Algorithm C implements the checking procedure described above

the schedule for relation Ri has the optimal response time r, = ri.

-2 3=

The response time for the distribution strategy derived by Algorithm C

is r = max{?

}= £ . Since the response time of any distribution
1s1gm n

i

strategy must be at least ?m’ we have ¢ = € as required. ﬂ

§,2 Minimizing Total Time

Given an ordering on the required relations of a simple query am

ordered serial strategy consists of transmitting each relation, starting

-

with R'l, to the next relation in a serial order. The .-;at:ral:egy is

*+ ... *R =+ R _, wvhere R_ is the relation at the
2 m T r

result node. There are two cases of the ordered serial strategy. In

represented by R1-¥ R

Case 1 Rr 18 included in its proper order in the transmission pattern,

R.,»R.+...+R *.,,»R *R, In Case 2 R 18 not included in its
1 2 r m T T)

proper order, R =R Faen +Rm+ Rr' We will show in this

17 R TR

section that ordered serilal strategies have minimum total times,

We define 8 serial schedule to be a schedule in which there are

no parallel date transmissions., We denmote it by the sequence of relations
in the schedule. For example the serlal schedule

R R R is denoted by the sequence
|L:l] %k g% y d

—_— 1 1
Q= Ri’ Rj' Rk' RR.' The total time (and response time) of a sperial

schedule is represented by COST (Q. Let Q =R, ,.0., R:l. . Let P(I)
- 1 2

represent the accumulated selectivity of the relations transmitted to

relation R:I. - The selectivity of a particular relation can be included

3 -1
only once in the selectivity product by definition. Thus, P(j) ﬂiﬁl p;-k
{1 if 1 =1, for some %<k .

K%
P
iy

wvhere p' =

e

otherwise.

24—

Therefore, COST(Q) = % c(s, * P(1))
=1

_ £
= Rco + ¥(Q) where Y(Q = C1 * jEI (B1

* P(1)).
j :

Two schedules for a relation Ri are equivalent if the relations
transmitted in one schedule are a subset of the relations transmitted
in the other schedule and the size and selectivity.reductions of relation
R:L are identical. We now proceed to show that the ordered serial
strategy finde the minimum total tiﬁe for a simple query.

lemma 2: -
for some j<k then

Glven a serial schedule a.= R, ,..4,R

1 1
the schedules 6 and'a' 2 R LesesR, suaey s R P 4 are
; | LT T ent 1y

equivalent and COST(Q') < COST(Q).

s 1f ij—ik

Proof:

By definition once a relation's selectivity is included in the
accumulated selectivity of a serial schedule, ancther transmissiocn
of the pame relation can cause no further éelectivity reduction.
The elimination of relation Rik in the serial schedule Q' results
in no change in the size and selectivity redﬁctions of the relation

that receives the serial schedule. Thus the serial schedules 6.and

Q' are equivalent.

-25= f

Also

— — L ! .
COST(Q) -~ COST(Q) = _151 C(sy *-P(j)) - 121 Cc(s, * P(IM)) :

3 e 3

2 3
= fe,+e, I (8% P() - (-Derg F. (s,*P(I")).
07 %1y Py 0 ‘"'Ljﬂkl 15

Since R, does not contribute any selectivity reduction to P(3) in

:I.k

the first summation, then for all values of] ,P{j)= P(j"') when j=3'.

Thus, COST(Q) - COST{(Q') = ¢, + ¢, (s * p(k)) = C(s *p(k)) > 0, Thereforé,

ik e
CcoST(Q) > COST(Q'). '

Fl

0

Lemma 3:

Given a non-serial schedule containing at least one instance of
parallel data transmission, an equivalent serial schedule a'exists
such that COST(Q) is less than or equal to the total time cost

of the non-serjal schedule.

An arbitrary non-serial schedule can be viewed as being composed

of parallel components of the form

Q

p——

Qi , where each'a represents

ke | |

a serial schedule, possibly empty. Without loss of generality, it

is sufficient to show that any such component can be transformed
into 8 serial schedule with less or equal totel time. An arbitrary
non-serial schedule can be transformed into a serial schedule by a

sequence of component transformations.

