
Optimization of Design Complexity in
Time-Multiplexed Constant Multiplications

Levent Aksoy†, Paulo Flores†‡ and José Monteiro†‡

† INESC-ID, ‡ IST TU Lisbon
Lisbon, Portugal

Abstract—The multiplication of constants by a data input is an
essential operation in digital signal processing (DSP) systems. For
applications requiring a large number of constant multiplications
under stringent hardware constraints, it is generally realized
under a folded architecture, where a single constant selected from
a set of multiple constants is multiplied by the data input at each
time, called time-multiplexed constant multiplication (TMCM).
This paper addresses the problem of optimizing the complexity
of a TMCM design and introduces an algorithm that finds the
least complex TMCM design by sharing the logic operators,
i.e., adders, subtractors, adders/subtractors, and multiplexors
(MUXes). It includes efficient search methods, yielding better
results than existing TMCM algorithms.

I. INTRODUCTION

The multiple constant multiplications (MCM) operation,
realizing the multiplication of constants by an input variable,
dominates the design complexity of many DSP systems. Since
these constants are determined beforehand, the constant multi-
plications are generally replaced with addition, subtraction, and
shift operations. In hardware, shifts can be realized using only
wires without representing any cost. Over the years, efficient
algorithms were proposed for the optimization of the number
of adders and subtractors in the MCM operation [1]–[3].

However, as the number and size of the constants increase,
the increase in complexity is inevitable if the constant multi-
plications are realized simultaneously in a parallel architecture.
Hence, in DSP applications targeting low complexity, a folded
architecture [4] is preferred, where the common resources
are allowed to be shared in time, taking into account an
increase in latency. In folded design of DSP systems, TMCM
is a fundamental operation. Given a set of n constants, its
straightforward realization, the mux-mul architecture, includes
a generic multiplier and an n-to-1 MUX, where i denotes the
select input with 0≤i≤n−1 (Fig. 1a). Another realization, the
mcm-mux architecture, uses an n-to-1 MUX and an MCM
block including adders and subtractors that implement the
constant multiplications (Fig. 1b). An alternative solution,
the mux-add architecture, includes adders, subtractors, and
adders/subtractors (determined by a select input) with MUXes
(Fig. 1c). It increases the number of constants that a logic
operator can generate and provides the possible sharing of
logic operators. Hence, it may yield less complex TMCM
designs when compared to other architectures [5]–[10].

The single-input single-output (SISO) and single-input
multiple-output (SIMO) TMCM blocks occur in folded design
of filters and filter banks, respectively [8]. In this work, the
constants of a TMCM operation are represented in an m× n
matrix C, where m and n are the number of outputs and time
slots (the number of constants in an array), respectively. Thus,

This work was supported by national funds through FCT, Fundação para a
Ciência e a Tecnologia, under project PEst-OE/EEI/LA0021/2013.

978-3-9815370-2-4/DATE14/ c⃝2014 EDAA

�

��

�� ���
����

� ��

� ��
���
���

�����

� 	�

� �

� ���

�


 ��

�

�

� ��

�
 � �� � �� �

� � �

Fig. 1. TMCM architectures: (a) mux-mul; (b) mcm-mux; (c) mux-add.

given C, the TMCM problem is defined as finding a set of
logic operators, i.e., adders, subtractors, adders/subtractors, and
MUXes, that realizes the TMCM operation and leads to a
TMCM design with minimum complexity. Existing methods
targeting the mux-add architecture consider different design
platforms, i.e., application specific integrated circuits (ASIC)
and field programmable gate arrays. They reduce the com-
plexity of a TMCM operation by sharing the basic structures
and merging the single/multiple constant multiplication graphs.
The exact method [5] can only be applied to a small number
of constants and the solution quality of the approximate
methods [6]–[10] depends heavily on the TMCM instance.

