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ABSTRACT We present a day-ahead scheduling strategy for an Energy Storage System (ESS) in a microgrid
using two algorithms - Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The scheduling
strategy aims to minimize the cost paid by consumers in a microgrid subject to dynamic pricing.We define an
objective function for the optimization problem, present its search space, and study its structural properties.
We prove that the search space has a magnification of at least 50× (Bc − Bd + 1), where Bc and Bd are the
maximum depths of charge and discharge in an hour (in percentage) of the ESS respectively. In a simulation
involving load, energy generation, and grid price forecasts for three microgrids of different sizes, we obtain
ESS schedules that provide average cost reductions of 11.31% (using GA) and 14.31% (using PSO) over the
ESS schedule obtained using Net Power Based Algorithm.

INDEX TERMS Microgrid, energy storage system, dynamic pricing, scheduling strategy, optimization,
genetic algorithm, particle swarm optimization.

I. INTRODUCTION
A power grid is an interconnected network that transmits
electricity from producers to consumers. Traditional power
grids that are capable only of uni-directional transmission of
power, i.e., from producers to consumers, are rapidly tran-
sitioning into a two-way power flow system using modern
smart technology [1]. A smart grid uses bi-directional power
transmission and information to create an automated and
distributed energy transmission network [2]. The evolution of
the smart grid is expected to come through the plug-and-play
integration of smart microgrids [3].

A microgrid can be thought of as a scaled-down version of
a power grid [4]. The U.S. Department of Energy defines a
microgrid as:

A group of interconnected loads and distributed
energy resources within clearly defined electrical
boundaries that acts as a single controllable entity
with respect to the grid [5].

Microgrids provide a feasible way to incorporate smart grid
technology in a bottom-up approach since a complete over-
haul of the traditional grid is arduous. Microgrids typically
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incorporate renewable energy generation sources such as
solar panels and wind turbines. Consequently, microgrids
also incorporate Energy Storage Systems (ESSs) to store this
renewable energy.

ESSs are primarily used to capture energy produced at one
time and use it at a later time. An important aspect of an ESS
in a microgrid is that it degrades with time due to frequent
charge/discharge cycles [6]. To maximize the life of an ESS,
a microgrid could take the following precautions:

• Maintain Optimal State of Charge: Conventional
energy storage norms dictate that Li-ion batteries are
maximally functional between 10-20% and 80-90%
State of Charge (SoC). Going above or below these
thresholds could reduce the life cycle of the battery and
may also hamper power output.

• Limit Depth of Charge/Discharge: The Depth of
Charge/Discharge is a real value that refers to the amount
of energy that is cycled in or out of the battery in a time
interval, expressed as a percentage of the total capacity
of the battery. Most batteries have a physical limit as to
how much they can charge/discharge in a time interval.
However, to maximize battery life, it’s recommended to
stay well below this value. For example, in one hour,
themaximal depth of discharge of a batterymay be equal
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to 30%. Any discharge value above this could damage
the battery.

Dynamic pricing of electricity is increasingly receiving more
attention as a way to induce peak shaving and load level-
ing, by typically pricing electricity higher during periods of
high demand, thereby incentivizing consumers to reduce their
demand at that time and reshaping the load curve. Reducing
the peak demand and flattening the demand profile bene-
fits the producers by reducing overall plant and capital cost
requirements [2]. One form of dynamic pricing is Time-of-
Use (TOU) pricing, where the price of a unit of electricity is
dependent on the time of the day.

Consumers will typically find innovative ways to take
advantage of these variable tariffs [7]. One such way is using
the ESS to store energy when the tariff is low, and using
the stored energy when the tariff is high. This requires an
optimal scheduling of the ESS, i.e., determining when the
ESS charges or discharges. Another way to take advantage
of dynamic pricing is to shift certain loads to a different
time period within a day, usually to a time interval when the
grid price is low. This demand response strategy is called
load shifting and multiple papers have dealt this with this
topic [8]–[10]. Like the former method, this is also a complex
optimization problem.

This article will deal with the former problem, i.e., opti-
mizing the ESS schedule in a microgrid with dynamic pric-
ing to minimize the total cost paid by consumers. To be
precise, we have applied Genetic Algorithm (GA) [11] and
Particle Swarm Optimization (PSO) [12] to optimize a day-
ahead ESS schedule in a microgrid that’s connected to a
traditional one-way-power-flow grid that imposes dynamic
pricing on the microgrid. This optimization problem requires
a day-ahead hourly forecast of the load, generated power,
and grid price. Even though load and energy generation
forecasting is a difficult task [13], multiple works have
proposed various approaches to forecasting with reasonable
accuracy [14]–[17].

