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Abstract: Diagrids represent one of the emerging struc-

tural systems employed worldwide for the construction

of high-rise buildings. Their potential relies on the pecu-

liar architectural e�ect and their great lateral sti�ness. Be-

cause of the modular nature of the diagrid triangular ele-

ment, optimization processes are usually carried out to as-

sess the best arrangement of the external diagonals in or-

der to enhance the structural performance while using the

lowest amount of structural material. In this contribution,

we make use for the �rst time of the desirability function

approach to investigate the optimal geometry of the dia-

grid system. A 168-meter tall building, with four di�erent

�oor shapes, is analyzed, and the inclination of the exter-

nal diagonals is varied between 35∘ and 84∘. The desirabil-

ity function approach is applied to �nd the most desirable

geometry to limit both the lateral and torsional deforma-

bility, the amount of employed material as well as the con-

struction complexity of the building. A sensitivity analysis

is also carried out to investigate the in�uence of the indi-

vidual desirability weight on the obtained optimal geom-

etry. The e�ect of the building height is �nally evaluated,

through the investigation of sets of 124-, 210- and 252-meter

tall diagrid structures.

1 Introduction

In the last decades, the realization of tall buildings around

the world has experienced an intense growth. Without

neglecting the importance of economic issues, attention

should be paid to the sustainability related to such a per-

sistent construction process [1]. From a structural view-
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point, the need for sustainability has led designers and re-

searchers to a deep investigation of the most suitable solu-

tions and the most recent developments in the �eld of tall

buildings [2, 3]. Oneof themost e�cient system for the real-

ization of tall buildings up to ~150 stories has relied on the

diagrid tube. It is a tubular structure, placed over the ex-

terior of the building, made up of diagonals which are de-

signed to carry both the horizontal and gravity loads [4–7].

The diagonals can span across several �oors and their spa-

tial arrangement allows the realization of complex-shaped

structures with remarkable architectural e�ects.

Based on the pioneering work of Moon et al. [8], the

most common procedure for the preliminary design of di-

agrid systems has usually followed a sti�ness-based ap-

proach. The sizing process of the diagonals is carried out

by minimizing the horizontal displacement of the build-

ing when subjected to lateral loads, in order to ful�ll the

requirements of international codes (typically, the maxi-

mum lateral de�ection at the top of the building should be

lower thanH/500, beingH the total height of the structure).

Zhang et al. [9] made use of the sti�ness-based methodol-

ogy for the analysis of diagrid tubes composed of straight

diagonals with gradually varying angles, �nding the opti-

mal inclination. The sameapproachwas also used to inves-

tigate the structural performance of diagrid tubesmade up

of curved diagonals by Zhao and Zhang [10]. The sti�ness-

based method was also applied by Liu and Ma [11], who

proposed a modular method (MM) for the calculation of

the bending and shear sti�ness of polygonal diagrid tubes.

More recently, Lacidogna et al. [12] developed a matrix-

based method (MBM) for the structural analysis of diagrid

structures, which allows to take into account general ge-

ometries. Moreover, theMBMprovides information regard-

ing both the bending, shear, torsional and axial deforma-

bility of the whole diagrid building.

Being composed of periodic modular units, i.e. the ba-

sic triangular module, diagrid systems are suitable for op-

timization procedures that aim at limiting the lateral build-

ing de�ection as well as the amount of employed mate-

rial [8–10, 13, 14]. Several researchers have investigated

di�erent geometrical con�gurations in order to optimize

the structural performance of the diagrid. These proce-
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dures have been typically carried out by means of Finite

Element (FE) calculations, by varying the arrangement

of the diagonals along the height of the building. Mon-

tuori et al. [15] analyzed the structural performance of di-

agrid square tubes with di�erent diagonal patterns along

the building, namely uniform-angle, variable-angle and

variable-density patterns. Tomei et al. [16] also examined

other pattern con�gurations, like the double-density pat-

tern and the diagrid-like pattern, where the diagonals fol-

low the principal stress lines obtained from an equivalent

cantilever building. Angelucci and Mollaioli [17] investi-

gated the response of diagrid structures with non-uniform

pattern con�gurations, also simulating thepresenceof out-

riggers inducing a local increase in the density of the diag-

onals. Mirniazmandan et al. [18] used Genetic Algorithms

coupled with FE modeling to explore the optimal geomet-

rical solution of diagrid systems, when changing both the

diagonal inclination and the �oor shape. Mele et al. [19] in-

vestigated the e�ect of the diagrid slenderness on the struc-

tural behavior and the optimal design parameters. More

recently, Lacidogna et al. [20] made use of the previously

developed MBM in order to explore both the lateral and

torsional behavior of diagrid structures, by changing the

�oor shape and the inclination of the external diagonals.

The MBM was also recently used to analyze the e�ect that

an internal closed- or open-section concrete core has on

the global building response [21].

Most of the optimization procedures carried out in the

literature rely onposing the constraint on the lateral de�ec-

tion (typically H/500) and obtaining the optimal solution

as the one that minimizes the structural weight. However,

in recent studies it was shown that other responses charac-

terize the structural behavior of the diagrid andmight then

in�uence the choice of the optimal solution. For example,

Lacidogna et al. [20, 21] recently showed that the optimal

diagrid geometries that minimize the lateral de�ection of

the building are not the same that allow to minimize the

torsional rotations. The latter is minimum when the di-

agonals are very shallow, whereas the former gets mini-

mized when the diagonal inclination lies in an intermedi-

ate range that depends on the building aspect ratio [20].