This paper introduces our TMCM algorithm ORPHEUS
that targets the mux-add architecture and the SIMO TMCM
operations under an ASIC design platform, where the area
values of logic operators are taken from a standard cell library.
It includes two main parts: optimal and heuristic. In its optimal
part, the arrays of constants, that can be realized using a single
logic operator, are synthesized. In its heuristic part, an array of
constants is chosen, its alternative implementations are found,
and it is synthesized with the one that has the smallest cost.
ORPHEUS iterates until all arrays of constants are synthesized.

II. ORPHEUS: A TMCM ALGORITHM
The steps of ORPHEUS, that will be described more briefly

in the next subsections, are given below. In these steps, the set
M, that initially consists of an input variable denoted by 1, will
include constants whose multiplications by the input variable
will be found by the MCM algorithm [3]. Also, the matrix S,
that initially consists of a single array of n 1s, will include the
synthesized arrays of constants. Note that the input variable(s)
is (are) always available. The set I will include logic operators
realizing the TMCM operation.

1) Given the constant matrix of the TMCM operation C,
determine the non-redundant target matrix T .

2) In an iterative manner, find an optimal realization of
a row of T , Ti, if it exists, remove Ti from T to S,
update M if necessary, and add this realization to I.

3) If T is empty, go to Step 10.
4) Select an array of constants from T , Ti.
5) Find a realization of Ti using a single operation whose

one of inputs is a row of S or its shifted version and
that has the smallest estimated cost value ecost1.

6) Find a realization of Ti under the mcm-mux architec-
ture and compute its estimated cost value ecost2.



7) Find a realization of Ti using a single operation that
has the minimum number of distinct partial terms at
its inputs and the smallest estimated cost value ecost3.

8) Among these three realizations, choose the one with
the minimum cost value and update T , S, I, and M.

9) If T is not empty, go to Step 2.
10) Design the MCM block for the constants of M using

the MCM algorithm [3], update and return I.
In following subsections, these steps are described through

an example with a 4×2 matrix C=[5 5;2 1;12 10;92 196].

A. Step 1: Preprocessing Phase
The negative constants of C are converted to positive,

because it is always assumed that the sign of a constant is
handled where the constant multiplication is required using an
adder/subtractor. For each row of C, Ci, its left shift, lsi, is
found by dividing Ci by 2 until at least one of its constants
is odd and Ci ⋅2−lsi , is added to T without repetition. For our
example, T is obtained as [5 5; 2 1; 6 5; 23 49].

B. Step 2: Finding Optimal Realizations
First, we check each row of T , Ti, if it includes the same

constant at its every time slot. If such an array of constants
exists, it is removed from T to S and this constant is added to
M without repetition. For our example, the row of T , [5 5], is
removed from T to S and 5 is added to M.

Second, we check each Ti if its constants are 1 or its shifted
versions so that it can be realized using a single MUX. If there
exists such an array of constants, it is removed from T to S
and this MUX is added to I. For our example, the row of T ,
[2 1], can be realized using a single MUX.

Third, we check each Ti if it can be realized using a single
operation, i.e., an adder, a subtractor, or an adder/subtractor,
whose inputs are the rows of S or their shifted versions.
While searching such realizations, the array of constants D
is computed as follows for each S j, ls j, and SMk:

D ⋅2lsd = Ti − (S j ⋅2ls j)★SMk (1)

where lsd ≥ 0 denotes the left shift of D, 1 ≤ j ≤ ∣S∣, ls j
stands for the left shift of S j, 0 ≤ ls j ≤ mbc(Ti)−mbc(S j)+1
(where mbc(A) function determines the maximum bitwidth of
constants in an array A), SM is a 2n ×n sign matrix including
all possible signs, i.e., 1 and −1, for the 1 × n array S j,
and 1 ≤ k ≤ 2n. Note that ★ denotes the element-by-element
product of arrays, e.g., in C = A★B, each entry in the array C
is the product of the corresponding entries in arrays A and B.
Thus, if D is equal to a row of S, then Ti can be realized using
a single operation. If SMk includes all 1s, then the operation
is an adder. If SMk includes all -1s, then it is a subtractor.
Otherwise, it is an adder/subtractor. If such a realization is
found, it is added to I and Ti is removed from T to S. In our
example, for the row of T , [6 5], one possible D is found as
[1 1] ⋅ 22 = [6 5]− ([2 1] ⋅ 20) ★ [1 1], which is also a row of S.
This realization of [6 5] needs a single adder.

