
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1978

Optimization of Data Access in Distributed Systems Optimization of Data Access in Distributed Systems

Alan R. Hevner

S. Bing Yao

Report Number:
78-281

Hevner, Alan R. and Yao, S. Bing, "Optimization of Data Access in Distributed Systems" (1978).
Department of Computer Science Technical Reports. Paper 212.
https://docs.lib.purdue.edu/cstech/212

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

, (DRAFT: July 1978)

OPTIMIZATION OF DATA ACCESS IN DISTRIBUTED SYSTEMS +

Alan R. Hevner and S. Bing Yao*
Computer Science Department

Purdue University
West LaFayette, Indiana 47907

TR-281

Abstract

The application of computer network technology ~o-database systems

has produced much interest in distributed database systems. Query

processing on a distributed system is seen to be quite a different

problem from query processing on a centralized system. A query requiring

data from two or more distinct nodes in the network must be solved by a

distribution strategy that consists of a schedule of local data pro-

ceasing and data transmissions. Two cost measures, total time and response

time, are used to judge the quality of a given distribution st~ategy.

Methods that find efficient distribution strategies for queries are

proposed and snalyzed. Algo~ithms that embody simple distribution tactics

are shown to be optimal in the sense of minimizing response time and total

time for a special class of queries. A method fs proposed to extend the

optimal algorithms to derive efficient distribution strategies fo~ general

query processing in distributed database systems.

Key Words and Phrases: Query Processing, Distributed Database Systems,
Computer Network. Relational Data Model.

CR Cat~gories: 3.50. 3.70. 3.74, 4.33.

*

+

Present Address: New York University. 600 Tisch Hall. 40 W. 4th Street.
New York, New York 10003.
This research is supported by the National Science Foundation under Grant
Number MCS76-l6604.

-2-

1. Introduction

Distributed database systems are emerging as a natural application of

the rapidly advancing field of computer network technology to data processing
I

systems. Distributed systems offer several attractive performance advcn-

tages over cqnventiona! centralized systems. These advantages include

increased system reliability, faster, easier access to distributed data,

and the potential for modular implementation and upgrading of the system

by adding new network stations [10).

From the viewpoint of efficient data management, organizations are

finding distributed systems attractive. As organizations grow in size

and complexity, the r,eogrnphic locations of the origin and use of data

h.:lvC lH.lcDllIe im:.rcoslngly dispersed. Distributed end users have become

more sophisticated. in their information needs. Distributing organizational

data and the data management capabilities to the dispersed end user

locations answers an organization's important data availability needs.

Rapid and reliable data availability is critical to an organization's

decision making responsibilities [4].

The relative inexpense of mini- and micro- computers to serve as

network Iwdcs 11<11> modo the j,des of n d:J stributed database system a

prncticn] ('.onsldcratlon Lo mllny orgonizatlons [3.]. Still, however, many

problems remain to be solved before distributed database systems receive

widespread use. Several recent papers have surveyed the current and

future research effort in distributed data management [10].[7]. Some of

the problem areas for research include efficient distributed data access,

consistent data update synchronization, network failure resiliency, and

effC!ct:Jvc decentralized control of distributed database functions.

This paper concclltrnlcs on the problem of Clff!ciently accessing data

,

-3-

in a distributed system through th~ use of non-procedural queries.

Accessing data that is stored at separate nodes in a distributed system

differs in two important ways from accessing data on a centralized system:

1. Required data transmission via communication lines between nodes

introduces substantial time delays in the system; and 2. An advantage of

a distributed system is the potential for parallel data processing and data

transmissions. An efficient strategy for accessing data must take into

account these differences. We will see in Appendix A that data access

strategies for centralized systems may perform poorly in a distributed

system because of these differences.

In order to process a non-procedural query on a distributed database,

s wide range of feasible da~a access strategies exists. The time costs of

these feasible stra~egies vary greatly. The objective of finding the most

efficient, or least costly, data access. strategy can be viewed as an

optimiza~ion problem over an extremely large search space of feasible

solution~. Previous research in this area has utilized classical optimi­

zation search techniques to find efficient data access strategies. Wong

[121 has proposed an algorithm that is currently being implemented in the

SDD-l system [61. An initial feasible strategy is selected. Then a

standard 'hill-climbing' optimization technique recursively finds lower

cost strategies until no more cost improvements can be discQvered. The

resultant data ,access strategy is a local minimum cost solution in the

search space.

Other data access methods extend centralized query tactics to a

distributed environment in order to find feasible data access strategies

on the network [81, "[11]. Once ao initial data access strategy is found,

no further optimization is done.

-4-

In contrast to using search techniques, we develop algorithms that

directly produce provably optimal data access strategies for a class of

queries. These optimal algorithms can

access strategies for general queries.

be extended to find efficient data
I
In general algorithm~ the

straightforward tactics found optimal for certain queries can be used in

place of the sometimes costly 'hill-climbing' optimization technique.

2. Dj,stributecl Systems

We consider a network of inter-connected computers. Each. computer,

~lown as a node in the network, has a processing capability and a data

storage capacity. Each node can transmit data to other nodes by means of

communication links. We assume that the data transfer rates between nodes

are significantly slower t~an the data transfer rates -between each computer

and its data storage.

A distributed system exists on a computer network when the data

stored at multi])]c nodcs nre lnterrellited or 1f a transaction at one node

requires lICC('ss to data stored at another node [2]. We assume that each

node contains a distributed database management system (DDBMS) and a

possibly redundant portion of the database. The unit of data distribution

is a relation - a two dimensional table in whic~ each row is a record, or

tuple, of the same type [5]. Each column of the table consists of a set

of values that is called a domain of an attribute of the relation. We

assume that the physic:'!] distri!?ution of relations among nodes is given.

Thc' 1l1l1ll'IS will malntll.ln gyEltcm directories so that ench transaction will

rccdvc a nOll-redundant, consistent mapping of its required data. The

problems of maintaining consistent copies of redundant data ano"up-tp-date

system directories arc discussed in [1] and [9] .

•

W
ij

- Size of each data item.

-5-

The distributed system described above can be characterized by the

following parameters.

N - Number of nodes in the system.

M - Number of unique relations in the database.

For each relation R
i

, i: I ••••• M:

n - Number of records. ~,
8

1
- Number of domains.

For each domain d
ij

, j = I. "0' 8
1

of relation R
i

:

v
1j

- Number of possible values the attribute of the domain can have.

u
ij

- Number of values the domain currently holds.

Pij - Selectivity. Pij = ui/vij • where 0 < Pij:i 1.

8,
For each relation R

i
, the size 1s defined as 8

1
= 01 * t w

ij
"

j-l
A relational query performs the operations RESTRICTION. PROJECTION.

and JOIN in order to retrieve data [5]. An update (i.e. a deletion.

insertion or modification of data) may be viewed as a data retrieval

followed by the writing of the update to the database. For simplicity,

we will use a graphic notation to represent a query. Consider the

following example.

Example 1: Given the relations

PRODUCT (PROD#, PNAME, QOH)

ORDER (ORDU. DATE. TOTCOST)

PROn-ORD (PROnn. ORDn, UNITS)

Consider the query represented by Figure 1.