Furthermore, Tomei et al. [16] pointedout that eachdiagrid

patternhas its owncomplexity, that needs to beminimized

in order for the structure to be achievable from a construc-

tion perspective. Based on these considerations, it follows

that multiple responses (lateral de�ection, torsional rota-

tion, structuralmass and construction complexity) need to

beminimized simultaneously in order to reach the optimal

sti�, light and feasible diagrid geometry.

The desirability function approach is one of the most

widely used methodology in multi-response optimization

due to its simplicity. Firstly formulated by Harrington in

1965 [22], it found extensive use in multi-response prob-

lems in the form proposed by Derringer and Suich in 1980

[23], with applications ranging from industrial engineer-

ing to applied science. The desirability function approach

is based on the assignment of a score between 0 and 1,

called the individual desirability di,p, to the ith combina-

tion of input parameters with respect to the pth response

variable. Then, an overall desirability (OD) is assigned to

each ith combination of variables based on the calculated

individual desirability values. The OD values �nally allow

to select the optimal solution among the sample.

In this paper, we apply for the �rst time the desirabil-

ity function approach to the problem of �nding the opti-

mal geometry of diagrid systems. Di�erent diagonal incli-

nations and �oor shapes are considered for the diagrid tall

building, that represent the di�erent combination of in-

put parameters, and four response variables are obtained

for each geometry, namely the lateral de�ection and tor-

sional rotation at the top of the building under horizontal

loads, the mass of the external diagrid tube and the dia-

grid complexity as suggested by Tomei et al. [16]. Based on

these four response variables, each diagrid geometry is as-

signed an individual desirability value based on the mini-

mization of each response. The �nal OD is then calculated

for each diagrid solution, allowing to discuss the optimal

shape leading to the sti�est, lightest and least complex ge-

ometry. Eventually, the in�uence of theweight of the di�er-

ent responses is also investigated on the obtained results,

as well as the in�uence of the building aspect ratio.

2 Methods

Here we investigate the optimal diagrid geometry (diag-

onal inclination and �oor shape) for the 168-meter tall

building considered in [20]. In particular four �oor shapes

(square, hexagon, octagon, circle) and six di�erent diago-

nal inclinations are analyzed (Figure 1). The diagonal in-

clinations are related to the di�erent number of �oors that

lie within the diagrid module, i.e. 1, 2, 3, 4, 6 and 12. Note

that, in this analysis, the diagrid module corresponds to

the triangular unit. Based on the di�erent combination of

the number of intra-module �oors and �oor shape, twenty-

four di�erent diagrid geometries are generated as reported

in Table 1.

The plan dimensions of the external diagrid tubes are

reported in Figure 1b, while the total height and inter-story

height of the building are 168mand 3.5m respectively. The

diagrid structure is made of steel, with an elastic modu-
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Figure 1: Diagrid geometries with di�erent (a) diagonal inclination and (b) floor shape [20]

Table 1: Twenty-four diagrid structures with di�erent diagonal

inclination and floor shape

Number of

intra-module

floors
1 2 3 4 6 12

Floor shape

Square S1 S2 S3 S4 S6 S12

Hexagon H1 H2 H3 H4 H6 H12

Octagon O1 O2 O3 O4 O6 O12

Circle C1 C2 C3 C4 C6 C12

lus of 210 GPa and mass density of 7.8 ton/m3. The cross-

sectional areas of the external diagonals are linearly vari-

able along the height of the building, with a maximum

value of 1000 cm2 at the ground module and 100 cm2 at

the upper module (see Appendix A1 in [20]). The building

is subjected to a uniform horizontal load of 30 kN/m along

the X axis and a uniform torque load of 70 kNm/m. Based

on the di�erent diagrid geometry, these distributed loads

are converted into concentrated horizontal forces and in-

plane torque moments acting at the level of the �oor cen-

troids.

As mentioned in the Introduction, four response vari-

ables are considered in this study to seek the optimal

diagrid geometry, namely the top lateral de�ection, top

torsional rotation, total mass of the diagrid and a syn-

thetic index that is related to the construction complex-

ity. The lateral de�ection and torsional rotation are com-

puted by means of the MBM, previously developed by the

Authors [12, 20]. The total mass of the diagrid is simply cal-

culated based on the steel unit density and the dimensions

and geometrical arrangement of the diagonals. Finally, the

diagrid complexity is evaluated according to the complex-

ity index (CI) proposed by Tomei et al. [16]. For each dia-

grid geometry, the CI is computed based on �ve metrics,

i.e. N1, N2, N3, N4 and N5. These are related to the con-

struction complexity of the structure and are de�ned by

Tomei et al. [16] as follows: N1 is the weighted number of

nodes, i.e. the number of joints of the pattern multiplied

by a numerical coe�cient, di�erently attributed on the ba-

sis of the joint connectivity (number of connecting mem-

bers); N2 is the number of di�erent cross-sections utilized

for the diagonals in the pattern; N3 represents the number

of splices required for the diagonals in the pattern, calcu-

lated assuming a maximum member length of 12 m; N4 is

the number of diagonals of the pattern; N5 is the number

of di�erent lengths of diagonal members in the pattern.

In this work we applied the same de�nition of the �ve

metrics above with one minor di�erence regarding N1. In-

stead of considering the weighted number of nodes based

on the joint connectivity, due to the fact that we do not

necessarily know the connectivity degree of the nodes that

connect the diagonal to the intra-module �oors, we just

considered the total number of diagrid panel nodes, i.e.

only the nodes connecting the diagonals. After the �vemet-

rics de�ned above have been computed for eachdiagrid ge-

ometry, each metric is normalized to the maximum value

among all the di�erent geometries. Finally, the sum of the

normalized parameters gives the CI of each geometry [16],
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i.e.:

CI i =

5
∑

j=1

Nj

maxi Nj
. (1)

It is clear that high values of the �vemetrics involve greater

values of the CI, meaning higher construction complexity.