This procedure iterates until there exists no such row of
T . For our example, T , S, and M are respectively found as
[23 49], [1 1; 5 5; 2 1; 6 5], and {1,5} at the end of this step.

C. Step 4: Selection of an Array of Constants
At this point, there exist array(s) of constants in T which

require(s) partial arrays of constants. In each iteration of
ORPHEUS, we select one of them that has the minimum

tnzd value, denoting the total number of nonzero digits of
constants in an array under the canonical signed digit (CSD)
representation1 [1]. A smaller tnzd value roughly indicates that
the array can be realized using less number of logic operators.
Hence, this metric is preferred to increase the sharing of logic
operators, since ORPHEUS considers the synthesized arrays of
constants of S in the realization of a row of T (Steps 2, 5, and
7). It is also used to ensure the convergence of each realization
to an array consisting of 1 or its shifted versions (Step 5).

D. Step 5: First Alternative Realization
Possible realizations of a row of T , Ti, are found based on

the computation in Eqn. 1. To avoid the exponential number of
sign values for the constants of S j, we traverse each constant,
S j[h] with 1≤ h≤ n, compute D[h] for both sign of S j[h], i.e., 1
and −1, and choose the one that leads to D[h] with minimum
number of nonzero digits under CSD. After D and the sign
array, corresponding to SMk in Eqn. 1, are determined, we
check if the tnzd value of D is less than that of Ti to ensure
the convergence of D. If so, the type of operation is determined
as done in Step 2 and its cost in a given standard cell library,
costop, is found [9]. We also estimate the cost of D as if it will
be realized under the mcm-mux architecture. First, the different
constants of D and its quantity, i.e., r, are found. If r > 1, the
cost of an r-to-1 MUX in a given standard cell library, costmux,
is found [9]. Otherwise, it is set to 0. Second, we convert each
constant of D to an odd constant, find the minimum number
of operations determined by the algorithm [11] required for its
multiplication by the input variable, compute the cost values
of these operations assuming them as adders, and add them
to costadd , which was initially set to 0. The costadd value is
computed without repeating the same odd constants. Thus, the
implementation cost of Ti is found as costop+costmux+costadd .
After all possible realizations of Ti are found considering each
S j with its all possible ls j values, we choose the one with the
minimum cost value that is assigned to ecost1.

For the row of T , [23 49], its realization with the minimum
cost is found as [3 6] ⋅ 23 + ([1 1] ⋅ 20) ★ [−1 1], requiring an
adder/subtractor and the partial array of constants [3 6] which
is estimated to need a 2-to-1 MUX and an adder.

E. Step 6: Second Alternative Realization
The cost value of the mcm-mux realization of Ti is com-

puted as described for the estimation of the cost of D in Step
5, except that the elements of M are considered in this case.
If the odd version of a constant of Ti is an element of M, then
it is not considered in computation of costadd . Thus, ecost2 is
found as costmux+costadd . For our example, the estimated cost
of [23 49] includes a 2-to-1 MUX and 4 adders.

F. Step 7: Third Alternative Realization
In this realization of Ti, we aim to find an implementation

(an adder or a subtractor) for each constant of Ti such that these
operations include the minimum number of distinct partial
terms at their inputs. The reason behind this is that common
partial terms reduce the sizes of MUXes and the number of
elements in the partial array of constants. This problem is
formalized as a 0-1 integer linear programming (ILP) problem.