From Lemma 2 we assume that no relation is contained in 6;, a&, or

-26-

'(_)'k more than once. Let the sizes and selectivities of the relations before

the execution of the schedule component be (aj’pj)’ (Bk'pk)' The size and

selectivity of Ri after the data transmissions of Qj

'ﬂ'_. — . P o
4. Let Q = genay +» The total
R, € QT K P1<1 R,

and Ek are {(sel * Ei’

gel * pi) where sel =

time of the parallel component is COST(aj) + COST(ak) + COST(Ei) where
COST(E?(= fey + 'i'(ak) .
4 L%

t
k
T 1 l 1
= .
vwvhere Q X Rkl’””'ng,' includes only the relation.s in Qk that are mot

Now consider the serial schedule Rj = Rk = Ri

in 'Q-j. The same size and selectivity reductions are achleved at Ri. Thus
the serial schedule is equivalent with the non-serial schedule.
In the serial schedule the size and selectivity of Rk are reduced

T

LA] ' % L — .
to (sel Bk’ sel pk) where sel RR.E‘Qj Py, The total time of thg

perial schedule is cosr(ﬁj) + cosw(ﬁ'k) + cosr(ﬁl) where COST('Q"'k) =

R.'co + gel' * ':F(E'k). Since &' £ &, sel' <1, and 'i’(a'k) < T(ﬁk) clearly
COST(E'R) < COST(ak). Thus the serial schedule has a total time less
than or equal to the total time of the non-serial schedule. -
The application of Lemmas 2 and 3 to any feasible distribution
strategy would transform it uniquely into a serial schedule in which
each required relation is transmitted exactly once (except, perhaps,
the relation at the result node). Lemma 4 now proves that performing
the serilal data transmissions of the schedule in a specified order
has the least total cost.
Lemma 4:

For a simple query if, after initial processing, the requ'ifed

relations R, ,...,R are ordered so that s, £s_<...<s then the
1 m 1 2 m

wys

serial schedule a'- Ri,Ri , where 1 for all j=1,...,%1, has

<i
1 % S

] 1
the minimum total cost among all equivalent schedules.

Proof:

Agssume that 1 >1 for some i=l,...,2-1 in the serial schedule

j T§¥l

E;Ri ""’Ri . Consider the serial schedule aw= Ri ,...,Ri ,
1 L 1 §+1 -

Ri ’.II’R

Since the order of relationa-Ri and Ri are simply
j .

1y g J+1
reversed in the schedule no change would occur in the final size
and selectivity reductions. Thus a.and'a' are‘équivalent. a.can be

broken inte the serial components

R R R ' R «
i - i i i -]
| 1 Q | I J+1 I 2 Q, I where

| i f I 1
Q, =R, ,...5R and G, = R, sees,R, . Thus, COST(Q) =

1 1, 1:]_1 2 1342 i

0 ') - T
cosT(Q,) *+ C(q s,) + Clgpy 8,) + COST(Q,) where q = p e “&°
3 T34l 2y

Now consider 'Q-" .
R R R R

1, = 1 1 i -

1 +1 +2 :

i i T | o
We have COST(Q") = cosT(q,) + Clas,)+ Clap; 8,) + COST(Q,) .
j+1 3+ 7§

By the definition of the relation ordering s < g, where i, .,< 1.
e IS

Since we are dealing with only one common joining domain

queries, this implies that Py < Py and (1- Py } < (1- Py)

2 3 3+l

Thus, s (1L~-p,)8, (1 -p) or a +p 8, <8, _+p, 8 .
R S S 0 U M et Wt 1

- =

~28-

Now C(qsij+1) + C(q pij+lsij) = 2 +c; q (s?j+1+ Pijﬂsij)
< 2c0 + c, 4 (8ij + gij Bij+1)
= C(qs j) + C(q pij ij+1)

Therefore COST (Q') < COST(Q). ' : .