Once the four response variables (lateral de�ection δ,

torsional rotation ϕ, mass M and CI) are computed for

each diagrid geometry, the goal is to �nd the solution that

minimizes them all. As a matter of fact, minimizing lat-

eral de�ections and torsional rotations is important for the

building safety and serviceability, limiting the amount of

structural material is pivotal for sustainability purposes,

while minimizing the CI leads to an easier and faster con-

struction process. Hence, the multi-response optimization

is carried out by means of the desirability function ap-

proach [22, 23].

The desirability function approach is widely used in

industrial engineering and other �elds for the optimiza-

tion of multi-response processes and is based on �nding

the conditions that lead to the most desirable responses.

In this case, the optimal diagrid solution should involve

the lowest values of the four response variables (δ, ϕ, M

and CI). The desirability function approach yields the def-

inition of the individual desirability value di,p associated

to the ith geometrical solution, i.e. S1, S2, . . . , C12 (Table 1),

with respect to the pth response variable, i.e. p = δ, ϕ, M,

CI. The individual desirability di,p can be expressed as fol-

lows:

di,p =

(

maxi pi − pi
maxi pi −mini pi

)rp

, (2)

being pi the value of the p
th response variable for the ith ge-

ometrical solution,maxi piandmini pi the maximum and

minimumvalues of the pth response variable across all the

geometrical solutions, and rp the exponent of the individ-

ual desirability di,p related to the p
th response variable.

Based on Equation (2), it can be inferred that the geo-

metrical solution that provides the minimum value of the

pth response variable across all the solutions is assigned

an individual desirability di,p equal to 1, whereas the solu-

tion that provides the maximum value of the pth response

variable exhibits an individual desirability di,p equal to 0.

This means that we assign an individual score of 1 to the

diagrid geometry that minimizes the particular response

variable (δ,ϕ,M, CI), while we assign a score of 0 to the so-

lution that provides the highest value of the response vari-

able. Note that these extreme solutions do not depend on

the exponent rp. Conversely, all the other diagrid geome-

tries are assigned an individual desirability score between

0 and 1, whose value also depends on rp. The higher the

individual desirability di,p, the better the performance of

the ith geometry to minimize the pth response variable.

Once the individual desirability values have been com-

puted for each geometrical solution and response variable,

the overall desirability of the ith diagrid geometry, ODi,

can be calculated as:

ODi =

k
∏

p=1

(

di,p
)1/k

=
(

di,δdi,ϕdi,Mdi,CI
)1/4

, (3)

being k the total number of response variables considered

(k = 4 in this study). The application of Equation (3) di-

rectly provides a global score for each ith diagrid geome-

try that depends on the individual desirability values ob-

tained from Equation (2). High values of ODi imply high

performance of the ith solution with respect to all the con-

sidered variables, whereas low values of ODi imply low

performance. Note that, according to Equation (3), if one

individual desirability di,p is 0, ODiis directly equal to 0,

no matter the value of the other individual desirability

values. Conversely, to obtain ODi equal to 1, it is neces-

sary that all the individual desirability values di,p reach

1, meaning that the ith solution is the optimal one with re-

spect to the all the response variables. Usually, the values

of ODi lie in between. In the following Section, the results

that arise from Equations (2) and (3) are reported for the

168-meter diagrid tall building, in order to �nd the opti-

mal geometry among the ones considered in Figure 1 and

Table 1.

For sake of simplicity, the analysis has been initially

carried out by considering a unit value for each exponent

rp, i.e. rδ = rϕ = rM = rCI = 1, thus assuming a linear distri-

bution of the individual desirability with respect to the re-

sponse variables and assigning the sameweight for the dif-

ferent response variables. However, a sensitivity analysis

has also been carried out afterwards to investigate the in-

�uence of these exponents, i.e. rδ ≠ rϕ ≠ rM ≠ rCI ≠ 1, on

the obtained optimal geometries. Finally, the analysis has

also been extended to 126-, 210- and 252-meter tall build-

ings, in order to investigate the in�uence of the building

aspect ratio on the results.

3 Results and discussion

Considering the twenty-four diagrid geometries shown in

Table 1 and applying the procedure presented in the previ-

ous Section, the four response variables (δ, ϕ,M, CI) were

obtained as reported in Table 2.
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Table 2: Response variables (δ, ϕ,M, CI) for the twenty-four diagrid geometries (minimum values for each floor shape are in italic, absolute

minimum values are in bold italic)

i
th solution δ [cm] ϕ [10−5 rad] M [ton] N1 [-] N2 [-] N3 [-] N4 [-] N5 [-] CI [-]