The rest of this article is organized as follows.
In Subsection I-A, we list the main contributions of this work.
In Subsection I-B, we look at some pertinent related work
which may help the reader better understand this article.
In Subsections I-C and I-D, we provide brief introductions
to GA and PSO in order to better understand the algorithm
we propose in Section III. In Section II, we formally define
the problem, present its search space, and study its structural
properties. In Section III, we present the optimization algo-
rithms based on GA and PSO. In Section IV, we describe the
datasets used, the parameters chosen for the algorithms, and
the results obtained. We finally conclude in Section V.

A. CONTRIBUTIONS
The main contributions of this article are as follows:

• We define an objective function to optimize a micro-
grid’s day-ahead ESS schedule.

• We define the search space for the objective function.

• We study the search space’s structural properties in
depth and prove its magnification to be at least 50 · (Bc−
Bd + 1), where Bc and Bd are the maximum depths of
charge and discharge of the ESS respectively.

• We design an algorithm to find an optimal or near-
optimal solution to the objective function using Genetic
Algorithm and Particle Swarm Optimization.

• We obtain an average cost reduction of 14.3% over the
Net Power Based Algorithm, thus potentially provid-
ing an incentive to shift to smart grids and incorporate
renewable energy infrastructure.

B. RELATED WORK
In [18], Youn and Cho optimize the operation of an Energy
Storage Unit in a small power producing facility to minimize
the total energy purchase from the power gird under spot
prices. They make use of a conventional linear programming
technique. Similarly, in [19], Maly and Kwan optimize the
charge schedule of an ESS using Dynamic Programming.
In [20], Mallol-Poyato et al. employ a two-stage evolu-
tionary algorithm to first optimize a microgrid’s structural
parameters - the size of the ESS, the power ratings of the
wind turbines and photovoltaic cells, etc., and then optimize
the scheduling of the ESS considering a variable electricity
pricing scenario. In [21], C.D. Korkas et al. present a scal-
able algorithm to manage demand response (adjusting the
power consumption of a consumer to bettermatch the demand
for power on the supplier) and guarantee thermal com-
fort (by controlling HVAC systems) in microgrids. In [22],
the authors use Gravitational Search Algorithm to develop a
complete EnergyManagement System (EMS) for amicrogrid
and demonstrate its effectiveness over a conventional EMS.
In [23], the authors propose a bi-level optimized scheduling
strategy (day-ahead) for the decision making of a Distributed
System Operator (DSO) and reconfigurable multi-microgrids
to reduce the total system cost. They also investigate the pro-
posed model on a real-test system under varying conditions.
More papers related to microgrid scheduling and demand
response management can be found in [24]–[28].

C. GENETIC ALGORITHM
Genetic Algorithm (GA) is a meta-heuristic typically used to
solve non-linear optimization problems. It is based onCharles
Darwin’s Theory of Evolution through Natural Selection.

In GA, we begin with a set of candidate solutions
for an objective function. These candidate solutions are
called chromosomes. These chromosomes represent the first
‘‘generation’’.

A cost function then evaluates how fit each chromosome
is. If the problem is a minimization problem, then a lower
value of the cost function denotes higher fitness and vice
versa. We then allow a fixed number of fittest chromosomes
to ‘‘reproduce’’ with each other and produce offspring using
a defined crossover operator. During the crossover, we also
emulate mutation as it happens in real life, i.e, a defect
in copying genes from parent to offspring. The mutation
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FIGURE 1. GA flowchart [29].

operator is hoped to reduce the probability that a solution
remains stuck in local optima. We then add the offspring to
the population.

The fittest chromosomes among the resulting population
then continue to the next generation. This is repeated for
100s or 1000s of generations until an optimal solution is
found or a termination criterion is met. Figure 1 depicts the
steps in GA as a flowchart.

D. PARTICLE SWARM OPTIMIZATION
Particle Swarm Optimization (PSO) is a meta-heuristic that
was first proposed by James Kennedy and Russell Eberhart
in 1995 to solve non-linear optimization problems [12].