Theorem 2 can now be proved by use of Lemmas 2, 3, and 4.
Theorem 2:

For a simple query if, after initial processing, the required relations
R1 yeee ,R are ordered so that 51;5, 32 £.en s,sm "then an ordered serial
strategy has the minimum total time. Case 1 of the ordered serial

strategy is optimal if

co r=1_
cy + Br jgl pj
1-p) > ’
(Pr n 1—1 _
z
fex41 1 j¥

Otherwise Case 2 of the ordered serial atrategy 15 optimal,

" Proof:

Any feasible distribution strategy must include the transmission

of 8ll required relatioms to the result node. Among all feasible
distribution strategies there must exist atlleaat one strategy with
minimum total time. By the use of Lemmas 2, 3, and 4 any such
optimal distribtuion strategy has am equivalent ordered serial
strategy with less or equal total time. Thus the ordered serial
strategy must have minimum total time.

There are two possible cases of the ordered serial strategy. Which
cagse has the minimum total time must be tested. o

From the definition of the ordered serial strategy, the total time

=29~

for Case 1, where Rt is included in the ordered serial astrategy, 1a:

m i-1 .
& 1C(s ﬂl pj). For Case 2, where Rr i8 not Included in the ordered
1
serial strategy, the total time is: E C(s .

e

Case 1 of the ordered serial strategy 1s optimal if:

C(s, T p < C(e, m p,) . 2
= i - = i ‘-—‘1 ro-
i=1 j=1 3 }#% i#r]

Eliminating common terms:

1—1 -% i-1
< L]
z e €Oy g1y Py) € iy CC8y 321 Py)
Yr
Making the summation range equivalent:
r—l ™ i-1 i-1
c(s p,) < ¥ fc(s, m p)-c¢c(s, ™ p)]
T 4= iRs f=r+l 1=y 73 =1
Ifrc
r-l m i—l 1-1 ,
c. + c.8 = [e.+c,s -c.+e,s, T p, | !
07 "1 LRI R Bl Gt el j WPELE T RS b g1 3 i
jfr |
fg r-1 i-1 :
e, +8_ T p, < (1-p) I s P |
1 T =1 fersl T g=p 3 |
J#r |
r-1
fg + 3 T P
¢y T =1 J
m i_l < (1 - p) -

=30-

4.3. A Simple Query Example

We present a simple example for which Algorithm C and Wong's

Algorittm {12] will be used to find distribution strategies. Response

times .and total times will be compared for the initial feasible solu-

tionjthe Algoritim C strategy; the Wong's Algorithm Strategy; and the

optimal total time serial strategy.

Example 4:

A distributed database has the following four relatione at

separate network nodes.

Relation Variable
DEPARTMENT (D#,LOC) ' D
EMPLOYEE (E#,NAME,D#,SEX) E
MANAGER (E#f,Dff,SAL) M
BUDGET (D#,BUDGET) B

BUDGET 3 100000

3]~

BUDGET
SEX=MALE SAL > 30000
EMPLOYEE MANAGER
DEPARTMENT
L
(D#)

The joining domain is D#.

Figure 3:

Query for Example 4

The query illustrated in Figure 3 is entered into the system.
Aspume that the result node is distinct from the nodes having required
data. -

The first step of all distribution atrategies is to do leocal
processing., After the restrictions are performed on the domains E.SEX,
M.SAL, and B.BUDG the joining domain D# is projected for all relations.

Let the size and selectivities be:

Relation Size(ai) Selectivity(pi)
B 200 - 1/5
M 500 1/2
B 500 '1/2

D 1000 : 1

With the small to large relation ordering (B,M,E,D), Theorems 1
and 2 guarantee that the minimum response time aﬁd the mipimum total
time distribution strategles can be derived for this query.

Let C(X) = 20 + X.

1. Initial feasible solutilon:

The cost graph is:

229
« 1 4 '
B: l Z
L 520 >
Hl I P
: 520
E: IE
D 1020 Y
v

Response time = 1020, Total time = 2280,

=33-

2. Algorithm C:

Algorithm C finds 51 for each relation from smallest to largest.

1) Find‘@}. Since B is the smallest relation, mo data transmission

can reduce rB. Thua‘?i = C({200) = 220.