S1 28.1 3.8 3016 576 48 0 1152 1 4.00

S2 10.5 5.3 2126 288 24 0 576 1 2.50

S3 8.6 8.8 1916 192 16 0 384 1 2.00

S4 8.7 13.8 1837 144 12 288 288 1 2.75

S6 11.0 28.9 1778 96 8 192 192 1 2.17

S12 29.0 124.2 1742 48 4 288 96 1 2.25

H1 25.3 3.3 2876 576 48 0 1152 1 4.00

H2 10.3 4.9 2077 288 24 0 576 1 2.50

H3 8.8 8.5 1892 192 16 0 384 1 2.00

H4 9.2 13.5 1823 144 12 288 288 1 2.75

H6 11.9 28.6 1772 96 8 192 192 1 2.17

H12 32.8 123.9 1740 48 4 288 96 1 2.25

O1 24.0 3.1 2837 576 48 0 1152 1 4.00

O2 10.0 4.8 2063 288 24 0 576 1 2.50

O3 8.7 8.4 1885 192 16 0 384 1 2.00

O4 9.2 13.4 1819 144 12 288 288 1 2.75

O6 12.2 28.5 1770 96 8 192 192 1 2.17

O12 34.0 123.7 1740 48 4 288 96 1 2.25

C1 23.0 3.0 2790 576 48 0 1152 1 4.00

C2 10.0 4.8 2047 288 24 0 576 1 2.50

C3 8.8 8.4 1877 192 16 0 384 1 2.00

C4 9.4 13.6 1814 144 12 288 288 1 2.75

C6 12.6 29.0 1768 96 8 192 192 1 2.17

C12 35.8 126.3 1739 48 4 288 96 1 2.25

The second column shows the obtained lateral dis-

placements at the top of the building due to the lateral

load, based on the MBM. As can be seen, the top lateral

de�ection of the diagrid is strongly dependent on the num-

ber of intra-module �oors, i.e. on the diagonal inclination.

The in�uence of the �oor shape is less important. Based

on the obtained results, it is found that the geometrical

solutions that minimize the lateral displacements are al-

ways the ones with three intra-module �oors (S3, H3, O3,

C3), that correspond to a diagonal inclination of 64∘–67∘.

Among these, the sti�est solution that minimizes the lat-

eral de�ection corresponds to the S3. Conversely, the solu-

tions with twelve intra-modules �oors (S12, H12, O12, C12),

i.e. diagonal angles of 83∘–84∘ are the ones providing the

highest lateral de�ection. Among these, the most �exible

one is C12. As will be seen below, based on Equation (2),

the geometrical solution S3 will have the highest individ-

ual desirability value with respect to the lateral displace-

ment (dS3,δ = 1), whereas the solution C12 will exhibit a

null individual desirability value (dC12,δ = 0). The other

solutions will be assigned an individual desirability lying

between these values according to Equation (2).

Similarly, the third column of Table 2 reports the com-

puted torsional rotation at the top of the building due to

the external torque moments, as obtained from the MBM.

From the results, it canbe inferred that the lowest torsional

rotation is always provided by the geometrical solutions

with the lowest number of intra-module �oors (S1, H1, O1,

C1), thus corresponding to the shallowest diagonal inclina-

tion (35∘–38∘). Among these, the sti�est solution is the cir-

cular diagrid tube C1, which provides the highest torsional

rigidity. Conversely, the highest torsional rotations are ob-

tained for the diagrid structures with the highest number

of intra-module �oors (S12, H12, O12, C12), the maximum

one obtained with the solution C12. Accordingly, based on

Equation (3), we will obtain the highest individual desir-

ability value for the solution C1 (dC1,ϕ = 1) and the lowest

value for the geometryC12 (dC12,ϕ = 0). Again, theother so-

lutions will exhibit desirability values in between accord-

ing to Equation (2).
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From the results obtained in these �rst two columns,

it can be inferred that the di�erent �exibilities (lateral

and torsional) are minimized by di�erent geometrical so-

lutions. This point has already been addressed by the Au-

thors in [20]. The lateral de�ection is usuallyminimized by

intermediate values of the diagonal angle, due to the com-

petition between shear and bending rigidity. The former is

maximum for shallow angles (around 35∘) whereas the lat-

ter ismaximum for diagonal inclinations of 90∘. Due to the

fact that the lateral deformability of the diagrid building is

governed by both the shear and bending deformation of

the diagrid module, an intermediate angle between these

two is often found to provide the maximum lateral rigidity.

The optimal angle is also shown to depend on the building

aspect ratio, since this one governs the di�erent involve-

ment of shear over bending rigidity, the former beingmore

involved in shorter buildings, the latter in taller buildings.

Conversely, the torsional rigidity of the building only de-

pends on the shear rigidity of the diagrid module, there-

fore it is maximum for very shallow diagonals [20]. These

considerations make the choice of the optimal geometry

di�cult, as one should limit both the lateral and torsional

�exibility of the structure. To this purpose, the desirabil-

ity function approach seems an e�ective yet simple way to

tackle this problem.

The fourth column of Table 2 reports the total steel

mass of the external diagrid tube, which is directly cal-

culated based on the steel density and the actual di-

agrid geometry. The solutions with higher numbers of

intra-module �oors (S12, H12, O12, C12) involve the lowest

amount of employed material. This is simply due to the

fact that, when the diagonal inclination is very steep, the

density of the diagonals in the patterns gets remarkably

lower, as can be appreciated by Figure 1a. Based on the

mass response, the highest individual desirability score is

assigned to the solution C12 (dC12,M = 1), whereas the low-

est one to the solution S1 (dS1,M = 0).