This query retrieves all product number and order number pairs. where

the product has less than 1000 units on hand and the order was- submitted

before 1 September 1978. An equivalent QUEL expression r16] for this query is:

-6-

DATE < 780901
,L .I.

PRODUCT ORDER

-----;;0. PRonfl===PRODfI PROD-ORD ORIJllcORIJl1JOIN ----

RESTRICTION ----~ QOH < 1000

I'ROJECTION ----------------710 (PftODfl,OlUJlJ)

Figure 1 Graphic Representation of a Query

RANGE OF P IS PRODUCT
RANGE OF 0 IS ORDER
RANGE OF X IS PROD-ORD
RETRIEVE INTO RESULT (X.PRODO, X.ORDO)
WHERE (O.DATE < 780901) AND (O.ORD" = X.ORD")
AND (P.QOH < 1000) AND (P.PRODU ~ X.PRODo)

•
The operations in a query may be performed in ~ny orders. The objective

of a query processing algorithm is to find the most beneficial order in

which to p~rform the query operations [14]. [15]. A query on a distributed system

may require the access of data that 1s located at separate nodes in the

n~twork (i.e. if each of the relations in Example 1 were located at separate

nodes). To process such a distributed query, the following informat~on

must be gathered by the DDBMS during query analysis.

1. The locations of the relations accessed by the

query.

2. The required domains of these relations (designated as joining

domains, restricting domains, and output domains). In Example 1.

P.QOH and 0.01\1'.1:: arc restricting domains, O.ORDII- and P.PROD(} are joining

domains. and x.ORDB and X.PROVO are joining and output domains. The

presence of a join between two relations at separate nodes indicates

that data transmission is required in order to derive the query response.

3. A result- node· for the query is determined. A constraint of all

feasible data access strategies is that the query response must end up at

-8-

the result node.

Query processing involving data at a single node is termed local

processing. The effect of local processing is to reduce the amount of data

that needs further processing. PROJECT eliminates unneeded domains

from relations. RESTRICT selects rows of a relation that satisfy specified

data condi.tions. JOIN combines relations and in the process eliminates

rows whose domain vlllues do not match between relations. This operation

is also known as a JOIN RESTRICTION since, in essence. each relation is

being restricted by the other. Assume a query

has a selectivity of q on domain d
k

9..' After the local restriction is

performed the parameters of relation ~ are changed as follows.

i) I\. +- °k*q

ii) sk +- sk * q

iii) Pki -(- Pki* q

A join between domains dki and d
ij

produces a pair of join restrictions.

These restrictions result in the same parameter changes on both relations

.....hcrc the selectivity parameter q becomes Pij for the restriction on

relation ~ and Pk.2. for the restriction on R
i

•

For distributed queries data transmission must be used to bring

dispersed data together at single nodes in order to allow local processing.

The distributed query problem then, is one of transforming a distribut~d

query into a series of data transmissions and local data processing. This

process is called distribution [12].

In any distribution strategy all possible initial local processing

should be done first. This step processes all restrictions and intra­

nodal joIn restrictions in the!. query. The inter-nodal joining domains

;md the output domains for each relation arc projected.· After this

-9-

initial local processing the state of the system is defined by the following

parameters:

m - Number of relations in the remaining query
]

a t - Number of domains in relation Ri~ i = 1, .0., m.

whereisThe reduced size of each relation R
i

6 i - Number of inter-nodal joining domains in relation R
i

.

a
i

8 1 - 0t * E Wij •
j-l

the projected domains can be renumbered to be· the first at domains.

Between the initial local processing Bnd the final loc~l processing at the

result node, the intermediate sequence of data transmissions and local

processing is optimized by minimizing an appropriate cost function.

3. Criteria for Optimization

We define our cost measure in units of time. The data transmission

cost between any two nodes is defined as a linear function C(X) ~ Co + clX,

where X is the amount of data transmitted. The constant Co represents an

initial start-up cost for each separate transmission. An important property

of C(X) ~is that if X ~ Y. then C(X) ~ C(Y).

In light of this cost assumption, it is clear that minimizing the

cost of a data transmission is equivalent to minimizing the amount of data

transmitted. This assumption not only simplifies analysis but also can

be justified by recognizing that advances in communication technology

arc rapidly elimInating distance and even physical connection a9

essential cost considerations (e.g. satellite communications).

A detailed analysis of the cost of a distribution strategy would

include consideration_of data transmission costs and local proc~ssing

costs. However, on almost all networks data transmissions between nodes

-10-

arc significantly slower than the data movements and processing within

local nodes. Therefore. our second cost assumption is that the data trans­

mission costs so dominate the cost of a distribution strategy that local

processing costs are considered to be insignificant.

In a distribution strategy each required relation has associated with

it a schedule. A schedule is defined as the pattern of sequential and

parallel data transmissions made in order to re~uce the size of the

relation before its data is transmitted to the result node. The complete

strategy consists of m parallel schedules. In order to visualize clearly

the structure <Iud interaction of the schedules in a st.rategy we adopt a

graphic notation in which each data transmission is represented by a

horjzontal line connecting local processiong steps (e.g. 1"· C~(ox") ~I).

The length of the line corresponds to the transmission time, C(X).

This graphic notation allows us to recognize synchronization between

different schedules.

To illustrate the graphic notation let us consider the cost graph of

a distribution strategy shown in Figure 2. Consider the schedule for the

relation R
Z

in the cost graph. Data is transmitted in parallel from R
l

and R
3

to R
4

. Relation R{I is reduced in size and then data from it is

ll';lIlHmllll,d to R
2

. lklllt1.on lt
Z

is rNluccti in si.zc nnd transmltted to the

rc~;ult node.

In a distribution strategy it is possible to combine two schedules

into one schedule". This occurs when the entire data of one relation is

transmitted to another relation on a joining path. When ,the relations

are joined, the second relation acquires all of the required data of the

first. Thus the first relation need not be transmitted to the" result node

and its schedule can be cl:lminated from ttw di1?tdbution strategy. For

-11-

R1
R
S Cll

R
1 C12 ~I I

R2
R1 C21

r
C23

R
2 ..-"24I I

R3 C22IR3R :
~3·

R
4

:
R4 C41I

Figure 2. Example Cost Graph of a Distribution Strategy

Each relation is originally at a separate node.
R

3
is at the result node.

-12-

example, in Figure 2, relation RS is transmitted completely to relation

RI " After a join. relation R1 contains the required data of relation R
S

and is transmitted to the result node. Relation R
S

need not be transmitted

to the result node and its separate schedule is eliminated from the cost

graph.

We define the schedule response time r
i

for relation R
i

as the time

from the start of the schedule until relation R~ is received at the result

node. For the R
2

schedule, r
2

= e 21 + c23 + c 24 " The time e
22

is not

included because it occurs in parallel with time c
21

" We define schedule

total time t
i

for relation R
i

as the sum of all times in the schedule.

Thus, for relntion RZ' t z '" e
ZI

+ ("22 + c
23

+ c
24

., Nany feasible

schedules may exist for a relation R
i

, We define the minimal response

A
time of a schedule for relation R

i
as r

i
= min(r

i
). where the minimization

ranges over all possible schedules.