11) Findﬂ@h. The data transmission from relation B is beneficial,
Thus, Gk = €(200) + C(1/5 * 500) = 220 + 120 = 340. Eliminating the

schedule of relation B the new cost graph is: -

M:

~=

1020

B
|
|

e L 520
P
D
D: |}
|

7
4

1ii) PFind f%. The data transmisgion from relation B is the most cost
beneficial. Thus, Gﬁ = C(200) + C(L/5 * 500) = 220 + 120 = 340,
The new cost graph is:

M

: 220 | 120_{2

1
' E
220 120

—¥

Ds 1020

v
v
iv) Find,éh. The parallel data transmission of relations M and E
is the most cost beneficilal, Thus, D = c(200) + C(100) + C(1/20 * 1000)

D
= 220 + 120 + 70 = 410,

The final cost graph is:

220 Y 120]
|

70 - -
220 f 120 f .
1

=
- = —||—U

34

For the distribution strategy derived by Algorithm C the minimum response

time is T = FD = 410; the total time is t = 750.

Wong's Algorithm

Using Wong's algoritim we find all data transmissioms such that the
amount of data transmitted 1s less thap the amount of data reduction at
the receiving relation. With this testing method we use the algorithm as

described in reference [12] ; The final cost graph is:

M
we 220 | 120 ¢
I ! Z
B E
ge 1 220 [120
| { 2
B D
b: (. 220 220 |
} | -

Response time = 440. Total time = 1120.

4. Serial Strategy

Since there 1s no relation at the result node both cases of the serial
strategy are identical., The final cost graph is:

B M E D
p: 220 120 , 70 | 70

¥
| | | | 1 4
Response time = 480. Minimum total time t = 480,

Table 1 shows the times for the four distribution strategiles of this

query. ' RESPONSE TOTAL

TIME TIME

INITIAL FEASIBLE SOLUTION 1020 2280

ALGORITHM C STRATECY 410 750

WONG'S ALGORITHM STRATEGY ~ 440 1120

SERIAL STRATEGY 480 480
TABLE 1

"—35-

The most striking observation on Table 1 is the large time differences
between the ipitial feasible solution and the other three distribution
strategies. We can conclude that the use of an algorithm to derive efficient
distribution strategles ig an important part of a distributed database
management system. The Algorithm C strategy and the serial strategy are
both less cosatly than the WOng's Algorithm strategy. This is to be
expected since Algorithm C and the serial strategy &efinitions are designed
to function optimally with a relation ordering in a simple query environment.
Wong's Algorithm and the initial feasible solution are applicable to a
-generel query environment. | | :

A total of ten simple queries similar to the query imn Figure-3 were
formulated on the diatributed database of Example 5, Table 2 lists the differing
sizes and selectivites of the ten queries, The four distribution strategies of
Table 1 were de;ived for all ten queries. The response'times for the strategies

_are. compared in Graph 1 and the total times are campared in Graph 2.

5.- Conclusions

Data access via querles in a distributed system requires a synchronized
pattern of data transmissions and local proceasing known as a distribution
strategy. In this paper we have presented methods to design efficient
distribution strategies by employing several straight forward distxribution
tactics. For a simplifled query environment these tacties are used to
derive distributlon strategles which are shown to be optimal-in'terms of
minimizing response time (Algorithm C) and total time (the ordered serial
strategy). These results are aimple to use and computationally efficient.
Only 2 small set of relation statistics (size and selectively) are required.
Compgrative examples are given to show the advantages of our di;;fibution

strategies over conventional heuristie strategies.