Finally, the last columns of Table 2 report the �ve

metrics N1, N2, N3, N4 and N5 that are used to calculate

the complexity index. Note that, although in the previous

cases the variation of the �rst three responses (δ, ϕ, M)

among the di�erent �oor shapeswas not so evident, in this

case the �ve metrics N1, N2, N3, N4 and N5 do not vary at

all with respect to the �oor shape, being only dependent

on the diagonal inclination. N1 represents the total num-

ber of diagrid nodes, therefore it is minimum for the solu-

tions S12, H12, O12 and C12, while it is maximum for S1, H1,

O1 and C1. Similarly,N2 is the number of di�erent diagonal

cross-sections used in the pattern, thus in this case it cor-

responds to the number of diagrid modules, as each mod-

ule has its own cross-sectional area. Therefore, it is mini-

mum for S12, H12, O12 and C12, while it is maximum for S1,

H1, O1 and C1. N3 takes into account the maximum diag-

onal length of 12 meters for transportability issues, and it

is found to be minimum for all the solutions with one, two

and three intra-module �oors, while it is higher for steeper

diagonals. N4 represents the number of diagonals in the

pattern and it is found to be minimum for the solutions

S12, H12, O12 and C12, while it is maximum for S1, H1, O1

and C1. Finally, N5 takes into account the di�erent lengths

of the diagonals in the pattern. In this case, it is equal to

one for each solution, as each pattern has all the diagonals

with the same length, having a constant inclination across

the building height.

Based on the evaluation of N1, N2, N3, N4 and N5,

Equation (1) is applied to compute the CI of each geometri-

cal solution, obtaining the results reported in the last col-

umn of Table 2. According to what already reported above,

no variation is found for this response variable across the

di�erent �oor shapes. Conversely, it can be seen that the

diagrid solutions that minimize the CI are the ones with

three intra-module �oors (dS3,CI = dH3,CI = dO3,CI =

dC3,CI = 1), whereas the ones that maximize the construc-

tion complexity are the ones with one intra-module �oor

(dS1,CI = dH1,CI = dO1,CI = dC1,CI = 0). The other geomet-

rical solutions exhibit CIs that lie in between these values.

Based on the response variables reported in Table 2,

Equation (2) has been applied to calculate the individual

desirability value for each geometrical solution referred to

each response variable. The results are shown in Table 3,

calculated by adopting a unit value of the exponent rp for

all the responses, i.e. rδ = rϕ = rM = rCI = 1. The ob-

tained individual desirability values are also represented

in graphical form in Figure 2a. As can be seen, the in�u-

ence of the �oor shape is negligible, whereas the diagonal

inclination has a strong in�uence on the individual desir-

ability values for each given �oor shape.

Finally, the individual desirability values are com-

bined together to obtain the OD according to Equation (3).

The results are reported in the last column of Table 3 and

are represented graphically in Figure 2b. As can be seen

from the obtained OD values, the most desirable solution

(ODmax = ODC3 = 95.94%) is C3, thus the circular diagrid

building with three intra-module �oors, corresponding to

a diagonal inclination of 67∘. This result arises from the

fact that the solution C3 is indeed one of the best perform-

ingwith respect to all the four response variables. As amat-

ter of fact, this geometrical solution allows to reach very

low lateral de�ections (dC3,δ = 99.32%) and torsional

rotations (dC3,ϕ = 95.62%), it is also highly desirable

with respect to the minimization of the structural weight
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Figure 2: (a) Individual desirability values for the four response variables (rp = 1) and (b) OD values

Figure 3: Surface representation of the ODwith respect to the diagrid geometrical parameters (diagonal angle and floor shape). ODvalues

are reported in the vertical axis and represented by means of color shades

(dC3,M = 89.19%)and it is one of the best structures froma

construction complexity perspective (dC3,CI = 100.00%).

Note that the other solutions with three intra-module

�oors anddi�erent �oor shapes, i.e.S3,H3 andO3, provide

similar values of OD: ODS3 = 95.21%, ODH3 = 95.62%

and ODO3 = 95.86%. This con�rmswhat already reported

above, i.e. the in�uence of the �oor shape on the optimal

diagrid geometry is less important. This can also be seen

from Figure 2b, where the OD graph shows a similar trend

for the di�erent �oor shape. Moreover, Figure 3 reports a

surface representation of the OD valueswith respect to the

diagonal inclinations and �oor shapes. From the �gure, it

is evident thatmost of theOD variationoccurswith respect

to the diagonal inclination, whereas the surface is almost

cylindrical in the direction of the �oor shape axis.

The ODdrops to lower values for di�erent number of

intra-module �oors. The solutions with one intra-module

�oor (S1, H1, O1, C1) have always an OD equal to 0,

due to the fact that, despite their high torsional rigidity

(di,ϕ ∼ 99–100%), they are quite �exible under lateral
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Table 3: Individual and overall desirability values for the four response variables (rp = 1)

i
th solution di,δ [-] di,ϕ [-] di,M [-] di,CI [-] ODi [-]