In this paper we analyze the optimization of distribution strategies

under two different cost objectives: the minimization of response time,

and the minimization of total time.

n Response time r. The cost objective is to minimize the time from

the stHrt of data tranSinission aftcT initial processing until all required

data is received at the result node in order to do final processing. The

response time of a distribution strategy is given by the maximum length

r can be defined as r

schedule. Therefore, r = max(~i)' i = 1•...• m. The minimum response time

I, ... , m.

..

-13-

ii} Total time t. The cost objective is to minimize the sum of all

schedule total times. The total time of a distribution strategy is
m

teE t
i

and the minimum
i~l

distribution strategies.

total time"t is 't' '" min(t} over all feasible
!

For the cost graph of Figure 2. response time a r '" r
Z

'" c
Z1

+ c
Z3

+ c
Z4

and total time'" t = t 1 + t z + t
4

~ c
11

+ c
1Z

+ c
Z1

+ c
22

+ c
23

+ c
24

+ c
41

•

The choice of cost object.iv('l. depends upon ,the distributed system.

In a light.ly loaded system with few queueing delays, response time minimiza-

tion would be preferable. In a more heavily loaded ~yStem queuing delays

may make total time minimization the better objective. Optimization of

distribution strategies for both cost objectives is analyzed in the next

section.

4. Optimization of Distributed Query Processing

A ~~!~~rI~~ll(~~(~illlln is an nlgorit.hm that derive8 a di9t~ibution st~ntegy

for a given query. To design effective distribution algorithms for 'multi-variable'

queries (queries involving mult.iple relations) on a distributed database,

it seems natural to try to apply query processing strategies used on

centralized databases. Wong and Youseffi [13] describe a general decomposi-

tion algorithm that processes multi-variable queries. The two basic

tactics of the algorithm are: 1. Reduction - breaking off components of

lha query whic.h arc "joinC'd" with other components by a single variable;

and 2. Tuple Substitution - substituti,ng for one of the variables a tuple

(record) at a time. The aut.hors demonst.rat.e that these tactics can

produce an efficient. query processing strategy when good choices of

reduction and substitution variables are made. The application of the

tactics of reduction and tuple substitutfon to a distribut.ed query, however.

-14-

will often lead to obviously inefficient distribution strategies. An example

to illustrate the deficiencies of these tactics in a distributed system is given

in Appendix A.

If tuple substitution and reduction are not appropriate-for distributed

query processing, what then are the basic tactics that can be used to find

no efficient distrJbutloll strategy? We will show three simple tactics that

take into consideration the unique aspects of a"distributed system: It

will be shown that these tactics provide a foundation for efficient

distribution strategies.

An obvious distribution tactic is the transmission of all the requir£d

relations directly to the result node where the remaining local processing

can be completed. This is called the. initial feasible solution. Links

which connect the nodes containing required relations with the result node

are called destination paths. Most distribution algorithms use the initial

feasible solution as a starting solution from which to find more efficient

distribution strategies.

An inter-nodal join between two joining domains in the query defines

a joi.ning ..r.ntl.! in the. network. In a distribution strategy the objective of trans­

mitt ing dilta OIl joining paths is to transmit the least amount of data to cause the

greatest processing advantage (Le. size reduction) at the receiving node.

As we search for cost beneficial data transmissions, the order in which

the potential transmissions are checked and added to the distribution strategy

is of critical importance. The distribution tactic that first checks

data transmissions from small relations to larger relations is called the

_~_m~:LL)"y-l.nrgc tactic:.

The Lid rei bas:lc tactlc is to mnke the most advcmtageous usc of

j)Jl_r.:..!-'~l...l:~[~;ln Ull the !\l·tlwrk. \~b('n II di~tribul:lon algorithm minimizes

•

-15-

response time as its cost objective the inclusion of operations that

occur in parallel with existing operations adds no additional response

time to the strategy. Parallelism is emphasized when query response

time is minimized.

The following example illustrates the use of these three distribution tactics

to find a distribution strategy.

Example 2:

Assume a query requires data from

three relations RI , R2 , and R
3

, located at separate nodes. After initial

processing, the size and selectiVity parameters are:

(61,PI) = (50J~)' (S2,P2) = (25.'1;). Bnd

(s3,P3) = (240,1).

Assume C(X) = 10 + 2 :f: X. and response time Is to be minimized. Let the

result node be a separate node. The initial feasible solution cost graph is:

RI C(50) 1<0
I~~:::.!.------iv

R2C(25)
f-----~

~,,-3 -'=C~(2~4c::.0)'__ ~

Response time = C(240) ~ 490.
Total time = C(25) + C(50) + C(240) c 60 + lID + 490 = 660.

-16-

Using the 'small to large' tactic. we test the cost benefit of

transmitting the 'small' relations R
1

and R
2

to the 'large' relation R30

We find that both transmlssionl:; are cost beneficial and can be done in

parallel to reduce the response time of the strategy. The resulting

distribution strategy can be seen to be optimal in terms of minimizing

the query's response time.

"I
I

HCS1WUSC time
Total time =

C(50) "3

I
C(30) !"

j2 C(25)

~ C(50) + C(30) ~ 110 + 70 ~ 180.
C(25) + C(50) + C(30) = 60 + 110 + 70 • 240.

Tlw rest of I'hl~ Sl'C:t.i.(l!l clcm~rill('s n]gor:lthmR that derive distribution

strategies for distributed queries. The three basic tactics are used in

these distribution algorithms.

•

The optirri?ution of distribution strategies is performed on a class of

distributed querics called simple queries. A simple query is defined such

lllCll nf It:l" lnlt.ta.l lUl'1I1 procc~:s:lng conch rclation in the query contains

only onc conunon jojulng Jomoin. Thus, a
i

=.6
i

"" 1 for all R
i

, i=l ••••• m.

A simple query introduces the following distribution considerations.

The initial local processing forms the required data at each node into

one relation. This is possible since all required relations have a

common joining domain. Each required relation w~ll be transmitted as a

unit in a distribution str~tcgy that will eventually transmit all required

datD. to the result node.

--

-17-

4.1. Minimizing Response Time

To minimize the response time of distribution strategies for simple

queries let us consider a distribution al~orithm (Algorithm ~

which-is briefly described as follows. For cost comparison puposes. the

starting distribution strategy is assumed to be the initial feasible

solution. The algorithm searches for cost beneficial data transfers

data transmissions.

in the current system state. The state of the system is given by the

size,s., selectivity, p., and schedule response time, r
i

, of each
1 1

relation R.. A cost beneficial transmission to reduc~response time
1

is defined a~ any data transmission to relation R
i

that reduces T
i

in the

current system state. Algorithm C makes use of a relation ordering,

R1 ••.•• R
m

• and the "'small to large' tactic to look for cost beneficial

All relations R
j

, where j < i. are checked for

potential data transmission to R
i

• The data transmission that causes

the greatest reduction in r
i

is integrated into the distribution strategy.

For the data transmission from relation R
j

to R
i

• Algorithm- C transmits

the selectivity of all relations ~J k < j to R
i

(i.e. the accumulated

selectivity of R. is
J

This is an application of the 'parallel'

tactic in which all relations ~ can be transmitted to R
i

in parallel Yith

R
j

for little or no additional response time. The parallel data transfer

from ~ to R
i

is added to the distribution strategy if ~ does not already

appear in the schedule of R
i

and if Pk ~ 1.