First, we find all realizations of each constant of Ti by
decomposing its nonzero digits in two partial terms when it

1An integer can be written in CSD using k digits as ∑k−1
j=0 d j2k, where

d j ∈ {1,0,1} and 1 denotes −1. The nonzero digits are not adjacent and a
constant is represented with minimum number of nonzero digits under CSD.



23=

⎧⎨
⎩

101001 =

⎧⎨
⎩

100000+001001 = 32−9
001000+100001 =−8+31
000001+101000 =−1+24

011001 =

⎧⎨
⎩

010000+001001 = 16+7
001000+010001 = 8+15
000001+011000 =−1+24

49=

⎧⎨
⎩

1010001 =

⎧⎨
⎩

1000000+0010001 = 64−15
0010000+1000001 =−16+65
0000001+1010000 = 1+48

0110001 =

⎧⎨
⎩

0100000+0010001 = 32+17
0010000+0100001 = 16+33
0000001+0110000 = 1+48

� ��� � �� � ��� � �� � ��� � �� � ��� � �	 � �	 � ��� � �� � ��
 � ��


��
 ����
��
 ����

��
 ����

��
 ���	

��
 	���

��
 �
��
��
 ���


�� �� �� ��

� �� � ��� � ���� ��� � ��
 � ��	 � ���� ��	 � ��� � ���

��
 ����

��
 �
���

��
 ����

��
 ���� ��
 ����	

��
 �	���
��
 �����

��
 �����

(a) (b)
Fig. 2. (a) Possible implementations of 23 and 49 under MSD; (b) Boolean network generated for [23 49].

is defined under the minimal signed digit (MSD) representa-
tion2 [2]. For the row of T , [23 49], the possible realizations of
its constants are given in Fig. 2a. Since a constant may have
multiple representations under MSD, the number of possible
realizations is increased. But, this may yield similar realiza-
tions, e.g., −1+24 and 48+1 for 23 and 49, respectively.

Second, we represent the realizations of constants in a
Boolean network that includes only AND and OR gates. For an
adder, two AND gates, denoted as ANDp1+p2 and ANDp2+p1 ,
are generated due to the commutative law of addition. For a
subtractor, we assume that the first input is the partial term
with the positive sign and the second input is the one with
the negative sign and we generate an AND gate denoted as
ANDp1−p2 . For each constant of Ti, Ti[h], where 1 ≤ h ≤ n,
an OR gate, ORTi[h], is generated to combine all realizations
of Ti[h]. Each partial term pk at the first or second input of
an operation is denoted as an optimization variable, O1∣pk∣ or
O2∣pk∣, respectively. The network generated for the row of T ,
[23 49], is shown in Fig. 2b.

Third, the objective function of the 0-1 ILP problem
is found as a linear combination of optimization variables
whose weights are 1. Its constraints are obtained by finding
the conjunctive normal form (CNF) formulas of each gate
and expressing each clause of the CNF formulas as a linear
inequality [12]. For example, a 2-input AND gate, c = a∧b, is
translated to CNF as (a+c)(b+c)(a+b+c) and converted to
linear constraints as a−c ≥ 0, b−c ≥ 0, −a−b+c ≥−1. The
outputs of OR gates associated with constants of Ti, ORTi[h], are
set to 1, since they need to be implemented.

Forth, a minimum solution is found using a 0-1 ILP solver
and based on the selected operations (the outputs of AND gates
set to 1 in the solution), the realization of Ti is formed as:

Ti = G1 ⋅2ls1 +(G2 ⋅2ls2)★SA (2)

where G1 (G2) includes the first (second) inputs of the selected
operations for each constant of Ti, ls1 (ls2) is the amount of
left shift of G1 (G2), and SA denotes the sign array and is
determined based on the type of each operation, i.e., if Ti[h] is
realized using an adder, then SA[h] is 1, otherwise, it is -1. For
our example, the operations 7+16 and 65−16 are respectively
found for constants 23 and 49, and the realization of [23 49] is
obtained as [7 65] ⋅20+([1 1] ⋅24)★ [1 −1] according to Eqn. 2.