Query

Number

10

Relation R

Relation sizes and selectivities

-35A-

~ Relation R

Relation R

Relation R

Statistics of Ten Test Queries

% Py) Py %3 p33 ®4 Pa4
" 400 4 600 .6 800 .8 1000 ~ 1.0
300 .3 800 .8 1000 1.0 1000 1.0
300 .3 400 4 500 .5 1000 1.0
200 .2 400 b 600 .6 1000 1.0
200 .2 400 4 500 .5 900 .9
200 02 500 .5 500 .5 1000 1.0
200 .2 200 .2 800 .8 800 .8
200 .2 200 .2 800 .8 1000 1.0
100 .1 400 A 500 .5 1000 1.0
100 .1 200 .2 500 5 1000 1.0

TABLE 2

TIME

=36-

R i SR -
-+ X
1000 Ry s
. [
3 X
- = "“\\..'. *'c
750 T e Xy
Ny -"".“ "
TR
~ ¥,
\\ . ¢
L N
500 S E g e
. e ;*
' ~ AT}
b '..
250 L \Q———-—g‘_.ﬁ‘\ f‘::“-".‘.
; : ; T
0 [1 ! 1 1 : : 1 : :

Query Number

Initial Feasible Solution

Algorithm C Strategy ——————

Wong's Algoritlm Strategy

Serial Strategy ++++++++++

GRAPH 1

Response Time

-37—-

3000 |

TIME 2500 |

™

2000+ N N

1500 +

H \
PN
T\
H \
**** .-_ \ .."l-.ﬂluu..nnloqo.l.
Hm0&+++++ ¥ % F ., L
TGN S\
X . . - ~ ALL IR
X & b \-.
X5 A
k‘ \ .“.I
500 + * % - \ e,
' Ctd g g ® T . M
%
{ } + } $ l -t

Query Number

GRAPH 2 : .Total Time

-38-

The Impertance of these optimal algorithms lies iﬁ the ability to
extend their tactics from a simplified environment to the general distributed
environment. A general environment could include a non-totally connected
network, significant locai processing times, queueing delays on communication
lines, and a more complex cost function for data transmission in the network.
A general distribution algorithm must consider the differences between a
simple query and a general distributed query which ﬁay contain any numbgr of
joining domains and output domains after initial processing. For =
genexral query joining paths do not necessarily comnect any two required
relations and each node may contain several required relations. 'The
search space of feasible distribution strategies 1s enormous for such a
general query environment. It no longer seems possible to find a simple
distribution algorithm that will derive an optimal strategy for any query.
The development and implementation of general heuristic distribution
algorithme are ongoing research areas in distributed systems. The ability
to retrieve and update distributed data in a timely manner is a key
requirement of an effective date management system. The optimal
algorithms developed in this paper will serve as a basis for the design
of heuristic distribution algorithms for efficient data access in

distributed systems.

9.

10.

11.

REFERENCES

Bernatein, P.A.; Rothnie, J.B.; Shipman, D.W.; and Goodman, N, The
DSS5~1 Redundant Update Algorithm (The General Case), Technical Report
No. CCA-77-09, Computer Corporation of America, 575 Technology Square,
Cambridge, Massachusetts 02139, August 1, 1977.

Booth, G.M. "“Distributed Information Systems", Proceedings 1976
AFIPS National Computer Conference, AFIPS Press, Vol., 45, 1976, pp. 789-794.

Champine, G.A. "Six Approaches to Distributed Databases", Datamation,
Vol. 23 No. 5, Technical Publishing Company, Barrington Illinois,
May 19?7, pp. 69-72.

CODASYL, Systems Committee, "Distributed Data Base Technology — An
Interim Report of the CODASYL Systems Committee", Proceedings 1978
AFIPS National Computer Conference, AFIPS Prese, Vol. 47, 1978, pp. 909- 91?

Codd, E.F. "A Relational Model of Data for Large Shared Data Banks",
Communication of the ACM, Vol, 13 Ne, 6, Time 1970, pp. 377-387.

Computer Corporation of America, "A Distributed Database Management
System for Command and Control Applications: Semi-Annual Technical
Report 2", Technical Report No. CCA-78-03, January 30, 1978.

Deppe, M.E.; and Fry, J.P. 'Distributed Databases: A Summary of
Research", Computer Networks, Vol. 1 No. 2, North-Holland Publishing
Company Amsterdam, The Netherlands, September 1976, pp. 130-138,

Epstein, R.; Stonebraker, M.; and Wong, E. "Distributed Query Processing
in a Reletionmal Data Base System', Proceedings ACM 1978 SIGMOD Conference,
Austin, Texas, June 1978, pp. 169-180.