Algorithm C 1s detailed in Appendix B. The following example provides

a numerical illustration of its use.

Example 3:

Assume a given query requires data from four relations at four separate

-18-

nodes. After initial processing the size and selectivity values are:

R1

size(si) selectivitY(P1)

100 ~

R2 200 "R
3 200 "R4 400 1•

Assume R1 is at the result node and let transmission time be

C(X) , 10 + X.

The cost graph of the initial feasible solution is:

R1
L

1
c: O.R

1
: ~

R
2

:
R2 210

~ r
2

= 210.I
R3 210R

3
: I ~ r 3 = 210.

Rt. :
R4 410

r
4

<:: 410.I

Response time = r = 410.
Total time = t = 830.

Algorithm C finds ~i' the minimum data transmission time for relation R
i

,

in the relation order R
2

, R
3

, and R
4

,

~2 response time reduction:

Transmit R1 to R2 : T Z' = 110 + C(~ * 200) = 110 + 60 = 170.

Stncc 170 < 210 = L 2 , the tr<lIlsmisslon from R
1

to R
2

is integrated into

till' fltr:Jtl'I'.Y· J.t.!t ~2 '" 170.

-"3 TcsponflC time reduction:

Transmit. R2 to R
3

: r 3
, , 170 + C(I/8 * 200) , 170 + 35 ,205.

Transmit 'J. to R
3

: r
3
, , 110 + C(~ '" 200) , 110 + 60 = 170.

Since 170 < 205 < 210 = r3 , the data cransmission R
1

cO R
3

is integraced

-19-

into the strategy. Let 1'3 ::::l 170.

~ response time reduction:

Transmit R
3

to R4 : r 4
,

• 170 + C(I/16 • 400) • 170 + 35 • 205.

Transmit R2 to R4 : r
4
,

• 170 + C(l/8 • 400) • 170 + 60 • 230.

Transmit RI to R4 : r 4
,

• 110 + C(~ • 400) - 110 + 110- 220.

Since 205 < 220 < 230 < 410 = r
4

, the data tra~smission R
3

to R
4

1s

integrated into the strategy. The cost benefit· of transmitting R
3

to R
4

includes the size reduction of R
4

by the selectivity Pz =~. The parallel

transmission of relation R
2

to R
4

is thus added to the" strategy.

The (inal cost graph is:

R
4

:

f:
110

t:
60 r35

~
~4 :::> 205.

110 60

Response time ';"I!-'= 20S. •Total time = t ::: 375.

Algorithm C derives a distribution strategy for a simple query

efficiently. The heart ot the algorithm contains a double loop in 'Which

Thus, the algorithm requires

for each relation R 1=1 to m. all relations R
j

, j<=l
i'

for cost beneficial transmission.

to i-I. are checked

~ (i-I) = m(m-l) cost calculations and comparisons. The complexity of
i=1 2

Algorithm C is of order O(

in the query.

m'
"2") where m is the number of required relations

For any distributed query there may exist many distribution strategies

that have an equivalent mInimum response time. For example the following

cost graphs demonstrate different feasible strategies for a simple query

requiring data from three relations.

-20-

R1: R
I C("I) R2 '

R
I C~C(PI'S2) ~I Ii' I

R2 '
R2 C(82) R3 '

R
3 C(s3)

I I r
R

3
: R

3 . C(s3)
I r::

Response time = C(S3)' Response time = C(S3) •

Total time = C(SI) + C(S2) + C(S3)·Total time = C(Sl) + C(Pl*SZ) + C(s).

If G(s3) .wns the minimum rcspomw tfme, both strategies would have

minimum rC'l-lJlDlH-W. time for the given qUl!ry.

We will show that Algorithm C finds a distribution strategy that is

optimal in the sense of having a minimum response time. We make no claim

on the uniqueness of the o(~timal strategy. Consider first the following Lemma.

Lemma 1:

For a simple query if, after initial processing,the required

rchttions R11 ..••R
m

arc ordered so that 51 $. 9
2

S. ••. .s. ·8
m

then

A·
oS ••• Sr.

m

Proof:

The proof is by induction on relation" order 1=1, to i=m.

Fori=l:

In the initial feasible solution r 1 = C(sl" Since relation R
1

has the smallest size, transmitting any other relation R to R would
j 1

ncccnsnrll.y f.ncrc'1!:e r 1 since r 1 would equal C(Sj) + C(P
j

* 51) > C(S1)'

Therefore,1'1 = C(sl)' By the size ordering. for any rl:!lation R
j

we have

~1 = C(s1) ~ C(Sj)' For a size reduction on R
j

some relation must be

all k = 1, •••• ni this ini.tial transmission cost is at least

transmitted at the beginning of the schedule for Rjo

Thus we have ~1 <~
- j

for all j = 1 ••.•• m.

Since s1 ~ sk for

/"0
c(sl)=r

1
o

'I
i

I
I

-21-

For an arbitrary i:

By the definition of a cost beneficial data transmission to minimize

response time. the integration of data transmissions into a distributed

strategy never increases r
j

for any j=l••••• m. Since initially r
i

_1 =

C(sl_l) for any distribution strategy ri_1S C(St_I) S C(St)'

Consider two cases for ~i'

Case 1: Relation R
i

_
1

is transmitted to Ri as part of the minimum

response time schedule of Rio Thus r
i

_1 contributes to the value of ~i'

Therefore l' ,< r
1

1< -r- .i- - - - i

Case 2: Relation R
i

_
1

is not transmitted to R
i

as part of the

minimum response time schedule of Rio Apply the minimum response time

schedule of R
i

to the relation R
i

_
1

" Since initially si_l~ stand the same

size reductions are performed on both relations clearly s~_l~ si where

si_l and s~ are the reduced sizes. The time cost of the applied schedule

is the same for both relations and C(sl_1) S C(si), therefore ri_ls~,

~ h ~ ~Since r
i

_
l

::s. T
i

_
1

, we ave T
1

_
1

.:s r
i

.

From cases 1 and 2, r
i

_
l
~ r

1
for all i.

Theorem 1:

II

For a simple query, if, after initial processing, the required

relations R
1
•••••R

m
are ordered so that s1.s s2.:S •••.s. 8 m then Algorithm. C

will derive a minimum response time distribution strategy.

Proof:
We first show that Algorithm C derives minimal schedule response time
for each relation, Le. r

1
= ~i for all l"'l, ...•m.

For 1=1: From Lemma 1, ?1 = C(sl)'

For an arbitrary i:

Assume that Algorithm C derives minimum response time schedules for

R
j

• j=I ••••• i-l.

-1.2-

From Lemma 1. since ~i ~ ~k for k = i+1 •••••m. no data transmission

from relations R
k

• k =i+l •••••m can be included in the minimum response

time schedule of R
i

• Thus only data transmissions from relations

R.• j=l ••••• i-l need to be considered.
J

The data transmission

time. of any of the relations R
j

, j""l, ••.• i-l. to R
i

" is minimum if

A
r ~ r

J
"

J
To derive a schedule that finds r~a search must be performed for

the minimum r. over all possible schedules that are composed of data
r

transmissions from r~lations R
j

, j=l ••..• i-l. Since from Lemma 1.