S1 0.2840 0.9941 0.0000 0.0000 0.0000

S2 0.9292 0.9817 0.6975 0.7500 0.8311

S3 1.0000 0.9535 0.8618 1.0000 0.9521

S4 0.9958 0.9123 0.9237 0.6250 0.8510

S6 0.9124 0.7899 0.9696 0.9167 0.8946

S12 0.2490 0.0176 0.9979 0.8750 0.2486

H1 0.3839 0.9981 0.1096 0.0000 0.0000

H2 0.9375 0.9845 0.7359 0.7500 0.8448

H3 0.9931 0.9560 0.8806 1.0000 0.9562

H4 0.9799 0.9147 0.9348 0.6250 0.8507

H6 0.8776 0.7922 0.9747 0.9167 0.8878

H12 0.1078 0.0193 0.9992 0.8750 0.2065

O1 0.4338 0.9992 0.1404 0.0000 0.0000

O2 0.9477 0.9853 0.7465 0.7500 0.8503

O3 0.9964 0.9568 0.8858 1.0000 0.9586

O4 0.9791 0.9155 0.9378 0.6250 0.8514

O6 0.8689 0.7931 0.9761 0.9167 0.8861

O12 0.0650 0.0210 0.9996 0.8750 0.1859

C1 0.4686 1.0000 0.1771 0.0000 0.0000

C2 0.9504 0.9855 0.7590 0.7500 0.8545

C3 0.9932 0.9562 0.8919 1.0000 0.9594

C4 0.9721 0.9140 0.9413 0.6250 0.8503

C6 0.8533 0.7889 0.9777 0.9167 0.8813

C12 0.0000 0.0000 1.0000 0.8750 0.0000

loads (di,δ ∼ 28–47%), quite heavy (di,M ∼ 0–18%) and

very complex (di,CI = 0%). The solutions with two intra-

module �oors (S2, H2, O2, C2) show ODs in the range 83–

85%: their lateral and torsional rigidity is quite high (di,δ~

92–95 %, di,ϕ ~ 98–99%), but they are still not so light

(di,M ∼ 70–76%) and easily constructible (di,CI = 75%).

The solutions with four intra-module �oors (S4, H4, O4,

C4) provide ODs around 85 %: they exhibit a great lat-

eral rigidity (di,δ ∼ 97–99%), a good torsional behavior

(di,ϕ ∼ 91%), quite lowvalues of structuralweight (di,M ∼

92–94%), but they are still quite complex (di,δ = 62%).

The solutions with six �oors per module (S6, H6, O6, C6)

show ODs in the range 88–89%: they show a lower lateral

and torsional rigidity (di,δ ∼ 85–91%, di,ϕ ∼ 79%), al-

though their mass and complexity responses show satis-

factory desirability values (di,M ∼ 97–98%, di,CI = 92%).

Finally, the solutions with twelve intra-module �oors lead

to low ODs in the range 0–24%: despite their low struc-

tural weight and satisfactory complexity (di,M ∼ 100%,

di,CI = 87%), they are extremely �exible under lateral and

torque actions (di,δ ∼ 0–25%, di,ϕ ∼ 0–2%).

Therefore, based on the results reported in Table 3

and Figures 2 and 3, the optimal diagrid solutions that si-

multaneouslyminimize the lateral and torsional �exibility,

as well as the diagrid structural weight and the construc-

tion complexity can be selected. This approach, based on

the desirability function, seems to be a powerful yet very

simple tool to select the optimal geometry of the diagrid

among a set of solutions and based on di�erent responses.

However, the previous analysis was quite arbitrary as

we chose rδ = rϕ = rM = rCI = 1. This implicitly means as-

signing the four response variables the same importance

in the de�nition of the optimal shape. For this reason, a

parametric analysis has been also carried out by consider-

ing rδ = ̸ rϕ = ̸ rM = ̸ rCI = ̸ 1, in order to investigate how

the optimal diagrid geometry is in�uenced by the di�erent

weights assigned to the di�erent response variables (δ, ϕ,

M, CI).

In order to carry out the sensitivity analysis based on

the weights rp, eight values of rp have been considered

for each variable, namely 0.25, 0.50, 0.75, 1.00, 1.25, 1.50,

1.75, 2.00. Then, we obtain 84 = 4096 combinations of ex-

ponents, as synthetically shown in Table 4. Based on the
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Figure 4: Surface representation of the OD with respect to the diagrid geometrical parameters obtained with di�erent combinations of the

individual desirability exponents: (a) rδ = 2.00, rϕ = 1.00, rM = 1.00, rCI = 1.00; (b) rδ = 1.50, rϕ = 0.75, rM = 1.25, rCI = 1.00; (c)

rδ = 1.50, rϕ = 1.00, rM = 1.00, rCI = 1.25; (b) rδ = 2.00, rϕ = 1.25, rM = 1.75, rCI = 0.75

Table 4: The possible combinations by considering eight di�erent

exponents rp for each response variable

Combination rδ [-] rϕ [-] rM [-] rCI [-]

1 0.25 0.25 0.25 0.25

2 0.25 0.25 0.25 0.50

3 0.25 0.25 0.25 0.75

. . . . . . . . . . . . . . .

1755 1.00 1.00 1.00 0.75

1756 1.00 1.00 1.00 1.00

1757 1.00 1.00 1.00 1.25

. . . . . . . . . . . . . . .

4094 2.00 2.00 2.00 1.50

4095 2.00 2.00 2.00 1.75

4096 2.00 2.00 2.00 2.00

response variables obtained in Table 2, for each combina-

tion of exponents rδ, rϕ, rM and rCI , the same analysis pre-

sented above can be carried out by applying Equations (2)

and (3). Eventually, the optimal geometry can be found

out, based on the maximum value of the obtained OD val-

ues.

As an example, Figure 4 shows four di�erent OD sur-

faces based on four di�erent sets of the exponents rp. As

can be seen, the four surfaces share many common fea-

tures, meaning that the in�uence of the exponent rp might

not be so relevant for the purpose of determining the most

desirable diagrid geometry. As a matter of fact, in all the

cases, the optimal solution is associated with three intra-

module �oors, whereas the speci�c �oor shape still has

lower in�uence.

Figure 5 reports the obtained optimal geometry, ex-

pressed as relative frequency of occurrence out of the 4096

simulations. From the outcomes, it was obtained that the

solution C3, which was assessed as the optimal geometry

in the previous analysis (with rδ = rϕ = rM = rCI = 1), is

found as the optimal one for 3072 exponent combinations

(75.00% of the total cases). It was also found that, in 1000

simulations (24.41% of the total), the optimal geometry is

the solution O3, which is the octagonal diagrid with three

intra-module �oors. This should not surprise as we have

already seen in the previous analysis (with rδ = rϕ = rM =

rCI = 1) that the solution O3 (ODO3 = 95.86%) was not

so di�erent from the C3 (ODO3 = 95.94%). Therefore, out

of 4096 combinations of exponents, 4072 cases (99.41% of

the total) provided O3 or C3 as the optimal diagrid geom-

etry, based on their lateral and torsional �exibility, struc-

tural mass and construction complexity.