In PSO, we begin with a randomized set of candidate
solutions, dubbed a ‘‘swarm’’ of particles. Each particle can
be visualized as a point in a D-dimensional space, where D
is the dimension of candidate solutions. Each particle then
moves through the search space (thus exploring different pos-
sible solutions) according to simple mathematical formulae
involving its position and velocity. A particle’s movement is
influenced by three parts - its ‘‘momentum’’, its ‘‘memory’’
of the best position it has been at (the position where the parti-
cle had the highest fitness value, called the local best), and the
position of the fittest particle (called the global best). This is
expected to guide the swarm toward optimal solutions. Note
that a particle’s fitness value is determined by a problem-
specific fitness function.

Mathematically, say particle i is represented as Xi =
(xi1, xi2, .., xiD). Particle i’s memory of the ‘‘best’’ position
it traversed is represented as Pi = (pi1, pi2, ..piD). Let the

rate at which the particle i moves (velocity) be given by
Vi = (vi1, vi2, ..viD). Let the index of the particle with the best
global position be g. Then, in each iteration of the algorithm,
particles are manipulated according to Equations 1 and 2.

vid = w ∗ vid+c1 ∗ r1 ∗ (pid−xid )+c2 ∗ r2 ∗ (pgd−xid ),

(1)

xid = xid + vid (2)

In Equation 1, w∗ vid represents the momentum of a particle.
Here, w is called the inertia factor. If the inertia factor is
too high, the algorithm will have trouble converging on the
optimal solution due to high momentum causing particles to
move excessively in their own direction. On the other hand,
ifw is too low, the algorithmmay prematurely settle on a non-
optimal solution because the particles do not have enough
momentum to sufficiently explore the search space. The iner-
tia factor can also be dynamic (such as linearly decreasing
with each iteration), and [30] has shown that it may lead to
better results. In a linearly decreasingmodel, the inertia factor
w varies in each iteration according to Equation 3.

w = wmin +
(
maxiter − iter

maxiter

)
· (wmax − wmin) (3)

In Equation 3, iter represents the current iteration number,
maxiter represents the total number of iterations, andwmin and
wmax are the minimum and maximum values of the inertia
factor respectively.

In Equation 1, c1 ∗ r1 ∗ (pid − xid ) and c2 ∗ r2 ∗ (pgd − xid )
represent the ‘‘cognitive’’ and ‘‘social’’ parts of the equa-
tion respectively. The cognitive part makes a particle move
towards the ‘‘local best’’, and the social part makes a particle
move towards the ‘‘global best’’. c1 and c2 are two positive
constants known as acceleration coefficients, which control
how the particles move toward the local best and global best
positions respectively. If c1 > c2, the particle gravitates more
towards the local best. If c2 > c1, the particle gravitates
more towards the global best. r1 and r2 are two real numbers
randomly generated in the range [0,1]. In each iteration of the
algorithm, all particles move through the search space using
Equations 1 and 2. We stop when we obtain a sufficiently
good solution, or when there is no further improvement.

Meta-heuristics like PSO and GA are domain-independent
randomized search heuristics which can be applied to any
optimization problem. Practitioners usually use these heuris-
tics when polynomial-time algorithms do not exist for an opti-
mization problem. Surprisingly, for many of these problems,
meta-heuristics return great solutions, even though solution
optimality is not guaranteed. In the worst case, meta-heuristic
algorithms may end up searching the entire search space (like
brute-force). It should also be noted that since meta-heuristics
like GA and PSO are highly probabilistic in nature, it is very
hard to perform run-time analysis on them. There’s only a
small amount of literature available regarding the run-time
analysis of simpler versions of GA [31]–[34] or PSO [35],
[36], which are based on well known basic optimization prob-
lems like One Max Problem (maximizing the number of ones
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FIGURE 2. Generic micro-grid model [45].

in an n bit string). There is no literature regarding the run-
time analysis of GA or PSO for hard non-linear optimization
problems so far. For these hard optimization problems, prac-
titioners apply different randomized search heuristics like
GA, PSO, Ant Colony Optimization, and other bio-inspired
algorithms and select the one that returns the best results
for the specific problem. In the electrical engineering and
energy domain, GA [37]–[41] and PSO [42]–[44] have been
applied to many optimization problems and the results are
encouraging. This is why we have compared the performance
of GA and PSO for optimizing a day-ahead ESS schedule in
a microgrid.

II. PROBLEM DEFINITION AND SEARCH SPACE
In this section, we formally define the problem and its search
space. We also study the structural properties of the search
space.