~lS ~2S .•.s qi-l' by transmitting one of the relations R
j

, j=1 •••.• i-1.

to R
i

the selectivities of all relations ~, k=l ••..• j. may be used to

reduce the. size of R
i

. This is because the relations ~ can be -trans­

mitted in parallC'l wIth R
j

Ilnd will add no additional response time.

Thus [Iny arbitrary schedule of data transmissions to R
i

can be replaced

by the transmission of the largest relation in the schedule along with

t~e parallel transmission of all smaller relations ~, k=1 •••• ,j-1. The

response time of this transmission is ~ and the accumulated selectivity

J
is TI Pk because of the. parallel transmissions of relations R

k
"

k=l

The data transmission of R
j

to R
i

has the resulting schedule

" J
response time for R

i
, r i r

j
+ C(si * k~l Pk). This value is

calculated for every R
j

• j=l •••• ,i-l. transmission to relation R
i

.

'1'he minimum of these values along with the original r
i

= C(si) is the

minimum response ~ime. ?iJ for relation R
i

•

Since Algorithm C implements the checking procedure described above

the schedule for relation R
i

has the optimal response time r
i

= rio

'"

-23-

The response time for the distribution strategy derived by Algorithm C

is r = max" {~ }= ~. Since the response time of Bny distribution
lS1~m i m

I

I
I
!

strategy must be at least ~ , we have r - f" as required.
m

4.2 Minimizing Total Time

..
Given an ordering on the required relations of a simple query sn

ordered serial strategy consists of transmitting each relation, starting

with R1, to the next relation in a serial order. The -strategy 1s

represented byR-+-R
I 2

••• R R , where R is the relation at them r r

result node. There are two cases of the ordered serial strategy. In

Case 1 R is included in its proper order in the transmission pattern,
r

R R -+ R-+- R R. In Case 2 R is not included in -its
1 2 r m r r

proper order, R
1

-Jo••• +R
r

_1 +Rr+l"".' R
m
+ R

r
" We will show in this

section that ordered serial strategies have minimum total times.

We define a serial schedule to be a schedule in which there are

no parallel data transmissions. We denote it by the sequence of relations

in the schedule. For example the serial schedule

Ri I1-j h Rt is denoted by the sequence
I I I

Q ~ Ri , Rj' 1\. Rt • The total time (and response time) of a serial

schedule is represented by COST (Q). LetQ=Ri ,···, Ri Let P(j)
I t

represent the accumulated selectivity of the relations transmitted to

The selectivity of a particular relation can be includedrelation R
i

•
j

only once in the selectivity

{

I if i
k
=i

1
for

where p' ""
~ P~ otherwise.

product by definition.

some 1<k

Thus,
j-l

P(j) ~ n
k=l

p'
~

Therefore, COST(Q)

-24-

. ! C(s1 • P(j»
j=1 j

= £c + ~(Q)
o

where
£

"'Clel:
1 j=1

(s • P(j)).
1

j

Two schedules for a relation R
1

are equivalent 1f the relations

transmitted in one schedule are a subset of the relations transmitted

in the other schedule and the size and selectivity reductions of relation

R
1

are identical. We now proceed to show that the ordered serial

strategy finds the minimum total time for a simple query.

Lemma 2:

Given a serial schedule Q = R
11

' •••• R
11

' if ~jDik for Bome j<k then

tbe -6ch~dule8 Q and·Q'", R
1

, •••• R
1

••••• Rf..- ,R
1

, ••• ,R
1

are
1. j .-1 k+l £

equivalent and COST(Q') < COST(Q).

Proof:

By definition once a relation's selectivity 1s included in the

accumulated selectivity of a serial schedule, another transmission

of the same relation can cause DO further selectivity reduction.

The elimination

in no change in

of relation R~ in the serial schedule Q' results

the size and selectivity reductions of the relation

that receives the serial schedule. Thus the serial schedules Q and

QI are equivalent.

-25-

Also

COST(Q) COST(Q) a C(si • p(j» ­
j

!
j=1
j~k

P(j'»

1
t

j=1

1
(s • P(j» - (1-1)0 - c. r,

i
j

0 ·1 j m1
~~l<

Since R~ does not contribute any selectivity reduction to P(j) in

the first summation, then for all values of j ,P(j)"" P(j ') when j=j I •

Thus, COST(Q) - COST(Q') • 0 + 0o 1

COST(Q) > COST(Q').

Lemma 3:

•••••. .

> O. Therefore,

Given a non-serial schedule containing at least one instance of

parallel data transmission, an equivalent serial schedule Q exists

such that COST(Q) is less than or equal to the total time cost

of the non-serial schedule.

Proof:

An arbitrary non-serial schedule can be viewed 8S being composed

of parallel components of the form

R
j Qj

R
i

Q
i

where each Q represents

~ -
Qk

a serial schedule, possibly empty. Without loss of generality, it

1s sufficient to show that any such component can be transformed

into a serial schedule with less or equal total time. An arbitrary

non-serial schedule can be transformed into a aerial schedule by a

sequence of component transformations.

From Lemma 2 we assume that no relation is contained in Qil Qjl or

-26-

are (ael Ie 8
1

,

Tbe total

the execution of the schedule component be (Sj'P
j
)' (sk'Pk),

- -transmissions of Q
j

and Qkselectivity of R
t

after the data

sel * Pi) where sel = R V(Q UQ)
i j k

Q
k

more than once. Let the sizes and selectivities of the relations before

The size and

time of the parallel component 1s COST(Qj) + COST(Qk) + COST(Qi) where

COST(Q~ = icO + 'l'(Qk)·

Now consider the serial schedule R
j Q

j
~ Q'

R
i

Qi
,

I I k I I
where Q' • ~ ,... ,~ includes only the relations in Q

k
that are not

k j i'

The same size and selectivity reductions are achieved at R •
i

Thus

the serial schedule is equivalent with the non-serial schedule.

In the serial schedule the size and selectivity of ~ are reduced

to (sel' Ie Ski sell * P
k

) where sell = ~ Pi The total time of the
Rif.Qj

serial schedule is COST(Qj) + COST(Q\) + COST(Qj) where COST(Q'k) •

l' Co + sel' '* IV (Q' k) • Since l' oS. 1, sel'.:s: I, and 1i' (Q' k) .$ 'i'(Qk) clearly

COST(Q'k) ~ COST(Qk)' Thus the serial schedule has a total time less

than or equal to the total time of the non-serial schedule. •
The application of Lemmas 2 and 3 to any feasible distribution

strategy would transform it uniquely into a serial schedule in which

each required relation is transmitted exactly once (except, perhaps,

the relation at the result node). Lemma 4 DOW proves that performing

the serial data transmissions of the schedule in a specified order

has the least total cost.

Lemma 4:

For a simple query if, after initial processing, the required

relations R
j

, ••• ,R are ordered so that Sj.$. s :$. ••• <: s then the
m 2 - m

-27-

serial schedule Q "" Ril •...• Rif., • where I j <i
j
+1 for all jc:l •...• i.-l. has

the minimum total cost among all equivalent schedules.