Finally, we compute the cost of this realization as done in
Step 5. To do so, we define the type of operation based on

2MSD differs from CSD in one property which allows the nonzero digits
to be adjacent. Thus, a constant may have alternative representations in MSD,
all including minimum number of nonzero digits.

�

�

� ��
� ��

�� � �

�� � �

��� �	 �

�
 � � ��� ��� �



�








�



�

�



�



�

Fig. 3. Time-multiplexed realization of C = [5 5;2 1;12 10;92 196].

SA and compute its cost, costop [9]. For any of G1 and G2, if
it is not included in S, then we estimate its cost in terms of
costmux and costadd . For our example, the type of operation is
adder/subtractor and only the cost of [7 65] is estimated.

This solution leads to an operation with common partial
terms at the inputs. In order to include an information about
the design complexity into the 0-1 ILP problem, for each
partial term pk, we also take into account its bitwidth bw(pk)
and number of nonzero digits under CSD nzd(pk). Hence, we
modify the objective function of the previous 0-1 ILP problem,
where the weight of each optimization variable, denoting a
partial term pk at the inputs of operations, is assigned to
bw(pk) ⋅nzd(pk). In this case, 23 and 49 are implemented as
8+15 and 64−15, respectively and the realization of [23 49]
is determined as [1 8] ⋅23 +([15 15] ⋅20)★ [1 −1], requiring an
adder/subtractor and the partial arrays [1 8] and [15 15].

Among these two possible realizations, we determine the
one with the minimum cost which is assigned to ecost3. For
our example, the second one has the minimum cost.

G. Step 8: Selection of the Realization with Minimum Cost
Among the realizations found in Steps 5, 6, and 7, if ecost1

is the minimum, we add the required partial array of constants
(found in Step 5) to T . If ecost2 is the minimum, we remove
Ti from T to S and add the odd versions of constants in Ti to
M without repetition. Otherwise, we add the required partial
array(s) of constants (found in Step 7) to T . In case of equality
of cost values, the realization found in Step 6 is favored first,
and then, the one found in Step 5. For our example, ecost1 is
the minimum cost value, and thus, [3 6] is added to T .

H. Step 9: Iterations in ORPHEUS

ORPHEUS iterates until T is empty. For our example, in
the next iteration, [3 6] and [23 49] are respectively realized as
[5 5] ⋅20 +([2 1] ⋅20)★ [−1 1] and [3 6] ⋅23 +([1 1] ⋅20)★ [−1 1].

I. Step 10: Realization of the Necessary MCM Block
If M includes constants other than 1, the MCM algorithm

of [3] is applied to find the fewest number of operations
realizing these constant multiplications and these operations



TABLE I. SUMMARY OF ALGORITHMS ON SISO TMCM INSTANCES.
mbc n 2 6 10 14 18

6

#BS 27 19 21 24 29
Min Gain -4.78 -19.85 -18.19 -16.91 -1.94
Avg Gain 9.16 4.20 6.75 9.94 17.03
Max Gain 30.30 31.90 28.98 28.21 32.75
CPU DAGfusion 0.76 2.90 8.08 11.29 19.34
CPU ORPHEUS 0.94 0.33 1.07 1.50 2.15

8

#BS 24 16 20 18 26
Min Gain -9.46 -13.52 -19.95 -16.14 -7.98
Avg Gain 8.20 2.93 4.51 5.98 12.71
Max Gain 25.54 26.02 22.71 25.25 34.46
CPU DAGfusion 0.84 4.84 11.41 15.55 20.42
CPU ORPHEUS 1.39 1.75 2.24 2.83 4.19