Consider a micro-grid µ (see Figure 2) comprising a vari-
able number of solar panels, wind turbines, and (optionally)
other forms of energy generators. The micro-grid also con-
sists of a centralized ESS of capacity C (in kWh). The
micro-grid is plugged into a traditional one-way-power-flow
grid (called Utility in Figure 2). This traditional grid (will
be called ‘‘main grid’’ from here on) subjects the micro-
grid to hourly dynamic pricing of electricity. The load in
Figure 2 is the sum total of loads of all the homes in the
micro-grid. We optimize the charge/discharge scheduling of
the ESS for a single day divided into hourly intervals such
that the cost paid by the consumers in the micro-grid is
minimized.

Mathematically, let Li represent the cumulative load
demanded by the microgrid (in kWh),Gi represent the cumu-
lative energy generated by the renewable sources in the
microgrid (in kWh), and Ai represent the unit price for elec-
tricity borrowed from the main grid (in cents/kWh), during
the hour interval i, where 1 <= i <= 24.

Let themaximumdepth of charge of the ESS in one interval
be Bc. Similarly, let the maximum depth of discharge be Bd .
Then, we define a battery schedule vector as follows:

Definition 1 (Battery Schedule Vector): A battery sched-
ule vector is a 24-dimensional real-valued vector [S1, S2, . . . ,
S24] that represents a day-ahead schedule of a battery in a
microgrid. Each Si represents the depth of charge/discharge
in hour interval i and satisfies the following constraints:

Si ∈

{
[max(−1 ∗ (Li − Gi)/C ∗ 100,Bd ),Bc] Li > Gi
[0,Bc] Gi >= Li

(4)

10 ≤
k∑
i=1

Si ≤ 90 ∀ k ∈ [1, 24] (5)

The constraint in Equation 4 ensures that the battery
doesn’t discharge more than |Bd | percent and charge more
than |Bc| percent in an hour interval. The values of Bd and
Bc are dependent on the battery used. It also ensures that the
battery doesn’t discharge in an interval where the generated
energy is greater than the load demanded. The constraint in
Equation 5 ensures that the battery’s SoC doesn’t dip below
10% or go above 90%, to maintain an optimal state of charge.

To obtain the cost associatedwith a battery schedule vector,
we first define the electricity consumption vector.
Definition 2 (Electricity Consumption Vector): An elec-

tricity consumption vector is a 24-dimensional real-valued
vector [E1,E2, . . . ,E24], where each Ei represents the
amount of electricity borrowed by the microgrid from the
main grid (in kWh). Ei is given by:

Ei = max(Li − Gi + 0.01 ∗ C ∗ Si, 0) (6)
In Equation 6, 0.01∗C∗Si represents the total inflow or out-

flow of energy from the battery (depending on the sign
of Si) during the interval i. Li - Gi represents either the
remaining energy required to fully power the load (when
Li > Gi,) or represents the excess energy remaining (possibly
to charge the battery) after Gi is used to power the load
(when Li < Gi). The ‘max’ ensures that Ei doesn’t become
negative (when Gi > Li and the battery cannot fully store the
excess energy due to constraints specified in Equation 4 and
Equation 5) since we assume that power only flows into the
grid, not out of it.

Then, the optimization problem is to minimize the total
cost paid by the consumer, P, which is the sum of the product
of Ei and the unit electricity price during interval i, Ai, across
all intervals.

MinimizeP =
24∑
i=1

Ei ∗ Ai (7)

Now we define the problem’s search space. Note that we
assume that the value of depth of charge or discharge incre-
ments or decrements in steps of 0.01. For example, in our
problem, the SoC of the ESS can increment from 30% to
30.01%, but no real-value in between. Batteries in the real
world also have similar minimum step values for changes in
their SoC. We call this minimum depth of charge/discharge.
Definition 3 (Search Space): The search space � is

defined as:
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• Search Space Elements: The search space is a set of
all 24-dimensional vectors, say U = [S1, S2, . . . , S24],
where each Si is a real number truncated to two decimal
places in the range [Bd ,Bc], where Bd and Bc represent
the maximum depth of discharge and charge in an hour
interval respectively.

• Neighborhood structure: Two elements in the search
space are neighbors to each other if they differ in one
coordinate.

• Cost: For any search space element, say U =

[S1, S2, . . . , S24], the cost of U, denoted as Cost(U ),
is defined as

Cost(U ) =


∑24

i=1
Ei ∗ Ai If U satisfies constraints

in Equations 4 and 5
∞ Otherwise

(8)

Ai denotes the grid price during the interval i and Ei is
calculated using Equation 6.