Proof:

Assume that 1
j

> 1
j
+l for

Consider

some j-l, ...•9.-1 in the serial schedule

the serial schedule Q'= R
i

•... ,Ri I

1 j+1

Since the order of relations·Ri
j

and are simply

reversed in the schedule no change would OCCU'I in ~t!te final size

and selectivity reductions. Thus Q and QI are~qulvalent. Q can be

broken into the_serial components

R
1

Rio R R

1-11__Q.!.-.1_1-1j:.--__+I1~j+_1__ (j+2 Q2
where

Q
1

= R
i

, ... ,R
i1 j-1

COST(Q1) + C(q s1)
j

Now consider Q'.

., R
t

t ••• ,R!
j+2 t

+ C(QP1 s1) + COST(Q2)
j j+l

Thus, COST(Q) m

where q ""

R
1

R R
1

R

I 1
Q

1
1j +l I j

1j +2 Q2 II I
We have COST(Q') m COST(Q1) + C(Qs1) + C(QP1 s1) + COST(Q2)·

j+l j+l j

By the definition of the relation ordering 51 .s.. 81 where i j +1< i j "
j+l j.

Since we are dealing with only one common joining domain

queries, this implies that Pi ~ Pi
j+l j

and (1-

Thus, s1 (1
j+l

- p) or
1j +l

-28-

Now C(q"i) + C(q Pi "i) D 2e
O

+ c
1 q (" + P ")

j+l j+l j ij+l ij+l i j

.< 2e
O

+ c
1 q ("i + Pi ")- ij+lj . j

D C(q "i) + C(q Pi"i)
j j j+l

Therefore COST (Q') < COST(Q). •Theorem 2 can now be p:r:oved by use of Lemmas 2, 3, and 4.
Theorem 2:

For a simple query if, after initial processing, the required relations

R
1

, ••••R
m

Bre ordered so that 81.:S. 8
2

oS: ••• i 8
m

. then an ordered serial

strategy has the minimum total time. Case 1 of the ordered serial

strategy is optimal if

>
16
E

i-r+l

Otherwise Case 2 of the ordered serial strategy is optimal.

Proof:

Any feasible distribution strategy must include the transmission

of all required relatioDs to the result node. Among all feasible

distribution strategies there must exist at least one strategy ~ith

minimum total time. By the use of Lemmas 2, 3, and 4 any such

optimal distribtuion strategy has an equivalent ordered serial

strategy with less or equal total time. Thus the ordered serial

strategy must have minimum total time.

There are two possible cases of the ordered serial strategy. Which

case has the minimum total time must be tested.

From the definition of the ordered serial strategYJ the total time

-29-

) .serial strategy, the total time is:

for Case I, where R is included in the ordered serial strategy, 1s:
r

m 1-1
Z

I
C(8

i
n P

j
). For Case 2,. where R is not included in the ordered

~ j~ r

m i-I

l:~1 C(8i1~1 Pj
~t]~r

Case 1 of the ordered serial strategy is optimal 1f:

m 1-1
Z C(8

i
n p)

i=1 j-I j
<

m 1-1
Z C (8

i
n P

j
)

i=1 j=1
1r J1r

. "'-'

Eliminating common terms:

Making the summation range equivalent:

r-I
C (8 n P

j
) <

r j=1

...
Z

i"r+l

i-I
[C (8

i
n

j=1
j~r

i-I
- C(8

i
n P

j
)]

j=1

r-I
n

j=1

i-I
n P

j-I j
j~r

]

+ 8
r

r-I
np<(l-p)

j=1 j r

m 1-1
I S 1T P

i=r+1 i j_1 j
j~r

i-I
8 1 1T P

jj=1
j,or

m
Z

i=r+1

+ 8
r

r-I
n P

j=1 j

< (I - P) •
r

••

-30-

4.3. A Simple Query Example

We present a simple example for which Algorithm C and Wong's

Algorithm [12] will be used to find distribution strategies. Response

times.and total times wiil be compared for the initial feasible solu­

tioD;the Algorithm C strategy. the Wong's Algorithm Strategy; and the

optimal total time serial strategy.

Example 4:

A distributed database has the following four relations at

separate network nodes.

Relation

DEPARTMENT (DO,LOC)

EMPLOYEE (ED,NAME,DO,SEX)

MANAGER (EO ,DD ,SAL)

BDDGET (DO,BDDGET)

Variable

D

E

M

B

-31-

BUDGET > 100000

BUDGET

~ ','..' .

SEX=MALE

EMPLOYEE

DEPARTMENT

(01)

The joining domain is DU.

SAL > 30000

MANAGER

Figure 3: Query for Example 4

-32-

The query illustrated in Figure 3 is entered into the system.

Assume that the result node is distinct from the nodes having required

data.

The first step of all distribution strategies is to do local

processing. After the restrictions are performed 00 the domains E.SEX,

M.SAL. and B.BUDG the joining domain nO is projected for all relations.

Let the size and selectivities be:

Relation

B

M

E

D

200

500

500

1000

Selectivity(p
t

)

1/5

1/2

1/2

1

With the small to large relation ordering (B.M,E,D), Theorems 1

and 2 guarantee that the minimum response time and the minimum total

time distribution strategies CBn be derived for this query.

Let C(X) = 20 + X.

1. Initial feasible solution:

The cost graph is:

B: 220 Ii'
M: 520

I"
E: 520

~
D: 1020

~
Response time = 1020. Total time = 2280.

-33-

2. Algorithm C:

Algorithm C finds ~i for each relation from smallest to largest.

'"1) Find rB" Since B 1s the smallest relation, no data tranamissioo

can reduce rBo Thus~ ... C(200) Ie 220.

Ii) Find ~M' The data transmission from. relation B is beneficial.

Thus, ~M c C(200) + C(1/5 • 500) = 220 + 120 c 340. Eliminating the

schedule of relation B the pew cost graph is: .

M:

E:

D:

B 220 M
120 1*I I ... "".

E 520
I ~
D 1020
I ~

iii) Find ~E. The data transmission from relation B is the most cost

beneficial. Thus, ~E = C(200) + C(1/5 • 500) = 220 + 120 = 340.

The Dew cost graph is:

B 220 M 120M: I I ~
B 220 E

120 ~E: I I
D 1020

D: I ~

The parallel data transmission of relations M and Eiv)

is the most cost beneficial.

The final cost graph is:

Thus, ~ = C(200)
D

c 220

+ C(l00) + C(l/20 • 1000)

+ 120 + 70 = 410.

D: ; ::: ;::: r '" r

-34-

For the distribution atrategy derived by Algorithm C the Minimum response
A ,

time 1s r" rD - 410i the total time is t = 750.

Wong's Algorithm

Using Wong's algorithm we find all data transmissions such that the

amount of data transmitted is less than the amount of data reduction at

the receiving relation. With this testing method we use the algorithm 8S

described in reference [12] The final cost graph is:

B
220 M 120M: I I ~

B 220 E 120E: I I ~
B 220 D

220D: I I ~
Response time .. 440. Total time = 1120.

4. Serial Strategy

Since there 1s no relation at the result node both cases of the serial

strategy are identical. The final cost graph is:

D:
B M E D1----:2:;::2°'--1_1:::2c::..0 --+1_7:..:0_1--:7:..::0_

Response time = 480. Minimum total time t .. 480.

Table 1 shows the times for the four distribution strategies of this

1020 2280

410 750

440 1120

480 480

query.