10

#BS 22 15 16 19 24
Min Gain -23.26 -14.75 -12.85 -12.91 -15.97
Avg Gain 6.99 1.27 0.75 7.59 7.81
Max Gain 28.48 27.66 22.96 28.51 27.75
CPU DAGfusion 0.83 7.18 20.97 113.34 99.28
CPU ORPHEUS 1.94 2.86 3.84 5.55 8.57

12

#BS 25 18 18 24 19
Min Gain -12.06 -19.22 -14.69 -21.54 -20.33
Avg Gain 13.88 3.17 4.17 6.80 4.75
Max Gain 43.23 39.97 23.96 27.91 24.52
CPU DAGfusion 1.00 23.54 65.72 276.09 515.20
CPU ORPHEUS 2.85 4.89 7.12 8.68 13.42

are added to I. Also, for each chosen mcm-mux realization, the
necessary MUX is added to I. The solution on our example
C is given in Fig. 3, where the select inputs of the MUX and
adders/subtractors are not shown for the sake of clarity.

III. EXPERIMENTAL RESULTS

This section presents the results of ORPHEUS, comparing
them to those of prominent TMCM algorithms. ORPHEUS was
written in MATLAB and was run on a PC with Intel Xeon
at 2.4GHz and 10GB memory. Note that DAGfusion [9] was
obtained from www.spiral.net and its exhaustive search on
all possible orderings of SCM graphs was limited to 10,000
orderings, since it may take enormous CPU time.

As the first experiment set, we used randomly generated
1 × n TMCM instances, where the maximum bitwidth of
constants (mbc) varies in between 6 and 12 in increment of
2 and n ranges between 2 and 18 in increment of 4. For
each group, there were 30 instances, a total of 600 instances.
Table I presents the results of algorithms, where #BS denotes
the number of better solutions that ORPHEUS found against
DAGfusion [9] in terms of complexity, computed using the
0.18-μm standard cell library when the bitwidth of the input
variable (bwi) was 16. Min Gain, Avg Gain and Max Gain de-
note the minimum, average, and maximum gain in percentage
obtained by ORPHEUS over DAGfusion, respectively. Average
runtime of both methods is given in seconds.

Observe from Table I that ORPHEUS obtains better solu-
tions than DAGfusion on more than half of the total number of
TMCM instances, i.e. 30, in each group, except that including
10-bit 6 constants. Its maximum gain over DAGfusion is
greater than 20% on every group of instances, reaching up
to 43.23% on a TMCM instance with 12-bit 2 constants.
Note also that its maximum gain is higher than DAGfusion’s
maximum gain over ORPHEUS on every group of instances and
its average gain reaches up to 17.03% on instances consisting
of 6-bit 18 constants. Furthermore, it requires less CPU time
than DAGfusion on instances with n ≥ 6.

As the second experiment set, we used two benchmark sets
given in [10]. Tables II-III present the results of algorithms,
where Cost, denoting the design complexity, was computed
using the 0.18-μm standard cell library when bwi was 8. The
results of other TMCM algorithms were taken from [10].

TABLE II. AREA ESTIMATION FOR C = [256 162 50 26 15 8 4 2 1].
Method Add Sub Add/Sub MUX Cost

[9] 0 0
1 (12-bit) 1 (14-bit) 3-to-1

4704
1 (14-bit) 1 (16-bit) 7-to-1

[8] 1 (10-bit) 1 (12-bit)

1 (8-bit) 2-to-1

9578

1 (10-bit) 1 (9-bit) 2-to-1
2 (11-bit) 2 (10-bit) 2-to-1
1 (12-bit) 1 (11-bit) 2-to-1
1 (16-bit) 1 (12-bit) 2-to-1

1 (16-bit) 2-to-1

[10] 0 0
1 (12-bit) 1 (14-bit) 3-to-1

46481 (14-bit) 1 (11-bit) 4-to-1
1 (16-bit) 4-to-1

ORPHEUS 1 (14-bit) 0 1 (15-bit)
1 (14-bit) 4-to-1

4452
1 (15-bit) 6-to-1

TABLE III. AREA ESTIMATION FOR C = [362 392 473].
Method Add Sub Add/Sub MUX Cost