Rothnie, J.B.; and Goodman, N. "An Overview of the Prelimirary Design
of SDD-1: A System for Distributed Databases", 1977 Berkeley Workshop
on Distributed Data Management and Computer Networks, Lawrence Berkeley
Laboratory, University of California, Berkeley California, May 1977,
PP 39_5?0

Rothnie, J.B.; and Goodman, N. "A Survey of Research and Development
in Distributed Database Management"”, 1977 Proceedings on Very Large
Data Bases, Tokyo, Japan, October 1977, pp. 48-62.

Stonebraker, M.; and Neuhold, E. "A Distributed Database Version of
INGRES", 1977 Berkeley Workshop on Distributed Data Management and
Computer Networks, Lawrence Berkeley Laboratory, University of California,
Berkeley California, May 1977, pp. 19-36.

12.

13.

14.

15.

16,

~40-

Wong, E. "Retrieving Dispersed Data from SDD-1: A System for Distributed
Databases, 1977 Berkeley Workshop on Distributed Data Management and
Computer Networks, Lawrence Berkeley Laboratory, University of Califormia,
Berkeley California, May 1977, pp. 217-235.

Wong, E.; and Youssefi, K. "Decomposition - A Strategy for Query
Processing', ACM Tramsactlons on Database Systems, Vol, 1 No. 3,
September 1976, pp. 223-241.

Yao, S$.B.; and DedJong, D. "Evaluation of Database Access Paths",
Proceedings ACM 1978 SIGMOD Conference, Austin, Texas, June 1978,
pp- 66-77. -

Yao, S.B. "Optimization of Query Evaluation Algorithms" (unpublished
manuscript) March, 1978.

Stonebraker, M.; Wong, E.; Kreps, P.; and Held, G. 'The Design and
Ymplementation of INGRES,'" ACM Transactions on Database Systems,
Vol. i, No. 3, September 1976, pp. 189-222.

41—

APPENDIX A

We will use the query of Example 1 to illustrate the deficiencies
of the centralized tactics in a distributed gystem. Assume that relations
PRODUCT, ORDER; and PROD-ORD are located at separate nodes in a network.
Assume the query was entered at the node containing relation ORDER. Thus,
the result relation must end up at that node, After Initial processing
the resultant query is shown in Figure 3. The relation at the result node

is indicated by a double box.

PRODUCT' ORDER'
ROD#=PROD# ORD#=0RD{
PROD-ORD
(prOD?, Y ORD#)
Figure A]

The relation PRODUCT' is the reaulf of applying the restriction
(P.QCH < 1000). The relation ORDER' is the result of applying the restriction
(O.DATE < 780901). Assume that the system parameters of size and selectivity
have the values

CEP! pP.PROD#) = (200, !!)! (Sol PO.ORD#) = (200l !i)’

and (Bxl px.PROD#’ px.ORD#) = (800, 1! 1)'

Tuple substitution can be used to find the result relation of the query.
There are several different orders in which we can substitute tuples.
The basic deficlency of tuple substitution 1is apparent regardless of sub-

stitution order. For example, let us first substitute tuples from PRODUCT'

2

into PROD-ORD. Let one such tuple be P.PROD# = PQlOl. The query is

reduced to

PROD# = P0101 S

PROD-
t ORD

ORD#=0RD{#__| |ORDER __;(PROD#,ORD#)

1f each PROD# value vere of size 1, doing the join (P.PROD#=X.PROD{)

would require 200 data transmissions of size 1. The total transmission

time would be 200* C(l).

Implementing the join (X.ORD# = 0.ORD#) by-suﬁstituting tuples from

PROD-ORD to ORDER would require approximately 200 data transmission of

size 2 since X.PROD must be sent for output. For example, if X.ORD# = C1502

then the query is

ORD#=C1502
PROD{

ORDER'

— (PROD#, ORD{#)

The total transmission time to solve these queries would be 200 * C(2).