INITIAL FEASIBLE SOLUTION

ALGORITHM C STRATEGY

WONG'S ALGORITHM STRATEGY

SERIAL STRATEGY

TABLE 1

RESPONSE
TIME

TOTAL
TIME

"-35-

The most striking observation on Table l"ls the large time differences

between the initial feasible solution and the other three distribution

strategies. We can conclude that the use of an algorithm to derive efficient

distribution strategies 1s an important part of a distributed database

management system. The Algorithm C strategy and the serial strategy are

both less costly than the Wongls Algorithm strategy. This 1s to be

expected since Algorithm C and the serial strategy definitions are designed

to function optimally with a relation ordering in a simple query environment.

Wong's Algorithm and t~ initial feasible solution are applicable to a

'general query environment.

A total of ten simple que~ies similar to the query in Figure 3 were

formulated on the distributed database of Example 5. Table 2 lists the differing

sizes and se1ectivites of the ten queries. The four distribution strategies of

Table 1 were derived for all ten queries. The response times for the strategies

. are. compared in Graph 1 and the total times are cQmpared in Graph 2.

5.· Conclusions

Data access via queries in a distributed system requires a synchronized

pattern of data transmissions and local processing known as a distribution

strategy. In this paper we have presented methods to design efficient

distribution strategies by employing several straight forward distribution

tactics. For a simplified query environment these tactics are used to

derive distribution strategies which are shown to be optimal in-terms of

minimizing response time (Algorithm C) and total time (the ordered serial

strategy). These results are simple to use and computationally efficient.

On~y a small set of relation statistics (size and selectively) are required.

Comparative examples are given to show the advantages of our distribution

strategies over conventional heuristic strategies.

. -]5A-

Relation sizes and selectivities

Relation Rl.l
• P

Relation R
3

• P
Relation R

2• P
Relation Rt

• P1 1 2 2 3] 4 4

400 .4 600 .6 800 .8 1000 1.0

300 .3 800 .8 1000 1.0 1000 1.0

300 .3 400 .4 500 .5 1000 1.0

200 .2 400 .4 600 .6 1000 1.0

200 .2 400 .4 500 .5 900 .9

200 .2 500 .5 500 .5 1000 1.0

200 .2 200 .2 800' .8 800 .8

200 .2 200 .2 800 .8 1000 1.0

100 .1 400 .4 500 .5 !ODD 1.0

100 .1 200 .2 500 .5 1000 1.0

1

2

3

Query 4
Number

5

6

7

8

9

10

TABLE 2

Statistics of Ten Test Queries

TIME

1000

750

500

250

o

-36-

.... ""

• •'. .---.... ". "... '. ...,". ~...,.""........ \:'.
......... . Xo., "\(

..... ""' ··~..y.-I-_I' "",,-\--w, ,..,. ~

...... _ :.:::::: .:.:.:.... "w·· .0'\1 ~';:~':i.'~"
-.. ... ~ - .". ~... "1(.

...... - --. ','l4.;...
................ ", -I. 0.1--_ .-....

o 1 ·2 3 4 5 6 7 8 9 10

Query Number

Initial Feasible Solution -------

Algorithm C Strategy

Wongls Algorithm Strategy········

Serial Strategy ++++++++++

GRAPH 1 Response Ti~e

-37-

"

.
\.

+... +.. ""~""'''''''" .~
% \

---
" ,

.............: "\
~\
': \, \
. ': \

t \

" \ \
\

1000

1500

3000 1--_____

2000

TIME 2500

500

0L--t-_l_--I---..--+-_+_-+--l--I--_+_
o 1 2 3 4 5 6 7 8 9 10

Query Number

GRAPH 2 .Total Time

-38-

The importance of these optimal algorithms lies in the ability to

extend their tactics from a simplified environment to the general distributed

environment. A general environment could include a non-totally connected

network, significant local processing times, queueing delays on communication

lines, Bnd a more complex cost function for data transmission in the network.

A general distribution algorithm must consider the differences between a

simple query'and a general distributed query which may contain any number of

joining domains and output domains after initial processing. For a

general query joining paths do not necessarily connect Bny two required

relations and each node may contain several required relations. The

search space of feasible distribution strategies is enormous for such a

-
general query environment. It no longer seemS possible to find a simple

distribution algorithm that will derive an optimal strategy for any query.

The development and implementation of general heuristic distribution

algorithms are ongoing research areas in distributed systems. The ability

to retrieve and update distributed data in a timely manner is a key

requirement of an effective data management system. The optimal

algorithms developed in this paper will serve as a basis for the design

of heuristic distribution algorithms for efficient data access in

distributed systems.

-J~-

REFERENCES

1. Bernstein, P.A.; Rothnie, J.B.; Shipman, D.W.; and Good~n, N.
DSS-I Redundant Update Algorithm (The General Case), Technical
No. CCA-77-09, Computer Corporation of America, 575 Technology
cambridge, Massachusetts 02139, August 1, 1977.

~
Report
Square,

2. Booth, G.H. "Distributed Information Systems", Proceedings 1976
AFIPS National Computer Conference, AFIPS Press, Vol. 45, 1976, pp. 789-794.

3. Champine, G.A. "Six Approaches to Distributed Databases". Datamation,
Vol. 23 No.5. Technical Publishing Company, Barrington Illinois,
May 1977, pp. 69-72.

4. CODASYL Systems Committee, "Distributed Data Base Technology - An
Interim Report of the CODASYL Systems Committee". Proceedings 1978
AFIPS National Computer Conference, AFIPS Press. Vol. 47. 1978, pp. 909-917.

5. Codd, E.F. "A Relational Model of Data for Large Shared Data Banks",
Communication of the ACM, Vol. 13 No.6, Time 1970, pp. 377-387.

6. Computer Corporation of America, "A Distributed Database Management
System. for Command and Control Applications: Semi-Annual Technical
Report 211

, Technical Report No. CCA-78-03, January 3D, 1978.

7. Deppe, M.E.; and Fry, J.P. '~istributed Databases: A Summary of
ResearCh", Computer Networks, Vol. 1 No.2, North-Holland Publishing
Company Amsterdam, The Netherlands, September 1976, pp. 130-138.

8. Epstein, R. i Stonebraker, M. i and Wong, E. "Distributed Query Processing
in a Relational Data Base System", Proceedings ACM 1978 SIGMOD Conference,
Austin, Texas, June 1978, pp. 169-180.

9. Rothnie, J.B.; and Goodman, N. "An Overview of the Preliminary Design
of SDD-l: A System for Distributed Databases". 1977 Berkeley Workshop
on Distributed Data Management and Computer Networks, Lawrence Berkeley
Laboratory, University of California, Berkeley California. May 1977,
pp. 39-57.

10. Rothnie, J.B.; and Goodman, N. "A Survey of Research and Development
in Distributed Database Management", 1977 Proceedings on Very Large
Data Bases, Tokyo, Japan, October 1977, pp. 48-62.

11. Stonebraker, M.; and Neuhold, E. "A Distributed Database Version of
INGRES", 1977 Berkeley Workshop on Distributed Data Management and
Computer Networks, Lawrence Berkeley Laboratory, University of California,
Berkeley California, May 1977, pp. 19-36. . ~

-40-

12. 'Wong, E. "Retrieving Dispersed Data from SDD-l: A System for Distributed
Datahaaesll

, 1977 Berkeley Workshop on Distributed Data Management and
Computer Networks, Lawrence Berkeley Laboratory, University of California,
Berkeley California, May 1977, pp. 217-235.