[9] 1 (19-bit) 1 (16-bit) 1 (12-bit)

2 (12-bit) 2-to-1

6365
1 (19-bit) 2-to-1
1 (16-bit) 3-to-1
1 (20-bit) 3-to-1

[8]
1 (11-bit)

0 1 (11-bit)
3 (11-bit) 2-to-1

50741 (12-bit) 1 (14-bit) 2-to-1
1 (17-bit)

[10] 1 (17-bit)

1 (11-bit)

0

1 (14-bit) 2-to-1

5986
1 (12-bit) 1 (16-bit) 2-to-1
1 (14-bit) 1 (17-bit) 2-to-1

1 (18-bit) 3-to-1

ORPHEUS 1 (10-bit)
1 (15-bit)

0
1 (11-bit) 3-to-1

4036
1 (17-bit) 1 (12-bit) 3-to-1

Observe that ORPHEUS finds a TMCM design with the
least complexity, where the gain over the second best solution
in Tables II and III is 4.21% and 20.45%, respectively.

IV. CONCLUSIONS
This paper introduced the TMCM algorithm ORPHEUS that

is equipped with efficient methods to maximize the sharing
of logic operators. It was shown that it generally finds better
solutions than previously proposed algorithms.

REFERENCES

[1] R. Hartley, “Subexpression Sharing in Filters Using Canonic Signed
Digit Multipliers,” IEEE TCAS-II, vol. 43, no. 10, pp. 677–688, 1996.

[2] I.-C. Park and H.-J. Kang, “Digital Filter Synthesis Based on Minimal
Signed Digit Representation,” in DAC, 2001, pp. 468–473.

[3] Y. Voronenko and M. Püschel, “Multiplierless Multiple Constant Mul-
tiplication,” ACM Transactions on Algorithms, vol. 3, no. 2, 2007.

[4] K. Parhi, “High-Level Algorithm and Architecture Transformations for
DSP Synthesis,” Journal of VLSI Signal Processing, vol. 9, no. 1, pp.
121–143, 1995.

[5] N. Sidahao, G. Constantinides, and P. Cheung, “Multiple Restricted
Multiplication,” in FPL, 2004, pp. 374–383.

[6] ——, “A Heuristic Approach for Multiple Restricted Multiplication,”
in ISCAS, 2005, pp. 692–695.

[7] R. Turner and R. Woods, “Highly Efficient, Limited Range Multipliers
for LUT-based FPGA Architectures,” IEEE TVLSI, vol. 12, no. 10, pp.
1113–1117, 2004.

[8] S. Demirsoy, I. Kale, and A. Dempster, “Reconfigurable Multiplier
Constant Blocks: Structures, Algorithm and Applications,” Springer
CSSP, vol. 26, no. 6, pp. 793–827, 2007.

[9] P. Tummeltshammer, J. Hoe, and M. Püschel, “Time-Multiplexed
Multiple-Constant Multiplication,” IEEE TCAD, vol. 26, no. 9, pp.
1551–1563, 2007.

[10] J. Chen and C.-C. Chang, “High-Level Synthesis Algorithm for the
Design of Reconfigurable Constant Multiplier,” IEEE TCAD, vol. 28,
no. 12, pp. 1844–1856, 2009.

[11] O. Gustafsson, A. Dempster, and L. Wanhammar, “Extended Results
for Minimum-adder Constant Integer Multipliers,” in ISCAS, 2002, pp.
73–76.

[12] P. Barth, “A Davis-Putnam Based Enumeration Algorithm for Linear
Pseudo-Boolean Optimization,” Max-Planck-Institut Fur Informatik,
Tech. Rep., 1995.