Once again, note that we have defined the search space
elements as real numbers truncated to two decimal places in
the range [Bd ,Bc]. This ensures that our search space has
a finite number of discrete elements. Otherwise, our search
space would consist of an infinite number of elements. Our
search space has

[
100 · (Bc − Bd + 1)

]24 elements. The
constraints in Equation 4 and 5 are enforced by the way we
have defined the cost function for the search space elements
(an invalid element would have∞ cost). Now we look at the
structural properties of the defined search space:
Proposition 4: Each element in the search space � has

2400(Bc − Bd + 1) number of neighbors.
Proof: Let U = [S1, S2, . . . , S24] ∈ � and V =

[S ′1, S
′

2, . . . , S
′

24] ∈ � be neighbours. Then as per the
Definition 3, U and V differ in one coordinate. Each Si is
a real value truncated to two decimal places in the interval
[Bd ,Bc]. This implies that each Si can be one of 100(Bc −
Bd + 1) values. There are 24 such Sis. Therefore, U has
2400(Bc − Bd + 1) neighbours. �

In the next proposition, we show that there is aO(1)-length
path between any two elements in the search space.
Lemma 5: There is a O(1)-length path between any two

elements in the search space.
Proof: Let U = [S1, S2, . . . , S24] and V = [S ′1, S

′

2, . . . ,

S ′24] be two search space elements. Let i1 < i2 < . . . <

ir−1 < ir indicate the indices where U and V differ. Then
U = Ui0 → Ui1 → . . .→ Uir = V denotes the path from U
to V , whereUi(j+1) is obtained fromUij by replacing the value
of Si(j+1) with S

′
i(j+1)

. Hence the proposition. �
From Proposition 5, it is clear that the diameter of the

search space or search graph is bound byO(1). Next, we prove
an important structural property of the search space called
magnification. Magnification defines the number of outgoing
edges from a considered cut-set. More magnification implies
more number of edges going out from a cut-set, which would
allow any heuristic algorithm to profitably make use of the

defined search space. By the word profitably, we convey a
high chance of a large ergodic flow going out from a cut-
set in the search space. Now we formally define the term
magnification:
Definition 6 (Magnification [46], [47, Definition II.10]):

Let S be a non-empty subset of the search space � and |S| ≤
|�|
2 . Then, the magnification µ(�) of the search space � is
defined as: µ(�) = minS{µ(S)}, where

µ(S) =
|E(S, S)|
|S|

E(S, S) denotes the set of edges that go out from S to its
complement S.
To find the lower bound on magnification, we make use of

the canonical path method [46], [47]. In the canonical path
method, we first need to define a unique path (say 0U ,V )
between any two search space elements U and V . Then
we find an upper bound on the number of canonical paths
that pass through an edge in the search space. Using that
upper bound, we find the lower bound of the magnification.
In the following theorem, we find the lower bound of the
magnification of the proposed search space using the concept
of canonical paths.
Theorem 7: The magnification of the proposed search

space is at least 50 · (Bc − Bd + 1).
Proof: LetU = [S1, . . . , S24] and V = [S ′1, . . . , S

′

24] be
any two distinct elements in the search space. The canonical
path between U and V is defined in Lemma 5. Let R and
S be two neighbours in the search space which differ at a
unique index j. Consider any canonical path fromU to V (say
0U ,V ) which makes use of the edge (R, S). By definition of
canonical path, this is only possible if

R = [S ′1, S
′

2, . . . , S
′

j−1, Sj, Sj+1, . . . , S24]

and

S = S ′1, S
′

2, . . . , S
′
j , Sj+1, . . . , S24].

That is, the first j coordinates are identical in V and S, and the
last 24−j+1 coordinates are identical inU and R. Therefore,
the total number of canonical paths passing through the edge
(R, S) is

[
100(Bc−Bd +1)

](24−j)
·
[
100(Bc−Bd +1)

](j−1)
=[

100(Bc − Bd + 1)
]23. Now we prove the lower bound on

magnification.
Let S be a non-empty subset of the search space � and
|S| ≤ |�|2 . Let 8(S,S) denote a set of canonical paths 0U ,V ,
which start at some vertex U ∈ S and end at some vertex
V ∈ S. Then,

|8(S,S)| = |S| × |S| ≥
|S| · |�|

2
(since |S| ≤

|�|

2
) (9)