The data transmission time to solve the original query using tuple

subatitution is 200 * C(1) + 200 * C(2) = 400(‘.0 + 600c1. However,

transmitting the whole relations PRODUCT' and PROD-ORD' (after joining)

would take time C(200) + C(&OO)‘= 2c0 + 600c1. When the transmission

startup cost, €q? is significant, tuple substitution 1s inappropriate

for a distribution strategy because of the large number of data trans-

missions that are required.

The tactic of reduction breaks a query intc subqueries that must be

performed in sequential order.

of the subqueriles.

A distribution strategy is found for each

The query in Figure 3 can be reduced into the two subqueries in

Figure AZ.

-43-

PRODUCT' PROD#=PROD# PROD-0ORD

—» (PROD# ,ORD#) = PROD-ORD'

Subquery-l (sqQl)

PROD-ORD ' ORD#=0RD{#

ORDER (PROD# ,ORD#) = RESULT

Subquery 2 (5Q2)

Figure A2

The minimum time distribution strategy for SQl would be to transmit
PRODUCT' to PROD-ORD and do the join.

F Cc(200) }4 Response time=Total time= C(200).
I '

The minimum time distribution strategy for SQ2 would be to transmit
PROD-ORD' to ORDER' and do the join,

X cao0)
|

Ou Response time=Total time= C(400).
| 4

The distribution strategy for the overall query would combine the

strategies for SQl and SQ2. Since the strategy for SQ2 canmnot begin ‘until

the SQl strategy completes the resultant distribution strategy would be:

v ¢(200) X C(400)
r |

0
r
V
Response time= Total time = C(200) + C(400}

= 200 + 600{31.

However, consider the following distribution strategy.

0 c(200)

¢{200)

<k ©

F (200)

{
Response time= C(200) + ¢(200) = 2c0 + 400c1.

Total time = C(200) + C(200) + C(200) = 3e, + 600c, .

The response time is greatly reduced and the tptal time is nearly
the same in comparison with the previous diétribution strategy. It is
evident that the tactic of reduction is, in fhis case, Inefficient
because of the procedural comstraints that it places upon the search

for an optimal distribution strategy for a given query.

~45-

APPENDIX B

Algorithm C is presented in a Pascal-type language.

The Bet Bchi

contains the relations in the schedule of Ri and the set drop contains

gchedules that can be eliminated. Relation Rr is assumed to be at the

result node.

Algorithm C
begin
selul;= }.0; : (* aeli holds cumulative selectivity
for 1 := 1 to m do product *)
begin ‘ :
T, = C(si); {* initial feasible solution %)
Beli H aeli_1 * Pyi
schi 1= [1]: (* relaticns in Ri schedule *)
end;
_drop = [rl;. : (* schedules to be eliminated ¥)
1 := 23 {* ‘current relation %)
(* Find wmost feneficial data move to R1 *)
while (1 < mtl) do
begin .
low := 1 - 13
sizopt =1, .3 (% Initialize Ri—l as best transmission *)

gelopt = seli_l;

~46-

2

(* Compare each relation R, transimission.with best previous transmission %)

_ J
for j =1 - 2 dovm te 1 do

if (rj + C(sel
begin

low := j;

i % si) < sizopt + C(selopt * si)) then

sizopt = rj;
eelopt := selj;
end;
(*# Check 1if best traﬁsmission is beneficial ~ if so; add to solution *¥)
if (ri > sizopt + C(selopt % si)) then '

begin
] ",
'mqve Rlow to Ri H
"= . * *
schi : schi + Schlow’ (* add relations in schlow to achi)

(* Add parallel moves %)

for k := 1éw - 1 down to 1 do
begin
drop := drop +[k1] ;
if (k not in achi) and (pk # 1) then

begin
S Weransmit Rk to Riﬂ;
. schi = schi + schk;
end};
end;

“pexrform local processing at Ri";

8, = selopt * L (* new eilze %)
ol
ce . * *
Ty sizopt + C(ai), (* ti)
end;
(* minimize next relation schedule %)
1::= 1_4 1;

end; (* of while 1 < m + 1 loop *)
"eliminate schedules for B, where £ in drop";
end; (% of Algorithm C *) . .

	Optimization of Data Access in Distributed Systems
	Report Number:
	

	tmp.1307986960.pdf.QUV3F