The remaining 24 combinations (0.59%of the total) as-

signed the optimal geometry to the solution S6 (14 cases –

0.34%) and O6 (10 cases – 0.25%), which correspond to

the square and octagonal geometry with six intra-module

�oors, respectively. However, these rare cases were found
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Figure 5: Optimal diagrid geometry based on 4096 simulations with di�erent exponents of the individual desirability values

to correspond to highly unbalanced exponents, where the

top lateral de�ection and torsional rotation, i.e. the struc-

tural responses, were much underweighted than the dia-

grid mass and construction complexity, i.e. the geometri-

cal responses.

In conclusion, the sensitivity analysis carried out here

demonstrates that, for the investigated 168-meter tall di-

agrid building, the optimal diagonal inclination should

always correspond to three intra-module �oors in order

to minimize both the lateral de�ection, torsional rotation,

structural weight and construction complexity. The �oor

shape seems to be less important, as already shown by

the Authors in [20], although a slight bias towards curved

�oor shapes, i.e. circular andoctagonal, has beenobtained

here.

Based on the analysis carried out for the 168-meter tall

building, the optimal diagrid geometry has also been in-

vestigated for the other buildings with di�erent heights

considered in [20], i.e. 126-, 210- and 252-meter tall struc-

tures. The geometrical features of these buildings are the

same reported in [20], with six di�erent diagonal inclina-

tions and four �oor shapes, for a total of twenty-four geo-

metrical solution per building.

Figures 6a, 7a and8a show theOD surface for the three

buildings, obtained by applying Equations (2) and (3) and

by considering rδ = rϕ = rM = rCI = 1. In both cases, the

optimal diagrid geometry is found to be associated with

the solution C3, with ODC3 values of 96.04% for the 126-,

95.68% for the 210- and 95.52% for the 252-meter building.

Also in these cases, the in�uence of the speci�c �oor shape

is found to be almost negligible, the diagonal inclination

being the only parameter a�ecting the variation of the in-

dividual and overall desirability values.

The sensitivity analysis by varying the exponents rp

has been carried out as well, and the results are shown in

Figures 6b, 7b and 8b for the three building heights. Simi-

larly to Figure 5, these graphs report the obtained optimal

diagrid geometry expressed as relative frequency of occur-

rence out of the 4096 combinations from Table 4. The re-

sults are similar to what already found for the 168-meter

building investigated above.

Speci�cally, for the 126-meter tall building (Figure 6b),

the C3 solution is found to be the optimal one for 3240

combinations of the exponents rp (79.10% of the total), the

O3 solution is the optimal one for 760 cases (18.55% of

the total), whereas the S3, S6, O6 and H6 geometries are

assigned the highest overall desirability in 72 (1.76%), 12

(0.29%), 10 (0.25%) and 2 cases (0.05%), respectively. As

can be seen, in 99.41% of the combinations the optimal so-

lutions still refer to three intra-module �oors, with a prefer-

ence towards more curved �oor shapes, whereas the solu-

tions with six intra-module �oors are to be preferred only

in 0.59% of the cases. Similarly to what already reported

above, these few cases often refer to very unbalanced com-

binations of the weight exponents, where the importance

of the construction complexity and diagrid mass largely

prevails over the minimization of the lateral and torsional

deformability.

As for the 210-meter tall building, the results are

shown in Figure 7b. Again, the C3 solution is found to be
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Figure 6: Results for the 126-meter tall building: (a) surface representation of the ODwith respect to the diagrid geometrical parameters

obtained with rδ = rϕ = rM = rCI = 1.00; (b) optimal diagrid geometry based on 4096 simulations with di�erent exponents rp

Figure 7: Results for the 210-meter tall building: (a) surface representation of the OD with respect to the diagrid geometrical parameters

obtained with rδ = rϕ = rM = rCI = 1.00; (b) optimal diagrid geometry based on 4096 simulations with di�erent exponents rp

Figure 8: Results for the 252-meter tall building: (a) surface representation of the OD with respect to the diagrid geometrical parameters

obtained with rδ = rϕ = rM = rCI = 1.00; (b) optimal diagrid geometry based on 4096 simulations with di�erent exponents rp
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the most desirable one for 3209 combinations (78.34% of

the total), the O3 solution is the optimal one for 840 cases

(20.51%of the total), whereas the S6 andO6 geometries are

assigned the highest overall desirability in 34 (0.83%) and

13 combinations (0.32%), respectively. In this case, 98.85%

of the combinations lead to the optimal solutions with

three intra-module �oors, againwith a preference towards

more curved �oor shapes, whereas the solutions with six

intra-module �oors are to be preferred only in 1.15% of the

cases.

Finally, Figure 8b shows the outcomes related to the

252-meter tall building. Once again, the C3 solution is

found to be the most desirable one for 3436 combinations

(83.89% of the total), the O3 solution is the optimal one

for 544 cases (13.28% of the total), whereas the S6 and O6

geometries are assigned the highest overall desirability in

88 (2.15%) and 28 combinations (0.68%), respectively. In

this case, 97.17% of the combinations lead to the optimal

solutions with three intra-module �oors, whereas the solu-

tions with six intra-module �oors are to be preferred only

in 2.83% of the cases.