Now consider an edge (R, S) ∈ E(S, S). Every path in
|S| ≤ |�|2 should pass through one such edge from E(S, S).
We have shown that maximum number of canonical paths
passing through an edge is

[
100(Bc − Bd + 1)

]23. Therefore,
|E(S, S)| ·

[
100(Bc − Bd + 1)

]23
≥ |8(S,S)| (10)
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Using Equation 9 and Equation 10, we get

|E(S, S)|
|S|

≥
|�|

2
[
100(Bc − Bd + 1)

]23
Since |�| =

[
100(Bc−Bd + 1)

]24, we get µ(S) = |E(S,S)|
|S| ≥

50 · (Bc − Bd + 1). Hence the theorem. �

III. GA AND PSO FOR OPTIMIZING A
DAY-AHEAD ESS SCHEDULE
In this section, we describe GA and PSO for the problem
defined in Section II, using the search space defined in
Definition 3. The first subsection describes GA and the sec-
ond subsection describes PSO.

A. GA
Let np denote the population size. Initially, we randomly
select np individuals from search space. In each generation,
we select the fittest ns individuals from the population to
produce offspring. The fitness of a search space element is
calculated as defined in Equation 8. Since the optimization
problem is a minimization problem, one individual is fitter
than another if it has a lower value of the cost function. Using
ns selected individuals, we can formC(ns, 2) pairs. Crossover
is applied to each pair of individuals with probability Pc
(according to Definition 8), resulting in nc total offspring.
After crossover, mutation is applied to the offspring produced
with mutation probability Pm (according to Definition 9).
Then, out of the total np + nc chromosomes, the fittest np
proceed to the next generation. This process repeats for ng
generations. After the last generation, the fittest individual is
returned. The crossover and mutation functions are defined
as follows:
Definition 8 (Crossover): Let U = [S1, . . . , S24] and V =

[S ′1, . . . , S
′

24] denote parents. Then, the crossover operation
will produce two children, C1 and C2, where

C1 = [S1, . . . , S12, S ′13, . . . , S
′

24]

and

C2 = [S ′1, . . . , S
′

12, S13, . . . , S24]
Definition 9 (Mutation): Let U = [S1, . . . , S24] denote a

search space element. Mutation on U is defined as replacing
any one of the dimensions, say Si, with a real value (truncated
to 2 decimal places) in the range provided by equation 4.
The complete Genetic Algorithm can be found in

Algorithm 1.

B. PSO
A search space element as defined in Definition 3 is called
a particle in PSO. We begin with a ‘‘population’’ array of
mp particles by randomly selecting elements from the search
space. Every particle’s initial velocity is set to vinitial . Each
particle contains two additional attributes - localBest, which
is a search space element denoting the best position (highest
fitness value) the particle has traversed hitherto, and glob-
alBest, the index of the particle in the population array with

Algorithm 1 GA for Optimizing Day-Ahead ESS Schedule
1: population = randomly select np elements from the

search space (as defined in Definition 3)
2: mutation probability = Pm, crossover probability = Pc
3: generations = ng and iteration = 0
4: while (iteration < generations) do
5: Pick the fittest ns individuals from population
6: for each pair p1,p2 from C(ns, 2) pairs do
7: Apply crossover with probability Pc (Defini-

tion 8) and generate offspring
8: Mutate the offspring with probability Pm (Defini-

tion 9)
9: end for
10: Out of the total resulting individuals (np + nc), pick

np fittest individuals to proceed to the next generation
(nc denotes the number of offspring generated in the
iteration)

11: iteration = iteration+ 1
12: end while
13: return the fittest individual in population

the highest fitness value. Let the number of iterations be
maxiter . In each iteration, we move the particle through the
search space using Equations 1 and 2. We pick different val-
ues of inertia factor w, including a linearly decreasing model,
and obtain different results (will be discussed in Section IV).
The values chosen for the acceleration coefficients c1 and c2
will also be revealed in Section IV. Algorithm 2 describes the
whole process.

IV. RESULTS AND DISCUSSION
We obtained the hourly load (L), generated energy(G), and
grid price (A) profiles over a 24-hour interval from [48].
In this data-set, there are microgrids of three different
sizes - 8 hmes, 20 homes, and 40 homes - having batteries
of cumulative sizes 43.44kWh, 108.6kWh, and 217.2kWh
respectively. In this simulation, we assume that the cumula-
tive batteries form a centralized ESS in each of the micro-
grids. We also assume that the SoC of each ESS is 30%
at the start of the day. The value of Bd , the maximum
depth of discharge, is −23 (which means SoC can fall by at
most 23% in an hour interval). Similarly, Bc, the maximum
depth of charge, is+23. Therefore, the search space contains(
100(Bc−Bd + 1)

)24
= 470024 ≈ 2288 number of elements.