13. Wong, E.; and Youssefi, K. "Decomposition - A Strategy for Query
Processing", ACM Transactions on Database Systems, Vol. .1 No.3,
September 1976, pp. 223-241.

14. Yao, S.B.; and Dejong, D. "Evaluation of Database Access Paths",
Proceedings ACM 1978 SIGMon Conference, Austin, Texas, June 1978,
pp. 66-77.

15. Yao, S.B. "Optimization of Query Evaluation Algorithms ll (unpublished
manuscript~ March, 1978.

16. Stonebraker, M.; Wong, E.; Kreps, P.; and Held, G. liThe Design and
Implementation of INGRES,II AGM Transactions on Database Systems,
Vol. 1, No.3, September 1976, pp. 189-222.

PRODUCT'

-41-

APPENDIX A

We will use tbe query of Example 1 to illustrate the deficiencies

of the centralized tactics in 8 distributed system. Assume that relations

PRODUCT, ORDER, and PROD-ORn are located at aeparate nodes in a network.

Assume the query was entered at the node containing relation ORDER. Thus,

the result relation must end up at that node. After initial processing

the resultant query 1s shown in Figure 3. The relation at the result node

1s indicated by a double box.

B
RODU=PR;.:O:.DU=-__-=:ORD:.:;U-ORDU

PROD-ORD

(PRODU, ORDU)

Figure Al

The relation PRODUCT' 1s the result of applying the restriction

(P.QOH < 1000). The relation ORDER' is the result of applying the restriction

(O.DATE < 780901). Assume that the system. parameters of size and selectivity

have the values (sp' Pp.PRODU) ~ (200, ~). (sO' po •ORDa) ~ (200, ~),

and (.X' PX.PRODU' px.ORDU) - (800, 1, 1).

Tuple substitution can be used to find the result relation of the query.

There are several different orders in which we can substitute tuples.

The basic deficiency of tuple substitution is apparent regardl~s8 of sub­

stitution order. For example. let us first substitute t~ples from PRODUCT'

-42-

into PROD-ORD. Let one such tuple be P.PRODD c POlOl. The query is

reduced to

PRoM' POlO!
PROD- ORDU=ORDfl 10RDERIORD -(PRODfl,ORDU)

If each PRODU value were of size 1, doing the join (P.PRODD=x.PROnD)

would require 200 data transmissions of size 1. The total transmission

time would be 200* C(l).

Implementing the join (X.ORDU ~ O.ORD#) by· substituting tuples from

PROD-ORD to ORDER would require approximately 200 data transmission of

size 2 since X.PROD must be sent for output. For example, if X.ORD# = ClS02

then the query is

ORDU·CI502 g (PRODfl, ORDU)
PRoM

The total transmission time to solve these queries would he 200 • C(2).

The data transmission time to solve the original query using tuple

substitution is 200 * C(l) + 200 * C(2) = 400co + 600c l • However,

transmitting the whole relations PRODUCT' and PROD-ORD' (after joining)

would take time C(200) + C(400) c 2cO + 600cl • When the transmission

startup cost, cO' is significant, tuple substitution is inappropriate

for a distribution strategy because of the large number of data trans-

missions that are required.

The tactic of reduction breaks a query into subqueries that must be

performed in seque~tial order. A distribution strategy is found for each

of the subqueries.

The query in Figure 3 can be reduced into the two subqueries in

Figure A2.

PRODUCT'

-43,-

1-_..lP:!!R"OD~"l;'~:£P!!!RO~D,,-,_~I PROD-ORO ~ (PROD' •ORO') - PROD-ORO'

Subquery I (SQI)

Subquery 2 (SQ2)

Figure A2

RESULT

The minimum time distribution strategy for SQl would be to transmit

PRODUCT' to PROD-ORn and do the join.

P X
1_---=::C~(20:::0!....)--1~

Response time~Tot81 time- C(200).

The minimum time distribution strategy for SQ2 would be to transmit

PROD-oan' to ORDER' and do the join.

if-_",::C~(4::.:0::0~) ~ Response time-Total time- C(400).

The distribution strategy for the overall ~uery would combine the

strategies for SQl Bnd SQ2. Since the strategy for SQ2 cannot begin'until

the SQl strategy completes the resultant distribution strategy would be;

P X 0
I~'_--=C:.o;(2:.:0.:.:0)_--II__C...;.(4_0...;.O)j~

Response ttme~ Total time = C(200) + C(400)
- 2C

O
+ 600C I .

-44-

However) consider the following distribution strategy.

o

p

C(200)

C(200)

x

C(200) o

Response ttme= C(200) + C(200) = 2Cp + 400c1"

Total time' C(200) + C(200) + C(200) = 300 + 60001.

The response time is greatly reduced and the total time is nearly

the same in comparison with the previous distribution strategy. It is

evident that the tactic of reduction is, in this case, inefficient

because of the procedural constraints that it places upon the search

for an optimal distribution strategy for. a given query.

-45-

APPENDIX B

Algorithm. C 1s presented in a Pascal-type language. The set 8chi
contains the relations in the schedule of R

t
and the set drop contains

schedules that can be eliminated. Relation R is assumed to be at ther
result node.

Algorithm C

begin

.

sela ,.:= ~.O;

for i :- 1 to m do

begin

r
i

:= C(a
i
);

self := sel1_1 * Pi;

ach
i

:= [i] i

end;

drop :"" [r];.

!- := 2;

(~ sel! holds cumulative selectivity

product *)

.(It initial feasible solution *)

(It relations in R
1

schedule *)

(It schedules to be eliminated *)

(It 'current relation It)

(* Find most beneficial data move to R *)
i

while (i < m+l) do

begin

low:"" i-I;

sizopt := r!-_l;

selapt ;= selt_l;

(* Initialize R
1

_
1

as best transmission *)

,. -46-

(* add relations in sch10w to sch
i

*)

(* Compare each relation R
j

tr~n~~ssion.wit~ best previous transmission *)

for j := i - 2 down to 1 do

1f (r
j

+ C(sel
j

* 8
i

) < sizopt + C(aelopt * 8
i
» then

begin

low:"'" j;

slzopt :- rji

selapt := sel
j

;

end;

(* Check 1f best transmission 1s beneficial - if so, add to solution *)

if Crt> sizopt + C(selopt * 8
i
» then

begin

"move R to R II.
low i '

sch
i

:= sch
i

+ sch10w i

(ll: Add parallel moves *)

for k := low - 1 down to 1 do

begin

drop :>:1 drop + [k] i

if (k Dot in Bchi) and (Pk ~ 1) then

begin

..- "transmit ~ to R
t
";

sch
i

:~ schi + sC~i

end;

end;

"perform. local processing at R II.i •

si :c selapt * 81 i (* new size *)

-.

"(* r *).. i

end;

e* minimize next relation schedule *)

i,:= i _+ Ii

end; (* of while i < m + 1 loop *)

lIe l:l.minate schedules for R
1

where .1 in drop"j

endj (* of Algorithm C *)

	Optimization of Data Access in Distributed Systems
	Report Number:
	

	tmp.1307986960.pdf.QUV3F