From the results shown above, it is evident how the

optimal geometry is only slightly a�ected by the speci�c

set of weight exponent for the di�erent response variables.

Moreover, for the investigated buildings, having aspect

ratios in the range 4.1–8.4, the optimal geometry is also

found to be slightly a�ected by the building height, be-

ing the solution C3 always the prevailing one. From pre-

vious studies [13, 14], we know that for higher aspect ra-

tios the bending behavior prevails over the shear deforma-

tion mode, thus the diagonal angle that minimizes the lat-

eral diagrid de�ection increases with the building height.

In this case the optimal diagonal inclination does not in-

crease as we need tominimizemultiple responses simulta-

neously, not only the lateral de�ection.

As already shown by the Authors in [20], increasing

the building height leads to greater diagonal inclinations

needed to minimize the lateral displacement. However,

higher diagonal inclinations also lead to higher torsional

rotations, thus worsening the torsional behavior. The CI

also varies when modifying the diagonal inclination and,

speci�cally, it is found to increase when moving from the

solutionwith three intra-module �oors to the onewith four

intra-module �oors (Table 3). Therefore, although the solu-

tions with four intra-module �oors might be better candi-

dates tominimize the lateral de�ections and the structural

mass for higher buildings [20], their higher torsional �exi-

bility and construction complexity prevent their suitability

as optimal geometries.

In conclusion, due to its inherent simplicity and its

ability to consider the simultaneous optimization of sev-

eral responses, the desirability function approach is a

good candidate to assist the designer through the prelim-

inary design stages in assessing the optimal diagrid ge-

ometries. Note that here we decided to take into account

the lateral de�ection, torsional rotation, diagrid mass and

construction complexity as response variables. Obviously,

this choice is not unique. Other response variables might

also be selected, such as the maximum inter-story drift

under lateral loads, the maximum axial stress (both ten-

sile and compressive stress), some feature about the dy-

namic/seismic behavior, etc. Ultimately, it is thedesigner’s

choice to select the speci�c response variables to be in-

cluded into the analysis as well as de�ne their importance,

through the individual desirability weight, to �nally carry

out the optimization of the diagrid.

4 Conclusions

In this paper, we apply for the �rst time the desirability

function approach for the optimization of the diagrid ge-

ometry based onmultiple responses. In particular, a set of

twenty-four geometries has been considered, by varying

the diagonal inclination and �oor shape. Four response

variables have been taken into account, namely the lateral

de�ection at the topof thebuildingdue tohorizontal loads,

the torsional rotation at the top due to torque actions, the

totalmass of the external diagrid tube and its construction

complexity, which is measured through the complexity in-

dex (CI). Based on the value of each response variable, the

desirability function approach yields the de�nition of an

individual desirability score for each geometrical solution

associated to the speci�c response variable. Finally, the in-

dividual desirability values are combined together to com-

pute the overall desirability (OD) of each diagrid geometry.

The optimal solution is the one that leads to the highest

value of the OD.

The methodology has been �rstly applied to a 168-

meter tall diagrid building, by considering the same

weight for the four response variables. From the results, it

is found that the circular building with three intra-module

�oors (corresponding to a diagonal inclination of 67∘) is

the optimal one to simultaneously minimize the lateral de-

�ection, torsional rotation, structural mass and construc-

tion complexity. Also, in line with previous �ndings, it

is obtained that the diagonal inclination has an impor-

tant in�uence on the overall performance of the building,

whereas the�oor shapehasminor e�ect. A sensitivity anal-

ysis has been also carried out to investigate the role of the

weight parameters that modify the relative importance as-
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signed to the response variables. The results have shown

that the optimal solution remains the same for the large

majority of the weight combinations, with a minority of

cases where the optimal diagrid is the one with the octag-

onal shape and three intra-module �oors. The same anal-

yses carried out for the 168-meter tall building have also

been applied to 124-, 210- and 252-meter tall diagrid struc-

tures.

Themethodology presented here has the advantage to

be simple, fast and easily implementable for the analysis

of large sets of structures.Moreover, it enables thedesigner

to take simultaneously into account several response vari-

ables, and not only the lateral de�ection and unit struc-

tural weight. As already speci�ed above, the choice of the

response variables to beoptimized is not unique andmight

also include the inter-story drifts, axial stresses in the diag-

onals and dynamic/seismic performance factors. The se-

lected response variables to be optimized obviously de-

pend on the speci�c needs for the analyzed building (with-

standing strong lateral loads, necessity to limit the amount

of employed material, reaching an easily constructible so-

lution, minimizing the building vibrations, etc.). In any

case, the desirability function approach can be easily ap-

plied to �nd out the best solution, or the best set of solu-

tions, that provide the greatest performance.

It has also to be noted that the proposed approach car-

ries out the choice of the optimal solution based on the

comparison between all the selected solutions, through

the de�nition of the individual desirability scores. There-

fore, the desirability function approach relies on a poste-

riori optimization, which processes the obtained results in

comparative terms and then selects the optimal geometry.

Conversely, other optimization approaches usually imple-

mented in commercial codes, such as Genetic Algorithms,

start fromapopulationof individuals andoperate on those

with speci�c actions (slight changes in the input parame-

ters, cross-overs, etc.) to obtain a new population which is

potentially better performing. Both these approaches have

advantages and limitations, and might be used in synergy

as well. However, the application of the desirability func-

tion approach for the optimization of diagrid geometry

in the preliminary design stages is highly recommended

when the designer needs to have individualmetrics of com-

parison among multiple solutions, based on the speci�c

responses.
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