Figure 3 shows how the forecast data vary for Home 1 in the
microgrid with eight homes.

Beforewe look at the results usingGA and PSO,we require
a standard for comparison. For this, we use the Net Power
Based Algorithm (NPBA), where the ESS charges or dis-
charges to accommodate the difference between the load and
the generated energy without regard to the electricity price.
For example, in some cases, it may be prudent to save battery
power for later when the grid price is higher, instead of using
it right away. The total cost obtained for each of the three
microgrids in the data-set using NPBA is shown in Table 1.
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Algorithm 2 PSO for Optimizing a Day-Ahead ESS
Schedule
1: population = randomly initialize mp particles (search

space elements)
2: cycles = maxiter
3: for each particle in population do
4: Set velocity as vinitial
5: Set localBest to particle’s current position
6: end for
7: Set globalBest as index of particle with highest fitness

value
8: if linearly decreasing inertia model then
9: Set wmin

10: Set wmax
11: else
12: Set w
13: end if
14: Set acceleration coefficients c1 and c2
15: for iter in 1..cycles do
16: if linearly decreasing inertia model then
17: w = wmin + ((maxiter − iter)/maxiter ) ∗ (wmax −

wmin)
18: end if
19: for each particle in population do
20: for each dimension in particle do
21: Set r1 and r2 as randomly chosen real num-

bers in range [0,1]
22: Set velocity = w * velocity + c1 * r1 *

(localBest - current position) + c2 * r2 * (position of
globalBest particle - current position)

23: Set current position = current position +
velocity

24: end for
25: if particle satisfies constraints in Equation 4 and

5 then
26: Calculate fitness value of particle as defined

in Equation 7
27: if current position fitness is higher than

localBest fitness then
28: Set localBest to current position
29: if current position fitness is higher than

globalBest fitness then
30: Set globalBest to index of current par-

ticle
31: end if
32: end if
33: else
34: Revert particle to previous position, since new

position is invalid
35: end if
36: end for
37: end for
38: return the fittest particle in population

FIGURE 3. Forecast data for Home 1.

TABLE 1. Cost obtained using NPBA.

TABLE 2. Cost obtained using GA with np = 1000, ns = 32, ng = 1000.

Now, let us first look at the results obtained using GA and
PSO for the 8-home microgrid.

A. RESULTS USING GENETIC ALGORITHM
Parameters have a large impact on the performance of meta-
heuristics. Therefore, we experimented with a wide range of
parameter values and used trial and error to converge on the
values that provided us with the best cost reduction.

We ran Algorithm 1 with different values of np, ns,
ng, Pm, and Pc. We experimented with different values of
Pm, the mutation probability, in the range [0, 0.2], and
obtained best results with Pm = 0.1. Similarly, we found
the best results with the crossover probability, Pc, set to 1.
Tables 2, 3, and 4 depict the results for different values of np,
ns, and ng. It can be seen that we obtained the best results
with the population size, np, set to 1000, the number of
parents picked to produce offspring in each generation, ns,
set to 32, and the number of generations, ng, set to 1000.
Since GA is a stochastic algorithm, we obtained different cost
values in each run. The average cost obtained, 4865.27 cents
(depicted in Table 2), is an improvement of 11.07% over
NPBA. Inmost cases, GA virtually stagnated after 10-20 gen-
erations and entirely stagnated after about 900 generations.
Figure 4 depicts an average run of GA. Figure 5 depicts how
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TABLE 3. Cost obtained using GA with np = 500, ns = 23, ng = 1950.

TABLE 4. Cost obtained using GA with np = 5, ns = 2, and ng = 500000.

FIGURE 4. Average GA run.

the SoC of the ESS varies with hour interval i in a stochastic
run of GA (with corresponding cost 4852.95 cents). It can be
observed that the ESS is charged in the mornings (when the
grid price is lower) and discharged in the later parts of the day
(when the grid price is higher).

B. RESULTS USING PSO
For PSO, the recommended value for both the acceleration
coefficients c1 and c2 is 2 [30], because on average it makes
the weights for the social and cognition parts of Equation 1
equal to 1 (since r1 and r2 are real numbers in the range [0,1]).
This ensures a balance between the local and global search
for the optimal solution. We obtained the best results with
c1 = c2 = 2.025. [49] showed that it’s best to set initial
particle velocities to zero or random values close to zero,
so we set vinitial = 0. As for mp, the population size, in the
majority of applications, authors set mp in between 20 and
50 particles [50]. However, we obtained the best results with

FIGURE 5. Hourly state of charge of battery using GA.

TABLE 5. Cost obtained using PSO with constant inertia factor.

a high population size of 1000 particles. We observed no
additional benefits for mp > 1000. As for the number of
iterations, maxiter , we found no additional reduction in total
cost for maxiter > 1000.
We initially set the inertia factor, w, at 0.9, which falls in

the range recommended by [30] to find the global optimum.
With these parameter values, the result was similar to that
of GA, with the average cost over ten stochastic runs being
4923.03 cents (depicted in Table 5). This is an improvement
of 10.02% over NPBA. Next, we used a linearly decreasing
inertia factor, which was shown to generally perform better
by [30]. In this scheme, the inertia factor, w, varies in each
iteration according to Equation 3. This scheme worked best
with wmin = 0.5 and wmax = 1.4. However, there was
a negligible improvement over the constant inertia factor
scheme, with the average cost obtained over 10 stochastic
runs being 4880.82 cents (depicted in Table 6), an improve-
ment of 10.79% over NPBA.

Then, we removed the momentum factor altogether, which
was not found to be effective by the paper that first proposed
PSO [12]. Surprisingly, however, when the inertia factor was
made 0, the algorithm returned much better solutions over-
all, with the average cost obtained over 10 stochastic runs
(depicted in Table 7) being 4688.68 cents, a 14.3% improve-
ment over NPBA. This is over 3 percentage points better than
GA and other PSO simulations with non-zero inertia factors.
Moreover, it can be seen that without the momentum factor,
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TABLE 6. Cost obtained using PSO with linearly decreasing inertia factor.

TABLE 7. Cost obtained using PSO without particle momentum.

FIGURE 6. Hourly state of charge of battery using PSO.

PSO does not stagnate like GA and gradually moves closer
to a better solution in each iteration, as depicted by Figure 7.
Figure 6 depicts how the SoC of the ESS varies with hour
interval i in a stochastic run of PSO (with corresponding cost
4686.33 cents).

The above results are for the 8-home microgrid. Next,
we ran the algorithms on the 20-home and 40-home micro-
grids and found similar results, summarized in Table 8. Note
that the last column Avg. Cost Reduction is an unweighted
average of the percentage improvement over NPBA provided
by the respective algorithm over all three data-sets.

It should be noted that the performance of our proposed
algorithms is highly dependent on the parameters chosen.
Parameter values that work well for our data-sets may or may
not work well for other data-sets. Therefore, it’s important to
experiment with different parameter values and settle on what

FIGURE 7. Average PSO run with no momentum.

TABLE 8. Comparison of costs.

works well for the data-set under consideration. Also, it’s
important to understand that meta-heuristics do not guarantee
solution optimality. That said, they generally do return close-
to-optimal solutions. It’s up to the practitioner to tweak the
parameters of the algorithm to obtain good solutions.

V. CONCLUSION
Taking into account the possibility of dynamic electricity
pricing in the future, we set out to develop an algorithm that
reduced the overall cost paid by consumers by scheduling the
ESS in a microgrid optimally. We also considered constraints
like the battery’s maximum depth of charge and discharge
to better emulate a real-world scenario. We first defined
the problem statement mathematically. Then, we defined the
search space and studied its structural properties. We proved
that our search space has a magnification of at least 50×(Bc−
Bd + 1), where Bc and Bd are the maximum depths of charge
and discharge of the ESS respectively. Then, we described
our algorithmic approach for this optimization problem by
using Genetic Algorithm and Particle Swarm Optimization.
We then applied the algorithms to forecast data obtained
from [48]. We found that both GA and PSO fared well com-
pared to the Net Power Based Algorithm. However, PSO
with the momentum factor removed consistently provided the
best cost reductions of over 14%. This reduction in cost over
an extended span of time translates to a better incentive to
shift to smart grids and incorporate renewable energy source
infrastructure. We look forward to seeing the performance of
other bio-inspired algorithms on the proposed search space.
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